中考数学总复习训练题(按章节)

合集下载

中考数学总复习《整式的加减》专项提升训练(带有答案)

中考数学总复习《整式的加减》专项提升训练(带有答案)

中考数学总复习《整式的加减》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.若x表示一个两位数,把数字3放在x的左边,组成一个三位数是( )A.3xB.3×100+xC.100x+3D.10x+32.某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品( )A.(3m+2)kgB.(5m+2)kgC.(3m﹣2)kgD.(5m﹣2)kg3.如果a﹣b=12,那么﹣3(b﹣a)的值是( )A.﹣35B.23C.32D.164.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是( )A.2B.17C.3D.165.下列各组单项式中,不是同类项的是( )A.12a3y与2ya33B.6a2mb与-a2bmC.23与32D.12x3y与-12xy36.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,77.多项式3x3﹣2x2y2+x+3是( )A.三次四项式B.四次四项式C.三次三项式D.四次三项式8.下列各题去括号所得结果正确的是( )A.x2﹣(x﹣y+2z)=x2﹣x+y+2zB.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣29.某商家在甲批发市场以每包a元的价格购进了40包茶叶,又在乙批发市场以每包b元(a>b)的价格购进了同样的茶叶60包,如果商家以每包a+b2元的价格卖出这种茶叶,那么卖完后,该商家( )A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定10.若多项式3x2﹣2(5+y﹣2x2)+mx2的值与x的值无关,则m等于( )A.0B.1C.﹣1D.﹣7二、填空题11.一个两位数个位为a,十位数字为b,这个两位数为.12.若a-2b=3,则9-2a+4b的值为.13.多项式5x2-7x2y-6x2y2+6是________次________项式.14.去括号:﹣6x3﹣[4x2﹣(x+5)]= .15.两个多项式的和是5x2﹣4x+5,其中一个多项式是﹣x2+2x﹣4,则另一个多项式是 .16.记Sn =a1,+a2+…an,令Tn=,则称Tn为a1,a2,…,an这列数的“凯森和”,已知a1,a2,…a500的“凯森和”为2004,那么1,a1,a2,…a500的“凯森和”为.三、解答题17.化简:﹣3x2y+3xy2+2x2y﹣2xy218.化简:2(a﹣1)﹣(2a﹣3)+319.化简:3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1).20.化简:3(m﹣5n+4mn)﹣2(2m﹣4n+6mn).21.先化简再求值:2a2﹣[12(ab﹣4a2)+8ab]﹣12ab,其中a=1,b=13.22.为鼓励市民节约用水,某地推行阶梯式水价计费制,标准如下:每户居民每月用水不超过17立方米的按每立方米a元计费;超过17立方米而未超过30立方米的部分按每立方米b元计费;超过30立方米的部分按每立方米c元计费.(1)若某户居民在一个月内用水15立方米,则该用户这个月应交水费多少元?(2)若某户居民在一个月内用水28立方米,则该用户这个月应交水费多少元?(3)若某户居民在一个月内用水35立方米,则该用户这个月应交水费多少元?23.小明购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他计划给卧室铺上木地板,其余房间都铺上地砖.根据图中的数据,解答下列问题:(结果用含x、y的代数式表示)(1)求整套住房需要铺多少平方米的地砖?(2)求客厅的面积比其余房间的总面积多多少平方米?24.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?25.化简求值:(1)已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2①求﹣A﹣3B②若x=﹣1,y=12时,﹣A﹣3B的值.(2)三角形的三边的长分别是2x+1,3x﹣2,8﹣2x(单位:cm),求这个三角形的周长,(用含x的代数式表示).如果x=3cm,三角形的周长是多少?参考答案1.B.2.B.3.C.4.B5.D6.C.7.B8.B.9.A.10.D.11.答案为:10b+a.12.答案为:313.答案为:四,四.14.答案为:﹣6x3﹣4x2+x+5.15.答案为:6x2﹣6x+9.16.答案为:2001.17.原式=﹣x2y+xy2;18.原式=2a﹣2﹣2a+3+3=4;19.原式=a2﹣6a﹣6.20.原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.解:2a2﹣[12(ab﹣4a2)+8ab]﹣12ab=2a2﹣[12ab﹣2a2+8ab]﹣12ab=2a2﹣12ab+2a2﹣8ab﹣12ab=4a2﹣ab﹣8ab;当a=1,b=13时原式=4×12﹣1×13﹣8×1×13=4﹣13﹣83=1.22.解:(1)∵某户居民在一个月内用水15立方米∴该用户这个月应交水费15a元;(2)∵某户居民在一个月内用水28立方米∴该用户这个月应交水费17a+(28﹣17)b=(17a+11b)元;(3)∵某户居民在一个月内用水35立方米∴该用户这个月应交水费是:17a+13b+(35﹣30)c=(17a+13b+5c)元;23.解:客厅的面积为6xm2,厨房的面积为6m2,卫生间的面积是2ym2,卧室的面积是12m2;(1)地砖的面积是(6x+6+2y)m2;(2)客厅的面积比其余房间的总面积多6x-(6+2y+12)=(6x-2y-18)m2.24.解:(1)设从甲仓库调往A县农用车x辆则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340到B的总费用=760﹣30×4=640故总费用=340+640=980.25.解:(1)①∵A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2∴﹣A﹣3B=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy﹣20y2;②当x=﹣1,y=12时,原式=﹣1﹣12﹣5=﹣612;(2)根据题意得:2x+1+3x﹣2+8﹣2x=(3x+7)cm 当x=3时,原式=9+7=16cm.。

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

中考数学总复习训练 多边形与平面镶嵌(含解析)-人教版初中九年级全册数学试题

中考数学总复习训练 多边形与平面镶嵌(含解析)-人教版初中九年级全册数学试题

多边形与平面镶嵌一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.92.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.93.正十边形的每个外角等于()A.18° B.36° C.45° D.60°4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°二、填空题14.正n边形的一个外角的度数为60°,则n的值为.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为cm2.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.多边形与平面镶嵌参考答案与试题解析一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【专题】计算题.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.2.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.3.正十边形的每个外角等于()A.18° B.36° C.45° D.60°【考点】多边形内角与外角.【专题】常规题型.【分析】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.【解答】解:360°÷10=36°,所以,正十边形的每个外角等于36°.故选:B.【点评】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形三者之间的关系是解题的关键.4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°【考点】多边形内角与外角.【专题】常规题型.【分析】先利用多边形的内角和公式(n﹣2)•180°求出正六边形的内角和,然后除以6即可;或:先利用多边形的外角和除以正多边形的边数,求出每一个外角的度数,再根据相邻的内角与外角是邻补角列式计算.【解答】解:(6﹣2)•180°=720°,所以,正六边形的每个内角都是720°÷6=120°,或:360°÷6=60°,180°﹣60°=120°.故选D.【点评】本题考查了多边形的内角与外角,利用正多边形的外角度数、边数、外角和三者之间的关系求解是此类题目常用的方法,而且求解比较简便.5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】首先设此多边形是n边形,由多边形的外角和为360°,即可得方程180(n﹣2)=360,解此方程即可求得答案.【解答】解:设此多边形是n边形,∵多边形的外角和为360°,∴180(n﹣2)=360,解得:n=4.∴这个多边形是四边形.故选A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为360°,n边形的内角和等于180°(n﹣2).6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形【考点】多边形内角与外角.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:360÷36=10.故选C.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形【考点】平面镶嵌(密铺).【分析】根据密铺的知识,找到一个内角能整除周角360°的正多边形即可.【解答】解:A、正十边形每个内角是180°﹣360°÷10=144°,不能整除360°,不能单独进行镶嵌,不符合题意;B、正八边形每个内角是180°﹣360°÷8=135°,不能整除360°,不能单独进行镶嵌,不符合题意;C、正六边形的每个内角是120°,能整除360°,能整除360°,可以单独进行镶嵌,符合题意;D、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能单独进行镶嵌,不符合题意;故选:C.【点评】本题考查了平面密铺的知识,注意几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【解答】解:A、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;C、正方形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意;D、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.故选:D.【点评】本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能【考点】多边形内角与外角.【专题】压轴题.【分析】首先计算截取一个角后多边形的边数,然后分三种情况讨论.因为截取一个角可能会多出一个角,也可能角的个数不变,也可能少一个角,从而得出结果.【解答】解:∵内角和是1620°的多边形是边形,又∵多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形.综上原来多边形的边数可能为10、11、12边形,故选D.【点评】本题主要考查了多边形的内角和定理及多边形截去一个角有三种情况.11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=(180°﹣108°)÷2=36°,∵l∥BE,∴∠1=36°,故选:B.【点评】此题主要考查了正多边形的内角和定理,以及三角形内角和定理,平行线的性质,关键是掌握多边形内角和定理:(n﹣2).180° (n≥3)且n为整数.12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】平行四边形的判定.【分析】求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.【解答】解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.【点评】本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°【考点】旋转的性质;正多边形和圆.【分析】由六边形ABCDEF是正六边形,即可求得∠AFE的度数,又由邻补角的定义,求得∠E′FE 的度数,由将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,可得∠EFE′是旋转角,继而求得答案.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFE==120°,∴∠EFE′=180°﹣∠AFE=180°﹣120°=60°,∵将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,∴∠EFE′是旋转角,∴所转过的度数是60°.故选A.【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.二、填空题14.正n边形的一个外角的度数为60°,则n的值为 6 .【考点】多边形内角与外角.【专题】探究型.【分析】先根据正n边形的一个外角的度数为60°求出其内角的度数,再根据多边形的内角和公式解答即可.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和公式是解答此题的关键.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= 300°.【考点】多边形内角与外角.【专题】数形结合.【分析】根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.【解答】解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.【点评】本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为9 .【考点】正多边形和圆.【分析】分∠OAB=70°和∠AOB=70°两种情况进行讨论即可求解.【解答】解:当∠OAB=70°时,∠AOB=40°,则多边形的边数是:360÷40=9;当∠AOB=70°时,360÷70结果不是整数,故不符合条件.故答案是:9.【点评】此题主要考查正多边形的计算问题,属于常规题.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12 .【考点】平面镶嵌(密铺).【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正方形的一个内角度数为180°﹣360°÷4=90°,正六边形的一个内角度数为180°﹣360°÷6=120°,∴需要的多边形的一个内角度数为360°﹣90°﹣120°=150°,∴需要的多边形的一个外角度数为180°﹣150°=30°,∴第三个正多边形的边数为360÷30=12.故答案为:12.【点评】此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为 6 .【考点】平面镶嵌(密铺).【专题】应用题;压轴题.【分析】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【解答】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【点评】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240 度.【考点】多边形内角与外角.【专题】压轴题;数形结合.【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.【点评】考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于15 .【考点】等腰梯形的性质;多边形内角与外角;平行四边形的性质.【专题】计算题.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH﹣AB﹣BG=8﹣1﹣3=4,EF=PH﹣HF﹣EP=8﹣4﹣2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为40 cm2.【考点】正多边形和圆.【专题】压轴题.【分析】根据正八边形的性质得出正八边形每个内角以及表示出四边形ABGH面积进而求出答案即可.【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=x,则HG=AH=AB=GF=x,∴BG×GF=2(+1)x2=20,四边形ABGH面积=(AH+BG)×HM=(+1)x2=10,∴正八边形的面积为:10×2+20=40(cm2).故答案为:40.【点评】此题主要考查了正八边形的性质以及勾股定理等知识,根据已知得出四边形ABGH面积是解题关键.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2.【考点】正多边形和圆.【专题】压轴题.【分析】延长AB,然后作出过点C与格点所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.【解答】解:延长AB,然后作出过点C与格点所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,中间间隔一个顶点的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.【点评】本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为4πcm.【考点】正多边形和圆;弧长的计算;旋转的性质.【分析】每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,然后计算出弧长,最后乘以六即可得到答案.【解答】解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,正六边形的中心O运动的路程∵正六边形的边长为2cm,∴运动的路径为:=;∵从图1运动到图2共重复进行了六次上述的移动,∴正六边形的中心O运动的路程6×=4πcm故答案为:4π.【点评】本题考查了正多边形和圆的、弧长的计算及旋转的性质,解题的关键是弄清正六边形的中心运动的路径.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是60 度.【考点】旋转对称图形.【分析】本题考查旋转对称图形的概念,旋转的最小度数是解决本题的关键.【解答】解:将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是=60度.【点评】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.。

2023年中考数学(人教版)总复习训练:圆综合

2023年中考数学(人教版)总复习训练:圆综合

2023年中考数学(人教版)总复习训练:圆综合一、选择题(本大题共10小题,每小题4分,满分40分)1. (2020•资中县一模)已知⊙O中最长的弦长8cm,则⊙O的半径是( )A.2cmB.4cmC.8cmD.16cm2. (2020秋•河东区期末)已知⊙O的半径OA长为1,OB=2,则正确图形可能是( )A. B. C. D.3. (2020•宜昌)如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是( )A. B. C. D.4. (2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是( )A.h=R+rB.R=2rC.r aD.R a5. (2020·吉林长春中考)如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20o,则∠AOC的大小为( )A.40oB.140oC.160oD.170o6. (2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为( )A.45°B.60°C.75°D.90°7. (2020•平房区二模)如图,AB为O的切线,AC为弦,连接CB交O于点D,若CB 经过圆心O,∠ACB=28o,则∠B的度数为( )A.33oB.34oC.56oD.28o8. (2020•凉山州)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=( )A.2:B.:C.:D.:29. (2020•沈阳)如图,在矩形ABCD中,AB=3,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则劣弧DE的长为( )A. B.π C. D.10. (2020·辽宁营口·中考真题)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是( )A.110°B.130°C.140°D.160°二、填空题(本大共8小题,每小题5分,满分40分)11. (2020•武威)若一个扇形的圆心角为60°,面积为cm2,则这个扇形的弧长为cm(结果保留π).12. (2020•攀枝花)如图,已知锐角三角形ABC内接于半径为2的⊙O,OD⊥BC于点D,∠BAC=60°,则OD=.13. (2020•无锡)已知圆锥的底面半径为1cm,高为3cm,则它的侧面展开图的面积为=cm2.14. (2020·黑龙江鹤岗中考)如图,AD是△ABC的外接圆的直径,若∠BCA=50o,则∠ADB=_____.15. (2022北京十一学校一分校)如图,PA,PB分别切半径为1的⊙O于A,B两点,BC为直径,若∠P=60o,则PB的长为_____.16. (2021•太原二模)如图,点A的坐标为(2,0),点B的坐标为(0,23),⊙A与y 轴相切,点C是⊙A上的动点,射线BC与x轴交于点D,则BD长的最大值等于.O17. (2020•牡丹江)AB 是⊙O 的弦,OM ⊥AB,垂足为M,连接OA.若△AOM 中有一个角是30°,OM =2,则弦AB 的长为 .18. (2021•兰州)如图,传送带的一个转动轮的半径为18cm,转动轮转n °,传送带上的物品A 被传送12πcm,则n = .三、解答题(本大题共6道小题,每小题6-12分)19. (6分)(2020年湖南省长沙市长郡滨江中学中考数学3月模拟试题)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC 、AB 相交于点D 、E,连接AD,已知∠CAD =∠B.(1)求证:AD 是⊙O 的切线;(2)若∠B =30°,AC 求劣弧BD 与弦BD 所围阴影图形的面积;(3)若AC =4,BD =6,求AE 的长.20. (6分)(2020秋•新抚区期末)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CF 为⊙O 的切线,OE ⊥AB 于点O,分别交AC,CF 于D,F 两点.(1)求证:ED =EC;(2)若EC =1,∠A =30°,求图中阴影部分的面积.321. (8分)(2020秋•集贤县期末)如图,在△ABC中,AB=AC,∠BAC=54°,以AB 为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.22. (10分)(2020•咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.23. (12分)(2021•陕西模拟)问题探究(1)如图①,在△ABC中,AB=AC,∠B=30°,AB=3,则BC的长为;(2)如图②,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,求PC+PD的最小值;问题解决(3)某山庄有一营地,如图③,营地是由等边△ABC和弦AB与其所对的劣弧围成的弓形组成的,其中AC=600m,所对的圆心角为120°,点D是AB上的一个取水点,AD=200m,连接CD交于点E.管理员计划在上建一个入口P,在PC、PB上分别建取水点M、N.由于取水点之间需按D→M→N→D的路径铺设水管,因此,为了节约成本要使得线段DM、MN、ND之和最短,试求DM+MN+ND的最小值.24. (12分)(2022北京东直门中学)对于平面直角坐标系xOy中的图形W1和图形W 2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M于点N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点点P在线段DE上运动(点P可以与点D,E 重合),连接OP,CP.①线段OP的最小值为_______,最大值为_______;线段CP的取值范直范围是_____;②在点O,点C中,点____________与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y b=+(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,1为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.。

中考数学总复习训练 第一章 第二节 整式

中考数学总复习训练 第一章 第二节 整式

第二节整式考点1列代数式1.[2021浙江温州]某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A.20a元 B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元2.[2020四川达州]如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则错误的是( ) A.12(m-1) B.4m+8(m-2)C.12(m-2)+8D.12m-163.[2021河北]某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n本乙种书,共付款Q元.(1)用含m,n的代数式表示Q;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值.考点2整式的运算4.[2021湖北荆州]若等式2a2·a+()=3a3成立,则()中的单项式可以是( )A.aB.a2C.a3D.a45.[2021山东临沂]计算2a3·5a3的结果是( )A.10a6B.10a9C.7a3D.7a66.[2021陕西]计算:(a3b)-2=( )A.1a6b2B.a6b2 C.1a5b2D.-2a3b7.[2021广东]已知9m=3,27n=4,则32m+3n=( )A.1B.6C.7D.128.[2021山东济宁]下列各式中,正确的是( )A.x+2x=3x2B.-(x-y)=-x-yC.(x2)3=x5D.x5÷x3=x29.[2021山西]下列运算正确的是( )A.(-m2n)3=-m6n3B.m5-m3=m2C.(m+2)2=m2+4D.(12m4-3m)÷3m=4m310.[2021浙江台州]已知(a+b)2=49,a2+b2=25,则ab=( C )A.24B.48C.12D.2√611.[2021河北]不.一定相等的一组是( )A.a+b与b+aB.3a与a+a+aC.a3与a·a·aD.3(a+b)与3a+b12.[2021四川泸州]已知10a=20,100b=50,则12a+b+32的值是( )A.2B.52C.3 D.92考点3整式的化简、求值13.[2021重庆A卷]计算:(x-y)2+x(x+2y).14.[2021湖南衡阳]计算:(x+2y)2+(x-2y)(x+2y)+x(x-4y).15.[2021北京]已知a2+2b2-1=0,求代数式(a-b)2+b(2a+b)的值.16.[2021浙江金华]已知x=16,求(3x-1)2+(1+3x)(1-3x)的值.17.[2021贵州贵阳]小红在计算a(1+a)-(a-1)2时,解答过程如下:小红的解答从第步开始出错,请写出正确的解答过程.18.[2020湖北荆门]先化简,再求值:(2x+y)2+(x+2y)2-x(x+y)-2(x+2y)(2x+y),其中x=√2+1,y=√2-1.考点4因式分解19.[2021浙江杭州]因式分解:1-4y2=( )A.(1-2y)(1+2y)B.(2-y)(2+y)C.(1-2y)(2+y)D.(2-y)(1+2y)20.[2021湖南长沙]分解因式:x2-2 021x= .21.[2021山东临沂]分解因式:2a3-8a= .22.[2021陕西]分解因式:x3+6x2+9x= .23.[2021湖北十堰]已知xy=2,x-3y=3,则2x3y-12x2y2+18xy3= .24.[2021江苏苏州]若m+2n=1,则3m2+6mn+6n的值为.考点5数与式、图形的规律探究25.[2021云南]按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( )A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n26.[2021湖北十堰]将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( ) A.2 025 B.2 023C.2 021D.2 01927.[2021湖北随州]根据图中数字的规律,若第n个图中的q=143,则p的值为( )A.100B.121C.144D.16928.[2021广西玉林]观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=( )A.15×24B.31×24C.33×24D.63×2429.[2021浙江嘉兴]观察下列等式:1=12-02,3=22-12,5=32-22,…,按此规律,则第n个等式为2n-1= .30.[2021四川眉山]观察下列等式:x1=√1+112+122=32=1+11×2;x2=√1+122+132=76=1+12×3;x3=√1+132+142=1312=1+13×4;…根据以上规律,计算x1+x2+x3+…+x2 020-2 021= .31.[2021湖南湘西州]古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把图(1)表示的三角形数记为a1=1,图(2)表示的三角形数记为a2=3……则图(n)表示的三角形数a n= .(用含n的式子表示)图(1)图(2)图(3)图(4)32.[2021湖南常德]如图中的三个图形都是由边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个图形中所有线段的和为.(用含n的代数式表示)答案1.D由题意可知,该用户应缴水费为17a+(20-17)×(a+1.2)=(20a+3.6)(元).故选D.2.A每条竖直的棱上按m个小球计算,每条水平的棱上按(m-2)个小球计算,故小球总数为4m+8(m-2).正方体的每条棱上除顶点处外有(m-2)个小球,故正方体上共有[12(m-2)+8]个小球.当按照每条棱m个小球计算总数时,顶点处的小球多算了两次,所以共有(12m-8×2)个小球.故选A.3.解:(1)Q=4m+10n.(2)当m=5×104,n=3×103时,Q=4×5×104+10×3×103=2.3×105.4.C2a2·a=2a3,3a3-2a3=a3.故选C.5.A原式=(2×5)·a3+3=10a6.6.A(a3b)-2=1(a3b)2=1a3×2b2=1a6b2.7.D由9m=3,得32m=3;由27n=4,得33n=4.故32m+3n=32m×33n=3×4=12.8.D逐项分析如下,故选D.选项分析正误A x+2x=(1+2)x=3x✕B -(x-y)=-x+y✕C (x2)3=x2×3=x6✕D x5÷x3=x5-3=x2√9.A逐项分析如下.选项分析正误A (-m2n)3=-m2×3n3=-m6n3√B m5和-m3不是同类项,不能合并.✕C (m+2)2=m2+4m+4 ✕D(12m4-3m)÷3m=12m4÷3m-3m÷3m=4m3-1✕10.C∵(a+b)2=a2+b2+2ab=49,a2+b2=25,∴2ab=(a+b)2-(a2+b2)=24,∴ab=12.11.D根据加法交换律可知a+b=b+a;根据合并同类项法则可知a+a+a=(1+1+1)a=3a;根据乘方的意义可知a·a·a=a3;根据乘法分配律可知3(a+b)=3a+3b,3a+3b与3a+b不一定相等.故选D.12.C∵10a+2b=10a×102b=10a×100b=20×50=1 000=103,∴a+2b=3,∴原式=12(a+2b+3)=12×(3+3)=3,故选C.13.[2021重庆A卷]计算:(x-y)2+x(x+2y).解:原式=x2-2xy+y2+x2+2xy=2x2+y2.14.解:原式=x2+4xy+4y2+x2-4y2+x2-4xy=3x2.15.解:原式=a 2-2ab+b 2+2ab+b 2=a 2+2b 2. ∵a 2+2b 2-1=0, ∴原式=a 2+2b 2=1.16.解:原式=9x 2-6x+1+1-9x 2=-6x+2.当x=16时,原式=-6×16+2=1. 17.解:一a (1+a )-(a-1)2 =a+a 2-(a 2-2a+1) =a+a 2-a 2+2a-1 =3a-1.18.解:原式=[(2x+y )-(x+2y )]2-x 2-xy=(x-y )2-x 2-xy =x 2-2xy+y 2-x 2-xy =y 2-3xy.当x=√2+1,y=√2-1时,原式=(√2-1)2-3×(√2+1)(√2-1)=3-2√2-3 =-2√2.19.A 20.x (x-2 021)21.2a (a+2)(a-2) 原式=2a (a 2-4)=2a (a+2)(a-2). 22.x (x+3)2x 3+6x 2+9x=x (x 2+6x+9)=x (x+3)2.23.36 原式=2xy (x 2-6xy+9y 2)=2xy (x-3y )2=2×2×32=36. 24.3 原式=3m (m+2n )+6n=3m+6n=3(m+2n )=3. 25.A26.B 行数为1的方阵内包含“1”,共1个数;行数为2的方阵内包含“1,3,5,7”,共22个数;行数为3的方阵内包含“1,3,5,7,9,11,13,15,17”,共32个数……∴行数为32的方阵内包含“1,3,5,7,…”共322个数,即共1 024个数,∴位于第32行第13列的数是连续奇数的第(1 024-12=)1 012个数,∴位于第32行第13列的数是2×1 012-1=2 023.27.B由题图可知,p=n2,q=(n+1)2-1.∵q=143,∴(n+1)2-1=143,∴n=11,∴p=n2=112=121.28.B29.n2-(n-1)230.-1202131.n(n+1)232.2n(n+1)。

中考数学总复习练习题附答案 (13)

中考数学总复习练习题附答案 (13)

中考总复习数学练习题一、选择题1.计算:(-2)3的值是( )A.-6B.6C.-8D.-9 解析:C;2.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S ,又填在图中三格中的数字如图,若要能填成,则 ( ) A. S =24 B . S =30 C. S =31 D. S =39 解析:B;提示:把所给选择支检验即可得到答案; 3.若规定收入为“+”,那么支出-50元表示( ) A .收入了50元 B .支出了50元 C .没有收入也没有支出 D .收入了100元答案:B4.在图形的平移中,下列说法中错误的是( ).A .图形上任意点移动的方向相同;B .图形上任意点移动的距离相同C .图形上可能存在不动点;D .图形上任意对应点的连线长相等 答案:C解析:【答案】C.5.若自然数n 使得三个数的加法运算“n +(n +1)+(n +2)”产生进位现象,则称n 为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( ).A .0.88B .0.89C .0.90D .0.91 答案:A解析:【答案】A.【解析】∵若自然数n 使得三个数的竖式加法运算“n+(n+1)+(n+2)”产生进位现象,则称n 为“连加进位数”,当n=0时,0+1=1,0+2=2,n+(n+1)+(n+2)=0+1+2=3,不是连加进位数; 当n=1时,1+1=2,1+2=3,n+(n+1)+(n+2)=1+2+3=6,不是连加进位数; 当n=2时,2+1=3,2+2=4,n+(n+1)+(n+2)=2+3+4=9,不是连加进位数; 当n=3时,3+1=4,3+2=5,n+(n+1)+(n+2)=3+4+5=12,是连加进位数; 故从0,1,2,…,9这10个自然数共有连加进位数10-3=7个, 由于10+11+12=33没有不进位,所以不算. 又13+14+15=42,个位进了一,所以也是进位.按照规律,可知0,1,2,10,11,12,20,21,22,30,31,32不是连加进位数,其他都是.8 10 13所以一共有88个数是连加进位数.概率为0.88. 故答案为:0.88.6.对于实数a 、b ,给出以下三个判断: ①若b a =,则b a =.②若b a <,则 b a <. ③若b a -=,则22)(b a =-.其中正确的判断的个数是( )A .3B .2C .1D .0 答案:C解析:【答案】C ;【解析】通过举反例说明①②是不对的,只有③是正确的. 7.在△中,若,则△是( ).. 锐角三角形 . 钝角三角形. 等腰三角形. 直角三角形答案:D解析:【答案】D. 【解析】因为=4,所以,,由勾股定理的逆定理可知:△ABC 是直角三角形, 答案选D.8.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A .B .C .D .答案:A解析:【答案】A ; 【解析】连接AD 、DF 、DB , ∵六边形ABCDEF 是正六边形,∴∠ABC=∠BAF=∠∠AFE,AB=AF ,∠E=∠C=120°,EF=DE=BC=CD , ∴∠EFD=∠EDF=∠CBD=∠BDC=30°, ∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△△ABD≌Rt△AFD,∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第一个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第二个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第三个等边三角形的边长是××a,第四个正六边形的边长是×××a;第四个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第五个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×512⎛⎫⎪⎝⎭a,故选A.二、填空题二、填空题9.(2006年湖南郴州市)我国2006年第一季度实现了GDP(国民生产总值)43390亿元,用科学记数法表示为亿元.解析:4.33910.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△AGE,那么△AGE与四边形AECD重叠部分的面积是.第7题第8题答案:【答案】2-2【解析】在边长为2的菱形ABCD中∠B=45°AE为BC边上的高故AE=由折叠易得△ABG为等腰直角三角形∴S△ABG=BA•AG=2S△ABE=1∴CG=2BE-BC=2-2∴CO=解析:【答案】22-2.【解析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,故AE=2,由折叠易得△ABG为等腰直角三角形,∴S△ABG=12BA•AG=2,S△ABE=1,∴CG=2BE-BC=22-2,∴CO=OG=2-2,∴S△COG=3-22,∴重叠部分的面积为2-1-(3-22)=22-2.11.(1)把2225727-化简的结果是 .(2)估计的运算结果应在之间.(填整数)12.若不等式组112xx a-≤≤⎧⎨<⎩有解,那么a必须满足________.答案:【答案】a>-2;【解析】画出草图两个不等式有公共部分解析:【答案】a>-2;【解析】画出草图,两个不等式有公共部分.13.当a=________时,方程会产生增根.答案:【答案】3;【解析】先去分母再把x=3代入去分母后的式子得a=3解析:【答案】3;【解析】先去分母,再把x=3代入去分母后的式子得a=3.14.(2015•乐至县一模)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②8a+c<0;③abc>0;④当y<0时,x<﹣1或x>2,⑤对任意实数m,m(am+b)≤a+b.其中正确的结论是(填序号).答案:【答案】①②⑤;【解析】①对称轴﹣=1∴2a+b=0①正确;②x=﹣2时y<0∴4a﹣2b+c<0由b=﹣2a∴8a+c<0②正确;③开口向下a<0对称轴在y轴右侧b>0与y轴交于正半轴c>0∴ab解析:【答案】①②⑤;【解析】①对称轴﹣=1,∴2a+b=0,①正确;②x=﹣2时,y<0,∴4a﹣2b+c<0,由b=﹣2a,∴8a+c<0,②正确;③开口向下,a<0,对称轴在y轴右侧,b>0,与y轴交于正半轴,c>0,∴abc<0,③错误;④当x<﹣1或x>3时,y<0,④错误;⑤当x=1时,函数有最大值,∴am2+bm+c≤a+b+c,∴m(am+b)≤a+b,⑤正确.15.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.答案:【答案】312;【解析】捐5元的人数=50×8=4人;捐20元的人数=50×44=22人;捐50元的人数=50×16=8人;捐100元的人数=50×12=6人;捐10元的人数=50-4-22-8-6 解析:【答案】31.2;【解析】捐5元的人数=50×8%=4人;捐20元的人数=50×44%=22人;捐50元的人数=50×16%=8人;捐100元的人数=50×12%=6人;捐10元的人数=50-4-22-8-6=10人;平均每人捐款数=(5×4+20×22+50×8+100×6+10×10)÷50=31.2元.三、解答题16.某冷冻厂的一个冷库的室温为-2℃,现有一批食品需要在-26℃冷藏,如果每小时降温4℃,问几个小时能降到所要求的温度?解析:[-2-(-26)]÷4=6(小时).17.七名学生的体重,以48.0 kg为标准,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:学生1234567与标准体-3.O+1.5+O.8-0.5+0.2+1.2+O.5重之差/kg(2)最高体重与最低体重相差多少?(3)按体重的轻重排列时,恰好居中的是哪个学生?解析:(1)48.2kg,第5个同学;(2)+1.5-(-3.0)=4.5kg;(3)第7个学生.18.小明从家出来向东走3米,他在数轴上+3的位置上记A,他又向东走5米记作B,B点表示什么数?如果他再向西走10米到C点,C点表示什么数?你能在数轴上记出小明到达的位置吗?解析:如果规定向东为正,则B点表示的是8,C点表示的数是-2,图略;19.已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.解析:【解析】延长AD、BC交于E.∵∠ A=60°,∠B=90°,∴∠E=30°,∴ AE=2AB=8,CE=2CD=4,∴ BE2=AE2-AB2=82-42=48,BE==, ∵ DE2= CE2-CD2=42-22=12,∴DE==,∴ S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=.20.(2014•东海县一模)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.合肥市某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米.如果楼间距过小,将影响其他住户的采光(如图所示,窗户高1.3米).(1)合肥的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为34.88度.为了不影响各住户的采光,两栋住宅楼的楼间距至少为多少米?(2)有关规定:平行布置住宅楼,其建筑间距应不小于南侧建筑高度的1.2倍;按照此规定,是否影响北侧住宅楼住户的全年的采光?若有影响,试求哪些楼层的住户受到影响?(本题参考值:sin81.4°=0.99,cos81.4°=0.15,tan81.4°=6.61; sin34.88°=0.57,cos34.88°=0.82,tan34.88°=0.70)解析:【答案与解析】解:(1)如图所示:AC为太阳光线,太阳高度角选择冬至日的34.88度,即∠ACE=34.88°,楼高AB为2.80×20=56米,窗台CD高为1米;过点C作CE垂直AB于点E,所以AE=AB﹣BE=AB﹣CD=55米;在直角三角形ACE中,由tan∠ACE=,得:BD=CE=即两栋住宅楼的楼间距至少为78.6米.(2)利用(1)题中的图:此时∠ACE=34.88°,楼高AB为2.80×20=56米,楼间距BD=CE=AB×1.2=67.2米;在直角三角形ACE中,由tan∠ACE=,得:AE=CE×tan∠ACE=67.2×0.70=47.04m则CD=BE=AB﹣AE=8.96m而 8.96=2.8×3+0.56,故北侧住宅楼1至3楼的住户的采光受影响,4楼及4楼以上住户不受影响.21.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).分组频数频率1000~1200 3 0.0601200~1400 12 0.2401400~1600 18 0.3601600~1800 0.2001800~2000 52000~2200 2 0.040合计50 1.000请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在__________小组;(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?解析:【解析】(1)10 , 0.100 ;(2)第三小组 1400~1600(3)(0.060+0.240)×600=180 .22.(2014•营口模拟)小彬在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第99行左起第一个数是.解析:【答案与解析】解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第99行左起第一个数是:(99+1)2﹣1=9999.故答案为:9999.23.(2015•宁夏)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果购买两种款式的书包共80个,那么女款书包最多能买多少个?解析:【答案与解析】解:(1)设原计划买男款书包x个,则女款书包(60﹣x)个,根据题意得:50x+70(60﹣x)=3400,解得:x=40,60﹣x=60﹣40=20,答:原计划买男款书包40个,则女款书包20个.(2)设女款书包最多能买y个,则男款书包(80﹣y)个,根据题意得:70y+50(80﹣y)≤4800,解得:y≤40,∴女款书包最多能买40个.24.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.16(2011•贵阳)[阅读]在平面直角坐标系中,以任意两点P ( x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为(122x x +,122y y +). [运用](1)如图,矩形ONEF 的对角线相交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为_______.(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A 、B 、C 构成平行四边形的顶点,求点D 的坐标.【答案与解析】一.选择题解析:【解析】解:猜想线段CD与线段AE的大小关系和位置关系是:平行且相等.证明:∵CE∥AB,∴∠DAO=∠ECO,∵OA=OC,∴△ADO≌△ECO,∴AD=CE,∴四边形ADCE是平行四边形,∴CD平行且等于AE.【解析】(2)根据平行四边形的对角线互相平分可得:设D点的坐标为(x,y),∵ABCD是平行四边形,①当AB为对角线时,∵A(-1,2),B(3,1),C(1,4),∵-1+3-1=1,2+1-4=-1,∴D点坐标为(1,-1),②当BC为对角线时,∵A(-1,2),B(3,1),C(1,4),D点坐标为(5,3).③当AC为对角线时,∵A(-1,2),B(3,1),C(1,4),D点坐标为:(-3,5),综上所述,符合要求的点有:(1,-1),(-3,5),(5,3).25.如图,正方形表示一张纸片,根据要求需多次分割,把它分割成若干个直角三角形.操作过程如下:第一次分割,将正方形纸片分成4个全等的直角三角形,第二次分割将上次得到的直角三角形中一个再分成4个全等的直角三角形;以后按第二次分割的作法进行下去.⑴请你设计出两种符合题意的分割方案图;⑵设正方形的边长为a ,请你就其中一种方案通过操作和观察将第二、第三次分割后所得的最小的直角三角形的面积S 填入下表: 分割次数n1 2 3 … 最小直角三角形的面积S 41a 2 … 用数学表达式表示出来.解析:【答案与解析】解:⑴现提供如下三种分割方案:⑵每次分割后得到的最小直角三角形的面积都是上一次最小直角三角形面积的41,所以当n =2时,S 2=41×41a 2=161a 2;当n =3时,S 3=41S 2=641a 2; ⑶当分割次数为n 时,S n =n 41a 2(n ≥1,且n 为正整数).。

中考数学总复习《45多边形与平行四边形》试题训练及解析.doc

中考数学总复习《45多边形与平行四边形》试题训练及解析.doc

第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。

中考数学总复习《销售问题(实际问题与二次函数)》专题训练(附带答案)

中考数学总复习《销售问题(实际问题与二次函数)》专题训练(附带答案)

中考数学总复习《销售问题(实际问题与二次函数)》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________1.某商店销售2022年卡塔尔世界杯吉祥物拉伊卜毛绒钥匙扣,经市场调查发现:该商品的周销售量y (件)是售价x 元/件的一次函数,其解析式为2180y x =-+,当售价为50元/件时,周销售利润w 为800元.注:周销售利润=周销售量×(售价-进价)(1)求该钥匙扣的进价和周销售的最大利润.(2)由于某种原因,该商品进价提高了m 元/件,物价部门规定该商品售价不得超过62元/件,该商店在今后的销售中,周销售量与售价仍然满足原来的一次函数关系.若周销售最大利润是1120元,求m 的值.2.某超市经销一种销售成本为每件20元的商品.据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x 元(x≥30),一周的销售量为y 件.(1)写出y 与x 的函数关系式及自变量x 的取值范围;(2)该超市想通过销售这种商品一周获得利润8000元,销售单价应定为多少?3.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)每件童装降价多少元时,能更多让利于顾客并且商家平均每天能赢利1200元.(2)为了获得最大利润,应该降价多少?最大利润是多少?4.红布李(李子的一种)含有丰富的营养成分,并且具有养生和美颜的功效,所以自古就被冠以“五果之首”,深受人们的喜爱,光明村种植有大片的红布李,某“乡村振兴”电商平台为光明村农户销售红布李,运营成本为每千克3元,除去运营成本余下的收入都归农户所有,在销售过程中要求农户的保底收入为3元/千克,且售价不超过15元/千克.市场调查发现,每周的红布李销售量y(千克)与售价x(元/千克)(x为正整数)之间满足某种函数关系如图所示.(1)请直接写出y与x之间的函数关系式,并注明x的取值范围;(2)求当红布李的售价为多少元时,光明村农户一周的收入最大?最大收入是多少元?(3)今年七月下旬天晴少雨,气温持续在37℃上下,红布李成熟非常快,根据光明村这一时期红布李的产量,一周的销售量不少于6000千克,求本周光明村农户获得的最大收入和红布李售价分别为多少元?5.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x元/(千克)满足一次函数关系,对应关系如下表售价x (元/千克)50607080……销售量y (千克)100908070……(1)求y与x的函数关系式;(2)该批发商若想获得3600元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w元最大?此时的最大利润为多少元?6.某超市采购了两批同样的记念品挂件,第一批花了3300元,第二批花了4000元,已知第一批每个挂件的进价是第二批的1.1倍、且第二批比第一批多购送25个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?7.某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y千克,每千克的售价为x元.请解答以下问题:(1)补全下列表格:进价(元/千克)10101010售价(元/千克)121317x涨价(元/千克)01______________________销售量(千克)180_________________________________(2)为让利给顾客,当这种优质水果售价为___________元时,每天可获得利润960元.(3)当售价定为多少元时,每天可获得最大利润,并求出最大利润是多少?8.中国传统手工艺品,如中国结、油纸伞、团扇等,是先民智慧和勤劳的结晶,是中华传统文化的表达方式之一,也是各地传统风俗的体现.某工艺品店购进一批团扇,每把进价为20元,按每把25元销售,每月可售出210把.现店方想采用提高售价的方法来增加利润(售价不超过32元).经试验,每把团扇的售价每提高1元,每月就会少卖出10把.(1)求每月团扇的销售量y(把)与每把售价x(元)之间的函数关系式.(2)当每把团扇的售价定为多少时,每月的销售利润w(元)最大?最大利润为多少?9.某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?10.某公司研发了一款产品投放市场,已知每件产品的成本为80元,试销售一段时间后统计每天的销售量y(件)与售价x(元/件)之间的部分数据如下表:售价x(元/件)8090100110⋅⋅⋅销售量y(件)800600400200⋅⋅⋅(1)根据表中数据,求出y与x之间满足的函数关系式;(2)物价部门规定单件利润率不超过15%.在(1)的条件下,当产品售价不低于成本时,售价定为多少元,公司每天获得的利润最大?求出最大值.11.一款服装每件进价为80元,销售价为120元时,每天可售出20件.经市场调查发现,如果每件服装降价1元,那么平均每天可多售出2件.设每件服装降价x元(1)则每天销售量增加________件,每件服装盈利________元(用含x的代数式表示);(2)在让利于顾客的情况下,每件服装降价多少元时,商家平均每天能盈利1200元?(3)求其最大利润.12.某玩具批发商销售每只进价为40元的玩具,市场调查发现,若以每只50元的价格销售,平均每天销售90只,单价每提高1元,平均每天就少销售3只.(1)平均每天的销售量y(只)与销售价x(元/只)之间的函数关系式.(2)物价部门规定每只售价不得高于55元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?13.唐山世园会期间,游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收31万元.而该游乐场开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx.若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?并求出最大收益.14.为实现脱贫奔小康,景颇新村在驻村工作队的帮扶下,引进种植了褚橙。

2025年中考数学总复习第一部分考点精讲第七章图形变化微专题(十五)无刻度直尺作图

2025年中考数学总复习第一部分考点精讲第七章图形变化微专题(十五)无刻度直尺作图

2025版
数学
甘肃专版
解:(1)如图①,点F即为所求. (2)如图②,点G即为所求. (3)如图③,点H,H′即为所求.
2025版
数学
甘肃专版
【方法归纳】三角形中,已知两边中点: (1)画第三边中点时,一般运用“三角形三条中线交于一点”; (2)画某条中位线的中点时,先确定该中位线对应的底边中线,根据相似三角形的 性质,由底边中线与中位线的交点确定中点; (3)一般地,已知中位线,可由中位线直接得到比例为1∶2的线段,由中位线的性 质可构造全等三角形,得到相等线段,也可由相似三角形的性质得到1∶3,1∶4的 线段.
2025版
数学
甘肃专版
【方法归纳】 特殊四边形中,已知一边中点,由对称性画出其他三边的中点;将特殊四边形的 四个中点呈“十字相连”,得到四个与原四边形相似的小的四边形,继续作这些小 四边形的中点并呈“十字相连”,得到一个网格,每一个中点均是网格的格点,且该 网格具有该特殊四边形的一切性质.
2025版
AC与网格线的交点.先将点B绕
点E旋转180°得到点F,画出点F,
再在AC上画点G,使DG∥BC;
(2)在图②中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线
段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.
2025版
解:(1)作图如图①所示. (2)作图如图②所示.
2025版
数学
甘肃专版
解:(1)如图①,AP即为所求. (2)如图②,AG即为所求.
2025版
数学
甘肃专版
5.(2022·武汉)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.
△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过

2023年中考数学(人教版)总复习训练:全等三角形

2023年中考数学(人教版)总复习训练:全等三角形

2023年中考数学(人教版)总复习训练:全等三角形一、选择题(本大题共10小题,每小题4分,满分40分)1. (2021重庆A卷)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不等判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD2. (2020安顺模拟)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠CB.AD=AEC.BD=CED.BE=CD3. (2020秋•乐亭县期末)已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°4. (2021·重庆A)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD5. (2021·重庆B)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D6. (2020秋•二道区期末)如图,在△ABC中,∠B=80°,∠C=30°.若△ABC≌△ADE,∠DAC=35°,则∠EAC的度数为( )A.40°B.35°C.30°D.25°7. (2022·安徽·宣城市宣州区卫东学校一模)如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是( )A. B. C. D.8. (2022七下·万州期末)如图,△ABC≌△CED,点D在BC边上,∠A+∠E=90o,EC、ED与AB交于点F、G,则下列结论不正确的是( )A.AC=CDB.∠ACB=90oC.AB⊥CED.EG=BG9. (2021·盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS10. (2021·威海)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二、填空题(本大共8小题,每小题5分,满分40分)11. (2022北京市第五中学分校)如图,已知BE=DC,请添加一个条件,使得△ABE ≌△ACD:_____.12. (2021齐齐哈尔)如图,AC=AD,∠1=∠2,要使ABC AED△△,应添加的条件是≌______(只需写出一个条件即可)13. (2022北京丰台)如图,点B,E,C,F在一条直线上,BC=EF,∠B=∠DEF.只需添加一个条件即可证明△ABC≌△DEF,这个条件可以是 _____(写出一个即可).14. (2020·怀化模拟)如图,AC=DC,BC=EC,请你添加一个适当的条件: ,使得△ABC≌△DEC.15. (2020·黔东南模拟)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.16. (2022北京门头沟)如图,点P在直线AB外,点A、B、C、D均在直线AB上,如果AC=BD,只需添加一个条件即可证明△APC≌△BPD,这个条件可以是________(写出一个即可).17. (2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.18. (2020•辽阳)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.三、解答题(本大题共6道小题,每小题6-12分)19. (6分)(2021·宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.20. (6分)(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.21. (8分)(2020•梁子湖区)如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.22. (10分)(2021黄石)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E 点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.23. (12分)(2020•衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF ⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=40o,求∠BAC的度数.24. (12分)(2020•黔东南州)如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.。

初中数学中考一轮复习一轮复习-章节测试习题(45)

初中数学中考一轮复习一轮复习-章节测试习题(45)

章节测试题1.【题文】筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【答案】6.64米.【分析】通过垂径定理求出AD,再通过三角函数解直角三角形,求出AO和OD 的值,从而得到点C到弦AB所在直线的距离.【解答】如图:连接CO并延长,交AB于点D,∵OD⊥AB,AB=6,∴AD=AB=3,在Rt△OAD中,∠OAB=41.3°,cos∠OAD=,∴AO=,∵sin∠OAD=,∴OD=AO·sin∠OAD=2.64,∴CD=OC+OD=AO+OD=4+2.64=6.64米,答:点C到弦AB所在直线的距离是6.64米.2.【题文】如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【答案】见解答.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵是直径,∴,∴,∵,∴,∴,BE=DE,∵BE2=BC2-EC2=OB2-OE2∴,解得:,∵BO=OA,BE=DE∴为的中位线,∴,∴四边形的周长为:.3.【题文】在三角形纸片(如图1)中,,.小霞用张这样的三角形纸片拼成了一个内外都是正五边形的图形(如图2).(1)______°;(2)求正五边形的边的长.参考值:,,.【答案】30°,9.6.【分析】本题考查了正多边形与圆、解直角三角形.【解答】(1)∵五边形是正五边形,,,故答案为;(2)作于,在中,,,在中,,,.4.【题文】如图,点是的内心,的延长线和的外接圆圆相交于点,过作直线.(1)求证:是圆的切线;(2)若,,求优弧的长.【答案】见解答.【分析】(1)连接OD交BC于H,如图,利用三角形内心的性质得到∠BAD=∠CAD,则,利用垂径定理得到OD⊥BC,BH=CH,从而得到OD⊥DG,然后根据切线的判定定理得到结论;(2)连接BD、OB,如图,先证明∠DEB=∠DBE得到DB=DE=6,再利用正弦定义求出∠BDH=60°,则可判断△OBD为等边三角形,所以∠BOD=60°,OB=BD=6,则∠BOC=120°,然后根据弧长公式计算优弧的长.【解答】(1)证明:连接交于,如图,∵点是的内心,∴平分,即,∴,∴,,∵,∴,∴是圆的切线;(2)解:连接、,如图,∵点是的内心,∴,∵,∴∴,∵,在中,,∴,而,∴为等边三角形,∴,,∴,∴优弧的长=.5.【答题】⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与⊙O的位置关系为()A. 点A在⊙O上B. 点A在⊙O内C. 点A在⊙O外D. 无法确定【答案】B【分析】本题考查了点与圆的位置关系.【解答】根据点到圆心的距离与半径的关系进行判定,由题目可求出点到圆心的距离d=OA=3,r=5,d<r所以点在圆内,选B.6.【答题】已知⊙的半径长是5,点在上,且,如果⊙与⊙有公共点,那么⊙的半径长的取值范围是()A. B. C. D.【答案】D【分析】本题考查圆与圆的位置关系:两圆的圆心距为、两圆的半径分别为、:①两圆外离⇔;②两圆外切⇔;③两圆相交⇔();④两圆内切⇔();⑤两圆内含⇔().【解答】∵⊙的半径长是5,点在上,且,∴点到⊙的最大距离为8,最小距离为2,∵⊙与⊙有公共点,∴.选D.7.【答题】如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若,则的度数为()A. B. C. D.【答案】B【分析】本题考查了切线的性质.【解答】∵AC是⊙O的切线,∴,且,∴,选B.8.【答题】如图,四边形内接于,若,则()A. B. C. D.【答案】D【分析】本题考查了圆内接四边形.【解答】∵四边形ABCD内接于⊙O,∠A=40°,∴∠C=180°-40°=140°,选D.9.【答题】已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC =7,那么⊙C的半径长是()A. 11B. 10C. 9D. 8【答案】C【分析】本题考查了圆与圆的位置关系.【解答】设⊙A的半径为X,⊙B的半径为Y,⊙C的半径为Z.解得选C.10.【答题】如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD 【答案】D【分析】本题考查了切线长定理.【解答】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,选D.11.【答题】如图,边长为的等边的内切圆的半径为()A. 1B.C. 2D.【答案】A【分析】本题考查了三角形的内切圆与内心、等边三角形的性质.【解答】设的内心为O,连接AO、BO,CO的延长线交AB于H,如图,∵为等边三角形,∴CH平分,AO平分,∵为等边三角形,∴,,∴,,在中,∵,∴,即内切圆的半径为1.选A.12.【答题】阅读理解:已知两点,则线段的中点的坐标公式为:,.如图,已知点为坐标原点,点,经过点,点为弦的中点.若点,则有满足等式:.设,则满足的等式是()A. B.C. D.【答案】D【分析】本题考查了阅读材料题.【解答】∵点,点,点为弦的中点,∴,,∴,又满足等式:,∴,选D.13.【答题】如图,AB为的直径,BC为的切线,弦AD∥OC,直线CD交的BA延长线于点E,连接BD. 下列结论:①CD是的切线;②;③;④.其中正确结论的个数有()A. 4个B. 3个C. 2个D. 1个【答案】A【分析】本题考查了切线的性质与判定、圆周角定理的推论、相似三角形的判定与性质.【解答】连结.为的直径,为的切线,,,,.又,,在和中,,,.又点在上,是的切线;故①正确,,,,垂直平分,即,故②正确;为的直径,为的切线,,,,,,,,故③正确;,,,,,,故④正确;选A.14.【答题】如图,在中,,,,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A. 5B. 6C. 7D. 8【答案】B【分析】本题考查了圆的性质、切线的性质、勾股定理.【解答】如图,设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O 于F,此时垂线段OP最短,PF最小值为,∵,,∴∵,∴∵点O是AB的三等分点,∴,,∴,∵⊙O与AC相切于点D,∴,∴,∴,∴,∴MN最小值为,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值,,∴MN长的最大值与最小值的和是6.选B.15.【答题】直角三角形的两条直角边分别是5和12,则它的内切圆半径为______.【答案】2【分析】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中、为直角边,为斜边).【解答】直角三角形的斜边,所以它的内切圆半径.故答案为2.16.【答题】如图,PA、PB是的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=______°.【答案】219【分析】本题考查了切线的性质、圆内接四边形的性质、等腰三角形的性质.【解答】连接AB,∵PA、PB是⊙O的切线,∴PA=PB,∵∠P=102°,∴∠PAB=∠PBA=(180°−102°)=39°,∵∠DAB+∠C=180°,∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+39°=219°,故答案为:219°.17.【答题】在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.【答案】(2,2)【分析】本题考查了勾股定理、点与圆的位置关系.【解答】如图,连结OA,OA==5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.故答案为:(2,2).18.【答题】如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为______.【答案】52°【分析】本题考查了圆内接四边形.【解答】∵圆内接四边形,∴,∵点关于的对称点在边上,∴,∴.故答案为:.19.【答题】在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是______.【答案】【分析】本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质,作出△ABC的外接圆进行推理计算是解题的关键.【解答】作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.20.【答题】如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为______.【答案】5【分析】本题考查了确定圆的条件、点与圆的位置关系.【解答】如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.。

2024年中考数学总复习:多选题(附答案解析)

2024年中考数学总复习:多选题(附答案解析)

第1页(共29页)2024年中考数学总复习:多选题一.多选题(共25小题)(多选)1.某工厂生产工艺品,以每天生产35个为基本量,实际每天生产量与前一天相比有增减(上周最后一天生产量恰好是基本量,超产记为正,减产记为负).如表是本周一至周五的生产情况:星期 一 二 三 四 五 增减(单位:个)﹣1﹣4+2+7﹣3根据记录的数据,该厂本周每天生产量超过基本量35个的是( ) A .星期二B .星期三C .星期四D .星期五(多选)2.对于代数式3x 2﹣x +15,下列说法不正确的是( ) A .它按x 降幂排列 B .它是单项式 C .它的常数项是15D .它是二次二项式(多选)3.下列各式是分式的有( ) A .x3B .1aC .x 2xD .1y(15−πR 2)(多选)4.下列各式是分式的是( ) A .x3B .1aC .xxyD .1y(15﹣πR 2)(多选)5.下列各式变形正确的是( ) A .1−a a 2−2a+1=11−aB .xy−x 2(x−y)2=x x−yC .9ab 2+6abc3a 2b =3b+2c aD .a 2a−1−a −1=a 2−(a−1)2a−1(多选)6.在ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,下列各式一定成立的是( ) A .a =c •cos BB .a =b •cos AC .c =asinAD .a =b •tan A(多选)7.下列各式中,计算结果正确的是( )。

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角系中,点A的坐标是(0,4)在x轴上任取一点B连接AB作线段AB的垂直平分线1l过点B作x轴的垂线2l记1l2l的交点为P.设点P的坐x y.标为(,)(1)用含x y二个字母的代数式表示PA的长度.(2)当点B在x轴上移动时点P也随之运动请求出点P的运动路径所对应的函数解析式.2.如图1 在平面直角坐标系中,点B的坐标是(0,2)动点A从原点O出发沿着x轴正方向移动ABP是以AB为斜边的等腰直角三角形(点A B P顺时针方向排列).(1)当点A 与点O 重合时 得到等腰直角OBC △(此时点P 与点C 重合) 则BC =______.当2OA =时 点P 的坐标是______; (2)设动点A 的坐标为(,0)(0)t t ≥.①点A 在移动过程中,作PM y ⊥轴于M PN OA ⊥于N 求证:四边形PMON 是正方形;①用含t 的代数式表示点P 的坐标为:(______ ______);(3)在上述条件中,过点A 作y 轴的平行线交MP 的延长线于点Q 如图2 是否存在这样的点A 使得AQB 的面积是AOB 的面积的3倍?若存在 请求出A 的坐标 若不存在 请说明理由.3.如图,在平面直角坐标系中,点O 是坐标原点 直线3y x分别交x 轴 y 轴于点A B .(1)求ABO ∠的度数;(2)点C 是线段AB 上一点 连接OC 以OC 为直角边作等腰直角OCD 其中OC OD=且点D在第三象限连接AD.设点C的横坐标为t ACD的面积为S 求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下点E为x轴正半轴上的一点连接BE点F是BE的中点连∥交x轴于点H若接CF并延长交x轴于点G过点D作DH CFCG DH=求点D的坐标.∠-∠=︒345AEB ADH4.如图,在直角平面坐标系中,ABC的边AB在x轴上且3AB=点A的坐标为-点C的坐标为(2,5).(5,0)(1)求这样的ABC一共几个?并写出符合条件的点B的坐标;(2)试求ABC的面积.5.如图,平面直角坐标系中有点()1,0B 和y 轴上一动点(0,)A a - 其中0a > 以点A 为直角顶点在第四象限内作等腰直角ABC 设点C 的坐标为(,)c d .(1)当2a =时 点C 的坐标为 .(2)动点A 在运动的过程中,试判断+c d 的值是否发生变化 若不变 请求出其值;若发生变化 请说明理由.(3)当3a =时 在坐标平面内是否存在一点P (不与点C 重合) 使PAB 与ABC 全等?若存在 请直接写出点P 的坐标;若不存在 请说明理由.6.如图,在平面直角坐标系中,()2,0A - ()0,3B .(1)如图1 以A 为直角顶点在第二象限内作等腰直角三角形ABE 过点E 作EF x ⊥轴于点F 求点F 的坐标;(2)如图2 点()0,P P y 为y 轴正半轴上一动点 以AP 为直角边作等腰直角三角形APC 点(),C C C x y 在第一象限 90APC ∠=︒ 当点P 运动时 P C y y -的值是否发生变化?若不变 求出其值;若变化 请说明理由.(3)如图3 点P 在y 轴负半轴上 以AP 为直角边作等腰直角三角形APC 90APC ∠=︒ 点C 在第一象限 点H 在AC 延长线上 作HG x ⊥轴于G 当(),2H m 探究线段PH AG OP 之间的数量关系 并证明你的结论.7.已知在平面直角坐标系中,()()4003A B ,,, 以线段AB 为直角边在第一象限内作等腰直角三角形90ABC AB AC BAC =∠=︒,,.(1)直接写出OA OB ⋅的值. (2)求点C 坐标.(3)若点A B ,是x y ,轴正半轴上的动点 BQ AQ ,分别是ABy ∠和BAx ∠的角平分线 交点为Q 求Q ∠的大小.8. 在平面直角坐标系中,点A B ,分别在x 轴负半轴 y 轴正半轴上运动 且满足AB BC = 90ABC ∠=︒ 点C 在第二象限.(1)如图1 当点()()4002A B -,,,时 点C 的坐标为________; (2)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图2 连接AD 和OC 且相交于点P 判断AD 和OC 的数量关系与位置关系 并说明理由;(3)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图3 连接CD 交y 轴于点Q 在点,A B 的运动过程中,判断BQ 与OA 的数量关系 并说明理由.9.在平面直角坐标系中,AOB 为等腰直角三角形 ()4,4A .(1)直接写出B 点坐标;(2)如图2 若C 为x 轴正半轴上一动点 以AC 为直角边作等腰直角ACD =90ACD ∠︒ 连接OD 求AOD ∠度数;(3)如图3 过点A 作y 轴的垂线交y 轴于E F 为x 轴负半轴上一点 G 在EF 的延长线上 以EG 为直角边作等腰Rt EGH 过A 作x 轴的垂线交EH 于点M 连接FM 等式1AM FMOF-=是否成立?若成立 请证明;若不成立 说明理由.10.如图,在平面直角坐标系中,直线24y x =-+交坐标轴于A B 两点 过x 轴负半轴上一点C 作直线CD 交y 轴正半轴于点D 且AOB DOC △≌△.(1)OC =________ OD =________.(2)点()1,M a -是线段CD 上一点 作ON OM ⊥交AB 于点N 连接MN 求点N 的坐标;(3)若()1,E b 为直线AB 上的点 P 为y 轴上的点 请问:直线CD 上是否存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 若存在 请直接写出此时Q 点的坐标;若不存在 请说明理由.象限内作等腰直角ABC则点b点D在第一象限作等腰直角BDE△c ABO,=∠(1)如图1 点A 关于x 轴的对称点为P 点 则点P 的坐标为________ 当PB 最短时 点B 的坐标为________;(结果均用a 表示)(2)如图2 当AB y ⊥轴 且垂足为点A 时 以OA 为边作正方形ABQO M 在x 轴的正半轴 且OM OA < 以OM 为边在x 轴上方作正方形OMNH 连接AN 若6QM = 两个正方形面积之和为20 求AHN 的面积;(3)如图3 当AB y ⊥轴 且垂足为点A 时 点F 在线段OB 上运动(不与端点重合) 点C 是线段BF 的中点 连接AF AC , 以A 为直角顶点 AF 为直角边在第二象限内作等腰Rt EAF △ 连接OE 交AC 于点G 探究线段OE 与AC 的关系 并说明理由.13.如图,在平面直角坐标系中,点A B C 都在坐标轴上 08A BO CO BC ===,.(1)点A 坐标为(______ _______).(2)过点C 作x 轴的垂线l 动点Р从点C 出发 沿着直线①向上运动 若点Р的速度是1个单位/秒 时间是t 连接PA PB , 请用含t 的式子表示PABS.(3)在(2)的条件下 连接AP 以AP 为斜边 在AP 下方作等腰直角APD △ 连接BD 并延长至点Q 连接PO QC , 当点D 为BQ 中点时 请判断PCQ △的形状 并说明理由.14.如图,在平面直角坐标系中,(0,2)A (3,0)B 过点B 作直线ly 轴 点P 是直线l 上的动点 以AP 为边在AP 右上侧作等腰直角APQ △ 使90APQ ∠=︒.(1)如图1当点P 落在点B 时 则点Q 的坐标是________; 学生甲认为点Q 的坐标一定跟点P 有关 于是进行了如下探究:(2)如图2 小聪同学画草图时 让点P 落在1P 2P 3P 不同的特殊位置时(1P 在x 轴上 2P A 与x 轴平行 当Q 落在x 轴上时对应点3P ) 画出了几个点对应的1Q 2Q 3Q 三个不同的位置 发现1Q 2Q 3Q 在同一条直线上 请你根据学生甲的猜测及题目条件 求出点Q 所在直线的解析式;(3)在(2)中,虽然求出了点Q 所在直线的解析式 但是小明同学认为几个特殊点确定解析式是一种猜测 当点P 在l 上运动时 所有的Q 点都在一条直线上吗?就解设了点Q 的坐标为(,)x y 希望用一般推理的方式求出x 和y 满足的关系式 请你帮助小明给出解答.15.在平面直角坐标系中,直线AB 与x 轴交于点()6,0A - 与y 轴交于点B 且45ABO ∠=︒.(1)求点B 坐标和ABO 的面积;(2)如图2 点D 为OA 上的一条延长线的一个动点 以BD 为直角边 以点D 为直角顶点 作等腰三角形BDE 求证AB AE ⊥;(3)如图3 AF 平分OAB ∠ 点M 是射线AF 上一动点 点N 是线段AO 上一动点 判断是否存在这样的点M N 使得OM NM +的值最小 若存在 求出此时点N 的坐标 并加以说明;若不存在 则说明理由.参考答案: 1.(1)解:过点A 作2AH l ⊥于点H 如图所示:①点A 的坐标是(0,4) 点P 的坐标为(,)x y①4OA = ||OB x =①||AH OB x == 4BH OA ==①|4|HP y =-根据勾股定理 得()2222224816PA AH HP x y x y y =+=+-=+-+ 即22816PA x y y =+-+;(2)根据题意 可知点B 坐标为(,0)x①点P 在线段AB 的垂直平分线上①PA PB =①222816y x y y =+-+①2128y x =+ 2.(1)解:①OBC △是等腰直角三角形①,90BC AC C =∠=︒①2OB BC =①点B 的坐标是(0,2)①2OB =①22OB BC ==;①OAB是等腰直角三角形∠=∠OAB①ABP是等腰直角三角形ABP∠=∠∠=∠OBP四边形OAPB==BP OA点P的坐标为①ABP是等腰直角三角形∠=APB90∠=∠MPB在BPM△和APN中∠=∠=︒ANP BMP90≌△△BPM APNPMON是正方形;△△BPM≌①2AN t AN +=-①22t AN -=①22t OM ON +==①点P 的坐标为22,22t t ++⎛⎫⎪⎝⎭;故答案为:22t +;22t +(3)解:存在设点A 的坐标为()(),00m m ≥ 则OA m =①11222AOB S OA OB m m =⨯=⨯=由(2)①得:点P 的坐标为22,22m m ++⎛⎫ ⎪⎝⎭ 则22m OM +=根据题意得:90OMP AOB OAQ ∠=∠=∠=︒①四边形OAQM 是矩形①2,2m MQ OA m AQ OM +====①()2112122224ABQ m S AQ OA m m m +=⨯=⨯=+①AQB 的面积是AOB 的面积的3倍①()21234m m m +=解得:10m =或0(舍去)即存在点()10,0A 使得AQB 的面积是AOB 的面积的3倍. 3.(1)解:在3y x 中,当0x =时 3y = 当0y =时 03x =+ 解得3x =-①()30A -, ()0,3B①3OA OB ==①BAO ABO ∠=∠①90AOB ∠=︒①45BAO ABO ∠=∠=︒.(2)解:如图1 过点C 作CR y ⊥轴于点R .Rt BCR 中,90BCR =︒-∠BR CR t ==-2BC BR =+COD AOB =∠在ACD 中,12S AD =⨯3)解:如图所示①90BOE ∠=︒ BF EF =①OF BF EF ==①FOE FEO ∠=∠设ADH a ∠=①45AEB a ∠=+︒①45FOE FEO a ∠=∠=+︒ 45AHD OAD ADH a ∠=∠-∠=︒- ①DH CG ∥①45CGO AHD a ∠=∠=︒-①454590CFO FOG FGO a a ∠=∠+∠=︒++︒-=︒取OC 的中点K 连接FK 交OB 于点P 过点F 作FL OB ⊥于点L过点K 分别作KM OB ⊥于点M KN FL ⊥交FL 的延长线于点N 连接KL . ①四边形KMLN 是矩形;①90CFO ∠=︒ CK OK =①FK OK CK ==①BF OF = FL OB ⊥①BL OL =①KL BC ∥①45OLK OBC ∠=∠=︒①904545NLK NLO OLK ∠=∠-∠=︒-︒=︒①KM KN =①Rt Rt KOM KFN ≌△△①KOM KFN ∠=∠又①OPK FPL ∠=∠①90KOM OPK KFN FPL ∠+∠=∠+∠=︒①90OKP ∠=︒①FK OC ⊥①CF OF =①45CFK OFK ∠=∠=︒①45OCF ∠=︒①90COD ∠=︒ OC OD =在Rt ODS △中,()22223910()44OS OD DS =-=-= ①点D 的坐标为93,44⎛⎫-- ⎪⎝⎭. 4.1)解:如图所示 符合条件的ABC 有两个 分别为1AB C 2AB C 其中12(2,0)(8,0)B B --、;(2)点C 的坐标为(2,5)115|2(5)|57.522ABC S ∴=⨯---⨯==△. 5.(1)解:如下图 过点C 作CE y ⊥轴于点E 则CEA AOB ∠=∠①ABC 是等腰直角三角形①,90AC BA BAC =∠︒=①90ACE CAE BAO CAE ∠+∠=︒=∠+∠①ACE BAO ∠=∠.在ACE △和BAO 中CEA AOB ACE BAO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩①ACE BAO≌(AAS)①(0,1),(0,2)B A-①12BO AE AO CE====,①123OE=+=①2,3C-();(2)解:动点A在运动的过程中,+c d的值不变.理由如下:由(1)知ACE BAO≌①(0,1)B(0,)A a-①1,BO AE AO CE a====①1OE a=+①(,1)C a a--又①点C的坐标为(,)c d①11c d a a+=--=-即+c d的值不变;(3)解:存在一点P使PAB与ABC全等符合条件的点P的坐标是(4,)1-或(3,2)--或(2,1)-分为三种情况讨论:①如下图过点P作PE x⊥轴于点E则90PBA AOB PEB∠=∠=∠=︒①90,90EPB PBE PBE ABO∠+∠=︒∠+∠=︒①EPB ABO∠=∠在PEB△和BOA△中EPB OBAPEB BOAPB BA∠=∠⎧⎪∠=∠⎨⎪=⎩①PEB BOA△≌△(AAS)①1,3PE BO EB AO ====①314OE =+=即点P 的坐标是(4,)1-①如下图 过点C 作CM x ⊥轴于点M 过点P 作PE x ⊥轴于点E则90CMB PEB ∠=∠=︒.①CAB PAB △≌△①45,PBA CBA BC BP ∠=∠=︒=①90CBP ∠=︒①90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒①MCB PBE ∠=∠在CMB 和BEP △中MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①CMB BEP △≌△(AAS )①,PE BM CM BE ==.①3,4),10C B -((,)①2,413PE OE BE BO ==-=-=即点P 的坐标是(3,2)--;①如下图 过点P 作PE x ⊥轴于点E 则90BEP BOA ∠=∠=︒.①CAB PBA △≌△①,90AB BP CAB ABP =∠=∠=︒①90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒①ABO BPE ∠=∠.在BOA △和PEB △中ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①BOA PEB △≌△(AAS )①1,3PE BO BE OA ====①312OE BE BO =-=-=即点P 的坐标是(2,1)-综上所述 符合条件的点P 的坐标是(4,)1-或(3,2)--或(2,1)-. 6.(1)三角形ABE 是等腰直角三角形AE AB ∴= 90EAB ∠=︒90FAE BAO ∴∠+∠=︒.EF x ⊥轴90EFA ∴∠=︒90AEF FAE ∴∠+∠=︒AEF OAB ∴∠=∠.90AOB ∠=︒EFA AOB ∴∠=∠.在AEF △和BAO 中,,,AEF BAO EFA AOBAE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF BAO ∴≌3AF BO ∴==235OF ∴=+=()5,0F ∴-;(2)不变 理由如下:如图2 作CF y ⊥轴于FC y OF ∴=90PFC CFO ∴∠=∠=︒90FPC FCP ∴∠+∠=︒.三角形APC 是等腰直角三角形 90APC ∠=︒ PA PC ∴=90APO OPC ∴∠+∠=︒.APO PCF ∴∠=∠.又90AOP PFC ∠=∠=︒.在AOP 和PFC △中,,,APO PCF AOP PFC PA CP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AOP PFC ∴△≌△AO PF .2P C y y OP OF PF AO ∴-=-===;(3)AG PH OP =+ 证明如下:在OG 上取一点M 使MG OP = 连接HM 并延长交AP 的延长线于N 如图3所示()2,0A -2AO ∴=HG x ⊥轴于G (),2H m2HG ∴=AO HG ∴=90AOP HGM ∠=∠=︒ MG OP =()SAS APO HMG ∴△≌△PAO MHG ∴∠=∠ AP HM =AMN HMG ∠=∠90ANM HGM ∴∠=∠=︒90APC ∠=︒ PC AP =45PAC ∴∠=︒AHN ∴是等腰直角三角形45PAH MHA ∴∠=∠=︒又AP HM = AH HA =()SAS APH HMA ∴△≌△PH MA ∴=AG AM MG =+AG PH OP ∴=+.7.(1)解:()()4003A B ,,,4∴=OA 3OB =4312OA OB ⋅=⨯=∴;(2)解:如图,作CD x ⊥轴于点D 则90AOB CDA ∠=∠=︒90ACD CAD ∴∠+∠=︒90BAC ∠=︒90CAD BAO ∴∠+∠=︒ACD BAO ∴∠=∠在BAO 和ACD 中90AOB CDA ACD BAOAB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS BAO ACD ∴≌3AD OB ∴== 4CD OA ==437OD OA AD ∴=+=+=()74C ∴,;(3)解:如图BQ 平分ABy ∠ AQ 平分BAx ∠12ABQ ABy ∴∠=∠ 12BAQ BAx ∠=∠ABO∠+∴∠=ABy∴∠+ABQ(1180=︒21︒=-180∠+∠Q ABQ ∴∠=Q180 8.(1)解:作①()SAS CBO ABD ≌△△①AD OC = BCO BAD ∠=∠①BCO ABC BAD APC ∠+∠=∠+∠又90ABC ∠=︒①90APC ∠=︒ 即AD OC ⊥;(3)解:2OA BQ = 理由如下:作CF y ⊥轴于点F同理 ()AAS BAO CBF ≌△△ ①CF OB = BF OA =①90OB BD OBD =∠=︒,①=CF BD CF BD ∥①QCF QDB ∠=∠ 90QFC QBD ∠=∠=︒①()ASA QCF QDB ≌△△ ①BQ FQ =①1122BQ BF OA == 即2OA BQ =. 9.(1)解:如图,作AE OB ⊥于点E①()4,4A①4OE =①AOB 为等腰直角三角形 AE OB ⊥①=2=8OB OE①()8,0B ;①ACD 为等腰直角三角形AC DC =即ACF ∠+∠FDC ∠+∠ACF ∠=∠又①DFC ∠①()DFC CEA AAS ≌EC DF = FC =()4,4A4AE OE ===FC OE 即OF +①AOB 为等腰直角三角形45AOB ∠==AOD ∠∠AM FM -①()4,4A ①4AE OE ==又①==90EAN EOF ∠∠︒ AN OF =①()EAN EOF SAS ≌①=OEF AEN ∠∠ EF EN =又①EGH 为等腰直角三角形①45GEH ∠=︒ 即=45OEF OEM ∠+∠︒ ①=45AEN OEM ∠+∠︒又①90AEO ∠=︒①=45=NEM FEM ∠︒∠又①EM EM =①()NEM FEM SAS ≌①MN MF =①==AM MF AM MN AN --①=AM MF OF -即1AM FM OF-=.10.(1)解:把0x =代入24y x =-+得:4y =①点()04B ,①4OB =把0y =代入24y x =-+得:2x =①点()20A ,①2OA =①AOB DOC △≌△①(ASA OBN OCM ≌OM ON =分别过点M N 作ME①OFN OEM ∠=∠①BON COM OM ON ∠=∠=,①()AAS OFN OEM ≌①312OF OE FN EM ====, ①点N 的坐标为312⎛⎫ ⎪⎝⎭,; (3)解:直线CD 上存在点Q 使EPQ △是以E 为直角顶点的等腰三角形. ①()1E b ,为直线AB 上的点①2142b =-⨯+=①()12E ,①当点P 在点B 下方时 如图,连接DE 过点Q 作QM DE ⊥ 交DE 的延长线于M 点①()02D ,①DE y ⊥轴 1DE = 点M 的纵坐标为2 90M EDP ∠=∠=︒ ①EPQ △是以E 为直角顶点的等腰直角三角形①(AAS DEP MQE ≌1MQ DE ==Q 点的纵坐标为3把3y =代入12y x =+点()23Q ,;①()AAS EQM PEN ≌1EM PN ==()12E ,①M 点的纵坐标为1①Q 点的纵坐标为1把1y =代入122y x =+中得:2x =- ①()21Q -,; 综上所述 直线CD 上存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 Q 点的坐标为()23,或()21-,. 11.(1)解:()2430a b -+-= ()240a -≥ 30b -≥ 40a ∴-= 30b -=4a ∴= 3b =()()00A a B b ,、,4∴=OA 3OB =如图,过点C 作CN y ⊥轴于N则90BNC ∠=︒90ABC AOB ∠︒∠==90CBN ABO 90BAO ABO ∠+∠=︒ CBN BAO ∴∠=∠90BNC AOB ∠=∠=︒ BC AB =()AAS BNC AOB ∴≌4BN AO ∴== 3CN BO ==7ON OB BN ∴=+=()37C ∴,故答案为:()37,; (2)证明:如图,过E 作EF x ⊥轴于F 则90EFD ∠=︒a b =OA OB ∴=90AOB ∠=︒OAB ∴是等腰直角三角形45ABO BAO ∴∠=∠=︒BDE 是等腰直角三角形 90BDE ∠=︒BD DE ∴=90EDF BDO ∠+∠=︒ 90DEF EDF ∠+∠=︒ BDO DEF ∴∠=∠90EFD DOB ∠=∠=︒()AAS DEF BDO ∴≌EDF DBO ∴∠=∠ DF OB = EF OD = OB OA =DF OA ∴=DF AD OA OD ∴+=+ 即AF OD =AF EF ∴=AEF ∴是等腰直角三角形45EAF AEF ∴∠=∠=︒45EDF EAF AED AED ∠=∠+∠=︒+∠ 45DBO OBA ABD ABD ∠=∠+∠=︒+∠ ABD AED ∴∠=∠;(3)解:如图,过点D 作DM y ⊥轴于M DH x ⊥轴于H DG BA ⊥交BA 的延长线于G()33D -,3DM DH OM OH ∴====BD 平分ABO ∠ ⊥DM OB DG AB ⊥DM DG ∴=BD BD =()Rt Rt HL BDG BDM ∴≌同理可得:()Rt Rt HL ADH ADG ≌AH AG ∴=OA a = OB b = AB c =a b c OA OB AB ∴-+=-+()()()OH AH BM OM BG AG =+--+-33AH BM BG AG =+-++-6=即6a b c -+=.12.(1)解:①点A 关于x 轴的对称点为P 点 ①点P 的坐标为(0,)a -;由垂线段最短 当PB l ⊥时 PB 最短 过点B 作BD y ⊥轴于D 点 如图①直线l 平分坐标系的第二 四象限①45BOD ∠=︒①PB l ⊥①45BOD OPB ∠=∠=︒①OBP 是等腰直角三角形 OB PB =①BD y ⊥轴 OP a =22⎝⎭a a⎛⎫①()ACF QCB SAS △≌△①QB AF AE == QB AF ∥①180QBA BAF ∠+∠=︒又①90EAF BAO ∠=∠=︒①180BAF EAO ∠+∠=︒①QBA EAO ∠=∠又①BA AO =①(SAS)QBA EAO ≌△△①2OE AQ AC == BAQ AOE ∠=∠①90AOE GAO GAO BAQ ∠+∠=∠+∠=︒ ①90AGO ∠=︒①OE AC ⊥13.(1)OB OC = 8BC =4OB OC ∴==4OA OB ==()0,4A ∴故答案为:0 4;(2)4OC =()4,0C ∴.PC BC ⊥()4,P t ∴4OA OB OC ∴=== PC t =①当08t ≤<时 如图1PAB AOB BCP AOCP S S S S =+-梯形PAB PBC AOB SS S S =--梯形1122BC PC OA OB =⨯-⨯(1118444t =⨯⨯-⨯⨯-PAB S ⎧-⎪=⎨⎪⎩是等腰直角三角形;延长PD 至ADP 是等腰直角三角形AD ∴垂直平分AP AH ∴=90BAC ∠=︒BAH PAC ∴∠=∠在ABH 和ACP △中AH AP BAH CAP AB AC =⎧⎪∠=∠⎨⎪=⎩()SAS ABH ACP ∴≌45ABH ACP ∴∠=∠=︒ BH PC =45ABC ∠=︒∴点H 在BC 上点D 是BD 的中点BD QB ∴=在PDQ 和HDB 中DP DH PDQ HDB BD QD =⎧⎪∠=∠⎨⎪=⎩()SAS PDQ HDB ∴≌PQ BH ∴∥ PQ BH =BH PC =PC PQ ∴=PQ BC ∥ 90BCP ∠=︒90CPQ BCP ∴∠=∠=︒PAQ ∴是等腰直角三角形;14.(1)解:作QG l ⊥于点G①(0,2)A (3,0)B①2AO = 3BO =①AP PQ = 90APQ ∠=︒①90APO APG QPG ∠=︒-∠=∠①APO QPG ≌△△①2QG AO == 3BG BO ==①点Q 的坐标是()53,故答案为:()53,; (2)解:当点Q 在于直线l 上时 如图2223P Q AP OB ===①点2Q 的坐标是()35,由(1)知点1Q 的坐标是()53,设点Q 所在直线的解析式为y kx b =+则5335k b k b +=⎧⎨+=⎩ 解得18k b =-⎧⎨=⎩①点Q 所在直线的解析式为8y x =-+;(3)解:如图,作PM OA ⊥于M QN MP ⊥于N①90APQ ∠=︒①四边形OBPM 是矩形PA PQ = 90APQ ∠=︒①90APM QPN ∠+∠=︒ 90QPN PQN ∠+∠=︒APM PQN ∴∠=∠在PAM △和QPN 中AMP PNQ APM PQN AP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩PAM QPN ∴≌△△QN PM ∴= AM PN =①点Q 的坐标为(,)x y①MN x = 3PN x =- 3PB y QN y PM y =-=-=- ()2223AM OM PB y =-=-=--①AM PN =①()233y x --=-整理得8y x =-+.15.(1)①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA ==①()0,6B11661822ABO S OA OB ==⨯⨯=. (2)过点E 作EF x ⊥轴①90EDB ∠=︒①90FED ODB FDE ∠=∠=︒-∠①FED ODB EFD DOB ED DB ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS EFD DOB ≌①(ASA AGH AOH ≌6AG AO == OH ①O G 是对称点故OM GM =根据垂线段最短故OM NM +最小①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA == 45BAO ∠=︒ ①45AGN ∠=︒①AN GN =①222236AN GN AN +== 解得32,32AN AN ==-(舍去) ①632ON OA AN =-=-. 故()326,0N -.。

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。

中考数学总复习《平面直角坐标系》专题训练(附带答案)

中考数学总复习《平面直角坐标系》专题训练(附带答案)

中考数学总复习《平面直角坐标系》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点A到x轴的距离为2,到y轴的距离为5,且点A在第四象限,则点A的坐标是()A.(2,−5)B.(5,−2)C.(−2,5)D.(−5,2)2.若点P(m+5,m−3)在x轴上,则点P的坐标为()A.(8,0)B.(0,−8)C.(4,0)D.(0,−4)3.在平面直角坐标系中,若直线AB经过点(3,−4)和(−3,4),则直线AB() A.平行于x轴B.平行于y轴C.经过原点D.无法确定4.在平面直角坐标系中,将点P(−1,5)绕原点O顺时针旋转90°得到P′,则点P′的坐标为()A.(1,5)B.(5,1)C.(−1,−5)D.(−5,−1) 5.点P坐标为(6−3a,a+2),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,−3)C.(3,3)或(−6,6)D.(3,−3)或(6,−6)6.在平面直角坐标系中,点A(3,4),B(−1,b),当线段AB最短时,b的值为()A.5B.4C.3D.07.如图,雷达探测器测得六个目标A,B,C,D,E,F,目标E,F的位置分别表示为E(3,330°),F(2,30°)按照此方法,目标A,B,C,D的位置表示不正确的是()A.A(5,60°)B.B(3,120°)C.C(3,210°)D.D(5,270°) 8.如图A1(1,0),A2(1,1),A3(−1,1),A4(−1,−1),A5(2,−1)…按此规律,点A2022的坐标为()A.(505,505)B.(−506,506)C.(506,506)D.(−505,−505)二、填空题9.电影票上“10排8号”记作(10,8),那么(15,9)表示的意义是10.已知A(a,−4)与B(3,4)两点关于x轴对称,则a的值为11.已知点A(m+1,2)和点B(3,m−1),若直线AB∥x轴,则A的坐标为.12.如图,在平面直角坐标系xOy中,Rt△OAB的斜边OB在x轴上∠ABO=30°,若点A的横坐标为1,则点B的坐标为.13.如图,△ABC为等腰直角三角形∠ABC=90°,点B、C在坐标轴上,已知点A坐标为(3,4),则△ABC的面积为.14.在平面直角坐标系中,用大小、形状完全相同的长方形纸片摆放成如图所示的图案,已知点A的坐标为(−1,3),则点B的坐标为.15.如图所示,在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,4),点C 在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB全等.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2023次运动后,动点P的坐标是.三、解答题17.为了更好的开展古树名木的系统保护工作,某公园对园内的4棵百年古树都利用坐标确定了位置,并且定期巡视.(1)请在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A,B的位置分别表示为A(2,1),B(5,5);(2)在(1)建立的平面直角坐标系xOy中.①表示古树C的位置的坐标为______,并在网格中标出古树E(4,−1)的位置;②现需要在沿y轴的道路某处P点向古树A,B修建两条步道,使得点P到古树A,B的距离和最小.请在网格中画出点P(保留作图痕迹,不写作图过程);该距离和的最小值为______.18.已知平面直角坐标系中有一点M(m−1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到两坐标轴的距离相等时,求点M的坐标.19.如图,已知△ABC的三个顶点的坐标分别为A(−6,0),B(−2,3),C(−1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(2)在格点图内,若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.20.如图,在直角坐标系中A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中描点,画出△ABC;并作出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积;(3)设点P在y轴上,且△ABP与△ABC的面积相等,直接写出点P的坐标.21.如图,已知△ABC的顶点分别为A(−2,2),B(−4,5),C(−5,1).(1)作出△ABC关于x轴对称的图形△A1B1C1(2)写出点C1的坐标(3)在x轴上找一点P,使得AP+CP最小(画出图形,找到点P的位置).22.如图,在平面直角坐标系中,设一点M自P0(1,0)处向上运动1个单位长度至P1(1,1),然后向左运动2个单位长度至P2处,再向下运动3个单位长度至P3处,再向右运动4个单位长度至P4处,再向上运动5个单位长度至P5处…如此继续运动下去,设P n(x n,y n),n=1,2,3,…….(1)计算x1+x2+x3+x4.(2)计算x1+x2+⋅⋅⋅+x2023+x2024的值.参考答案1.解:设A(x,y)∵点A到x轴的距离为2,到y轴的距离为5∴x=±5,y=±2∵点A在第四象限∴x>0,y<0∴x=5,y=−2∴A(5,−2)故选:B.2.解:依题意得:m−3=0,即:m=3∴m+5=3+5=8∴点P的坐标为(8,0)故选A.3.解:点(3,−4)和(−3,4)的横纵坐标互为相反数故点(3,−4)和(−3,4)关于原点对称故直线AB经过原点.故选:C.4.解:如图,过P、P′分别向x轴作垂交于H、K根据旋转的定义可知OP=OP′,∠POP′=90°∴∠POH+∠P′OK=90°,∠P′OK+∠P′=90°∴∠POH=∠P′∴∠PHO=∠P′KO=90°∴△PHO≌△P′OK(AAS).∴PH=OK=5,OH=P′K=1即P′(5,1).故选B.5.解:由点(6−3a,a+2)到两坐标轴的距离相等,得6−3a=a+2,或6−3a+a+2=0解得a=1,或a=4则该点的坐标为(3,3)或(−6,6)故选:C.6.解:由题意知,点B(−1,b)在直线x=−1上运动∴当AB⊥直线x=−1时,线段AB最短此时b=4.故选:B.7.解:∴E(3,330°),F(2,30°)∴A(5,60°),B(3,120°),C(4,210°),D(5,270°)故选:C8.解:由题可知第一象限的点:A2,A6,A10,……角标除以4余数为2;第二象限的点:A3,A7,A11……角标除以4余数为3;第三象限的点:A4,A8,A12……角标除以4余数为0;第四象限的点:A5,A9,A13……角标除以4余数为1;由上规律可知:2022÷4=505⋯2∴点A2022在第一象限.观察图形,得:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),……∴第一象限点的横纵坐标数字隐含规律:点的横纵坐标=n+2(n为角标)4∴点A2022的坐标为(506,506).故选:C.9.解:∴“10排8号”记为(10,8)∴(15,9)表示的意义是15排9号.故答案为:15排9号.10.解:∴A(a,−4)与B(3,4)两点关于x轴对称∴a=3故答案为:3.11.解:∴直线AB∥x轴∴m−1=2∴m=3∴m+1=4即点A坐标:A(4,2)故答案为:(4,2).12.解:过点A作x轴的垂线,垂足为点C ∴Rt△OAB中∠ABO=30°∴∠AOB=60°∴AC⊥OB∴∠OAC=30°∴点A的横坐标为1∴OC=1∴OA=2OC=2∴∠ABO=30°∴OB=2OA=4∴点B的坐标为(4,0)故答案为:(4,0).13.解:如图所示,过点A作AD⊥y轴于点D∴△ABC是等腰直角三角形∴AB =BC ,∠ABC=90°∴∠ABD =90°−∠OBC =∠OCB又∠ADB =∠BOC =90°∴△ADB ≌△BOC (AAS)∴AD =OB,DB =OC∴点A 坐标为(3,4)∴AD =OB =3∴S △ABC =S 梯形−S △ABD −S △OBC =12(1+3)×4−12×1×3−12×1×3=5 故答案为:5.14.解:设每个长方形纸片的宽为x ,长为y由题意可得:{2y −x −y =12x +y =3解得{x =23y =53∴点B 的到x 轴的距离为x +y =73,到y 轴的距离为2y −x =83 ∴点B 的坐标为(−83,73). 故答案为:(−83,73).15.解:如图(1)所示当点C 在x 轴负半轴上,点D 在y 轴负半轴上时若△AOB ≌△COD ,则CO =AO =2∴点C 的坐标为(−2,0);若△AOB ≌△DOC ,则OC =OB =4∴点C 的坐标为(−4,0);如图(2)所示当点C在x轴负半轴上,点D在y轴正半轴上时若△AOB≌△DOC,则CO=BO=4∴点C的坐标为(−4,0).若△AOB≌△COD,则CO=AO=2∴点C的坐标为(−2,0);如图(3)所示当点C在x轴正半轴上,点D在y轴正半轴上时同理可得C的坐标为(4,0);如图(4)所示当点C在x轴正半轴上,点D在y轴负半轴上时,同理可得点C的坐标为(4,0);综上所述,点C的坐标为(−4,0)或(−2,0)或(4,0)故答案为:(−4,0)或(−2,0)或(4,0).16.解:由图可得,动点P的横坐标和运动的次数相同,纵坐标以1,0,2,0为一个循环组依次循环∴经过第2023次运动后,动点P的横坐标为2023∴2023÷4=505 (3)∴经过第2023次运动后,动点P的纵坐标为2∴动点P的坐标是(2023,2)故答案为:(2023,2).17.解:(1)如图所示(2)①点C(−2,2),点E(4,−1)的位置如图所示;②过点A作关于y轴的对称点为A′,则A′(−2,1),连接A′B与y轴交于点P,此时PA+PB最小等于A′B的长度;A′B=√[5−(−2)]2+(5−1)2=√72+42=√65∴点P到古树A,B的距离和的最小值为√65;故答案为:√6518.解:(1)∵|2m+3|=1∴2m+3=1或2m+3=−1解得:m=−1或m=−2∴点M的坐标是(−2,1)或(−3,−1);(2)∵|m−1|=|2m+3|∴m−1=2m+3或m−1=−2m−3解得:m=−4或m=−23∴点M的坐标是:(−5,−5)或(−53,5 3 ).19.(1)解:△A′B′C′如图所示∴A′(0,−6);(2)解:如图平行四边形A′B′C′D′即为所求:根据平行四边形性质可得D′(3,−5)故答案为:D′(3,−5).20.(1)解:如图所示,△ABC即为所求;△A1B1C1即为所求.(2)S△ABC=3×4−12×1×2−12×2×4−12×2×3=4;(3)当点P在y轴上时,△ABP的面积=12AP×|x B|=4即12AP×2=4解得:AP=4.∴点P的坐标为(0,5)或(0,−3).21.解:(1)如图1所示,△A1B1C1即为所求;(2)点C1的坐标为(−5,−1);(3)如图2所示,点P即为所求.22.(1)解:由题意可知P1(1,1),P2(−1,1),P3(−1,−2),P4(3,−2),P5(3,3),P6(−3,3),P7(−3,−4),P8(5,−4),……于是得到x1,x2,x3,x4的值为1,-1,-1,3∴x1+x2+x3+x4=1−1−1+3=2(2)解:∴x5,x6,x7,x8的值分别为3,-3,-3,5∴x5+x6+x7+x8=3−3−3+5=2;∴x1+x2+x3+x4=1−1−1+3=2x5+x6+x7+x8=3−3−3+5=2…x2021+x2022+x2023+x2024=2∴2024÷4=506∴x1220232024。

初中数学中考计算题复习(最全)-含答案(word文档良心出品)

初中数学中考计算题复习(最全)-含答案(word文档良心出品)

一. 解答题(共30小题)1. 计算题:①;②解方程: .2. 计算: +(π﹣2013)0.3. 计算: |1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4. 计算: ﹣.5. 计算: .6..7. 计算: .8. 计算: .计算: .10. 计算: .11. 计算: .12..计算: .14. 计算: ﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15. 计算: .16. 计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|. (2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)(1)17. 计算:(2)(﹣1)2013﹣|﹣7|+×0+()﹣1;(3).计算: .解方程: .20. 计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°解方程: = ﹣.(1)计算: .求不等式组的整数解.(1)计算:先化简, 再求值: (﹣)÷, 其中x= +1. (1)计算: tan30°解方程: .25. 计算:(1)先化简, 再求值: ÷+ , 其中x=2 +1. (1)计算: ;解方程: .计算: .计算: .计算: (1+ )2013﹣2(1+ )2012﹣4(1+ )2011.计算: .1. 化简求值: , 选择一个你喜欢且有意义的数代入求值.2.先化简, 再求值, 然后选取一个使原式有意义的x值代入求值.3. 先化简再求值: 选一个使原代数式有意义的数代入中求值.4.先化简, 再求值: , 请选择一个你喜欢的数代入求值.5. (2010•红河州)先化简再求值: . 选一个使原代数式有意义的数代入求值.6. 先化简, 再求值: (1﹣)÷, 选择一个你喜欢的数代入求值.7. 先化简, 再求值:(﹣1)÷, 选择自己喜欢的一个x求值.8.先化简再求值: 化简, 然后在0, 1, 2, 3中选一个你认为合适的值, 代入求值.9. 化简求值(1)先化简, 再求值, 选择你喜欢的一个数代入求值.(2)化简, 其中m=5.10. 化简求值题:(1)先化简, 再求值: , 其中x=3.(4)先化简, 再求值: , 其中x=﹣1.11. (2006•巴中)化简求值: , 其中a= .12. (2010•临沂)先化简, 再求值: ()÷, 其中a=2.13. 先化简: , 再选一个恰当的x值代入求值.14. 化简求值: (﹣1)÷, 其中x=2.15. (2010•綦江县)先化简, 再求值, , 其中x= +1.16. (2009•随州)先化简, 再求值: , 其中x= +1.17. 先化简, 再求值: ÷, 其中x=tan45°.18. (2002•曲靖)化简, 求值: (x+2)÷(x﹣), 其中x=﹣1.19. 先化简, 再求值: (1+ )÷, 其中x=﹣3.20. 先化简, 再求值: , 其中a=2.21. 先化简, 再求值÷(x﹣), 其中x=2.22. 先化简, 再求值: , 其中.23. 先化简, 再求值: (﹣1)÷, 其中x—.24. 先化简代数式再求值, 其中a=﹣2.25. (2011•新疆)先化简, 再求值: (+1)÷, 其中x=2.26. 先化简, 再求值: , 其中x=2.27. (2011•南充)先化简, 再求值: (﹣2), 其中x=2.28. 先化简, 再求值: , 其中a=﹣2.29. (2011•武汉)先化简, 再求值:÷(x﹣), 其中x=3.30.化简并求值:•, 其中x=2. 2。

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。

公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。

在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。

那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。

专题02 整式加减及其运算(6大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

专题02 整式加减及其运算(6大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

第一部分数与式专题02 整式加减及其运算(6大考点)核心考点一列代数式及代数式求值核心考点二整式的有关概念及运算核心考点三乘法公式的应用核心考点四整式的化简求值核心考点五因式分解核心考点核心考点六规律探索题新题速递核心考点一列代数式及代数式求值例1(2022·贵州六盘水·中考真题)已知,则的值是()A.4B.8C.16D.12【分析】令,代入已知等式进行计算即可得.【详解】解:观察所求式子与已知等式的关系,令,则,故选:C .,求代数式的值.”可以这样解:.根据阅读材料,解决问题:若是关于x的一元一次方程的解,则代数式的值是________.【答案】【分析】先根据是关于x的一元一次方程的解,得到,再把所求的代数式变形为,把整体代入即可求值.【详解】解:∵是关于x的一元一次方程的解,∴,∴.故答案为:14,的正方形秧田,,其中不能使用的面积为.(1)用含,的代数式表示中能使用的面积___________;(2)若,,求比多出的使用面积.【答案】(1)(2)50【分析】(1)利用正方形秧田的面积减去不能使用的面积即可得;(2)先求出中能使用的面积为,再求出比多出的使用面积为,利用平方差公式求解即可得.【详解】(1)解:中能使用的面积为,故答案为:.(2)解:中能使用的面积为,则比多出的使用面积为,,,,答:比多出的使用面积为50.【点睛】本题考查了列代数式、平方差公式与图形面积,熟练掌握平方差公式是解题关键.代数式及求值(1)概念:用基本运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫代数式.单独的一个数或一个字母也是代数式;(2)列代数式:找出数量关系,用表示已知量的字母表示出所求量的过程;(3)代数式求值:把已知字母的值代入代数式中,并按原来的运算顺序计算求值.【变式1】(2022·山东济宁·三模)若是方程的两个根,则的值为( )A.9B.8C.7D.5【答案】A【分析】根据一元二次方程根的定义以及根与系数的关系,求解即可.【详解】解:是方程的两个根,则,,∴,,故选:A【点睛】此题考查了一元二次方程根的定义以及根与系数的关系,解题的关键是熟练掌握相关基础知识.【变式2】(2022·甘肃·平凉市第十中学三模)十八世纪伟大的数学家欧拉最先用记号的形式来表示关于的多项式,把等于某数时一的多项式的值用来表示.例如时,多项式的值可以记为,即我们定义.若,则的值为()A.B.C.D.【答案】C【分析】代入多项式可以得,把整体代入求解即可.【详解】,,得:,,故选:C.【点睛】本题考查求代数式的值,整体代入是解题的关键.【变式3】(2022·浙江丽水·一模)已知,实数m,n满足,.(1)若,则_______;(2)若,则代数式的值是______________.【答案】 7 42或252##252或42【分析】(1)将已知式子因式分解代入得出,然后利用两个完全平方公式之间的关系求解即可;(2)利用(1)中结论得出或,然后分两种情况,将原式化简代入求值即可.【详解】解:(1)∵m+n=3,∴,∴,∴,∴,∵m>n,∴,∴;(2),由(1)得或解得:或当m=5,时,∵,∴,∴m+p=2,∴原式;当,n=5时,∵,∴,∴,∴原式;∴代数式的值为42或252;故答案为:①7;②42或252.【点睛】题目主要考查因式分解的运用,求代数式的值及完全平方公式与平方差公式,熟练掌握运算法则进行变换是解题关键.【变式4】(2022·福建省福州屏东中学模拟预测)已知,,且,则代数式的值是______ .【答案】【分析】先计算,利用平方差公式求出的值,再把化为完全平方式,代入求值即可.【详解】解:,,.∴.,..故答案为:.【点睛】本题考查了平方差公式和完全平方式,代数式求值,掌握平方差公式和完全平方式的特点,利用平方差公式求出的值,是解决本题的关键.【变式5】(2022·安徽芜湖·模拟预测)阅读下列材料,完成后面的问题.材料1:如果一个四位数为(表示千位数字为a,百位数字为b,十位数字为c,个位数字为d的四位数,其中a为1~9的自然数,b,c,d为0~9的自然数),我们可以将其表示为:;材料2:把一个自然数(个位不为0)的各位数字从个位到最高位倒序排列,得到一个新的数.我们称该数为原数的兄弟数.如数“123”的兄弟数为“321”.(1)四位数______;(用含x,y的代数式表示)(2)设有一个两位数,它的兄弟数比原数大63,请求出所有可能的数;(3)求证:四位数一定能被101整除.【答案】(1)1000x+10y+505(2)18、29(3)证明过程见详解【分析】(1)依据材料1的方法即可作答;(2)先根据(1)的方法表示出和,在结合题意列出二元一次方程,化简得:,再根据x、y均是1至9的自然数即可求解;(3)利用(1)的方法表示出,依据a为1~9的自然数,b为0~9的自然数,可得10a+b必为整数,即命题得证.(1)根据题意有:,即答案为:;(2)∵,,又∵,∴,∴,∵根据题意有x、y均是1至9的自然数,∴满足要求的x、y的数组有:(1,8)、(2,9),∴可能的数有18和29;(3)证明:∵,∴,∵a为1~9的自然数,b为0~9的自然数,∴10a+b必为整数,∴一定能被101整除,命题得证.【点睛】本题考查了列代数式和求解二元一次方程的整数解的知识,充分理解材料1、2所给的新定义是解答本题的关键.核心考点二整式的有关概念及运算例1(2021·四川绵阳·中考真题)整式的系数是()A.-3B.3C.D.【答案】A【详解】解:的系数为本题主要考查了单项式的系数,追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,现有四名网友对的理解如下:YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):等于;JXND(觉醒年代):的个位数字是6;QGYW(强国有我):我知道,所以我估计比大.其中对的理解错误的网友是___________(填写网名字母代号).用,将化为,再与比较,即可判断的乘方的个位数字的规律即可判断的逆用可得,即可判断【详解】是200个2相乘,YYDS,DDDD(懂的都懂)的理解是错误的;,2的乘方的个位数字4个一循环,,的个位数字是,,且,故QGYW(强国有我)的理解是正确的;故答案为:DDDD.【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【答案】(1)(2),证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n个等式为,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:,故答案为:;(2)解:第n个等式为,证明如下:等式左边:,等式右边:,故等式成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.整式及有关概念(1)单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的_次数,单项式中的数字因数叫做单项式的系数.单独的数、字母也是单项式;(2)多项式:由几个单项式组成的代数式叫做多项式,多项式里次数最高项的次数叫多项式的次数,一个多项式中的每个单项式叫做多项式的项,其中不含字母的项叫做常数项;(3)整式:单项式和多项式统称为整式;(4)同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项;所有的常数项都是同类项.整式的运算1.同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。

河北省石家庄市中考数学总复习 第二章 方程(组)与不等式(组)第三节 一元二次方程及其应用同步训练-

河北省石家庄市中考数学总复习 第二章 方程(组)与不等式(组)第三节 一元二次方程及其应用同步训练-

第三节一元二次方程及其应用某某:________ 班级:________ 限时:______分钟1.(2018·某某二十八中质检)用配方法解方程x2+4x+2=0,配方后的方程是( )A.(x+2)2=0 B.(x-2)2=4C.(x-2)2=0 D.(x+2)2=22.(2019·易错)已知方程x2-8x-33=0的两根分别为a,b,且a>b,则a+2b的值为( )A.3 B.5 C.8 D.113.(2018·某某路南区二模)下列方程中,没有实数根的是( )A.x2-2x=0 B.x2-2x-1=0C.x2-2x+1=0 D.x2-2x+2=04.(2018·某某省卷)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值X围是( ) A.k≤-4 B.k<-4 C.k≤4 D.k<45.(2018·某某)已知x1、x2是关于x的方程x2-ax-2=0的两根,下面结论一定正确的是( )A.x1≠x2B.x1+x2>0C.x1·x2>0 D.x1<0,x2<06.(2018·某某)关于x的一元二次方程x2-(k+3)x+k=0的根的情况是( )A.有两不相等实数根 B.有两相等实数根C.无实数根 D.不能确定7.(2018·某某海港区一模)某城市2015年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2017年底增加到363公顷,设绿化面积的年平均增长率为x,根据题意,下列方程正确的是( ) A.300(1+x)=363 B.300(1+x)2=363C.300(1+2x)=363 D.363(1-x)2=3008.(2018·某某海港区一模)已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为________.9.(2018·某某)已知关于x的方程x2-3x+a=0有一个根为 1,则方程的另一个根为________.10.(2018·威海)关于x的一元二次方程(m-5)x2+2x+2=0有实根,则m的最大整数解是________.11.(2018·某某)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为________.12.(2018·某某)解方程:x2-2x-1=0.13.(2018·某某)解方程:2(x-3)=3x(x-3).14.(2018·某某)已知关于x的一元二次方程:x2-2x-k-2=0有两个不相等的实数根.(1)求k的取值X围;(2)给k取一个负整数值,解这个方程.15.(2018·某某)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.16.(2019·原创)学校为奖励参加“阅读大赛”的优秀学生,派X老师到商店买某种奖品,他看到了如下表所示的关于该奖品的销售信息后,便用900元买回了所有奖品,求X老师购买该奖品的件数.购买件数销售价格不超过20件单价35元每多买1件,购买的所有该奖品的单价降低0.5元,超过20件但其单价不得低于30元1.(2018·某某A卷)已知一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面选项正确的是( )A.1一定不是方程x2+bx+a=0的根B.0一定不是方程x2+bx+a=0的根C.1和-1都是方程x2+bx+a=0的根D.1和-1不都是方程x2+bx+a=0的根2.(2018·某某)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1 200 元?3.(2019·原创)如图,一块长5米,宽4米的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.参考答案【基础训练】10.4 11.12x(x -1)=21 12.解:移项得x 2-2x =1;方程两边同时加1得x 2-2x +1=2,即(x -1)2=2,则x -1=±2,解得x 1=1+2,x 2=1- 2.13.解:2(x -3)=3x(x -3),移项得:2(x -3)-3x(x -3)=0整理得:(x -3)(2-3x)=0,x -3=0或2-3x =0,解得:x 1=3,x 2=23. 14.解:(1)根据题意得(-2)2-4(-k -2)>0,解得k >-3;(2)取k =-2,则方程变形为x 2-2x =0,解得x 1=0,x 2=2.15.解:(1)设每个月生产成本的下降率为x ,根据题意得:400(1-x)2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1-5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.16.解:∵20×35=700<900,∴X 老师购买奖品数量超过20件.设X 老师购买奖品x 件,根据题意得x[35-0.5(x -20)]=900,解得x 1=30,x 2=60,当x =30时,35-0.5×(30-20)=30满足题意,当x =60时,35-0.5×(60-20)=15<30,不符合题意,综上可知,X 老师购买该奖品共30件.【拔高训练】1.D2.解:(1)26;(2)设每件商品降价x 元,则每件盈利(40-x)元,平均每天销售数量为(20+2x)件, 由题意得:(40-x)(20+2x)=1 200,解得:x 1=10,x 2=20,当x =10时,40-x =40-10=30>25,当x =20时,40-x =40-20=20<25,不符合题意,舍去.答:当每件商品降价10元时,该商店每天销售利润为1 200元.3.解:(1)设条纹的宽度为x 米,依题意得5×4-(5-2x)(4-2x)=1780×5×4, 解得x 1=174(舍去),x 2=14. 答:配色条纹宽度为14米; (2)根据题意得,配色条纹造价为1780×5×4×200=850(元). 其余部分造价为(1-1780)×4×5×100=1 575(元). 总造价为850+1 575=2 425(元).答:地毯的总造价为2 425元.。

2023年中考数学专题复习——专项训练(五)四边形

2023年中考数学专题复习——专项训练(五)四边形

2023年中考数学专题复习——专项训练(五)四边形一、选择题(本大题共10小题,每小题3分,共30分)1. 从七边形的一个顶点作对角线,把这个七边形分成三角形的个数是()A. 7B. 6C. 5D. 42. “花影遮墙,峰峦叠窗.”苏州园林空透的窗棂中蕴含着许多的数学元素.图①中的窗棂是冰裂纹窗,图②是这种窗棂中的部分图案.若∠1=∠2=75º,∠3=∠4=65º,则∠5的度数是()A. 80ºB. 75ºC. 65ºD. 60º①②第2题图第3题图第4题图第5题图3. 如图,已知四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DGF的度数是()A.70°B.60°C.80°D.45°4. 如图,已知四边形ABCD是平行四边形,下列结论中正确的是()A. 当AB=BC时,四边形ABCD是矩形B. 当AC=BD时,四边形ABCD是菱形C. 当∠ABC=90º时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形5. 如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A. 20°B. 25°C. 30°D. 40°6. 用图①所示两种图形可以无缝隙拼接成图②所示的正方形ABCD.已知图①所示图形,∠F=45°,∠H=15°,MN=2,则图②中正方形的对角线AC的长为()A. B. C.1 D.2①②第6题图第8题图第9题图第10题图7. 已知E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,对角线AC,BD相交于点O.根据下列条件,不能证明四边形EFGH是矩形的是()A. AC⊥BDB. AB=BC,OB=ODC. AB=BC,OA=OCD. AB=BC,CD=AD8. 如图,菱形ABCD的边长为2,∠ABC=60º,CE∥BD,则△BDE的面积为()A. 1B. 2C. 3D.9. 如图,在平面直角坐标系中,四边形ABCD是正方形,点A的坐标为(0,2),∠ABO=30º,E为CD的中点,则点E的坐标为()21 B.)2 C. D.2A. )10. 如图,菱形ABCD的边长为12,∠ABC=60°,直线EF⊥AC,垂足为H,分别与AD,AB及CB的延长线交于点E,M,F.若AE∶BF=1∶2,则CH的长为()A. 12B. 10C. 8D. 6二、填空题(本大题共6小题,每小题4分,共24分)11. 六边形的内角和比它的外角和多__________度.12. 如图,在△ABC中,∠ACB=120º,分别以AC,BC为边,向△ABC外作正方形ACDE和正五边形BCFGH,则∠DCF的度数是.第12题图第13题图第14题图13. 如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上.若A(2,0),D(4,0),以点O为圆心,OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是.14. 如图,小明同学将边长为6的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移得到△A'B'C'.当两个三角形重叠部分为菱形时,A'D的长为.15. 把一张宽为2 cm的矩形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为4 cm的等腰直角三角形,则纸片的长AD为cm.第15题图第16题图16. 如图13,在□ABCD中,AE⊥BC于点E,N是EC的中点,M是AB的中点.已知S△ABD=6,BC=4,则MN的长为.三、解答题(本大题共4小题,共46分)17. (10分)如图,在□ABCD中,AE⊥BC于点E,延长BC至点F,使CF=BE,连接AF,DE,DF.求证:四边形AEFD是矩形.第17题图第18题图第19题图第20题图18. (10分)如图,在□ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等;(不写作法,保留作图痕迹)(2)若BC=8,CD=5,求CE的长.19. (12分)如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C 作CE⊥AB,交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.20.(14分)如图,在正方形ABCD中,E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N.若正方形ABCD的边长为10,P是MN上一点,求△PDC周长的最小值.参考答案专项训练(五)答案详解9. A 解析:先分别求出点C,D的坐标,再利用中点坐标求解.10. B 解析:因为四边形ABCD是菱形,所以AD∥BC,AB=BC=12,∠MAH=∠EAH.因为EF⊥AC,所以∠AHM=∠AHE=∠CHE= 90°.因为AH=AH,所以△AHM≌△AHE.所以AM=AE.因为AD∥BC,所以△AME∽△BMF.所以AM AEBM BF==12.所以AM=AE=4,BM=8.所以BF=8.所以CF=20.因为∠ABC=60°,所以△ABC是等边三角形.所以∠ACB=60°.所以CH=CF•cos 60°=10.16.52【解析】连接AC交BD于点O,连接ON,OM,取BE的中点M′,连接MM′,如图所示.易得四边形OMM′N 是矩形,则∠MON=90º.因为S□ABCD=2S△ABD=12,BC=4,所以BC•AE=12.所以AE=3.利用三角形中位线定理,得OM=2,ON=32.由勾股定理,得MN=52.第16题图三、17.证明:因为CF=BE,所以CF+EC=BE+EC,即EF=BC.因为四边形ABCD是平行四边形,所以AD∥BC,AD=BC.所以AD∥EF,AD=EF.所以四边形AEFD是平行四边形. 因为AE⊥BC,所以∠AEF=90°.所以□AEFD是矩形.18. 解:(1)如图所示,点E即为所求.第18题图(2)因为四边形ABCD是平行四边形,所以AB=CD=5,AD∥BC.所以∠DAE=∠BEA.因为AE是∠BAD的平分线,所以∠DAE=∠BAE.所以∠BAE=∠BEA.所以BE=AB=5.所以CE=BC﹣BE=3.19.(1)证明:因为AB∥CD,所以∠OAB=∠DCA.因为AC 平分DAB ∠,所以∠OAB=∠DAC.所以∠DAC=∠DCA.所以CD=AD.因为AB=AD ,所以CD=AB. 因为AB ∥CD ,所以四边形ABCD 是平行四边形.因为AD=AB ,所以□ABCD 是菱形. (2)解:因为四边形ABCD 是菱形,BD=8,所以OA=OC ,BD ⊥AC ,OB=OD=12BD=4.所以∠AOB=90°.所以所以AC=2OA=所以菱形ABCD 的面积为12AC•BD=12×8=.因为CE ⊥AB ,所以菱形ABCD 的面积为AB •CE=,解得. 20. 解:(1)结论:CF=2DG.证明:因为四边形ABCD 是正方形,所以AD=BC=CD=AB ,∠ADC=∠C=90º. 因为E 是AD 的中点,所以DE=AE.所以AD=CD=2DE.因为EG ⊥DF ,所以∠DHG=90º.所以∠CDF+∠DGE=90º,∠DGE+∠DEG=90º. 所以∠CDF=∠DEG.所以△DEG ∽△CDF.所以12DG DE CF CD ==.所以CF=2DG. (2)作点C 关于直线NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时△PDC 的周长值最小,最小值为CD+PD+PC=CD+PD+PK=CD+DK.由(1),知CD=AD=10,ED=AE=5,DG=52,所以.因为12DE •DG=12EG •DH ,所以DH=DE DGEG⋅所以EH=2DH=同法可得2DH EHHM DE⋅==,所以DM=CN=NK==1.在Rt △DCK 中,所以△PCD 的周长的最小值为10+第20题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数与式一、选择题(每小题3分,共30分) 1.-5的倒数是(D )A. -5B. 5C. 15D. -152.下列说法中,正确的是(B )A. 3的平方根是 3B. 6的算术平方根是 6C. -15的平方根是±-15D. -2的算术平方根是-23.数字32000000用科学记数法表示应是(A )A. 3.2×107B. 3.2×106C. 32×106D. 0.32×1084.下列各式计算正确的是(D )A. 2a 2+a 3=3a 5B. (3xy )2÷(xy )=3xy C. ()2b 23=8b 5D. 2x ·3x 5=6x 65.在176,sin 60°,0.1010010001…(每两个1之间依次多一个0),tan 45°,327,π,0.151·72·中,无理数的个数是(C )A. 1B. 2C. 3D. 46.数轴上的点A 到2的距离是5,则点A 表示的数为(D ) A. 3或-3 B. 7C. -3D. 7或-37.若a ,b 是正数,a -b =1,ab =2则a +b =(B ) A. -3 B. 3 C. ±3 D. 98.如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a ,b 的值分别是(A )A. ⎩⎪⎨⎪⎧a =1,b =2 B. ⎩⎪⎨⎪⎧a =0,b =2 C. ⎩⎪⎨⎪⎧a =2,b =1D. ⎩⎪⎨⎪⎧a =1,b =19.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,如果|a |>|b |>|c |,那么该数轴的原点O 的位置应该在(D )(第9题图)A. 点A 的左边B. 点A 与点B 之间C. 点B 与点C 之间D. BC 中点的右边10.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m ,n 的关系是(D )(第10题图)A. M =mnB. M =n (m +1)C. M =mn +1D. M =m (n +1) 二、填空题(每小题4分,共24分)11.分解因式:4x 2-1=(2x +1)((2x -1). 12.若代数式2x -1-1的值为零,则x =3. 13.已知a -3b =-3,那么5-2a +6b =11.14.若a m =3,a n =5,则a 2m +n=45.15.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是 (a -b )2=a 2-2ab +b 2.(第15题图)16.已知直线上有n (n ≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件: ①每次跳跃均尽可能最大; ②跳n 次后必须回到第1个点; ③这n 次跳跃将每个点全部到达,设跳过的所有路程之和为S n ,则S 25=312. 三、解答题(本题有8小题,共66分)17.(本题6分)计算:|-3|+(-1)2015×(π-3)0-38+⎝ ⎛⎭⎪⎫12-2.解:原式=3+(-1)×1-2+4=4.18.(本题6分)因式分解:mx 2-my 2.解:mx 2-my 2=m (x 2-y 2)=m (x +y )(x -y ).19.(本题6分)化简:2()a +3()a -3-()a -12+7.解:原式=2(a 2-3)-(a 2-2a +1)+7=2a 2-6-a 2+2a -1+7=a 2+2a .20.(本题8分)先化简:⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,然后再从0,1,2,3中选一个你认为合适的a 值,代入求值.解:原式=(a -1)-1a -1·a (a -1)()a -22=aa -2.当a =3时,原式=3.21.(本题8分)如图①所示,从边长为a 的正方形纸片中减去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸拼成如图②所示的等腰梯形.(第21题图))(1)设图①中阴影部分面积为S 1,图②中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2.(2)请写出上述过程所揭示的乘法公式.解:(1)∵大正方形的边长为a ,小正方形的边长为b ,∴S 1=a 2-b 2,S 2=12(2a +2b )(a -b )=(a +b )(a -b ).(2)根据题意,得(a +b )(a -b )=a 2-b 2. 22.(本题10分)阅读材料:求值:1+2+22+23+24+…+22016.解:设S =1+2+22+23+24+…+22016,将等式两边同时乘2,得2S =2+22+23+24+…+22016+22017,将下式减去上式,得2S -S =22017-1,即S =1+2+22+23+24+…+22016=22017-1. 请你仿照此法计算:(1)1+2+22+23+24+…+210.(2) 1+3+32+33+34+ (3)(其中n 为正整数).解:(1)设S =1+2+22+23+…+210,则2S =2+22+23+24+…+211,∴2S -S =211-1.即1+2+22+23+…+210=211-1.(2)设S =1+3+32+33+ (3),则3S =3+32+33+34+…+3n +1,∴3S -S =3n +1-1,即2S =3n +1-1, ∴1+3+32+33+ (3)=12(3n +1-1).23.(本题10分)先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A 32=3×2=6.一般地,从n 个不同的元素中选取m 个元素的排列数记作A n m ,A n m=n (n -1)(n -2)(n -3)…(n -m +1)(m ≤n ).例:从5个不同的元素中选取3个元素排成一列的排列数为A 53=5×4×3=60.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为C 32=3×22×1=3.一般地,从n 个不同的元素中选取m 个元素的组合数记作C n m, C n m=n (n -1)(n -2)(n -3)…(n -m +1)m (m -1)(m -2) (1)(m ≤n ).例:从6个不同的元素选3个元素的组合数为C 63=6×5×43×2×1=20.问:(1)从某个学习小组8人中选取3人参加活动,有多少种不同的选法? (2)从7个人中选取4人,排成一列,有多少种不同的排法? 解:(1)C 83=8×7×63×2×1=56(种).(2)A 74=7×6×5×4=840(种).24.(本题12分)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S ,该多边形各边上的格点个数和为a ,内部的格点个数为b ,则S =12a +b -1(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:(第24题图)根据图中提供的信息填表:则与,之间的关系为=a +2(b -1)(用含,的代数式表示).解:填表如下:则与,之间的关系为=+2(-1)(用含,的代数式表示).方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B ) A. 3x -2=3 B. -x +6=2x C. 4-2(x -1)=1 D. 3x +1=0 2.下列各项中,是二元一次方程的是(B ) A. y +12xB. x +y3-2y =0C. x =2y+1D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D )A. -1B. 0C. 2D. 34.分式方程xx -2-1x=0的根是(D ) A. x =1 B. x =-1 C. x =2 D. x =-25.分式方程x 2x -1+x1-x=0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =29007.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A )A. 1B. 2C. 3D. 48.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A )A. 第一象限B. 第二象限C. 第三角限D. 第四象限 解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限.9.关于x 的分式方程ax +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图) A. 2 B. 1 C. 6D. 10解:∵x >0,∴x 2+9x =x +9x≥2x ·9x=6,则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__. 12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__.16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套. 三、解答题(本题有8小题,共66分) 17.(本题8分)解下列方程(组). (1)解方程:xx +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1. 解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.②②-①,得3y =3,∴y =1. 将y =1代入①,得x =83.∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x. 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答.解:设13x -1=y ,则原方程化为12y =12+2y ,解得y =-13.当y =-13时,有13x -1=-13,解得x =-23.经检验,x =-23是原方程的根.∴原方程的根是x =-23.19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx +a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0, ∴x =2(m +2)±4m 2=2+m ±2m .∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0, ∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49. 20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解.(1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得 ∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1. (2)∵3+2x >m +3x , ∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2, ∴2<3-m ≤3, ∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5. 由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7. (2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围. 解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨? (2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t. (2)300×8000-400×1000-15000-97200=1887800(元). 答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9,解得x =90.经检验,x =90是分式方程的解且符合题意. 答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件).由题意,得120×50×45+y ×50×15-4950≥650,解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意. ∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬. (2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得 100z +80(16-z -1)+50=1490, 解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.函数及其图象一、选择题(每小题3分,共30分)1.已知点M (-2,5 )在反比例函数y =k x的图象上,则下列各点一定在该反比例函数的图象上的是(C)A. (5,2 )B. (2,5 )C. (2,-5 )D. (-5,-2)2.二次函数y =-x 2+2x -5的图象的对称轴是(D) A. 直线x =-2 B. 直线x =2 C. 直线x =-1 D. 直线x =13.反比例函数y =-1x的图象上有两个点(x 1,y 1),(x 2,y 2),其中x 1<0<x 2,则y 1与y 2的大小关系是(B)A. y 1<y 2B. y 1>y 2C. y 1=y 2D. 以上都有可能4.如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是(C)A. y =(x -1)2+2B. y =(x +1)2+2C. y =x 2+1D. y =x 2+3(第5题图) 5.已知函数y =(x -m )(x -n )(其中m <n )的图象如图所示,则一次函数y =mx +n 与反比例函数y =m +nx的图象可能是(C)(第6题图)6.二次函数y =ax 2+bx +c (a ≠0)的图象如下图所示,有下列说法:①a >0;②b >0;③c <0;④b 2-4ac >0,其中正确的个数是(B) A. 1 B. 2 C. 3 D. 4(第7题图)7.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc<0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是(B) A. 1 B. 2 C. 3 D. 48.如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点O 重合.在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数y =k x(k ≠0)中k 的值的变化情况是(C) A. 一直增大 B. 一直减小 C. 先增大后减小D. 先减小后增大(第8题图) (第9题图)9.二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac -b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠-1).其中正确结论的个数是(B) A. 4 B. 3 C. 2 D. 110.如图,直线y =12x 与双曲线y =k x (k >0,x >0)交于点A ,将直线y =12x 向上平移4个单位长度后,与y 轴交于点C ,与双曲线y =kx(k >0,x >0)交于点B .若OA =3BC ,则k 的值为(D)(第10题图) A. 3 B. 6 C. 94D. 92二、填空题(每小题4分,共24分)11.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第__四__象限.12.将抛物线y =x 2+3先左平移动2个单位,再向下平移7个单位后得到一个新的抛物线,那么新的抛物线的表达式是y =(x +2)2-4(用顶点式表示).13.已知反比例函数y =k x(k 为常数,k ≠0)的图象位于第一、第三象限,写出一个符合条件的k 的值为1(答案不唯一)__.14.已知二次函数y =()x -2a 2+()a -1(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当a =-1,a =0,a =1,a =2时二次函数的图象.它们的顶点在一条直线上,这条直线的表达式是y =12x -1.(第14题图) (第15题图)15.一次越野跑中,当小明跑了1600 m 时,小刚跑了1400 m ,小明、小刚在此后所跑的路程y (m)与时间t (s)之间的函数关系如图,则这次越野跑的全程为2200m.16.如图,在Rt △ABO 中,∠AOB =90°,点A 在第一象限,点B 在第四象限,且AO ∶BO =1∶2,若点A (x 0,y 0)的坐标x 0,y 0满足y 0=1x 0,则点B (x ,y )的坐标x ,y 所满足的关系式为y =-2x.(第16题图)三、解答题(本题有8小题,共66分)17.(本题6分)如图,一次函数y =12x -2与反比例函数y =kx 的图象交于点A ,且点A 的纵坐标为1.(第17题图)(1)求反比例函数的表达式.(2)根据图象写出当x >0时,一次函数的值大于反比例函数的值的x 的取值范围. 解:(1)点A 在直线y =12x -2上,∴1=12x -2,解得x =6.把点(6,1)的坐标代入y =k x,得m =6×1=6.∴y =6x.(2)由图象得,当x >6时,一次函数的值大于反比例函数的值.18.(本题6分)已知抛物线y =ax 2+bx +3的对称轴是直线x =1. (1)求证:2a +b =0;(2)若关于x 的方程ax 2+bx -8的一个根为4,求方程的另一个根.解:(1)证明:∵抛物线y =ax 2+bx +3的对称轴是直线x =1, ∴-b2a=1.∴2a +b =0.(2)设关于x 的方程ax 2+bx -8的另一个根为x 2,∵抛物线y =ax 2+bx +3的对称轴是直线x =1,∴x 2和4关于直线x =1对称,即1-x 2=4-1,解得x 2=-2. ∴方程的另一个根为-2.19.(本题8分)如图,在平面直角坐标系中,双曲线y =m x和直线y =kx +b 交于A ,B 两点,点A 的坐标为(-3,2),BC ⊥y 轴于点C ,且OC =6BC .(第19题图)(1)求双曲线和直线的函数表达式. (2)直接写出不等式m x>kx +b 的解集. 解:(1)∵点A (-3,2)在双曲线y =m x上, ∴2=m-3,解得m =-6.∴双曲线的函数表达式为y =-6x.∵点B 在双曲线y =-6x上,且OC =6BC ,设点B 的坐标为(a ,-6a ),∴-6a =-6a,解得a =±1(负值舍去),∴点B 的坐标为(1,-6). ∵直线y =kx +b 过点A ,B ,∴⎩⎪⎨⎪⎧2=-3k +b ,-6=k +b , 解得⎩⎪⎨⎪⎧k =-2,b =-4.∴直线的函数表达式为y =-2x -4.(2)根据图象得:不等式m x>kx +b 的解集为-3<x <0或x >1.20.(本题8分)已知某市2013年企业用水量x (吨)与该月应交的水费y (元)之间的函数关系如图.(第20题图)(1)当x ≥50时,求y 关于x 的函数表达式.(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量. (3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x 超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收x20元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量. 解:(1)设y 关于x 的函数表达式y =kx +b .∵直线y =kx +b 经过点(50,200),(60,260),∴⎩⎪⎨⎪⎧50k +b =200,60k +b =260,解得⎩⎪⎨⎪⎧k =6,b =-100. ∴y 关于x 的函数表达式是y =6x -100. (2)由图可知,当y =620时,x >50, ∴6x -100=620,解得x =120.答:该企业2013年10月份的用水量为120吨. (3)由题意,得6x -100+x20(x -80)=600,化简,得x 2+40x -14000=0,解得x 1=100,x 2=-140(不合题意,舍去). 答:这个企业2014年3月份的用水量是100吨.21.(本题8分)已知抛物线y 1=ax 2+bx +c (a ≠0)与x 轴交于点A ,B (点A ,B 在原点O 两侧),与y 轴交于点C ,且点A ,C 在一次函数y 2=43x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.解:根据OC 长为8可得一次函数中的n 的值为8或-8.需分类讨论: (1)n =8时,易得A (-6,0)如解图①,∵抛物线经过点A ,C ,且与x 轴交点A ,B 在原点的两侧, ∴抛物线开口向下,则a <0. ∵AB =16,且A (-6,0),∴B (10,0),而A ,B 关于对称轴对称, ∴对称轴为直线x =-6+102=2,要使y 1随着x 的增大而减小,又∵a <0, ∴x >2.(第21题图解)(2)n =-8时,易得A (6,0),如解图②,∵抛物线过A ,C 两点,且与x 轴交点A ,B 在原点两侧, ∴抛物线开口向上,则a >0. ∵AB =16,且A (6,0),∴B (-10,0),而A ,B 关于对称轴对称, ∴对称轴为直线x =6-102=-2,要使y 1随着x 的增大而减小,又∵a >0, ∴x <-2.22.(本题8分)如图,矩形OABC 的顶点A ,C 分别在x ,y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数y =k x(k ≠0)在第一象限内的图象经过点D ,E ,且tan ∠BOA =12.(第22题图)(1)求边AB 的长.。

相关文档
最新文档