直接证明与间接证明
直接证明和间接证明
![直接证明和间接证明](https://img.taocdn.com/s3/m/97140b4fbb1aa8114431b90d6c85ec3a86c28b54.png)
直接证明和间接证明例如,我们要证明一个分数小于1的正数与其倒数相乘的结果一定小于1、我们可以直接证明如下:设分数为a/b,其中a和b均为正整数。
则有a<b,因此,a/b<b/b,即a/b<1又因为倒数的定义为1/a,即倒数为1除以该数,所以可知a/b *1/a = a/ba = 1/b,而1/b小于1因此,我们可以得出结论:一个小于1的正数与其倒数相乘的结果一定小于1间接证明是通过反证法(或称间接推理)推导出结论的证明方法。
它包括以下步骤:首先,假设要证明的结论不成立;其次,根据该假设推导出与已知事实矛盾的结论;最后,得出假设的结论非真,因此原结论为真。
间接证明的特点是通过推理和推导推翻假设,从而得到结论。
例如,我们要证明根号2是无理数。
假设根号2是有理数,即可表示为a/b的形式,其中a和b是整数,且a和b没有公因数。
则根号2=a/b,即2=(a/b)^2,即2b^2=a^2根据等式两边平方数的性质可知,a^2必为偶数。
那么,根据整数的性质可知,a也必为偶数,即a=2c,其中c为整数。
将a=2c代入等式2b^2=a^2中,得到2b^2=(2c)^2,化简得到b^2=2c^2依据同样的推理,b也是偶数,与假设a和b之间没有公因数相矛盾。
因此,假设根号2是有理数的假设不成立,根号2是无理数。
总结来说,直接证明是通过逻辑推理和数学定义直接得出结论,而间接证明是通过反证法推导出结论。
这两种证明方法在数学中应用广泛,可以灵活运用于各类数学问题的证明中。
无论是选择直接证明还是间接证明,重要的是要严谨、清晰地阐述证明的过程和推理的逻辑,以确保结论的正确性。
直接证明和间接证明课程教案
![直接证明和间接证明课程教案](https://img.taocdn.com/s3/m/09ab16560640be1e650e52ea551810a6f524c8af.png)
直接证明和间接证明课程教案第一章:引言1.1 课程目标本课程旨在帮助学生理解直接证明和间接证明的基本概念,掌握它们的应用方法,并能够灵活运用这两种证明方式解决实际问题。
1.2 课程内容本章将介绍直接证明和间接证明的定义、分类和基本方法。
1.3 教学方法采用讲授、案例分析、小组讨论等多种教学方法,帮助学生理解和掌握相关概念和方法。
第二章:直接证明2.1 定义和分类2.1.1 直接证明的定义直接证明是通过逻辑推理,直接从已知事实或前提出发,推导出要证明的结论。
2.1.2 直接证明的分类(1)直接逻辑推理:根据已知事实或前提,直接推导出结论。
(2)数学归纳法:先证明基本情况,再证明归纳步骤。
2.2 基本方法2.2.1 演绎法从一般到特殊的证明方法,即从一般原理推导出特殊情况下的结论。
2.2.2 归纳法从特殊到一般的证明方法,即先证明特殊情况,再推导出一般结论。
第三章:间接证明3.1 定义和分类3.1.1 间接证明的定义间接证明是通过证明相反命题的假性,从而证明原命题的真性。
3.1.2 间接证明的分类(1)反证法:假设相反命题为真,通过逻辑推理得出矛盾,从而证明原命题为真。
(2)归谬法:假设相反命题为真,推导出明显错误的结论,从而证明原命题为真。
3.2 基本方法3.2.1 反证法假设相反命题为真,通过逻辑推理得出矛盾,从而证明原命题为真。
3.2.2 归谬法假设相反命题为真,推导出明显错误的结论,从而证明原命题为真。
第四章:证明的辅助方法4.1 数学归纳法数学归纳法是一种包含直接证明和间接证明的方法,先证明基本情况,再证明归纳步骤。
4.2 逆否命题法将原命题的逆否命题作为证明对象,先证明逆否命题,再根据逆否命题与原命题的等价性得出原命题的证明。
第五章:练习与案例分析5.1 练习题设计一些有关直接证明和间接证明的练习题,帮助学生巩固所学内容。
5.2 案例分析分析一些实际案例,让学生运用直接证明和间接证明的方法解决问题。
直接证明与间接证明
![直接证明与间接证明](https://img.taocdn.com/s3/m/5a7dba21cbaedd3383c4bb4cf7ec4afe05a1b16e.png)
直接证明与间接证明直接证明和间接证明是数学中常用的两种证明方法。
直接证明是通过逻辑推理和已知的真实前提,以直接的方式推出所要证明的结论。
间接证明则是采用反证法或者假设推理的方式,通过说明对立假设或者逻辑矛盾来推出所要证明的结论。
直接证明的思路是从已知条件出发,逐步运用数学定义、性质、定理等等,直接推导到所要证明的结论。
这种证明方法通常比较直观,步骤清晰,容易理解。
下面来看一个简单的例子。
假设我们要证明:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。
直接证明的思路是从正整数是3的倍数这个已知条件出发,即假设正整数n可以写为3k,其中k为整数。
那么正整数n的平方可以写为(3k)^2=9k^2,即n^2=9k^2、由此可知,正整数n^2也可以写为3的倍数,因为9k^2可以写为3的倍数。
因此,根据直接证明的逻辑推理,我们得出结论:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。
间接证明的思路是通过反证法或者假设推理的方式,假设所要证明的结论不成立,然后通过推理说明这个假设是不可能的或者导致矛盾的。
下面来看一个简单的例子。
假设我们要证明:不存在两个整数的和等于3的倍数,且差等于5的倍数。
间接证明的思路是先假设存在这样的两个整数,分别为a和b。
那么根据条件,我们可以得到以下两个等式:a+b=3k,其中k为整数;a-b=5m,其中m为整数。
然后我们将这两个等式相加,得到:2a=3k+5m。
由于3k+5m是整数,所以2a也是整数。
但是,由于2是偶数,所以2a是偶数,而3k+5m是奇数。
因此,2a和3k+5m不能同时成立,即假设不成立。
因此,不存在两个整数的和等于3的倍数,且差等于5的倍数。
以上是直接证明和间接证明的简单例子,实际的证明可能需要更多的推理和步骤。
两种证明方法各有优点和适用范围。
直接证明通常通过展示清晰的推理过程来达到证明目的,适合于结论的证明比较明显和直观的情况。
而间接证明则通过反证法或者假设推理来达到证明目的,适合于结论的证明比较困难或者复杂的情况。
直接证明与间接证明
![直接证明与间接证明](https://img.taocdn.com/s3/m/449471d948649b6648d7c1c708a1284ac850054a.png)
第4讲直接证明与间接证明讲义讲义一、导入【教学建议】我们知道,合情推理所得结论的正确性是需要证明的,这正是数学区别于其他学科的显著特点,数学结论的正确性必须通过逻辑推理的方式加以证明.综合法和分析法是直接证明中最基本的两种方法,反证法是间接证明的一种直接方法.C先生上了公交车却发现没带钱包,售票员不由分说让他下车,一位小伙子微笑着递过一块钱,C 先生很感激.车上的人开始小声议论C 先生是骗钱的,就在C先生生气准备甩票下车的时候,借钱给他的小伙子大声问:“能不能借一下您的手机?”C先生递过手机,小伙子拨了个号码,说了两三分钟的话,C先生想这下可以证明我的清白了.下车后C先生打开手机愣住了,原来小伙子根本没有拨通电话,但是直接证明了他的清白.二、知识讲解知识点1 综合法1.用综合法证明数学问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹,并且综合法的推理过程属于演绎推理,它的每一步推理得出的结论都是正确的,不同于合情推理.使用综合法证明问题,有时从条件可得出几个结论,哪个结论才可作为下一步的条件是分析的要点,所以如何找到“切入点”和有效的推理途径是有效利用综合法证明数学问题的关键.2. 综合法证明数学命题的步骤第一步:分析条件,选择方向.认真发掘题目的已知条件,特别是隐含条件,分析已知与结论之间的联系,选择相关的公理、定理、公式、结论,确定恰当的解题方法.第二步:转化条件,组织过程.把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.知识点2 分析法1.分析法的推理过程也属于演绎推理,每一步推理都是严密的逻辑推理.2.分析法证明不等式的依据、方法与技巧.(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.知识点3 反证法1.反证法证明数学命题的一般步骤第一步:分清命题“p→q”的条件和结论;第二步:作出与命题结论q相矛盾的假定⌝q(反设);第三步:由p和⌝q出发,应用正确的推理方法,推出矛盾结果(归谬);第四步:断定产生矛盾结果的原因,在于开始所作的假定⌝q不真,于是原结论q成立,从而间接地证明了命题p→q为真.第三步中所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知条件矛盾,与临时假定矛盾以及自相矛盾等各种情况.2.反证法的适用对象作为一种间接证明方法,反证法尤其适合证明以下几类数学问题:(1)直接证明需分多种情况的;(2)结论本身是以否定形式出现的一类命题——否定性命题;(3)关于唯一性、存在性的命题;(4)结论以“至多”、“至少”等形式出现的命题;(5)条件与结论联系不够明显,直接由条件推结论的线索不够清晰,结论的反面是比原结论更具体、更容易研究的命题.三、例题精析【教学建议】分析法和综合法是对立统一的两种方法.一个命题用何种方法证明,要能针对具体问题进行分析,灵活地运用各种证法.当不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目更是行之有效的方法.用反证法证题时,必须把结论的否定作为条件使用,否则就不是反证法.【题干】(1)设A =12a +12b ,B =2a +b(a >0,b >0),则A 、B 的大小关系为________. 【答案】A ≥B【解析】A -B =a +b 2ab -2a +b =)(24)(2b a ab ab b a +-+≥0. 【题干】(2)若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定【答案】 A【解析】 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .【题干】(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【答案】 1和3【解析】 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.【题干】(4)设数列{a n }的前n 项和为S n .若对任意正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是 例题1“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.【解析】(1)由已知,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m .所以{a n }是“H 数列”.(2)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *).令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下面证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 【题干】(1)欲证2−√5<√6−√7成立,只需证( )A .(2−√5)2<(√6−√7)2B .(2−√6)2<(√5−√7)2C .(2+√7)2<(√5+√6)2D .(2−√5−√6)2<(−√7)2【答案】C【解析】由分析法知,欲证2−√5<√6−√7,只需证2+√7<√6+√5,即证(2+√7)2<(√6+√5)2,故选C .【题干】(2)分析法又称执果索因法,已知x >0,用分析法证明1+x <1+x 2时,索的因是( ) A .x 2>1B .x 2>4C .x 2>0D .x 2>1【答案】 C【解析】 因为x >0,所以要证1+x <1+x 2,只需证(1+x )2<⎝⎛⎭⎫1+x 22, 即证0<x 24,即证x 2>0,因为x >0,所以x 2>0成立,故原不等式成立. 【题干】(3)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .【求证】1a +b +1b +c =3a +b +c . 例题2证明:要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立. 【题干】(1)用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________.【答案】 x ≠-1且x ≠1【解析】 “x =-1或x =1”的否定是“x ≠-1且x ≠1”.【题干】(2)设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤【答案】 C【解析】 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出; 若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.【题干】(3)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不可能成等差数列.【解析】假设1a ,1b ,1c 成等差数列,则2b =1a +1c ,所以2ac=bc+ab.① 因为a ,b ,c 成等差数列,所以2b=a+c.②把②代入①,得2ac=b (a+c )=b ·2b.所以b 2=ac.③由②平方,得4b 2=(a+c )2.④把③代入④,得4ac=(a+c )2,所以(a-c )2=0.所以a=c.例题3代入②,得b=a,故a=b=c,所以数列a,b,c的公差为0.这与已知矛盾,因此假设错误.故1a ,1b,1c不可能成等差数列.。
高中数学中常见的证明方法
![高中数学中常见的证明方法](https://img.taocdn.com/s3/m/f8263b04a9956bec0975f46527d3240c8547a177.png)
高中数学中常见的证明方法一、直接证明法直接证明法是最基本也是最常见的证明方法之一。
它通过对所要证明的命题进行逻辑推理和分析,直接给出证明的过程和结论。
要使用直接证明法,一般需要明确以下几个步骤:1. 提出所要证明的命题:首先,明确所要证明的命题,即要证明的结论。
2. 建立前提条件:在进行证明前,需要明确前提条件,即已知条件或已知命题。
3. 逻辑推理:通过逻辑推理和分析,根据已知条件和逻辑关系,逐步推导出结论。
4. 结论:最后,根据已有的证明过程,给出结论。
二、间接证明法间接证明法又称反证法,它是通过假设所要证明的命题不成立,然后推导出与已知事实矛盾的结论,从而证明所要证明的命题是正确的。
间接证明法的一般步骤如下:1. 假设反命题:首先,假设所要证明的命题的反命题是正确的。
2. 推导过程:根据假设和已知条件,通过逻辑推理进行推导,尽可能多地得到信息。
3. 矛盾结论:最终推导出一个与已知事实矛盾的结论。
4. 否定假设:由于假设的反命题与已知事实矛盾,所以可以否定假设,即所要证明的命题是正确的。
间接证明法常用于证明一些数学定理、存在性证明和最大最小值的存在性等问题。
三、数学归纳法数学归纳法是一种常用的证明方法,特别适用于证明一类命题或定理,如整数性质、等差数列的性质等。
它基于两个基本步骤:基本情况的验证和归纳假设的使用。
数学归纳法的一般步骤如下:1. 基本情况的验证:首先,验证当命题成立的最小情况,通常是n=1或n=0的情况。
2. 归纳假设的使用:假设当n=k时命题成立,即假设命题对于某个特定的正整数k是成立的。
3. 归纳步骤的推理:在归纳假设的基础上进行推理和分析,证明当n=k+1时命题也成立。
4. 归纳法的结论:根据归纳步骤的推理和基本情况的验证,可以得出结论,即所要证明的命题对于所有正整数都成立。
数学归纳法在数学推理和定理证明中有着广泛的应用,尤其适用于证明具有递推性质的命题。
四、逆否命题证明法逆否命题证明法是通过对命题的逆否命题进行证明,从而间接地证明所要证明的命题。
直接证明与间接证明_分析法
![直接证明与间接证明_分析法](https://img.taocdn.com/s3/m/e7e6fbc96429647d27284b73f242336c1fb93061.png)
直接证明与间接证明_分析法直接证明和间接证明是逻辑学中的两种证明方法。
直接证明是通过事实和逻辑推理直接得出结论的方法,而间接证明则是通过反证法来达到证明的目的。
下面将从分析法的角度来探讨直接证明和间接证明的特点和应用。
首先,直接证明是一种简洁明确的证明方法。
它通过逐步展示事实和推理过程,直接地得出结论。
直接证明要求每一步的推理都是严谨和合乎逻辑的,不允许出现漏洞和错误。
直接证明的优点在于它的证明过程清晰明了,逻辑性强,容易理解和接受。
对于一些简单的问题,直接证明是最常见和最有效的证明方法。
其次,直接证明适用于一些直观的、已知的情况。
例如,要证明一个三角形的三个内角之和等于180度,可以通过直接证明来达到目的。
我们可以利用平行线和同位角的性质,逐步推导出对应角相等,从而得出结论。
这种情况下,我们有直观的几何图形和一些已知的性质,通过推理和演绎可以直接得出结论。
然而,直接证明也有一定的局限性。
对于一些复杂的问题,直接证明可能会变得更加困难和繁琐。
有时候,问题本身的复杂性以及需要证明的结论的复杂性会导致直接证明的推理过程变得更加难以理解和掌握。
在这种情况下,间接证明就可以派上用场。
间接证明是一种通过反证法推导出结论的方法。
它假设待证命题的否定是成立的,然后通过推理和推导得出矛盾的结论,从而证明了原命题的正确性。
间接证明的优点在于它能够化复杂的问题为简单的矛盾,通过推理和演绎来证明原命题的正确性。
它可以避免直接证明中的复杂推理和繁琐的计算。
间接证明适用于一些复杂、难以直接证明的问题。
例如,欧几里得几何中的数学定理费马大定理就是一个典型的间接证明的例子。
费马大定理认为不存在任何正整数n大于2的整数解(x,y,z),使得x^n+y^n=z^n成立。
然而,这个定理的直接证明非常困难。
数学家费马通过间接证明的方法证明了该定理的正确性,从而为数学界做出了重大贡献。
总结起来,直接证明和间接证明是逻辑学中两种常见的证明方法。
13.2直接证明与间接证明
![13.2直接证明与间接证明](https://img.taocdn.com/s3/m/200bc938a66e58fafab069dc5022aaea988f4148.png)
1.直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实的方法,是一种从结果追溯到产生这一结果的原因的思维方法特点从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是要寻找它的必要条件从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件步骤的符号表示P0(已知)⇒P1⇒P2⇒P3⇒P4(结论)B(结论)⇐B1⇐B2…⇐B n⇐A(已知)2.间接证明(1)反证法的定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒tt与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法.(2)应用反证法证明数学命题的一般步骤:①分清命题的条件和结论;②做出与命题结论相矛盾的假设;③由假设出发,应用演绎推理方法,推出矛盾的结果;④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ ) (6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >ab答案 B解析 对于A ,若c =0,则ac 2=bc 2,故不正确. 对于B ,∵a <b <0,∴a -b <0,∴a 2-ab =a (a -b )>0, ∴a 2>ab ,∴ab -b 2=b (a -b )>0,∴ab >b 2, ∴a 2>ab >b 2,故B 正确.对于C ,∵a <b <0,∴1a -1b =b -aab >0,∴1a >1b,故错; 对于D ,∵a <b <0,b a -a b =b 2-a 2ab <0,∴b a <ab,故错. 2.(2014·山东)用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实数C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故应选A. 3.要证a 2+b 2-1-a 2b 2≤0只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0 答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________三角形. 答案 等边解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.题型一 综合法的应用例1 对于定义域为[0,1]的函数f (x ),如果同时满足: ①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数. (1)若函数f (x )为理想函数,证明:f (0)=0;(2)试判断函数f (x )=2x (x ∈[0,1]),f (x )=x 2(x ∈[0,1]),f (x )=x (x ∈[0,1])是不是理想函数.(1)证明 取x 1=x 2=0,则x 1+x 2=0≤1, ∴f (0+0)≥f (0)+f (0),∴f (0)≤0. 又对任意的x ∈[0,1],总有f (x )≥0, ∴f (0)≥0.于是f (0)=0.(2)解 对于f (x )=2x ,x ∈[0,1],f (1)=2不满足新定义中的条件②, ∴f (x )=2x ,(x ∈[0,1])不是理想函数.对于f (x )=x 2,x ∈[0,1],显然f (x )≥0,且f (1)=1. 任意的x 1,x 2∈[0,1],x 1+x 2≤1, f (x 1+x 2)-f (x 1)-f (x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f (x 1)+f (x 2)≤f (x 1+x 2). ∴f (x )=x 2(x ∈[0,1])是理想函数.对于f (x )=x ,x ∈[0,1],显然满足条件①②. 对任意的x 1,x 2∈[0,1],x 1+x 2≤1,有f 2(x 1+x 2)-[f (x 1)+f (x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0, 即f 2(x 1+x 2)≤[f (x 1)+f (x 2)]2.∴f (x 1+x 2)≤f (x 1)+f (x 2),不满足条件③. ∴f (x )=x (x ∈[0,1])不是理想函数.综上,f (x )=x 2(x ∈[0,1])是理想函数,f (x )=2x (x ∈[0,1])与f (x )=x (x ∈[0,1])不是理想函数.思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设知(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1.题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22,即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由均值不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知a >0,求证a 2+1a 2-2≥a +1a-2.证明 要证 a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a+ 2.因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a),只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.题型三 反证法的应用 命题点1 证明否定性命题例3 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. (1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N +), 则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*)又因为p <q <r ,且p ,q ,r ∈N +,所以r -q ,r -p ∈N +. 所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证. 命题点2 证明存在性问题例4 (2015·济南模拟)若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ] (a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在. 命题点3 证明唯一性命题例5 已知M 是由满足下述条件的函数构成的集合:对任意f (x )∈M ,(ⅰ)方程f (x )-x =0有实数根; (ⅱ)函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x4是不是集合M 中的元素,并说明理由;(2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根. (1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根为0; ②f ′(x )=12+14cos x ,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素.(2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β), 满足f (β)-f (α)=(β-α)f ′(c ). 因为f (α)=α,f (β)=β,且α≠β, 所以f ′(c )=1.与已知0<f ′(x )<1矛盾. 又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华 应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N +,且互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r 2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.24.1反证法在证明题中的应用典例 (12分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思维点拨 (1)根据菱形对角线互相垂直平分及点B 的坐标设出点A 的坐标,代入椭圆方程求得点A 的坐标,后求AC 的长;(2)将直线方程代入椭圆方程求出AC 的中点坐标(即OB 的中点坐标),判断直线AC 与OB 是否垂直. 规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1)所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]温馨提醒 (1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.[方法与技巧]1.分析法的特点:从未知看需知,逐步靠拢已知. 2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. [失误与防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.A 组 专项基础训练 (时间:45分钟)1.若a 、b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1答案 B解析 在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1)恒成立.2.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确;②的假设错误 D .①的假设错误;②的假设正确 答案 D解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确. 3.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定答案 C解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q . 5.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤答案 C解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.6.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是____________________________.答案 a ,b 中没有一个能被5整除解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证:2a 3-b 3-2ab 2+a 2b ≥0,即2a (a 2-b 2)+b (a 2-b 2)≥0,即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,∴2a 3-b 3≥2ab 2-a 2b .10.已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A答案 A解析 ∵a +b 2≥ab ≥2ab a +b, 又f (x )=(12)x 在R 上是减函数. ∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形答案 D解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形. 由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2, 这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.13.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N +,设c n =a n -b n ,则c n 与c n +1的大小关系为__________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n, ∴c n 随n 的增大而减小,∴c n +1<c n .14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.(1)证明 ∵f (x )的图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝⎛⎭⎫1a ≠c , ∴1a是f (x )=0的一个根. (2)解 假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾, ∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明 由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a , 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.15.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1),数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.(1)解 由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为c 1=34, 公比为23的等比数列,即c n =34·(23)n -1, 故1-a 2n =34·(23)n -1⇒a 2n =1-34·(23)n -1. 又a 1=12>0.a n a n +1<0, 故a n =(-1)n -1 1-34·(23)n -1. b n =a 2n +1-a 2n =[1-34·(23)n ]-[1-34·(23)n -1] =14·(23)n -1. (2)证明 用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列, 于是有b r >b s >b t ,则只能有2b s =b r +b t 成立.∴2·14(23)s -1=14(23)r -1+14(23)t -1, 两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s .由于r <s <t ,∴上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.。
直接证明与间接证明 知识点+例题+练习
![直接证明与间接证明 知识点+例题+练习](https://img.taocdn.com/s3/m/659b4b75a0116c175e0e483f.png)
教
学
过
程
1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。
直接证明与间接证明
![直接证明与间接证明](https://img.taocdn.com/s3/m/0103fc8d71fe910ef12df87e.png)
直接证明与间接证明1. 直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (其中P 表示已知条件、已有的定义、公理、定理等,Q 表示要证明的结论). (2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件. 2. 间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法. [难点正本 疑点清源]1. 综合法证明问题是由因导果,分析法证明问题是执果索因.2. 分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用. 基础题1. 要证明“3+7<25”可选择的方法有以下几种,其中最合理的是________.(填序号)①反证法,②分析法,③综合法.2. 下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab≥2成立的条件的个数是________. 3. 已知函数f (x )=lg1-x1+x,若f (a )=b ,则f (-a )=______(用b 表示).4. 下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的有 ( )A .2个B .3个C .4个D .5个5. 用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60° 题型分类题型一 综合法的应用例1 已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.思维启迪:利用a 2+b 2≥2ab ,1a 2+1b 2≥2ab ,再利用ab +1ab ≥2,根据这个解题思路去解答本题即可.已知a 、b 、c 为正实数,a +b +c =1.求证:(1)a 2+b 2+c 2≥13;(2)3a +2+3b +2+3c +2≤6. 题型二 分析法的应用例2 已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .思维启迪:本题若使用综合法,不易寻求证题思路.可考虑使用分析法.已知a >0,求证:a 2+1a 2-2≥a +1a-2.题型三 反证法的应用例3 已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0, x 2+2ax -2a =0中至少有一个方程有实数根.思维启迪:“至少有一个”的否定是“一个也没有”,即“三个方程都没有实数根”.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.随堂练A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( )A .ac 2<bc 2B .a 2>ab >b 2 C.1a <1bD.b a >a b2. 设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( )A .a >bB .a <bC .a =bD .a ≤b3. 分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<04. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数 二、填空题(每小题5分,共15分)5. 设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是__________.6. 用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是_____. 7. 设x ,y ,z 是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若x ⊥z ,且y ⊥z ,则x ∥y ”为真命题的是________(填写所有正确条件的代号).①x 为直线,y ,z 为平面;②x ,y ,z 为平面;③x ,y 为直线,z 为平面;④x ,y 为平面,z 为直线;⑤x ,y ,z 为直线. 三、解答题(共22分)8. (10分)已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.9. (12分)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2D.a b <a +1b +12. 设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-23. 已知f (1,1)=1,f (m ,n )∈N *(m ,n ∈N *),且对任意m ,n ∈N *都有:①f (m ,n +1)=f (m ,n )+2;②f (m +1,1)=2f (m ,1).给出以下三个结论: (1)f (1,5)=9;(2)f (5,1)=16;(3)f (5,6)=26. 其中正确结论的个数为( )A .3B .2C .1D .0二、填空题(每小题5分,共15分)4. 关于x 的方程ax +a -1=0在区间(0,1)内有实根,则实数a 的取值范围是__________. 5. 若a ,b ,c 为Rt △ABC 的三边,其中c 为斜边,那么当n >2,n ∈N *时,a n +b n 与c n 的大小关系为____________.6. 凸函数的性质定理为如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f⎝⎛⎭⎫x 1+x 2+…+x n n ,已知函数y =sin x 在区间(0,π)上 是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 三、解答题7. (13分)已知函数f (x )=ln x -a (x -1)x +1.(1)若函数f (x )在(0,+∞)上为单调递增函数,求a 的取值范围; (2)设m ,n ∈R +,且m >n ,求证:m -n ln m -ln n <m +n 2.。
39直接证明与间接证明
![39直接证明与间接证明](https://img.taocdn.com/s3/m/6793d01e14791711cc79178c.png)
x1+x2 x1+x2 1 1 证明要证 [f(x1)+f(x2)]>f ,即证明2(tan x1+tan x2)>tan 2 , 2 2
x1+x2 1 sin x1 sin x2 >tan 只需证明 cos x +cos x , 2 2 1 2 sinx1+x2 sinx1+x2 只需证明 > . 2cos x1cos x2 1+cosx1+x2
b S,
b a c, 即证 因为,在三角形中,b<a+c 显然成立,
所以原不等式成立.
2.△ABC三边长a, b, c的倒数成等差数列.
求证: B 90.
证明: 2 1 1 , 2ac b(a c ).
b a
c a 2 c 2 b2 2ac b2 cos B ≥ 2ac 2ac
直接证明与间接证明
要点梳理
1.直接证明 (1)综合法
忆一忆知识要点
①定义:利用已知条件和某些数学定义、公理、定理等, 经过一系列的推理论证,最后推导出所要证明的结论成 立,这种证明方法叫做综合法. ②框图表示: P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q (其中 P 表示已知条件、已有的定义、公理、定理等,Q 表示要证明的结论).
综合法
2 7 在 x∈(a,+∞)上恒 例 1.(1)已知关于 x 的不等式 2x+ x-a 成立,求实数 a 的取值范围; (2)已知|x|<1,|y|<1,求证:|1-xy|>|x-y|.
2 2 3 7,∴2(x-a)+ 7-2a⇒7-2a 4,∴a 2 (1)∵2x+ x-a x-a (2)因为|1-xy|2-|x-y|2=(xy)2+1-x2-y2=(x2-1)(y2-1)>0 所以|1-xy|>|x-y|
形式推理的直接证明与间接证明方法
![形式推理的直接证明与间接证明方法](https://img.taocdn.com/s3/m/2de53b633a3567ec102de2bd960590c69ec3d8be.png)
形式推理的直接证明与间接证明方法形式推理作为数理逻辑的重要分支,通过严密的推理方法,可以从已知的前提推导出合理的结论。
在形式推理中,直接证明和间接证明是两种常见的证明方法。
本文将就这两种方法进行详细探讨,并分析其适用场景和特点。
一、直接证明方法直接证明方法是一种简单直接的推理方式,通过从已知的前提出发,逐步推导到目标结论,以达到证明的目的。
下面以一个具体的例子来说明直接证明的思路和步骤。
假设要证明一个命题P蕴含命题Q,即P→Q。
首先,我们可以从已知P的前提出发,通过逻辑推理得到Q的结论,即推导出Q。
在直接证明中,推导过程中的每一步都必须建立在已知的前提和已证明的结论之上,每一步都要经过严格的逻辑推导,确保推导过程的准确性和有效性。
直接证明方法的优点是简单直观,容易理解和掌握,推理过程清晰明了。
然而,直接证明适用于简单明了的命题,对于复杂或者繁琐的命题,推导过程可能会非常冗长和复杂,不利于推理的简化和提高效率。
二、间接证明方法间接证明方法是一种通过反证法来证明命题的推理方式。
当我们希望证明一个命题P时,可以先假设P不成立,即假设非P为真,然后从这一假设出发,推导出矛盾的结论,再通过排除法得出非P为假,即P成立的结论。
反证法的基本思想是,通过假设命题的反面来推导出矛盾,从而可以得出命题成立。
这种方法在一些特定的证明中非常有效,特别是当直接证明非常困难或者不可行时。
与直接证明方法相比,间接证明方法的优点在于,可以简化复杂的推理过程,通过将问题转化为矛盾的形式,更容易找到解决方案。
然而,间接证明的缺点是需要注意推导步骤的准确性,避免出现漏洞或者错误的推理过程。
三、直接证明与间接证明的比较分析直接证明和间接证明是形式推理中常用的两种方法,它们各有优劣,适用于不同的推理场景。
直接证明方法适用于简单清晰的命题,推导过程相对直接明了,容易理解和掌握。
对于直接证明适用的命题,我们可以通过逐步推导的方式来得到结论。
数学证明中的直接证明与间接证明
![数学证明中的直接证明与间接证明](https://img.taocdn.com/s3/m/5bb1187886c24028915f804d2b160b4e767f8126.png)
数学证明中的直接证明与间接证明数学证明是数学领域中的重要内容,通过逻辑推理和严格的论证,以确保数学理论的正确性和可信度。
数学证明通常可以分为直接证明和间接证明两种形式。
本文将介绍直接证明和间接证明的含义、特点以及应用。
一、直接证明直接证明是一种常用的证明方法,它通过逻辑的推理和论证,直接从已知的命题出发,推导出所要证明的结论。
直接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 列出已知条件和前提条件。
3. 运用逻辑推理、定义和定理等数学原理,一步一步地推导出结论。
4. 分析并验证证明过程中的每一步是否严谨、正确。
5. 结束证明,得出所要证明的命题。
直接证明的特点是逻辑性强、推理过程直观,并且能够根据已知条件直接得出结论。
因此,直接证明在数学证明中广泛应用于各个领域。
例如,我们来证明一个简单的数学定理:两个偶数的和是偶数。
定理:若a和b为偶数,则a+b为偶数。
证明:设a=2m,b=2n,其中m和n为整数。
则a+b=2m+2n=2(m+n)。
由于m和n为整数,所以m+n也是整数。
因此,a+b=2(m+n)为偶数。
证毕。
二、间接证明间接证明是一种通过反证法推导出结论的证明方法。
它假设所要证明的结论为假,通过运用逻辑推理和推导,得出与已知条件或已知结论相矛盾的结论,从而推断出所要证明的结论为真。
间接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 假设所要证明的命题为假。
3. 运用逻辑推理和推导,推出与已知条件或已知结论相矛盾的结论。
4. 推断出所要证明的命题为真。
5. 结束证明,得出所要证明的命题。
间接证明的特点是通过对反证假设进行逻辑推理,将所要证明的结论转化为与已知条件相矛盾的结论。
它常常用于证明一些与质数、无理数、等级等有关的命题。
例如,我们来证明一个著名的数学定理:根号2是一个无理数。
定理:根号2是一个无理数。
证明:假设根号2是一个有理数,可以表示为根号2=p/q,其中p 和q互质。
第三十六讲 直接证明与间接证明
![第三十六讲 直接证明与间接证明](https://img.taocdn.com/s3/m/3f70cef4aef8941ea76e0586.png)
第3页 共 42 页
考点陪练 1.分析法是从要证明的结论出发,逐步寻求使结论成立的 ( ) A.充分条件 B.必要条件
C.充要条件
D.等价条件
解析:根据分析法的要求,只要能找到一个条件使结论成立即
可,并不需要是等价条件(充要条件),只需要是充分条件即
可. 答案:A
第4页 共 42 页
2.用P表示已知,Q表示要证的结论,则综合法的推理形式为( ) A.PQ1→Q1Q2→Q2Q3→„→QnQ B.PQ1→Q1Q2→Q2Q3→„→QnQ
am 证法八 : (求值域)令y , 将命题转化为函数的值域. bm a by m (y 1, 若y 1, 则a b不合题意). y 1 a by a m 0, 0, ( y 1) y 0, y 1 b a am a y 1, . b bm b
[剖析]本题错误的原因在于证明PD⊥BC时没有理论依据,完
全凭感觉,没有逻辑感.
第25页 共 42 页
[正解]连接BD,因为BD是 Rt△ABC斜边上的中线, 所以DA=DC=DB. 又PA=PB=PC,而PD是公共边, ∴△PAD≌△PBD≌△PCD, ∴∠PDA=∠PDC=∠PDB=90°,
∴PD⊥AC,PD⊥BD,
第17页 共 42 页
[反思感悟]在解决问题时,根据条件的结构特点去转化结论,得 到中间结论Q,根据结论的特点转化得到中间结论P,归结为 证明P、Q之间的关系,通常用分析法寻找思路,综合法完成 证明.
第18页 共 42 页
类型三
反证法
解题准备:1.反证法是间接证明的一种方法,在数学研究和考 试中有着重要的作用.一般地,假设原命题不成立,经过正 确的推理,最后得出矛盾,因此说明假设错误,从而证明了
直接证据和间接证据的例子
![直接证据和间接证据的例子](https://img.taocdn.com/s3/m/ca2d1c55876fb84ae45c3b3567ec102de2bddfca.png)
直接证据和间接证据的例子
直接证据是指直接支持或证实某个事实或观点的证据,其与该事实或观点之间存在直接的联系。
而间接证据是对某个事实或观点的推断或间接推理,没有直接证明的联系,但可以通过其他相关证据进行推断。
以下是一些直接证据和间接证据的例子:
直接证据:
1. 目击证人直接观察到一起犯罪案件发生的过程并提供证词。
2. 在监控摄像头录像中,可以直接看到某人在指定时间内进入了一个房间。
3. 医生通过对患者进行体检,直接观察到患者身体状况的异常情况。
间接证据:
1. 在一起火灾案件的现场,虽然没有目击证人,但通过对事故现场的烧焦痕迹和其他物证的分析,可以推断出火灾是由人为引起的。
2. 在一个涉及赌博的案件中,虽然无法直接证明被告人参与赌博活动,但在其住所发现了大量赌博资料和现金,进而可以推测其涉及赌博活动。
3. 调查人员在一个谋杀现场发现了一个被害人被打晕的大石头,虽然无法直接证明这块石头是凶手使用的,但通过进一步的分析可得出这块石头可能与凶器有关。
这些例子展示了直接证据和间接证据的不同。
直接证据提供了
对事实或观点的直接支持,而间接证据则依赖于推理和推断来支持或证明。
直接证明与间接证明——综合法和分析法
![直接证明与间接证明——综合法和分析法](https://img.taocdn.com/s3/m/ffc6781cb207e87101f69e3143323968001cf410.png)
从已知条件和某些数学定义,定理,公理等出发,经过一系列推理 论证,最后推导出所要证明的结论成立的证明方法.
例:已知a,b 0,求证:a(b2 c2 ) b(c2 a2 ) 4abc
证明: b2 c2 2bc, a 0 a(b2 c2 ) 2abc.
( a b)2 0
此式显然成立,因此原不等式立. 用Q表示所要证明的结论,则分析法可用框图表示为:
Q P1 P1 P2 P2 P3
…
得到一个明显 成立的条件
S
E A
F C
B
同理, b(c2 a2 ) 2abc. a(b2 c2 ) b(c2 a2 ) 4abc.
用P表示已知条件,已有的定义,定理,公理等.Q表 示所要证明的结论,则综合法可用框图表示为:
P Q1
Q1 Q2
Q2 Q3
… QБайду номын сангаас Q
例3 ABC中,三个内角A,B.C对应的边分别为a,b,c. 且A,B,C成等差数列,a,b,c成等比数列,
从证明的结论出发,逐步寻求使它成立的充 分条件,直至最后,把要证明的结论归结为判 定一个明显成立的条件(已知,定理,定义,公 理等).这种证明的方法叫做分析法.
例如: 证明不等式:a b ab. 2
证明: 要证 a b ab, 2
只需证
只需证 只需证
a b 2 ab
a+b-2 ab 0
求证 ABC为等边三角形. 分析:由A,B,C成等差数列可得什么?A C 2B B 600(为什么?)
由a,b,c成等比数列可得什么? b2 ac
怎样把边,角联系起来?
余弦定理 : b2 a2 c2 2ac cos B
直接证明与间接证明
![直接证明与间接证明](https://img.taocdn.com/s3/m/f0dd9963f5335a8102d220f2.png)
直接证明与间接证明学习策略分析法和综合法在证明方法中都占有重要地位,是解决数学问题的重要思想方法。
当所证命题的结论与所给条件间联系不明确,常常采用分析法证明;当所证的命题与相应定义、定理、公理有直接联系时,常常采用综合法证明.在解决问题时,常常把分析法和综合法结合起来使用。
反证法解题的实质是否定结论导出矛盾,从而说明原结论正确。
在否定结论时,其反面要找对、找全.它适合证明“存在性问题、唯一性问题”,带有“至少有一个”或“至多有一个”等字样的数学问题.知识要点梳理知识点一:直接证明1、综合法(1)定义:一般地,从命题的已知条件出发,利用公理、已知的定义及定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的的基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.(3)综合法的思维框图:用表示已知条件,为定义、定理、公理等,表示所要证明的结论,则综合法可用框图表示为:(已知)(逐步推导结论成立的必要条件)(结论)2、分析法(1)定义:一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.(2)分析法的基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.(3)分析法的思维框图:用表示已知条件和已有的定义、公理、公式、定理等,所要证明的结论,则用分析法证明可用框图表示为:(结论)(逐步寻找使结论成立的充分条件)(已知)(4)分析法的格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
到结果的证明方法,它是利用已知 (1)______ 条件和某些数学定义、公理、定理等,经过一系列的推理论证, 最后推导出所要证明的结论成立的证明方法. 分析法是从要证明的结论出发,逐步寻求使它成立的充 (2)______ 分条件,直到最后,把要证明的结论归结为判断一个明显成立 的条件(已知条件、定义、公理、定理等)为止的证明方法.
索因法.它常见的书面表达形式是:“要证…,只需证…”或
“…⇐…”.利用分析法证明“若 A 则 B”命题的分析法思考过 程可用框图表示为:
图 10-2-2 分析法的思考顺序执果索因的顺序,是从 B 上溯寻其论据, 如 C、C1、C2 等,再寻求 C、C1、C2 的论据,如 B、B1、B2、 B3、B4 等等,继而寻求 B、B1、B2、B3、B4 的依据,如果其中之 一 B 的论据恰为已知条件,于是命题已经得证.
2 比数列,则 bq =bpbr.
即(q+ 2)2=(p+ 2)(r+ 2). ∴(q2-pr)+(2q-p-r) ∵p、q、r∈N*,
2 q -pr=0 ∴ 2q-p-r=0
2=0.
p+r2 =pr,(p-r)2=0, .∴ 2
∴p=r.与 p≠r 矛盾. ∴数列{bn}中任意不同的三项都不可能成等比数列.
错源:犯循环论证的逻辑性错误
例 4:设 a、b、c、d 是正有理数, c、 d是无理数,求证: a c+b d是无理数.
误解分析:本题在推理证明过程中,容易犯循环论证的逻 辑性错误:因为 c为无理数,a 为正有理数,故 a c为无理数, 同理 b d也为无理数,两正无理数的和为无理数,故 a c+b d 为无理数.主要原因是对有关概念定理没有真正的理解掌握, 导致用任意的推广引申定理得出有利于论题成立的假判断.
2.间接证明 反证法是假设命题的结论不成立,经过正确的推理,最后 ______ 得出矛盾,由此说明假设错误,从而证明了原命题成立的证明 方法,它是一种间接的证明方法,用这种方法证明一个命题的 一般步骤: ①假设命题的结论不成立;
②根据假设进行推理,直到推理中导出矛盾为止;
③断言假设不成立; ④肯定原命题的结论成立.
2 2 2
1 2 1 2 1 2 =3+α +3+β +3+γ
1 2 = + (α+β+γ)+α2+β2+γ2 3 3
1 1 2 2 2 = +α +β +γ ≥ . 3 3 1 ∴a +b +c ≥ . 3
2 2 2
3a+2+1 3a+3 (2)∵ 3a+2= 3a+2×1≤ = , 2 2 3b+3 3c+3 同理 3b+2≤ , 3c+2≤ , 2 2 3a+b+c+9 ∴ 3a+2+ 3b+2+ 3c+2≤ =6. 2 ∴原不等式成立.
2.已知 a>0,求证: 1 1 a + 2- 2≥a+ -2. a a
2
解:要证 只要证
2
1 1 a + 2- 2≥a+ -2, a a
2
1 1 a + 2+2≥a+ + a a
2
2.
∵a>0,故只要证
2 2 1 1 a + 2+2 ≥a+a+ 2 , a
1 即 a + 2+4 a
同理可得 sinB>cosC,sinC>cosA. ∴sinA+sinB+sinC>cosA+cosB+cosC.
考点 2 分析法
例 2:已知 a>b>0,求证: a- b< a-b.
解析:要证 a- b< a-b, 只需证( a- b)2<( a-b)2. 即证 a+b-2 ab<a-b,只需证 b< ab,即证 b<a. 显然 b<a 成立, 因为 b<a,因此 a- b< a-b成立.
纠错反思:(1)正确理解概念“命题的反面”,如命题“a>0”
的反面是“a≤0”;(2)注意反证法的解题步骤,特别要指明矛
盾所在;(3)一个命题直接证明有困难时,就可以考虑用反证法 的思想.
【互动探究】 4. 设命题 p: 关于 x 的不等式 a1x2+b1x+c1>0 与 a2x2+b2x a1 b1 c1 +c2>0 的解集相同; 命题 q: = = , 则命题 p 是命题 q 的( D ) a2 b2 c2 A.充分但不必要条件 C.充要条件 B.必要但不充分条件 D.既不充分也不必要条件
或与公理、定理矛盾,是反证法的正确运用 D.将被否定的结论当条件,原题的条件不能当条件
3.用反证法证明命题:“三角形的外角至少有两个钝角” 时,应假设( C ) A.三个内角都是钝角
B.三个内角都不是钝角
C.三个内角至多有一个钝角 D.三个内角至多有两个钝角 解析:命题:“三角形的外角至少有两个钝角”等价于“三 角形的外角有两个钝角或三个钝角”,应假设“三角形的三个 内角至多有一个钝角”.
(1)注意分析法的“格式”是“要证…,只
需证…,”而不是“因为…,所以…”;(2)注意分析法的适用
范围,如含根式、分式的不等式的证明,常常用分析法;(3)综
合法与分析法相结合,对证明较复杂的命题有很好的效果.先
用分析法寻找命题成立的一个充分条件,再用综合法从条件出
发,推出一些间接结论,两者接轨时,命题就得以证明. 【互动探究】
图 10-2-1
综合法的思维过程是由因导果的顺序,是从 A 推演到 B 的 途径,但由 A 推演出的中间结论未必唯一,如 B、B1、B2 等, 可由 B、B1、B2 能推演出的进一步的中间结论更多,如 C1、C2、 C3、C4 等等,最终能有一个(或多个)可推演出结论 B 即可.
2.分析法是一种执果索因的证明方法,又叫逆推法或执果
考点 3
反证法
例 3:等差数列{an}的前 n 项和为 Sn.已知 a1=1+ 2,S3= 9+3 2. (1)求数列{an}的通项 an 与前 n 项和 Sn;
Sn (2)设 bn= (n∈N*),求证:数列{bn}中任意不同的三项都 n 不可能成为等比数列.
解题思路:本小题考查等差数列的概念、通项公式与前 n
【互动探究】
1.在锐角 ABC 中,求证:sinA+sinB+sinC>cosA+cosB
+cosC.
π π 解:∵△ABC 为锐角三角形,∴A+B> ,∴A> -B. 2 2
π ∵y=sinx 在0,2上是增函数, π ∴sinA>sin2-B=cosB.
6 2+ 5成立,只需证明( ___
解析:利用分析法.
考点 1
综合法
例 1: 已知 a、b、c 为正实数,a+b+c=1.
1 求证:(1)a +b +c ≥ ; 3
2 2 2
(2) 3a+2+ 3b+2+ 3c+2≤6.
1 解析:(1)方法一:a +b +c - 3
2 2 2
1 2 = (3a +3b2+3c2-1) 3 1 = [3a2+3b2+3c2-(a+b+c)2] 3 1 2 = (3a +3b2+3c2-a2-b2-c2-2ab-2ac-2bc) 3 1 = [(a-b)2+(b-c)2+(c-a)2]≥0. 3 1 ∴a +b +c ≥ . 3
(1)若函数 f(x)为理想函数,求 f(0)的值; (2)判断函数 g(x)=2x-1(x∈[0,1])是否为理想函数,并予以 证明. 解析:(1)取 x1=x2=0,可得 f(0)≥f(0)+f(0)⇒f(0)≤0. 又由条件①f(0)≥0,故 f(0)=0. (2)显然 g(x)=2x-1 在[0,1]满足条件①g(x)≥0,
1.下列说法不正确的是( D ) A.综合法是由因导果的顺推证法 B.分析法是执果索因的逆推证法 C.综合法与分析法都是直接证法 D.综合法与分析法在同一题中不可能同时采用
2.用反证法证明一个命题时,下列说法正确的是( C )
A.将结论与条件同时否定,推出矛盾 B.肯定条件,否定结论,推出矛盾
C.将被否定的结论当条件,经过推理得出的结论与原条件
项和公式,考查等比数列的概念与性质,考查化归的数学思想 方法以及推理和运算能力.
a1= 2+1 解析:(1)由已知得 3a1+3d=9+3
2
,∴d=2,
故 an=2n-1+ 2.Sn=n(n+ 2). Sn (2)由(1)得 bn= =n+ 2. n
假设数列{bn}中存在三项 bp、bq、br(p、q、r 互不相等)成等
4.若三角形能被分为两个与自己相似的三角形,那么这个三角 形一定是( B ) A.锐角三角形 B.直角三角形
C.钝角三角形
形与原三角形相似.
D.不能确定
解析:过直角三角形的直角顶点作斜边的高,所得的三角
5.要证明不等式 6+ 7>2 2 2 + 7) >(2 2 + 5) __________________.
2
1 1 2 a + 2+4≥a +2+ 2+2 a a
2 2
1 2a+a+2,
1 1 从而只要证 2 a + 2≥ 2a+a, a 2 1 2 1 只要证 4 a +a2 ≥2 a +2+a2,
1 即 a2+ 2≥2,而该不等式显然成立,故原不等式成立. a
2 2
所以 p 不能推出 q,所以选 D.
例 5:对于定义域为[0,1]的函数 f(x),如果同时满足以下三
条:①对任意的 x∈[0,1],总有 f(x)≥0;②f(1)=1;③若 x1≥0,
x2≥0,x1+x2≤1,都有 f(x1+x2)≥f(x1)+f(x2)成立,则称函数 f(x) 为理想函数.
(1)综合法证不等式时,以基本不等式为基 础,以不等式的性质为依据,进行推理论证.因此,关键是找 到与要证结论相匹配的基本不等式及其不等式的性质.
(2)综合法的逻辑依据是三段论式的演绎推理方法,这就要