电容器损耗角正切值
电容损耗角正切d值测量方法
电容损耗角正切d值测量方法【原创实用版4篇】目录(篇1)一、引言二、电容损耗角正切值的定义和意义三、电容损耗角正切值的测量方法1.平衡电桥法2.不平衡电桥法3.相敏电路法4.低功率因数瓦特表法四、各类测量方法的优缺点五、测量电容损耗角正切值的意义和应用六、结论正文(篇1)一、引言电容损耗角正切值(tgδ)是衡量电容器性能的重要参数,它反映了电容器在交流电场下消耗能量的大小。
为了确保电容器的性能和使用寿命,正确测量电容损耗角正切值具有重要意义。
本文将介绍电容损耗角正切值的定义和意义,以及几种常用的测量方法。
二、电容损耗角正切值的定义和意义电容损耗角正切值是指有功功率与无功功率的比值,它反映了电容器在交流电场下消耗能量的大小。
电容器的损耗主要由介质损耗、电导损耗和电容所有金属部分的电阻所引起的。
在直流电场的作用下,电容器的损耗以漏导损耗的形式存在,一般较小。
在交变电场的作用下,电容的损耗不仅与漏导有关,而且与周期性的极化建立过程有关。
测量电容损耗角正切值有助于评估电容器的性能和使用寿命,对于保证电力系统的安全稳定运行具有重要意义。
三、电容损耗角正切值的测量方法1.平衡电桥法:平衡电桥法是一种常用的测量电容损耗角正切值的方法。
它通过调整电桥的电阻值,使电桥达到平衡状态,从而测量出电容损耗角正切值。
这种方法的优点是测量精度高,但操作较为复杂。
2.不平衡电桥法:不平衡电桥法是一种简化的测量方法,它不需要调整电桥的电阻值。
通过测量电桥的电流和电压,可以计算出电容损耗角正切值。
这种方法的优点是操作简便,但测量精度相对较低。
3.相敏电路法:相敏电路法是一种基于相敏电阻原理的测量方法。
它通过测量相敏电阻的电压和电流,计算出电容损耗角正切值。
这种方法的优点是测量精度高,但需要特殊的测量设备。
4.低功率因数瓦特表法:低功率因数瓦特表法是一种适用于大电容试品的测量方法。
它通过测量电容器的漏电流和电压,计算出电容损耗角正切值。
电力电容器的损耗、损耗角正切和等值电路
电力电容器的损耗、损耗角正切和等值电路电力电容器是一种实际电容器、不是理想电容器,在外施交流电压的作用下,除了会输出一定容量的无功功率Q之外,在电容器的内部介质中、在电容器的极板(铝箔)中、引线等导体中,以及在瓷瓶间的漏泄电流等都会产生一定的有功损耗功率P。
通常把电容器的有功功率P与无功功率Q 的比值称做为该电容器的损耗角正切,并用下式表示:式中:tanδ—电容器的损耗角正切(%);P—电容器的有功功率(W);Q—电容器的无功功率(var)正因为电力电容器不是理想电容器,所以通常要用一个等值电路来表示。
(1)串联等值电路在此等值电路中,理想电容器C产生的无功功率为:式中:Q C—电容器的无功功率(var);X C—电容器C的容抗(Ω);I C—流过电容器的电流(A)而在此电路中由电阻r产生电容器的损耗功率为:式中:P r—由r产生的等值损耗功率I r—流经等值电阻r的电流由式(1)、(2)、(3)可得:由式(6)可知,当tanδ值很小(例如全膜电容器),X C也很小时(例如大容量集合式电容器),其等值串联电阻也十分微小(通常只有10-3~10-4Ω)。
所以在测量大容量全膜介质电容器时,一定要尽一切可能降低测量回路中的接触电阻和导线电阻,以减小测量误差。
(2)并联等值电路电力电容器除了可用图1所示的串联等值电路来表示外,也可用图2所示的并联等值电路来表示。
由图2可得:式中:U R—等值电路两端的电压(V);U C—理想电容器两端的电压(V);X C—电容器的容抗(Ω)从图2中可知:U R=U C,所以由式(9)可以看出,对于低损耗的全膜电容器其并联等值电阻是相当大的,当在电容器内部并联放电电阻会降低其等值电阻R,从而使电容器的实际损耗和损耗角正切增大。
在实际工作中,如能根据具体情况灵活的使用电容器的串联等值电路和并联等值回路,可以给我们的工作带来方便。
薄膜电容电气参数定义及特性(等效电路,问独特性,绝缘电阻)1 等效电路及等效参数的特性薄膜电容一般具有如下的等效电路模式:C: 标称电容L: 等效串联电感( 端脚,金属敷片,绕组等所寄生)ESR :等效串联电阻(端脚,金属敷片等所致)IR: 等效并联电阻(决定其绝缘阻抗,电介材料特性)PR: 电介质极化电阻△C: 变化之容量(随温度,DC 电压,频率变化而变化)L 、R 和C 之值随频率不同而不同;IR 指直流电压下的绝缘阻抗值1.1 ESR 及损耗角特性在一定频率条件下,等效电路可简化如右图。
电容d值的一般范围
电容d值的一般范围
【原创实用版】
目录
1.电容 d 值的概念
2.电容 d 值的单位
3.电容 d 值的一般范围
4.常见电容的 d 值范围
5.电容 d 值对电路性能的影响
正文
电容 d 值是指电容器的损耗角正切值,它是表征电容器能量损耗特性的一个重要参数。
电容 d 值的单位是欧姆·角(°)。
电容 d 值的一般范围是在 10^-9 到 10^-2 欧姆·角之间。
其中,10^-9 欧姆·角以下的电容器被称为低损耗电容器,10^-9 到 10^-7 欧姆·角之间的电容器被称为中损耗电容器,10^-7 到 10^-2 欧姆·角之间的电容器被称为高损耗电容器。
常见的电容器类型包括陶瓷电容、钽电容、铝电解电容等。
这些电容器的 d 值范围也有所不同。
例如,陶瓷电容的 d 值范围通常在 10^-9 到 10^-7 欧姆·角之间,钽电容的 d 值范围通常在 10^-7 到 10^-5 欧姆·角之间,铝电解电容的 d 值范围通常在 10^-5 到 10^-3 欧姆·角之间。
电容 d 值对电路性能有着重要的影响。
低损耗电容器在高频电路中具有更好的性能,因为它们的能量损耗较小,不会对电路的稳定性和可靠性产生不良影响。
相反,高损耗电容器在低频电路中使用更为广泛,因为它们的 d 值较大,能够提供更大的电流和更高的功率。
第1页共1页。
实验二.介质损耗角正切值的测量
实验二.介质损耗角正切值的测量一.实验目的:学习使用QS1型西林电桥测量介质损耗正切值的方法。
二.预习要点:概念:介质损耗、损耗角、交流电桥判断:介质损耗是表征介质交流损耗的参数(直流损耗用电导就可表征),包括电导损耗和电偶损耗;测量tgδ值对检测大面积分布性绝缘缺陷或贯穿性绝缘缺陷较灵敏和有效,但对局部性非贯穿性绝缘缺陷却不灵敏和不太有效。
推理:中性介质的介质损耗主要是电导损耗,极性介质的介质损耗则由电导损耗和电偶损耗两部分组成。
相关知识点:介质极化、偶极子、漏导。
三.实验项目:1.正接线测试2.反接线测试四.实验说明:绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值( tgδ)来表征,介质损耗角正切值等于介质有功电流和电容电流之比。
用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷:绝缘介质的整体受潮;绝缘介质中含有气体等杂质;浸渍物及油等的不均匀或脏污。
测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法及瓦特表法。
目前,我国多采用平衡电桥法,特别是工业现场广泛采用QS1型西林电桥。
这种电桥工作电压为10Kv,电桥面板如图2-1所示,其工作原理及操作方法简介如下:⑴.检流计调谐钮⑵.检流计调零钮⑶.C4电容箱(tgδ)⑷.R3电阻箱⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮⑺.检流计电源开关⑻.检流计标尺框⑼.+tgδ/-tgδ及接通Ⅰ/断开/接通Ⅱ切换钮⑽.检流计电源插座⑾.接地⑿.低压电容测量⒀.分流器选择钮⒁.桥体引出线1.工作原理:原理接线图如图2-2所示,桥臂BC接入标准电容 C N(一般CN=50pf),桥臂BD由固定的无感电阻R 4和可调电容C 4并联组成,桥臂AD接入可调电阻R 3,对角线AB上接入检流计G,剩下一个桥臂AC就接被试品 C X。
高压试验电压加在CD之间,测量时只要调节R 3和C4就可使G中的电流为零,此时电桥达到平衡。
电力电容器的损耗、损耗角正切和等值电路
电力电容器的损耗、损耗角正切和等值电路电力电容器是一种实际电容器、不是理想电容器,在外施交流电压的作用下,除了会输出一定容量的无功功率Q之外,在电容器的内部介质中、在电容器的极板(铝箔)中、引线等导体中,以及在瓷瓶间的漏泄电流等都会产生一定的有功损耗功率P。
通常把电容器的有功功率P与无功功率Q的比值称做为该电容器的损耗角正切,并用下式表示:式中:tanδ—电容器的损耗角正切(%);P—电容器的有功功率(W);Q—电容器的无功功率(var)正因为电力电容器不是理想电容器,所以通常要用一个等值电路来表示。
(1)串联等值电路在此等值电路中,理想电容器C产生的无功功率为:式中:QC—电容器的无功功率(var);XC—电容器C的容抗(Ω);IC—流过电容器的电流(A)而在此电路中由电阻r产生电容器的损耗功率为:式中:Pr—由r产生的等值损耗功率Ir—流经等值电阻r的电流由式(1)、(2)、(3)可得:由式(6)可知,当tanδ值很小(例如全膜电容器),XC也很小时(例如大容量集合式电容器),其等值串联电阻也十分微小(通常只有10-3~10-4Ω)。
所以在测量大容量全膜介质电容器时,一定要尽一切可能降低测量回路中的接触电阻和导线电阻,以减小测量误差。
(2)并联等值电路电力电容器除了可用图1所示的串联等值电路来表示外,也可用图2所示的并联等值电路来表示。
由图2可得:式中:UR—等值电路两端的电压(V);UC—理想电容器两端的电压(V);XC—电容器的容抗(Ω)从图2中可知:UR=UC,所以由式(9)可以看出,对于低损耗的全膜电容器其并联等值电阻是相当大的,当在电容器内部并联放电电阻会降低其等值电阻R,从而使电容器的实际损耗和损耗角正切增大。
在实际工作中,如能根据具体情况灵活的使用电容器的串联等值电路和并联等值回路,可以给我们的工作带来方便。
薄膜电容电气参数定义及特性(等效电路,问独特性,绝缘电阻)1 等效电路及等效参数的特性薄膜电容一般具有如下的等效电路模式:C: 标称电容L: 等效串联电感 ( 端脚,金属敷片,绕组等所寄生 )ESR :等效串联电阻(端脚,金属敷片等所致)IR: 等效并联电阻(决定其绝缘阻抗,电介材料特性)PR: 电介质极化电阻△ C: 变化之容量(随温度, DC 电压,频率变化而变化)L 、 R 和 C 之值随频率不同而不同; IR 指直流电压下的绝缘阻抗值1.1 ESR 及损耗角特性在一定频率条件下,等效电路可简化如右图。
高压薄膜电容的损耗计算公式
高压薄膜电容的损耗计算公式
高压薄膜电容的损耗可以通过多种方式进行计算,其中最常见
的是使用电容器的等效串联电阻和等效串联电感来计算。
一般来说,高压薄膜电容的损耗可以由以下公式计算:
损耗角正切 = (等效串联电阻 / 电容器电容值) 100。
其中,等效串联电阻可以通过电容器的等效串联电阻和等效串
联电感来计算。
另外,损耗角正切也可以通过电容器的等效串联电
导和等效串联电纳来计算。
另一种常见的计算损耗的方法是使用电容器的损耗因子,即损
耗因子tan δ,它可以通过以下公式计算:
tan δ = 等效串联电导 / 等效串联电纳。
其中,等效串联电导和等效串联电纳可以通过电容器的等效串
联电阻和等效串联电感来计算。
此外,还有一些其他方法可以用来计算高压薄膜电容的损耗,
例如通过电容器的功率因数来计算损耗。
综合考虑以上因素,可以得出全面的高压薄膜电容损耗的计算公式。
需要根据具体的电容器参数和工作条件来选择合适的计算方法和公式。
电容esr与介质损耗角正切的计算公式
电容esr与介质损耗角正切的计算公式
我们要探讨电容的ESR(等效串联电阻)与介质损耗角正切(tan δ)之间的关系,并给出相关的计算公式。
ESR和tan δ都是描述电容器性能的重要参数,它们都与电容器的内部损耗有关。
ESR(等效串联电阻)通常用于描述电容器在交流电路中的电阻性损耗。
tan δ(介质损耗角正切)是描述电容器介质损耗的一个参数,它是电容器损耗角的正切值。
ESR和tan δ之间的关系可以通过以下公式表示:
ESR = (tan δ) / (ω × C)
其中,ω是角频率(ω = 2πf,f是频率),C是电容值。
这个公式告诉我们,在给定的频率和电容值下,ESR与tan δ成正比。
也就是说,tan δ越大,ESR也越大,电容器的内部损耗也就越大。
需要注意的是,这个公式是在一些假设条件下得出的,例如电容器是理想的、没有电感效应等。
在实际应用中,电容器的ESR和tan δ可能会受到温度、电压、频率等多种因素的影响,因此在使用这个公式时需要注意其适用范围。
以上公式可以帮助我们理解ESR与tan δ之间的关系,并用于一些简单的计算。
但在实际应用中,我们可能需要更详细的电容器模型和更复杂的计算公式来准确描述电容器的性能。
电容的ESR以及损耗正切角
漏电流
Leakage current
Time (minutes)
Fig. 1-6 Leakage current vs. Time
Measuring temperature and voltage affect the leakage current. The leakage current shows higher values as the temperature and voltage increase.
2 About the Life of an Aluminum electrolytic Capacitor 2-1 Estimation of life with minimal ripple current (negligible). Generally, the life of an aluminum electrolytic capacitor is closely related with its ambient temperature and the life will be approximately the same as the one obtained by Arrhenius' equation.
δ 图 1-5
Tanδ =RESR/ (1/ωC)= ωC RESR
RESR
其中:RESR=ESR(120 Hz)
ω=2πf
f=120Hz
Tanδ 随着测量频率的增加而变大,随测量温度的下降而增大。
1-3-3 等效串联电阻(ESR) 由铝箔氧化膜的介质电阻、电解液以及电解纸的复合电阻以及由于引 出线与铝箔的接触电阻共同构成了等效串联电阻。 等效串联电阻的值和温度有关系。温度下降,电解液电阻率上升,从 而导致等效串联电阻上升, 测试频率的上升,等效串联电阻下降并几乎达到一个常数值,该值主 要是由电解液和电解纸引起的与频率无关的复合电阻。
电容参数:X5R,X7R,Y5V,COG 详解
电容参数:X5R,X7R,Y5V,COG 详解在我们选择无极性电容式,不知道大家是否有注意到电容的X5R,X7R,Y5V,COG等等看上去很奇怪的参数,有些摸不着头脑,本人特意为此查阅了相关的文献,现在翻译出来奉献给大家。
这个是按美国电工协会(EIA)标准,不同介质材料的MLCC按温度稳定性分成三类:超稳定级(工类)的介质材料为COG或NPO;稳定级(II类)的介质材料为X7R;能用级(Ⅲ)的介质材料Y5V。
X7R与X5R材质的温度系数不同。
X5R材质所能做出来的电容容值会更高一些,与X7R同样容值电压的电容相比,X5R的价格也要便宜一些。
NPO(C0G)具有温度补偿特性,精度能做到5%,但是不能做到太高的容值。
X是最低温度-55度 7是最高承受温度125度 R是使用温度内容值变化的范围+-15% 同理X5R只是最高温度为85度X7R和X5R是EIA的代码,表示不同的温度特性,温度变化率相同,都是15%,只是X7R上限工作温度是125度,X5R上限是85度,从材料上来说,比较接近,都是BT作为主烧块的陶瓷材料,X5R的K值大点,可以做更大的容量,一般大容量的MLCC都是X5R,不能用X7R做这类参数描述了电容采用的电介质材料类别,温度特性以及误差等参数,不同的值也对应着一定的电容容量的范围。
具体来说,就是:X7R常用于容量为3300pF~0.33uF的电容,这类电容适用于滤波,耦合等场合,电介质常数比较大,当温度从0°C变化为70°C时,电容容量的变化为±15%;Y5P与Y5V常用于容量为150pF~2nF的电容,温度范围比较宽,随着温度变化,电容容量变化范围为±10%或者+22%/-82%。
对于其他的编码与温度特性的关系,大家可以参考表4-1。
例如,X5R的意思就是该电容的正常工作温度为-55°C~+85°C,对应的电容容量变化为±15%。
电容损耗计算公式(一)
电容损耗计算公式(一)
电容损耗计算公式
1. 损耗角正切公式
损耗角正切公式是用来计算电容器的损耗角正切的公式,表示为:tan(δ) = Ic / (V × ω × C)
其中,tan(δ)是损耗角正切,Ic是电容器的损耗电流,V是电容器的电压,ω是电容器的工作角频率,C是电容器的电容值。
2. 损耗功率公式
损耗功率公式是用来计算电容器的损耗功率的公式,表示为:
P = V × Ic × cos(δ)
其中,P是电容器的损耗功率,V是电容器的电压,Ic是电容器
的损耗电流,cos(δ)是损耗角的余弦。
3. 举例说明
假设有一个电容器的电压为200V,电容值为100μF,工作频率为
1kHz。
根据上述公式,可以计算出该电容器的损耗角正切和损耗功率。
首先,计算损耗角正切:
tan(δ) = Ic / (V × ω × C)
= Ic / (200 × 2π × 1000 × )
≈ Ic /
如果已知损耗角正切的值,可以进一步计算出损耗功率:
P = V × Ic × cos(δ)
= 200 × Ic × cos(δ)
假设损耗角正切为,代入上述公式进行计算:
200 × Ic × = P
Ic = P / (200 × )
通过以上公式计算,可以得到该电容器的损耗角正切和损耗功率的数值。
以上所列举的计算公式是电容损耗计算中常用的公式,可根据具体的电容器参数进行计算,帮助工程师进行设计和分析。
电容器的主要的特性
电容器的主要的特性 The Standardization Office was revised on the afternoon of December 13, 2020很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等。
由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等。
一、电容器的主要性能电容器的电气性能一般有四个主要参数,它们是:1标称电容量及偏差某一个电容器上标有220nT,表示这个电容器的标称电容量为220nF,实际电容量应220nF±5%之内,此处T表示容量误差为±5%。
若T改为K,表示误差为±10%;改为M表示误差为±20%。
云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容量居中(大约在0005μF~10μF);通常电解电容器的容量较大。
2额定电压电容器上还标有额定电压值,即在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。
电容器在工作时,其上承受的直流电压应小于额定电压。
选择电容器额定电压的原则如下:1)低压时,实际工作电压与额定电压的比率可以高一些。
2)高压时,实际工作电压与额定电压的比率要低一些。
3)工作于交流状态或直流上的脉动交流成份比较大时,比率要选低一些,频率越高,比率越低。
4)要求可靠性高时,比率要选低一些。
电容器应用在高压场合时,必须注意电晕的影响。
电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。
在交流或脉动条件下,电晕特别容易发生。
对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不的超过直流电压额定值。
1类片式电容器损耗角正切极限值国标
1类片式电容器损耗角正切极限值国标
多留个心眼看看其采用的线材是否达到相应的标准,例如在额定功率为500W的电源上,其主要输出线路应该采用18AWG级别的线材。
如果这款电源它没有按照规范要求在线材上标注相应的规格,或者说只采用了较低规格的线材,这时候就不妨考虑一下其它产品,毕竟连基本功都没有做好的电源,我们很难相信其用料和性能能有较好的表现,在某种程度上来说,也是一个比较方便的、用于排除劣质电源的方法。
贴片钽电容的作用:
具有储藏电量、进行充放电等性能
稳压防治电压抖动及滤波的作用。
贴片钽电容的优点:
由于体积小容量较大,适用于较小空间
随着温度的升高,其介质损耗低,寿命长,绝缘电阻高,漏电系数小,稳定性要优于陶瓷电容。
主要技术性能
电容器损耗角正切(tanδ)不大于0.0002。
电容器的实测电容与其额定值的偏差不超过—3%~+5%。
电容器放电电阻(如有)能在电容器脱离电源后将其剩余电压自√2UN降到电压75V 以下。
电容器内部熔丝(如有)能在0.9 √2UN和2.0√2UN之间的电压下元件击穿时可靠动作。
安全可靠的产品结构:
单元绝缘裕度加大,长期运行电压可提高到1.2倍额定电压。
隐藏式内熔丝动作性能达到世界先进水平。
极板采用铝箔折边凸出结构,改善边缘的电场分布。
分布式内放电电阻,消除内部直流电压、抑制熔丝动作时产生的电弧。
一体式滚压套管,无需任何焊接,有效防止套管部位的渗漏。
浅析“直流PLC滤波电容器损耗角正切值偏大”的原因
切 tn 大 , a8值 因此 , 对该 电容 器损 耗 角正切 t 8值偏 大原 因进 行 分析 , 采取有 效 解 决措 施 。 a n 并
关键 词 : 直流 P C滤 波 电容 器 ; 损耗 角正切 (aS ; 分析 L t ) n
中图 分类 号 :T 5 15 文 献标 识码 :A 文章 编号 :17 —7 7 2 1 ) 1 0 30 M 3. 6 4 15 ( 0 0 O - 2 -4 0
超 高 压直 流工 程 用 电容 器 , 括 高压 直 流 滤 波 电 包
容 器 D M1 . 0 A 9 9 5—1 . W 、 A 4 4 2— 1 6 4 7 D M1 .4 4 。 W;
直 流 中 性 母 线 冲 击 电 容 器 D M1 . A 7 7— 1 W、 6 D M1 .1 — 3 W ;直 流 P C 滤 波 电 容 器 A 6 2 L
容 器 D M1 . 4 —2 W 以 及 滤 波 电 容 W
所 有这 些设 计 工 作 都 为 德 宝 直 流场 直 流 P C滤 L 波 电容器 的研制 奠定 了基 础 。
1 直 流 P C滤 波 电 容 器 的 用 途 L
Kewod : C P C ft a ai r tels a g a gn (a6 ;aa s y r s D L l r p ct ; h s n l t e t t ) n yi i ec o o e n n l s
0 引 言
德 宝 联 网 工 程 规 模 30 0 MW , 电距 离 为 0 送 5 4 k 直 流 输 电 电 压 选 择 为 ±5 0 k 预 计 7 m, 0 V,
第3 1卷 第 1期
21 0 0年 2月
电力 电 容 器 与 无 功 补 偿
电容器损耗角
电力电容器的损耗、损耗角正切和等值电路电力电容器是一种实际电容器、不是理想电容器,在外施交流电压的作用下,除了会输出一定容量的无功功率Q之外,在电容器的内部介质中、在电容器的极板(铝箔)中、引线等导体中,以及在瓷瓶间的漏泄电流等都会产生一定的有功损耗功率P。
通常把电容器的有功功率P与无功功率Q的比值称做为该电容器的损耗角正切,并用下式表示:式中:tanδ—电容器的损耗角正切(%);P—电容器的有功功率(W);Q—电容器的无功功率(var)正因为电力电容器不是理想电容器,所以通常要用一个等值电路来表示。
(1)串联等值电路在此等值电路中,理想电容器C产生的无功功率为:式中:QC—电容器的无功功率(var);XC—电容器C的容抗(Ω);IC—流过电容器的电流(A)而在此电路中由电阻r产生电容器的损耗功率为:式中:Pr —由r产生的等值损耗功率Ir—流经等值电阻r的电流由式(1)、(2)、(3)可得:由式(6)可知,当tanδ值很小(例如全膜电容器),XC也很小时(例如大容量集合式电容器),其等值串联电阻也十分微小(通常只有10-3~10-4Ω)。
所以在测量大容量全膜介质电容器时,一定要尽一切可能降低测量回路中的接触电阻和导线电阻,以减小测量误差。
(2)并联等值电路电力电容器除了可用图1所示的串联等值电路来表示外,也可用图2所示的并联等值电路来表示。
由图2可得:式中:UR—等值电路两端的电压(V);UC—理想电容器两端的电压(V);XC—电容器的容抗(Ω)从图2中可知:UR =UC,所以由式(9)可以看出,对于低损耗的全膜电容器其并联等值电阻是相当大的,当在电容器内部并联放电电阻会降低其等值电阻R,从而使电容器的实际损耗和损耗角正切增大。
在实际工作中,如能根据具体情况灵活的使用电容器的串联等值电路和并联等值回路,可以给我们的工作带来方便。
薄膜电容电气参数定义及特性(等效电路,问独特性,绝缘电阻)1 等效电路及等效参数的特性薄膜电容一般具有如下的等效电路模式:C: 标称电容L: 等效串联电感 ( 端脚,金属敷片,绕组等所寄生 )ESR :等效串联电阻(端脚,金属敷片等所致)IR: 等效并联电阻(决定其绝缘阻抗,电介材料特性)PR: 电介质极化电阻△ C: 变化之容量(随温度, DC 电压,频率变化而变化)L 、 R 和 C 之值随频率不同而不同; IR 指直流电压下的绝缘阻抗值ESR 及损耗角特性在一定频率条件下,等效电路可简化如右图。
电容损耗角的正切值意义
电容损耗角的正切值意义
1 电容损耗角:
电容损耗角是指电容连接到AC电路中时发生的损耗角。
当AC电压作用在电容上时,电容器会将其中一部分电压转化为电流,从而产生功率损耗。
电容损耗角就是相位差(损耗角θ)。
2 电容损耗角的正切值:
电容损耗角的正切值(也称为电容损耗因数)是指由电容在AC电路中发生功率损耗时,损耗电化学反应和欧姆抵消电势所扣除的角弧度,用正切值表示:tan(θ) = Xc/R(其中 Xc 部分R 部分)。
3 正切值的意义:
正切值表示,当在电容上施加频率不同的电压波形时,电容的功率损耗的程度是多少。
因此,可以通过测量电容损耗角的正切值来确定电容在某个特定频率下的功率损耗程度。
此外,正切值还可以用来衡量一个电容的质量,一般来说,质量越好的电容,其损耗角的正切值也会越小。
电容器国家标准
标准电容器Standard capacitors1 适用范围本标准适用于交流频率从20Hz~1MHz,容量标称值从10-4~1012pF的单值标准电容器(以下简称电容器)。
本标准不适用于内附在仪器中、测量电桥和装置中的电容器。
2 产品品种和分类2.1 凡符合本标准要求的电容器应制成单值(固定容量)型式。
2.2 电容器的准确度等级如表1所示。
注:电容器的等级指数可用a;以百分数表示;或用b,以百万分之几(ppm)表示;或用c,以科学标记法表示。
2.3 电容器的容量标称值(以pF计)应符合以下数列之一:1×10n;2×10n;3×10n;4×10n;5×10n;9×10n;10×10n其中n为:-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11.2.4 施加于电容器上的最大交流电压(有效值以V计)应符合以下数列之一:1×10n,2×10n,3×10n,5×10n,7×10n其中n为:2,1,0,-1,-2,-3.3 技术要求3.1 电容器基本误差极限电容器应按容量标称值的百分数表示其允许基本误差极限,并以δ表示:式中:K--电容器以百分数表示的准确度等级指数。
3.2 确定基本误差时的条件3.2.1 各有关影响量的参考条件及允差如表2所示。
表2 影响量的参考条件及允差3.2.2 对于准确度等级为0.005,0.01,0.02,0.05,0,1,0.2的电容器,测试前应在参考条件下至少放置24h,对于其他准确度等级的电容器,测试前应至少在参考条件下放置8h。
3.3 确定变差时的条件3.3.1 电容器应有参考工作频率或参考工作频率范围。
允许工作频率应在50kHz之内,或推荐的工作频率范围为1MHz之内。
频率值(范围)应在具体型号电容器的技术条件中规定。
3.3.2 电容器应在周围环境温度为5~40℃,空气相对湿度为40%~80%,大气压力为98.3~104.3kPa条件下正常工作。
电容器损耗角正切值
什么是电容器损耗角正切值正如名词本身“电容损耗角正切值”,就是电容的电损耗的比例;如果对一个电容加上一个电压,除了对电容充电的电流外还有漏掉的电流(电容的漏电流),漏电流被消耗成了热能,因此表示为电阻上的电流。
漏电流与纯电容的充电电流之比就是电容损耗角正切值(注意:理论上纯粹的电容是不耗电功率的)。
我们国家对于浸渍全纸介质单元,其值应不大于0.0040;对于浸渍纸膜复合介质单元,其值应不大于0.0022;其值对于浸渍全膜介质单元,应不大于0.0015。
单元在其电介质允许最高运行温度下的损耗角正切值应不超过上述相应的规定值。
1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。
也叫介质损失,简称介损。
2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。
简称介损角。
3、介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。
介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。
因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。
测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。
绝缘能力的下降直接反映为介损增大。
进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。
测量介损的同时,也能得到试品的电容量。
如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。
电容器的损耗角详解
电容器的损耗
电容器的损耗是电容器的一个非常重要的指标,是衡量电容器品质的重要标志,决定着电容的使用寿命和电容器在电路中的作用效果
定义:电容器在工作过程因发热而消耗的能量叫电容器的损耗。
电容器的能量损耗来自两方面:介质损耗与金属损耗
介质损耗包括1、介质漏电流引起的电导损耗
2、介质极化引起的极化损耗
金属损耗包括1、金属极板与引出线接触电阻产生的损耗
2、金属极板电阻产生的损耗
3、引出线电阻产生的损耗
金属损耗随频率和温度的增高而增大,在高频电路工作时,金属损耗占的损耗比例会很高,这点在电容器应用及生产工艺上特别注意。
由于电容器损耗的存在,使加在电容器的电压与电流之间的夹角(相位角)不是理想的90度,而是偏离了一个δ度,这个δ角就称为电容器的损耗角(见下图)。
习惯上以损耗角正切值表示电容器的损耗,实际就是电容器消耗的无功功率,于是也可以这样定义:
电容器的损耗也指电容器在电场作用下,消耗的无功功率与消耗的总功率的比值
其表示式为:电容器损耗角正切值=无功功率÷总功率
或电容器损耗角正切值=无功功率×100÷总功率(得出的值为百分比)
式中,总功率=无功功率+有功功率
有功功率=I有功平方×x c
无功功率=I总平方×R=(I漏+ I 有功)平方×R
R=金属极板与引出线接触电阻+金属极
板电阻+引出线电阻。
钽电容的损耗角正切和耗散因数
AVX钽电容的损耗角正切和耗散因数以下由AVX代理商希望电子整理提供,详细情况请直接访问www.cdindustries.hk损耗角正切(TAN)这是一个在电容器的能量损耗的测量。
它表示,为棕褐色,是电容器的功率损耗其无功功率分为一组指定的正弦电压频率。
也用的术语是功率因数,损耗因子和介电损耗。
COS(90 - )是真正的功率因数。
“使用测量进行测量谭桥梁,提供一个0.5V RMS120Hz的正弦信号,免费谐波的2.2Vdc的偏见 。
耗散因数(D.F.)。
耗散因数测量的切线损耗角(TAN),以百分比表示。
测量DF是开展测量桥梁供应一个0.5V RMS120Hz的正弦信号,免费谐波与偏见2.2Vdc。
DF值是温度和频率依赖性。
注意:对于表面贴装产品所允许的最大DF值表示的收视率表是很重要请注意,这些限额会见了由组件后基板上焊接。
耗散因数的频率依赖性随着频率的增加损耗因数所示钽和OxiCap庐电容器的典型曲线相同的:耗散与温度的关系耗散系数随温度变化的典型曲线表演。
这些地块是钽和OxiCap相同®电容器。
对于最高限额,请参阅的评分表。
AVX钽电容的阻抗(Z)。
这是电流电压的比值,在指定的频率。
三个因素促成了钽电容器的阻抗;半导体层的电阻电容价值和电极和引线电感。
在高频率导致的电感成为一个限制因素。
温度和频率的行为确定这三个因素的阻抗行为阻抗Z。
阻抗是在25° C和100kHz。
AVX钽电容的等效串联电阻ESR。
阻力损失发生在一切可行的形式电容器。
这些都是由几种不同的机制,包括电阻元件和触点,粘性势力内介质和生产旁路的缺陷电流路径。
为了表达对他们的这些损失的影响视为电容的ESR。
ESR的频率依赖性和可利用的关系;ESR=谭δ2πfC其中F是赫兹的频率,C是电容法拉。
ESR是在25 ° C和100kHz的测量。
ESR是阻抗的因素之一,在高频率(100kHz和以上)就变成了主导因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是
正如名词本身“电容损耗角正切值”,就是电容的电损耗的比例;
如果对一个电容加上一个电压,除了对电容充电的电流外还有漏掉的电流(电容的漏电流),漏电流被消耗成了热能,因此表示为电阻上的电流。
漏电流与纯电容的充电电流之比就是电容损耗角正切值(注意:
理论上纯粹的电容是不耗电功率的)。
我们国家对于浸渍全纸介质单元,其值应不大于0.0040;对于浸渍纸膜复合介质单元,其值应不大于0.0022;其值对于浸渍全膜介质单元,应不大于
0.0015。
单元在其电介质允许最高运行温度下的损耗角正切值应不超过上述相应的规定值。
1、介质损耗
什么是介质损耗:
绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。
也叫介质损失,简称介损。
2、介质损耗角δ
在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。
简称介损角。
3、介质损耗正切值tgδ
又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。
介质损耗因数的定义如下:
如果取得试品的电流相量和电压相量,则可以得到如下相量图:
总电流可以分解为电容电流Ic和电阻电流IR合成,因此:
这正是损失角δ=(90°-Φ)的正切值。
因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。
测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。
绝缘能力的下降直接反映为介损增大。
进一步就可以分析绝缘下降的原因,如:
绝缘受潮、绝缘油受污染、老化变质等等。
测量介损的同时,也能得到试品的电容量。
如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。