液压传动 第三章

合集下载

第三章液压传动基本回路

第三章液压传动基本回路

液压与气压传动主编:郭晋荣本书目录第一章绪论第二章液压传动系统的基本组成第三章液压传动基本回路第四章典型液压传动系统第五章气压传动系统的基本组成第六章气压传动基本回路第七章典型气压传动系统第八章液压与气压传动系统的安装调试和故障分析第三章液压传动基本回路第一节方向控制回路第二节压力控制回路第三节速度控制回路第四节多缸动作回路第五节液压伺服系统一、换向回路1.采用双向变量泵的换向回路液压基本回路是指能实现某种规定功能的液压元件组合。

方向控制回路是通过控制进入执行元件的油液的通、断或方向,从而实现液压系统中执行元件的启动、停止或改变运动方向的回路。

在容积调速的闭式回路中,可以利用双向变量泵控制油液的方向来实现执行元件的换向。

如下图所示,控制换向变量泵的方向,即可改变液压马达的旋转方向。

一、换向回路2.采用换向阀的换向回路电磁换向阀换向回路手动换向阀换向回路二、锁紧回路1.用换向阀的锁紧回路锁紧回路的作用是使控制执行元件能在任意位置停留,且停留后不会因外力作用而移动位置。

如下图所示,利用O型或M型中位机能的三位四通换向阀,封闭液压缸两腔进出油口,使液压缸锁紧。

由于换向阀的泄漏,这种锁紧回路能保持执行元件的锁紧时间短,锁紧效果较差。

三位换向阀的锁紧回路图下图是采用液控单向阀的锁紧回路。

换向阀左位工作时,压力油经左液控单向阀进入液压缸左腔,同时将右液控单向阀打开,使缸右腔的油液能流回油箱,活塞向右运动;同理,当换向阀右位工作时,压力油进入缸右腔,同时将左液控单向阀打开,缸左腔回油,活塞向左运动。

当换向阀处于中位或液压泵停止供油时,两个液控单向阀立即关闭,活塞停止运动。

为了保证中位锁紧可靠,换向阀宜采用H型或Y型机能。

由于液控单向阀密封性能好,泄漏少。

因此,锁紧精度高,能保证执行元件长期锁紧。

用液控单向阀的锁紧回路图二、锁紧回路2.用液控单向阀的锁紧回路一、调压回路1.单级调压回路单级调压回路即用单个溢流阀实现调压的回路,这在前面溢流阀的应用中已有2.二级调压回路图(a)所示二级调压回路,先导式溢流阀4的外控口K串接一个二位二通换向阀3和一个远程调压阀2(小规格的溢流阀)。

第三章-补充知识-液压传动基础知识-精简版2020

第三章-补充知识-液压传动基础知识-精简版2020
度的自动控制过程,而且可以实现遥控。
二、液压传动的主要缺点
与机械传动、电气传动相比,液压传动具有以下缺点
1、由于流体流动的阻力损失和泄漏较大,所以效率较低。如果处理不当,泄 漏不仅污染场地,而且还可能引起火灾和爆炸事故。
2、工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作。 3、液压元件的制造精度要求较高,因而价格较贵。由于液体介质的泄漏及可
液压传动
第一章 液压传动概述
第一节 液压传动的定义、工作原理及组成
一、基本概念 1、液压传动的定义
用液体作为工作介质,在密封的回路里,以液体的压力能进行能 量传递的传动方式,称之为液压传动。
2、液压控制的定义
液压控制与液压传动的不同之点在于液压控制是一个自动控制系 统,具有反馈装置,系统具有较强的抗干扰能力,所以系统输出量 的精度高。
与机械传动、电气传动相比,液压传动具有以下优点
1、液压传动的各种元件、可根据需要方便、灵活地来布置; 2、重量轻、体积小、运动惯性小、反应速度快; 3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1); 4、可自动实现过载保护; 5、一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长; 6、很容易实现直线运动; 7、容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程
低速液压马达的基本形式是 径向柱塞式,例如多作用内曲线式、单作 用曲轴连杆式和静压 平衡式等。
低速液压马达的主要特点是:排量大,体积大,转速低,有的可低到每 分钟几转甚至不到一转。通常低速液压马达的输出扭矩较大,可达 几千 到几万 ,所以又称为低速大扭矩液压马达。
第三节 液压缸
一、 液压缸的类型和特点
3、 活塞式液压缸典型结构

液压与气压传动第三章习题答案

液压与气压传动第三章习题答案

第三章习题答案3-1 填空题1.液压泵是液压系统的(能源或动力)装置,其作用是将原动机的(机械能)转换为油液的(压力能),其输出功率用公式(pq P ∆=0或pq P =0)表示。

2.容积式液压泵的工作原理是:容积增大时实现(吸油) ,容积减小时实现(压油)。

3.液压泵或液压马达的功率损失有(机械)损失和(容积)损失两种;其中(机械)损失是指泵或马达在转矩上的损失,其大小用(机械效率ηm )表示;(容积)损失是指泵或马达在流量上的损失,其大小用(容积效率ηv )表示。

4.液压泵按结构不同分为(齿轮泵)、(叶片泵)和(柱塞泵)三种,叶片泵按转子每转一转,每个密封容积吸、压油次数的不同分为(单作用)式和(双作用)式两种,液压泵按排量是否可调分为(定量泵)和(变量泵)两种;其中(单作用式叶片泵)和(柱塞泵)能做成变量泵;(齿轮泵)和(双作用式叶片泵)只能做成定量泵。

5.轴向柱塞泵是通过改变(斜盘倾角)实现变量的,单作用式叶片泵是通过改变(偏心距)实现变量的。

3-2 画出下列图形符号单向定量液压泵: 双向定量液压泵:单向定量液压马达: 双向变量液压马达:3-3 问答题1.液压泵完成吸油和压油必须具备的条件是什么?答:(1)具有若干个可以周期性变化的密封容积。

(2)油箱内液体的绝对压力必须恒等于或大于大气压力。

(3)具有相应的配流机构。

2.液压泵的排量和流量各决定于哪些参数?理论流量和实际理论的区别是什么?写出反映理论流量和实际流量关系的两种表达式。

答:液压泵的排量取决于密封容积的几何尺寸,与泵的转速和泄漏无关。

液压泵的流量取决于液压泵的排量和泵的转速。

理论流量是指在不考虑泄漏的情况下,单位时间内所排出液体的体积。

实际流量是指在考虑泄漏的情况下,单位时间内所排出液体的体积。

l t q q q -=;v V t q q η=。

3.齿轮泵的泄漏方式有哪些?主要解决方法是什么?答:齿轮泵泄漏方式有三个:齿轮端面和端盖间的轴向间隙;齿轮外圆和壳体内孔间的径向间隙以及两个齿轮的齿面啮合处。

液压传动第3章

液压传动第3章
上一页 下一页 返回
3. 1工件转运装置
• 人控阀的常用操控机构如图3 -5所示。 • 2)机械操纵换向阀
• 机械操纵换向阀是利用安装在工作台上凸轮、撞块或其他机械外力来推动阀芯动 作实现换向的换向阀。由于它主要用来控制和检测机械运动部件的行程,所以一 般也称为行程阀。行程阀常见的操控方式有顶杆式、滚轮式、单向滚轮式等,其
• 依靠人力对阀芯位置进行切换的换向阀称为人力操纵控制换向阀,简称人控 阀。人控阀又可分为手动阀和脚踏阀两大类。常用的按钮式换向阀的工作原
理如图3 -4所示。 • 人力操纵换向阀与其他控制方式相比,使用频率较低,动作速度较慢。
因操纵力不宜太大,所以阀的通径较小,操作也比较灵活。在直接控 制回路中人力操纵换向阀用来直接操纵气动执行元件,用作信号阀。
• 电磁换向阀按操作方式的不同可分为直动式和先导式。
上一页 下一页 返回
3. 1工件转运装置
• 图3-11所示为这两种操作方式的表示方法。 • (1)直动式电磁换向阀。 • 直动式电磁阀是利用电磁线圈通电时,静铁芯对动铁芯产生的电磁
吸力直接推动阀芯移动实现换向的,其工作原理如图3-12所示。
• (2)先导式电磁换向阀。
上一页 下一页 返回
3. 1工件转运装置
• (2)电磁继电器:电磁继电器在电气控制系统中起控制、放大、联锁、保护和调节 的作用,是实现控制过程自动化的重要元件,其工作原理如图3 -21所示。电 磁继电器的线圈通电后,所产生的电磁吸力克服释放弹簧的反作用力使 铁心和衔铁吸合。衔铁带动动触头1,使其和静触头2分断,和静触头4闭 合。线圈断电后,在释放弹簧的作用下,衔铁带动动触头与静触头4
• (1)用很小的移动量就可以使阀完全开启,阀流通能力强,因此便于设计成紧凑的 大流量阀。

液压传动习题 (3)

液压传动习题 (3)

第三章液压泵和液压马达一、填空题1、液压泵是一种能量转换装置,它将机械能转换为_________,是液压传动系统中的动力元件。

2、液压传动中所用的液压泵都是靠密封的工作容积发生变化而进行工作的,所以都属于_________。

3、泵每转一转,由其几何尺寸计算而得到的排出液体的体积,称为_________。

4、在不考虑泄漏的情况下,泵在单位时间内排出的液体体积称为泵的________。

二、单项选择题1、为了使齿轮泵能连续供油,要求重叠系数 ___。

A、大于1B、等于lC、小于12.泵常用的压力有:A.泵的输出压力B.泵的最高压力C.泵的额定压力泵实际工作的压力是();泵的极限压力是();根据实验结果而推荐的可连续使用的最高压力是()3、柱塞泵中的柱塞往复运动一次,完成一次___。

A、吸油B、压油C、吸油和压油4.泵常用的压力中,()是随外负载变化而变化的A.泵的输出压力B.泵的最高压力C.泵的额定压力5.改变轴向柱塞变量泵倾斜盘倾斜角的大小和方向,可改变___。

A、流量大小B、油流方向C、流量大小和油流方向6、泵的额定转速和额定压力下的流量称为()A.实际流量B.理论流量C.额定流量7、YB型叶片泵置于转子槽中的叶片是依靠___使叶片紧贴在定子内表面上的。

A、叶片的离心力B、叶片根部的压力C、叶片的离心力和叶片根部的压力8、在实际中,常把泵的压力为零时的流量视为( )A.实际流量B.理论流量C.额定流量9.驱动液压泵的电机功率应比液压泵的输出功率大,是因为()。

A、泄漏损失;B、摩擦损失;C、溢流损失;D、前两种损失。

10、影响液压泵容积效率下降的主要原因()。

A、工作压力B、内摩擦力C、工作腔容积变化量D、内泄漏11、负载大,功率大的机械设备上的液压系统可使用()。

A、齿轮泵B、叶片泵C、柱塞泵D、螺杆泵12、外反馈限压式变量叶片泵q—p特性曲线中,改变曲线A—B段的上下平移的方法()A、改变工作压力B、调节流量调节螺钉C、调节弹簧预压缩量D、更换刚度不同的弹簧13.外啮合齿轮泵的特点有()。

液压传动第三章 流体力学基础

液压传动第三章 流体力学基础

1、理想流体和恒定流动
理想流体:既无粘性,又无压缩性的假想液体。
实际流体:有粘性,又有压缩性的液体。
恒定流动:液体在流动时,通过空间某一点的压力、速度和密度等运
动参数只随位置变化,与时 间无关。
非恒定流:液体在流动时,通过空间某一点的压力、速度和密度等
运动参数至少有一个是随时 间变化的。
2、流线 流管、流束、通流截面
dqdt
u22 2
dqdt
u12 2
势能:ΔEP gdqh2dt gdqh1dt
外力做的功=能量变化:
W ΔE ΔEK ΔEP
p1
g
u12 2g
h1
p2
g
u22 2g
h2
1.理想流体的能量方程
p1
g
u12 2g
h1
p2
g
u22 2g
h2
2、实际流体伯努利方程
实际流体:有粘性、可压缩、非恒定流动 速度修正:动能修正系数
正确设计和使用液压泵站。 液压系统各元部件的连接处要密封可靠,严防
空气侵入。 采用抗腐蚀能力强的金属材料,提高零件的机
械强度,减小零件表面粗糙度值。
第六节 液 压 冲 击
一、管内液流速度突变引起的液压冲击
有一液位恒定并能保持 液面压力不变的容器如 图3-40所示。
二、运动部件制动所产生的液压冲击
第四节 孔口和缝隙液流
一、薄壁小孔
➢ 薄壁小孔是指小孔的长度和直径之比l/d<0.5的孔, 一般孔口边缘做成刃口形式,如图3-25所示。
➢薄壁小孔的流量计算
对于图所示的通过薄壁小孔的液体,取小孔前后截面1-1和2-2列伯努利方程
p1
g
v12 2g

液压传动 第3版

液压传动 第3版
图3-1a、b所示为用符号表示泵和马达的能量转换关系。
第一节 液压泵概述
一、液压泵的基本原理及分类 图3–2所示为一单柱塞液压泵的工作原理。 可见,液压泵是靠密封容积的变化来实现吸油和压油的,其排 油量的大小取决于密封腔的容积变化,故这种泵又称为容积式泵。 构成容积式泵的两个必要条件是: 1)有周期性的密封容积变化。密封容积由小变大时吸油,由大 变小时压油。 2)有配流装置。它保证密封容积由小变大时只与吸油管连通; 密封容积由大变小时只与压油管连通。 按照结构形式的不同,液压泵分为齿轮式、叶片式、柱塞式和 螺杆式等类型;按照输出油液的流量可否调节,液压泵又有定量式 和变量式之分。
第二节 齿 轮 泵
一、齿轮泵的优缺点及结构形式 (1) 优点 结构简单,制造方便,价格低廉,体积小,重 量轻,自吸性能好,允许转速较高,对油的污染不敏感,工作 可靠,便于维护修理。 (2) 缺点 流量脉动大,噪声大,排量不可调(定量泵)。 (3) 结构形式 有外啮合式和内啮合式两种。
二、外啮合齿轮泵 (一)外啮合齿轮泵的工作原理 (如图3-5所示) (二)外啮合齿轮泵的排量和流量 1.排量
m=Tt/Ti
因泵的理论功率(当忽略能量损失时)表达式为
Pt = pqvt = pVn = 2nTt
则有
Tt = pV /2
故得
m = pV /2Ti
(3)总效率 泵的输出功率与输入功率的比值称为泵的总效率
= Po/Pi = pqv /2nTi = (qv /Vn )( pV /2Ti) = vm
书名:液压传动 第3版 ISBN: 978-7-111-26746-1 作者:丁树模 出版社:机械工业出版社 本书配有电子课件
第三章 液压泵和液压马达
本章学习要求 1.掌握液压泵和液压马达的工作原理,熟悉液压泵和液压马达的

液压与气压传动课后第三、四、六章习题答案

液压与气压传动课后第三、四、六章习题答案

第三章 二、作业题3-1某一减速机要求液压马达的实际输出转矩T=,转速n=30r/min 。

设液压马达排量V=r ,容积效率ηMv =,机械效率ηMm =,求所需要的流量和压力各为多少? 解:π2pVT t =tMMm T T =η 610*5.12*9.0*2*5.522-==πηπV T p Mm M =60*9.030*10*5.12/6-==MvM Vn q η=s m /10*9.636-3-2 某液压马达排量V=70cm 3/r ,供油压力p=10MPa ,输入流量q=100L/min, 容积效率ηMv =,机械效率ηMm =,液压马达回油腔背压,求马达的输出转矩与转速。

解:=-==-πη294.0*10*70*10*)2.010(*66Mmt M T T ====--6310*70*6092.0*10*100V q V q n Mv M t η 某液压马达排量V=40cm 3/r ,当马达在p=和转速n=1450r/min 时,马达的实际流量q=63L/min,马达的实际输出转矩为,求马达的容积效率、机械效率和总效率。

解:====-ππη2/10*40*10*3.65.372/66pV T T T M t M Mm ====--3610*5.371450*10*40M M t Mvq Vn q q η 3-4 如图所示两个结构相同相互串联的液压缸,无杆腔的面积A 1=50*10-4m 2,有杆腔的面积A 2=20*10-4m 2,输入流量q=3L/min ,负载F1=5000N,F2=4000N,不计损失与泄漏,求 (1)两缸工作压力p1,p2两缸的运动速度v1,v2解:对两缸进行受力分析21212211F A p F A p A p =+=D 得出p2=2MPa ,p1=3MPa速度:v1=q/A1=s1221A v A v = V2= m/s3-5若要求差动液压缸快进速度v1是快退速度v2的3倍,试确定活塞面积A1与活塞杆面积A2之比3-6 如图所示,液压缸活塞直径D=100mm ,活塞杆直径d=70mm ,进入液压缸的流量q=25L/min ,压力p1=2MPa ,回油背压p2=,试计算三种情况下运动速度与方向及最大推力(实际计算其中一种。

《液压与气压传动》课后习题答案

《液压与气压传动》课后习题答案

第一章习题答案1-1 填空题1.液压传动是以(液体)为传动介质,利用液体的(压力能)来实现运动和动力传递的一种传动方式。

2.液压传动必须在(密闭的容器内)进行,依靠液体的(压力)来传递动力,依靠(流量)来传递运动。

3.液压传动系统山(动力元件)、(执行元件)、(控制元件)、(辅助元件)和(工作介质)五部分组成。

4.在液压传动中,液压泵是(动力)元件,它将输入的(机械)能转换成(压力)能,向系统提供动力。

5. 在液压传动中,液压缸是(执行)元件,它将输入的(压力)能转换成(机械)能。

6.各种控制阀用以控制液压系统所需要的(油液压力)、(油液流量)和(油液流动方向),以保证执行元件实现各种不同的工作要求。

7.液压元件的图形符号只表示元件的(功能),不表示元件(结构)和(参数),以及连接口的实际位置和元件的(空间安装位置和传动过程)。

8.液压元件的图形符号在系统中均以元件的(常态位)表示。

1-2 判断题1.液压传动不易获得很大的力和转矩。

(X)2.液压传动装置工作平稳,能方便地实现无级调速,但不能快速起动、制动和频繁换向。

(X)3.液压传动与机械、电气传动相配合时,易实现较复杂的自动工作循环。

(✓)4.液压传动系统适宜在传动比要求严格的场合采用。

(X)第二章习题答案2-1 填空题1.液体受压力作用发生体积变化的性质称为液体的(可压缩性),可用(体积压缩系数)或(体积弹性模量)表示,体积压缩系数越大,液体的可压缩性越(大);体积弹性模量越大,液体的可压缩性越(小)。

在液压传动中一般可认为液体是(不可压缩的)。

2.油液粘性用(粘度)表示;有(动力粘度)、(运动粘度)、(相对粘度)三种表示方法;计量单位m2/s是表示(运动)粘度的单位;l m2/s = (10心厘斯。

3.某一种牌号为L-HL22的普通液压油在40。

C时(运动)粘度的中心值为22厘斯(mm2/s)。

4.选择液压油时,主要考虑油的(粘度)。

(选项:成分、密度、粘度、可压缩性)5.当液压系统的工作压力高,环境温度高或运动速度较慢时,为了减少泄漏,宜选用粘度较(高)的液压油。

液压传动课后习题及解答

液压传动课后习题及解答

第一章绪论一、填空题1 、一部完整的机器一般主要由三部分组成,即 、 、2 、液体传动是主要利用 能的液体传动。

3 、液压传动由四部分组成即 、 、 、 。

4 、液压传动主要利用 的液体传动。

5 、液体传动是以液体为工作介质的流体传动。

包括 和 。

二、计算题:1:如图 1 所示的液压千斤顶,已知活塞 1 、 2 的直径分别为 d= 10mm , D= 35mm ,杠杆比 AB/AC=1/5 ,作用在活塞 2 上的重物 G=19.6kN ,要求重物提升高度 h= 0.2m ,活塞 1 的移动速度 v 1 = 0.5m /s 。

不计管路的压力损失、活塞与缸体之间的摩擦阻力和泄漏。

试求:1 )在杠杆作用 G 需施加的力 F ;2 )力 F 需要作用的时间;3 )活塞 2 的输出功率。

二、课后思考题:1 、液压传动的概念。

2 、液压传动的特征。

3 、液压传动的流体静力学理论基础是什么?4 、帕斯卡原理的内容是什么?5 、液压传动系统的组成。

6 、液压系统的压力取决于什么?第一章绪论答案一、填空题第1空:原动机;第2空:传动机;第3空:工作机;第4空:液体动能; 第5空 :液压泵; 6 :执行元件; 7 :控制元件; 8 :辅助元件; 9 :液体压力能; 10 :液力传动; 11 :液压传动二、计算题:答案:1 )由活塞2 上的重物 G 所产生的液体压力=20×10 6 Pa根据帕斯卡原理,求得在 B 点需施加的力由于 AB/AC=1/5 ,所以在杠杆 C 点需施加的力2 )根据容积变化相等的原则求得力 F 需施加的时间3 )活塞 2 的输出功率第二章液压流体力学基础一、填空题1、油液在外力作用下,液层间作相对运动进的产生内摩擦力的性质,叫做 。

2、作用在液体内部所有质点上的力大小与受作用的液体质量成正比,这种力称为 。

3、作用在所研究的液体外表面上并与液体表面积成正比的力称为 。

4、 液体体积随压力变化而改变。

(完整版)液压传动概述教案

(完整版)液压传动概述教案

第一章For personal use only in study and research; not for commercialuse第二章第三章液压传动概述本章难点:压力取决于负载它所介绍的内容,是机械工程技术人员必须掌握,不可缺少的基础技术知识。

研究以有压流体(压力油和压缩空气)为传动介质来实现各种机械传动和自动控制的学科。

一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。

原动机包括电动机、内燃机等。

工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。

由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。

一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。

传动机构通常分为机械传动、电气传动和流体传动机构。

流体传动是以流体为工作介质进行能量转换、传递和控制的传动。

它包括液压传动、液力传动和气压传动。

液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。

液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。

气压传动,其做工的介质是空气体;液压传动,其做工的介质是机油(或其它的液体)。

气压传动的结构简单,该介质(空气)不需要成本;液压传动结构复杂点,且需要其它的材料作为介质,成本会高点。

但液压传动的密封性能好,所以传动的力矩会大点,做工性能会好些。

1.1 液压技术的发展本章是学习液压与气压传动的启蒙章节,主要阐述了本课的一些重要概念、并通过液压千斤顶简化模型的分析深入理解液压传动的工作原理和液压系统的基本组成,最后介绍液压传动的优缺点和应用领域。

首先介绍什么是传动?传动的类型有哪些?引导学生举生活中常见的实例说明以下五种传动,使学生对传动及其类型有所认识和掌握。

液压传动系统完整版

液压传动系统完整版

七.制动缓冲回路 为了减少液压冲击,除了在液压元件结构本 身采取措施,还可以在系统中采去缓冲回来 了。可以采用单向行程节流阀和溢流阀的缓 冲制动回路。
第节 速度控制回路
速度控制回路是关于系统的速度调节和 变换的问题。是使执行元件从一种速度到另 一种速度的回路,有增速回路、减速回路和 二次速度转换回路。
一.插装阀方向控制回路 图2-54是二通插装阀方向控制基本回路。 其中a与b为单向节流阀,c为液控单向阀。d 为二位二通的方向控制阀。 一个插装阀只能控制两个油口的通断。
图2-54 手绘
图2-55是插装阀三位四通换向回路。图示位 置先导阀失电时,插装阀1、2、3、4的控制 腔在压力油的作用下,阀芯均关闭,P、A、B、 T均不相同;1Y得电,插装阀2、4控制油腔失 压而开启,1、3关闭,P和A接通,B和T接通; 2Y得电时,P和B、A和T接通,构成相当于O型 机能的三维四通电液换向回路。
2 1 1 2
图2-6a
图2-6b中,增压回路可使液压缸1共作行程 加长,活塞向右运动时遇到负载时,单向阀4 由于系统压力升高而开启,压力油进入增压 器2 才起到增压作用。 系统实现快进,并低速工作要求。 液控单向阀6是为了增压时隔开高低压力 油。
图2-6b
四.卸荷回路 液压系统工作时,执行元件短时间的停止 工作,不需要输入油,此时可以让液压泵卸 荷。 液压泵卸荷:让液压泵以很小的出输出功 率运转,或以很低的压力运转,或让液压泵 输出很小流量的压力油。
图2-36
图2-37
第四节 顺序动作回路
顺序动作回路是实现多个执行元件按预定 的次序动作的液压回路。按顺序动作控制方 法可分为压力控制和行程控制两大类。
一.压力控制顺序回路 图2-37是顺序阀控制的顺序动作回路。 当手动换向阀4左位接入回路,液压缸1活塞 向右运动,完成动作1后,压力升高,3开启, 液压缸2的活塞向右运动,完成动作2。退回 时,换向阀右位接入回路,一次完成3、4。

液压传动基础知识

液压传动基础知识
液压传动:用液体作为工作介质, 并以其压力能进行能量的传递称为液 压传动。(也称为静液传动或容积式 传动)
• 这里我们主要讲液压传动。因为现阶段工 程机械(包括路面机械、土方机械、起重 机械等)能量传递多数采用液压传动。
液压传动基础知识
第二节液压传动工作原理
一、 液压传动的定义:
借助于处于密闭容积内的液体的压
液压传动基础知识
第三节液压系统的组成和特点
●液压系统的组成:
液压系统由四个部分组成,即液压能 源元件,液压执行元件,液压控制元件和 液压辅助元件。 1. 液压能源元件
液压能源元件主要是液压泵,他将原 动机的机械能转换为液体的压力能,给液 压系统供给流量。
液压传动基础知识
2. 液压执行元件
液压执行元件是将液体的压力能 转换为机械能,带动工作负载作功。 液压执行元件包括液压缸和液压马达。
从上述液压千斤顶的工作原理中可以看出, 力从活塞1传到活塞8是通过液体进行的。因此, 活塞与液体间有力的作用,单位面积上所受的 力成为液体压力,如果不考虑液压损失和认为 活塞的运动是稳定运动,根据帕斯卡原理,油 室Ⅰ和油室Ⅱ的液体压力相等。
因此,我们可以清楚地看到,液压传动是用 液体作为工作介质,靠液体压力能来传递能量。
3. 液压控制元件
液压控制元件是各种控制阀,在 液压系统中起控制液体压力、流量和 液流方向的功能,以满足工作机构对 力、速度、位置和运动方向的要求。 液压控制阀包括压力控制阀、流量控 制阀和方向控制阀。
液压传动基础知识
4. 液压辅助元件
液压辅助元件包括密封件、油管、管 接头、蓄能器、滤油器、油箱、冷却器、 加热器等。虽然他们在液压系统中起辅 助作用,但对液压系统的正常工作、效 率、寿命等都有较大的影响。

液压与气压传动第3章习题解

液压与气压传动第3章习题解

第3章液压与气压传动动力元件思考题和习题3.1 容积式液压泵的工作原理是什么?答:其原理是:必须有一个密封容积;并且密封容积是变化的;还要有一个配油装置;油箱与大气相通。

3.2 液压泵装于液压系统中之后,它的工作压力是否就是液压泵标牌上的压力?为什么?答:不一定。

因为系统中压力是由负载来决定的。

3.3 液压泵在工作过程中产生哪些能量损失?产生损失的原因?答:产生两种损失:容积损失和机械损失。

容积损失产生的原因是泵中存在间隙,在压力作用下油液从高压区向低压区泄漏;另外由于油的粘性,转速高阻力大,使油液没充满密封空间。

机械损失是泵零件间,轴承,零件与液体间存在摩擦而产生的损失。

3.4 外啮合齿轮泵为什么有较大的流量脉动?流量脉动大会产生什么危害?答:外啮合齿轮泵在工作过程中,压油腔的工作容积变化率不均匀,齿数越少,其脉动率越大,所以外啮合齿轮泵的瞬时流量脉动大。

流量脉动大引起齿轮泵输出压力脉动大,产生较大的噪声。

3.5 什么是齿轮泵的困油现象?产生困油现象有何危害?如何消除困油现象?其它类型的液压泵是否有困油现象?解:齿轮泵要平稳工作,齿轮啮合的重叠系数必须大于或等于1,即总有两对轮齿同时啮合。

这样一部分油液被围困在两对轮齿所形成的封闭腔之内。

这个封闭容积先随齿轮转动逐渐减少,以后又逐渐增大。

当封闭容积减少时会使被困油液受挤压而产生高压,并从缝隙中流出,导致油液温升增加,轴承等机件也受到附加径向不平衡负载作用。

封闭容积增大时又会造成局部真空,使溶于油中气体分离出来,产生空穴,引起噪声、振动和气蚀,这就是齿轮泵的困油现象。

消除困油现象的方法,通常在齿轮泵的两端盖板上开卸荷槽,使封闭容积减少时通过卸荷槽与压油腔相通,封闭容积增大时通过卸荷槽与吸油腔相通。

其它类型的液压泵也有困油现象,双作用叶片泵在设计合理,安装准确时,在理论上没有困油现象。

3.6 齿轮泵压力的提高主要受哪些因素的影响?可以采取哪些措施来提高齿轮泵的压力?答:影响齿轮泵压力提高主要是端面间隙的泄漏及径向力不平衡。

液压与气压传动3_王积伟教授_东南大学

液压与气压传动3_王积伟教授_东南大学
F pA m p
v qV 4qV A πd 2
第三章 执行元件
π d m 4
(3-11) (3-12)
图3-4 柱塞式液压缸 a)单柱塞缸 b)双柱塞缸 1—缸筒 2—柱塞
式中 d—柱塞直径
东南大学机械工程学院
School of Mechanical Engineering
第三章 执行元件
图3-2 单杆活塞缸 a)向右运动 b)向左运动
School of Mechanical Engineering
东南大学机械工程学院
液压与气压传动
2)单杆活塞缸
单杆活塞缸的推力和速度计算式如下:
第三章 执行元件
π π F1 ( p1 A1 p2 A2 )m p1 D 2 p2 ( D 2 d 2 ) m 4 4
图3-1 双杆活塞缸 a)缸筒固定
东南大学机械工程学院
School of Mechanical Engineering
液压与气压传动
1)双杆活塞缸
第三章 执行元件
π 2 F1 F2 ( p1 p2 ) Am ( p1 p2 ) ( D d 2 )m 4
v1 v2 4qV q V A π( D 2 d 2 )
Part 3.1 液压缸
液压缸是实现直线往复运动的执行元件 。
School of Mechanical Engineering
东南大学机械工程学院
液压与气压传动
Part 3.1.1 液压缸的类型
第三章 执行元件
液压缸按其结构形式,可以分为活塞缸、柱塞缸和伸缩缸等 。
1. 活塞式液压缸
1)双杆活塞缸 图3-1a所示 为缸筒固定的双杆活塞缸, 活塞两侧的活塞杆直径相等 它的进、出油口位于缸筒两 端。当工作压力和输入流量 相同时,两个方向上输出的 推力F和速度v是相等的。其 值为:

第三章液压齿轮泵

第三章液压齿轮泵
图为外啮合齿轮泵实物结构
《液压与气压传动技术》
§3.2 齿轮泵
齿轮泵是一种常用的液压泵 主要优点:结构简单、制造方便、价格低廉、体积小、重量轻、
自吸性好、对油液污染不敏感、工作可靠; 主要缺点:流量和压力脉动大、噪声大、排量不可调。
应用:齿轮泵被广泛地应用于采矿设备、冶金设备、建筑机 械、工程机械和农林机械等各个行业。
近似排量:Vdh2 b zm 2b
实际上,齿谷容积比轮齿体积稍大一些,并且齿数越少 误差越大,因此,在实际计算中用3.33~3.50来代替上式中π 值,齿数少时取大值。
V(6.66~7)zm 2b
由此得齿轮泵的输出流量为:
q《 液(压6 与.气6压传~ 6 动技7术)》zm 2bnv
《液压与气压传动技术》
2、开设平衡槽的办法。
《液压与气压传动技术》
平衡槽解决径向不平衡力
《液压与气压传动技术》
平衡槽解决径向不平衡力
《液压与气压传动技术》
3.2.3.3 齿轮泵的泄漏途径及端面间隙的自动补偿 齿轮泵的三条泄漏途经:
一、通过齿轮啮合线处的间隙—齿侧间隙; 二、通过泵体定子环内孔和齿顶间的径向间隙—齿顶间隙; 三、通过齿轮两端面和侧板间的间隙——端面间隙。
为了提高齿轮泵 的压力和容积效 率,实现齿轮泵 的高压化,需要 从结构上采取措 施,对端面间隙 进行自动补偿。
数学拓展:渐开线
• 将一个圆轴固定在一个平面上,轴上缠线,拉紧一个线头, 让该线绕圆轴运动且始终与圆轴相切,那么线上一个定点在 该平面上的轨迹就是渐开线。
• 直线在圆上纯滚动时,直线上一点K的轨迹称为该圆的渐开 线,该圆称为渐开线的基圆,直线称为渐开线的发生线。
一、泄漏,二、脉动,三、径向力,四、困油。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m
Tt T
Tt
Tt T
(3-6)
式中, ΔT ——液压泵的机械摩擦损耗。
3、总效率 η
液压泵的输出功率与输入功率的比值称为总效率,即
Po Pi
pq T
vm
(3-7)
由上式表明,液压泵的总效率等于容积效率和机械效率的乘积。
五.液压泵的转速




额定转速 ns
在额定压力 下,能连续长 时间正常运转 的最高转速。
其中,端面泄漏量最大,约占总泄漏量的 75%~80% 。泵的压力越高, 端面泄漏量越大。
对于低压齿轮泵,为了减小端面泄漏,在设计和制造时都对端面间隙 加以严格控制,但这一办法用于高压齿轮泵则不能取得好的效果,因为泵 在使用一段时间后磨损会使间隙越来越大。
对于高压齿轮泵通常采取端面间隙自动补偿措施,在齿轮与前后盖板 间增加一个零件,如浮动轴套或弹性侧板。
(3-1)
式中,pi ——液压泵的输入转矩; n ——泵轴的转速。
2、输出功率 po 液压泵的输出功率为其实际流量 q 和工作压力 p 的乘积,即
Po pq
(3-2)
液压泵工作时,由于存在泄漏和机械摩擦,就会出现能量损失,故其功 率有理论功率和实际功率之分,并且输出功率 po 小于输入功率 pi 。如果忽 略能量损失,则液压泵的输入功率(理论功率)等于输出功率(理论功率), 其表达式为 2πnTt pqt pnV ,则有
螺杆直径越大、螺旋糟越深,泵的排量就 越大;螺杆的密封层次越多,泵的额定压力就 越高。
螺杆泵结构紧凑,自吸能力强,运转平稳, 输油量稳定,噪声小,对油液污染不敏感,并 允许采用高转速,特别适用于对压力和流量变 化稳定要求较高的精密机械。 其主要缺点是, 加工工艺复杂,加工精度要求高。
因为轮齿体积稍小于齿谷容积,所以用 3.33 代替 π,设泵的转速为 n,则 泵的流量为
q 6.66zm2bn
(3-9)
上式中 q 表示齿轮泵的平均流量。实际上,由于齿轮啮合过程中压油腔的 容积变化是不均匀的,所以齿轮泵的瞬时流量是脉动的,可以用流量脉动率来 评价瞬时流量的脉动程度。设 qmax, qmin 分别表示最大瞬时流量和最小瞬时流 量,则流量脉动率 σ 可用下式表示
图中除表示工作压力 p、流量 q 、 转速n 的关系外,还表示了等效率曲线 ηi 、等功率曲线 pii 等。
图 液压泵的通用特性曲线
3.1.3 液压泵的分类和选用
齿轮泵
外啮合齿轮泵和内啮合齿轮泵
液压泵的分类
结构形式
叶片泵 柱塞泵
双作用叶片泵、单作用叶片泵 和凸轮转子叶片泵
径向柱塞泵和轴向柱塞泵
螺杆泵
第三章 液压能源装置
3.1 液压泵概述 3.2 齿轮泵 3.3 叶片泵 3.4 柱塞泵 3.5 液压泵的安装与维护
3.1 液压泵概述
3.1.1 液压泵的工作原理 3.1.2 液压泵的性能参数 3.1.3 液压泵的分类和选用
3.1.1 液压泵的工作原理
单柱塞泵的工作原理图: 柱塞 2 在弹簧 3 的作用下始终紧贴凸轮 1,凸 轮转一周,柱塞往复运动一次。当柱塞向下运动时, 柱塞缸弹簧腔的密封容积增大形成一定真空度,油 箱中的油液在大气压力的作用下,经吸入管和单向 阀 5 进入密封容积,此时单向阀 6 关闭。 当柱塞向上运动时,柱塞缸弹簧腔的密封容积 减小,通过单向阀 6 排油,此时单向阀 5 关闭。凸 轮不停地转动,使柱塞不断地升降,密封容积便周 期性地增大或减小,泵就不停地吸油和排油。这种 泵是一种容积式泵。
最高转速 nmax
在额定压力 下,超过额定转 速允许短时间运 转的最高转速。
最低转速 nmin
正常运转所允许 的液压泵的最低转 速。
转速范围
最低转速与最 高转速之间的范 围。
六.液压泵的性能曲线
液压泵的性能曲线是在一定的介质、转速和温度下,通过试验得出的。 它表示液压泵的工作压力 p 与容积效率 ηv (或实际流量 q)、总效率 η 和 输入功率 pi 之间的关系。下图所示为某一液压泵的性能曲线。
消除困油现象的方法,通常是在两侧盖 板上铣两个卸荷槽(如下图中虚线所示)。 当闭死容积减小时,通过右边的卸荷槽与压 油腔相通;闭死容积增大时,通过左边的卸 荷槽与吸油腔相通。当采用标准齿轮时,两 槽间的距离 a 应使闭死容积最小时既不与压 油腔相通,也不与吸油腔相通。
2 . 径向作用力不平衡及其解决方法
由图示性能曲线可以看出:容 积效率 ηv (或实际流量 q)随压力 p的增高而减小。当压力 p 为零时, 泄漏流量 Δq 为零,容积效率 ηv =100% ,实际流量 q 等于理论流 量 qt 。总效率 η 随工作压力的增 高而增大,且有一个最高值。
图 液压泵的性能曲线
对于某些工作转速可在一定范围 内变化的液压泵或排量可变的液压泵, 为了显示在整个允许工作的转速范围 内的全性能特性,常用泵的通用特性 曲线表示,如图所示。
转速剧烈变动会对泵内零件的强 度产生不利影响。
用定量泵还是变量泵,需视具体情况而定。 定量泵简单、便宜,而变量 泵复杂、贵,但节省能源。
在液压功率小于10 kW、多数工况下需要泵输出全部流量、泵在不工作时 可以卸荷的场合,应选用定量泵; 在液压功率大于10 kW、流量需求变化大、 一个泵服务于可任意组合的多个负载的场合,则应选用变量泵。
3.1.2 液压泵的性能参数
液压泵的性能参数主要包括液压泵的压力、排量和流量,以及功率、 效率、转速和性能曲线方面的参数。
一.液压泵的压力
1 工作压力 p
液压泵的工作压力是指泵工作时的出口压力,其大小取决于负载。
2 额定压力 ps
液压泵在正常工作条件下,按试验标准规定能连续运转的最高压力。
二.液压泵的排量和流量
图 采用浮动轴套的中高压齿轮泵
3.2.2 螺杆泵与内啮合齿轮泵
一.螺杆泵
螺杆泵实质上是一种 外啮合的摆线齿轮泵,螺杆 可以是一根、两根或三根。
1—后盖; 2—泵体; 3—主动螺杆; 4—从动螺杆; 5—前盖
图 螺杆泵的结构简图
1—后盖; 2—泵体; 3—主动螺杆; 4—从动螺杆; 5—前盖
图 螺杆泵的结构简图
一.工作原理
图 齿轮泵的工作原理图
齿轮泵的排量可根据一对齿轮的齿谷容积之和计算。假设齿谷容积等于轮 齿体积(扣去齿根间隙),那么排量就相当于以有效齿高( h = 2 m)和齿宽 b 构成的平面扫过的环形体积 V,即
V πdhb 2πzm2b
(3-8)
式中, d ——节圆直径; z ——齿数; m ——齿轮模数; b ——齿宽。
qmax qmin
q
(3-10)
外啮合齿轮泵中齿数越少,流量脉动率就越大,其值最高可达 0.20 以上。 一般内啮合齿轮泵的脉动率要小得多。
二.存在的问题及解决方法
1. 困油现象及卸荷槽
(a)
(b)
(c)
(d)
图 齿轮泵的困油现象及其消除方法
由于油液的压缩性很小,在闭死容积减小时,压力急剧升高,油液从缝隙挤出, 造成油液发热,并使机体受到额外负载;在闭死容积增大时,因无油液补充而造成局 部真空,引起气穴和噪声。这种因闭死容积大小发生变化而引起的压力冲击和气穴现 象称为困油现象。困油现象严重影响泵的工作平稳性和使用寿命,必须予以消除。
3.2.1 外啮合齿轮泵
外啮合齿轮泵由一对几何参数相同的渐开线齿轮 6 、长短轴 12 和 15、泵 体 7、前后盖板 8 和 4 等主要零件组成。
图 外啮合齿轮泵结构简图
外啮合齿轮泵的主要优点 是结构简单、制造方便、价格 低廉、体积小、重量轻、自吸 性能好、抗污染能力强、工作 可靠;缺点是流量脉动和噪声 都较大、容积效率较低,所以 主要用于对噪声水平要求较低 的场合。
(a)单向定量液压泵(b)单向变量液压泵
(c)双向定量液压泵(d)双向变量液压泵 图 液压泵的图形符号
变量方式有手动控制和自动控 制,自动控制又分为内部压力控制、 外部压力控制、电磁比例阀控制等, 变量方式的选择要适应系统的要求。
3.2 齿轮泵
3.2.1 外啮合齿轮泵 3.2.2 螺杆泵与内啮合齿轮泵
液压泵内机件间泄漏的油液的流态可看作层流,可以认为泄漏量与泵的
输出压力 p 成正比,即 q kl p
式中, k1——流量损失系数。因此有
v
1
kl p Vn
(3 -5)
2、机械效率 ηm
液压泵工作时由于存在机械摩擦,因此驱动泵所需的实际转矩 T 必然
大于理论转矩 Tt 。理论转矩与实际转矩的比值称为机械效率,即
1 排量 V
液压泵的排量是指转动一周理论上排出的油液体积,又称理论排量或 几何排量,其大小仅与液压泵的几何尺寸有关,常用单位为 mL/r。
2 流量
(1)理论流量 qt:液压泵在单位时间内理论上排出的油液体积,它与 泵的排量 V 和转速 n 成正比,即 qt = nV ,常用单位为 m³/s 和 L/min。
如图所示,齿轮泵的右侧为吸油腔,左侧为压油腔,
压油腔有液压力作用在齿轮上。与此同时,压油腔的油
液经过径向间隙逐渐渗漏到吸油腔,其压力逐渐减小。
这些力的合力,就是齿轮和轴承受到的径向不平衡力。
工作压力越高,径向不平衡力越大,它将会加速轴
承的磨损,严重时会使轴变形,导致齿顶与泵体内孔发
生摩擦。
图 径向力的平衡方法
Tt
pV 2π
(3-3)
式中,Tt ——液压泵的理论驱动转矩。
四.液压泵的效率
1、容积效率 ηv
液压泵工作时,由于存在泄漏,其实际输出流量 q 小于理论输出流量
qt 。液压泵的实际流量 q 与理论流量 qt 的比值称为容积效率,即
v
q qt
qt
q qt
1
相关文档
最新文档