数学物理方法期末考试试题
数学物理方法期末考试答案.
天津工业大学(2009—2010学年第一学期)《数学物理方法》(A)试卷解答2009.12 理学院)特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。
本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。
一填空题(每题3分,共10小题)1. 复数 i e +1 的指数式为:i ee ;三角形式为:)1sin 1(cos i e + .2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 .3. 函数在一点可导与解析是 不等价的 (什么关系?).4. 给出矢量场旋度的散度值,即=⨯∇⋅∇f0 .-------------------------------密封线----------------------------------------密封线----------------------------------------密封线---------------------------------------学院专业班学号姓名装订线装订线装订线5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属于该区域的点,这样的区域称为 复通区域 .6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 .7. δ函数的挑选性为⎰∞∞-=-)()()(00t f d t f ττδτ.8. 在数学上,定解条件是指 边界条件 和初始条件 .9. 常见的三种类型的数学物理方程分别为 波动方程 、输运方程 和 稳定场方程 .10. 写出l 阶勒让德方程: 0)1(2)1(222=Θ++Θ-Θ-l l dx d x dxd x .二计算题(每小题7分,共6小题)1. 已知解析函数)(z f 的实部xy y x y x u +-=22),(,求该解析函数(0)0(=f ).解: y x u x +=2,x y u y +-=2,2=xx u ,2-=yy u . 0xx yy u u +=, (,)u x y 是调和函数. 2分 利用柯西-黎曼条件x y u v =,x y v u =-, 即,x y v x -=2,y x v y +=2, 2分 于是,⎰+++-=),()2()2(y x Cdy y x dx x y v⎰⎰+++-+++-=)0,()0,0(),()0,()2()2()2()2(x y x x C dy y x dx x y dy y x dx x yC x y xy +-+=22222. 2分所以,)21()(2iz z f -=. 1分2. 给出如图所示弦振动问题在0x 点处的衔接条件. 解:),0(),0(00t x u t x u +=-, 2分 0sin sin )(21=--ααT T t F , 2分 又因为),0(sin 011t x u tg x -=≈αα, ),0(sin 022t x u tg x +-=≈αα, 2分 所以,)(),0(),0(00t F t x Tu t x Tu x x -=--+. 1分3. 由三维输运方程推导出亥姆霍兹方程.解:三维输运方程为02=∆-u a u t (1分)分离时间变数t 和空间变数r,以)()(),(r v t T t r u= (2分) 上式代入方程,得v vTa T ∆='2 (1分)令上式等于同一常数2k -, 22k v vTa T -=∆=' (2分) 则得骇姆霍兹方程为02=+∆v k v (1分)4. 在00=z 邻域把m z z f )1()(+=展开(m 不是整数).解:先计算展开系数:m z z f )1()(+=, m f 1)0(=;)(1)1()(1z f zmz m z f m +=+='-; m m f 1)0(='; 2)1)(1()(-+-=''m z m m z f m m m f 1)1()0(-=''; 5分 )()1()1(2z f z m m +-=, 所以,m z )1(+在00=z 邻域上的泰勒级数为+-++=+21!2)1(1!11)1(z m m z m z m m m m ⎭⎬⎫⎩⎨⎧+-++= 2!2)1(!111z m m z m m . 2分5. 计算⎰=-22sin 21z zzdz.解: 因为4ππ±→n z (n 为整数,包括零),有0)sin 21(2→-z ,因此,40ππ±=n z 是极点.但是,在2=z 圆内的极点只有4π±.又由于1分4]sin 21)4[(lim 24πππ-=--→z z z z , 2分 4]sin 21)4[(lim 2πππ-=-+-→z z z z , 2分 所以, i sf sf i z zdz z 222)]4(Re )4([Re 2sin 21ππππ-=-+=-⎰=. 2分6. 求拉氏变换][cos t L ω,ω为常数. 解: )(21cos t i t i e e t ωωω-+=, sp e L st -=1][ 2分 ∴ ⎥⎦⎤⎢⎣⎡+=-)(21][cos t i t i e e L t L ωωω][21][21t i t i e L e L ωω-+= 2分 ⎥⎦⎤⎢⎣⎡++-=ωωi p i p 1121 2分 22ω+=p p0Re >p 1分三计算题求解两端固定均匀弦的定解问题 02=-xx tt u a u 00==x u,0==lx u,)(0x u t ϕ==,)(0x u t t ψ==.解: 设此问题的解为)()(),(t T x X t x u = 代入方程和初始条件,得 02=''-''T X a T X ,0)()0(=t T X ,0)()(=t T l X , 可得,X X Ta T ''=''2,0)0(=X ,0)(=l X , 令,λ-=''=''X X Ta T 2 所以,⎩⎨⎧===+''0)(,0)0(0l X X X X λ ,(本征值问题)02=+''T a T λ 下面先求解本征值问题:当0<λ时, xxe c e c x X λλ---+=21)(,由初始条件,得 021==c c , 因此,0),(≡t x u ,解无意义.当0=λ时, 21)(c x c x X +=, 同样由初始条件,得 021==c c , 因此,0),(≡t x u ,解无意义.当0>λ时, x c x c x X λλs i n c o s )(21+=, 由初始条件,得 01=c ,0sin 2=l c λ, 所以,0sin =l λ,即,πλn l = (n 为正整数),因此本征值为:222ln πλ= ,3,2,1=n本征函数为:lxn c x X πsin)(2=, 2c 为任意常数. 10分 方程02=+''T a T λ的解为:latn B l at n A t T ππsin cos )(+=, 因此,l x n l at n B l at n A t x u n n n πππsinsin cos ),(⎪⎭⎫ ⎝⎛+=, 此问题的通解为:l x n l at n B l at n A t x u t x u n n n n n πππsinsin cos ),(),(11⎪⎭⎫ ⎝⎛+==∑∑∞=∞=, 代入初始条件得∑∞==1)(sin n n x l xn A ϕπ,∑∞==1)(s i n n nx lxn l a n B ψππ, 所以,⎰=l n d l n l A 0s i n )(2ξπξξϕ, ⎰=l n d ln a n B 0s i n )(2ξπξξψπ. 10分四简答题给出泊松方程,并说明求解此方程的方法、步骤.解:泊松方程为:),,(zyxfu=∆ 3分令wvu+=,取v唯一特解, 2分则0=-=∆-∆=∆fuvuw 2分然后求解拉氏方程0=∆w得w。
数学物理方法
《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。
1.z 为复数,则( )。
A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。
2.下列积分不为零的是( )。
A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。
3.下列方程是波动方程的是( )。
A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。
4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。
A 1个;B 2个;C 3个;D 4个。
5.二维拉普拉斯方程的定解问题是( )。
A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。
6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。
A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。
7.傅里叶变换在物理学和信息学中能实现( )。
A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。
8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。
A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。
9.下列表述中不正确的是( )。
A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。
数学物理方法(4)--期末考试试卷(1)答案
w(z) = ck zk k =0
(2)系数递推公式。将 w(z) 代入方程,得:
� �
k (k - 1)ck zk-2 - ck zk+1 = 0
k =2
k =0
2c2 + [(k + 2)(k + 1)ck+2 - ck-1]zk = 0
k =1
c2 = 0,
ck +2
=
(k
+
-
4)L6 �5 �3 �2 c0
(b) 用 c1 表示 c3k+1
c3k +1
=
c3k -2 3k(3k + 1)
=
1 3k (3k+ Nhomakorabea1)(3k
-
c3k -5 2)(3k
-
3)
=
(3k
+ 1)3k(3k
-
1 2)(3k
-
3)L7
�6 �4 �3 c1
因 c2 = 0 ,故 c5 = c8 = L = 0
=
-d
'(x)
第 1 页(共 3 页)
得分 评阅人 三、计算题:(共 2 题,每题 10 分,共 20 分)
1.试用级数解法求解在 z0 = 0 邻域内 w''-zw = 0 的解,其初始条件为 w(0) = 1, w'(0) = 0 。 解:(1)解的形式。系数 p(z) = 0, q(z) = -z 在 z0 = 0 解析, z0 是方程的常点,所以解的形式为:
(1)
l=0
两边对 x 求导,得t(1 -
2xt
+
数学物理方法试卷4
第 1 页 共 5 页物理系 20 —20 学年第 学期期末考试《数学物理方法》试卷(B )考试时间:120分钟 考试方式:闭卷班级 专业 姓名 学号题 号 一 二 三 四 五 总 分得 分核分人一、填空(本大题共7题,每空3分,共30分)1、写出复数i 的三角式 ,指数式 。
2、欧勒公式中sinZ= 。
3、幂级数∑∞=0n n t 的收敛半径为 。
4、e z 在Z=0的邻域上的泰勒级数是(至少写出前三项)e z= 。
5、就奇点的类型而言,Z=∞是函数f(z)=ZZsin 的 奇点,Z=0是函数的 点。
6、一维波动方程在直角坐标系下的表达式: ; 拉普拉斯方程0u ∆=在柱坐标系中的表达式为:得分 阅卷人 装 订 线 内 请 勿 答 题 …………………………………………………………..装………………….订…………………..线………………………………………………………第 2 页 共 5 页。
7、m 阶贝塞尔方程的表达式为 。
二、简答题(本大题共1题,共10分)一个数学物理方程的边界条件有哪几种类型?请写出相应的表达式?并说明物理意义。
三、 证明题 (本大题共1题,共10分)证明函数()(cos sin )x f z e y i y =+在复平面内是解析函数。
得分 阅卷人 得分 阅卷人得分 阅卷人第 3 页 共 5 页四、 计算题 (本大题共2题,每题10分,共20分)1、利用留数计算回路积分2252(1)z z dz z z =--⎰2、计算实变函数积分I=220,(01)12cos d p p p πθθ〈〈-+⎰。
装 订 线 内 请 勿 答 题 …………………………………………………………..装………………….订…………………..线………………………………………………………第 4 页 共 5 页五、求定解问题(本大题共1题,共15分)20000,(0,)0,0;(),().(0)t t x x x x l t tt u a u x l u u u x u x t φψ====⎧-=<<⎪⎪==⎨⎪==≥⎪⎩得分 阅卷人第 5 页 共 5 页六、应用题(本大题共1题,共15分)一根长为l 的弦,两端固定在水平x 轴上,t=0时刻,使其偏离平衡位置,放手后弦开始做自由振动,试推导该弦在振动过程中所满足的偏微分方程。
数学物理方法期末试题(5年试题含答案)
………密………封………线………以………内………答………题………无………效……附:拉普拉斯方程02=∇u 在柱坐标系和球坐标系下的表达式 柱坐标系:2222222110u u u uzρρρρϕ∂∂∂∂+++=∂∂∂∂球坐标系:2222222111sin 0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭一、填空题36分(每空2分)1、 数量场2322u x z y z =+在点(2, 0, -1)处沿2423x xy z =-+l i j k 方向的方向导数是。
2、 矢量场()xyz x y z ==+A r r i +j k 在点(1, 3, 3)处的散度为 。
3、 面单连域内设有矢量场A ,若其散度0∇⋅A =,则称此矢量场为 。
4、 高斯公式Sd ⋅=⎰⎰ A S ;斯托克斯公式ld ⋅=⎰ A l 。
5、 将泛定方程和 结合在一起,就构成了一个定解问题。
只有初始条件,没有边界条件的定解问题称为 ;只有边界条件,没有初始条件的定解问题称为 ;既有边界条件,又有初始条件的定解问题称为 。
………密………封………线………以………内………答………题………无………效……6、 ()l P x 是l 次勒让德多项式,则11()()l l P x P x +-''-= ; m n =时,11()()mn P x P x dx -=⎰。
7、 已知()n J x 和()n N x 分别为n 阶贝塞尔函数和n 阶诺依曼函数(其中n 为整数),那么可知(1)()n H x = 。
(2)()n H x = 。
8、 定解问题2222000(0,0)|0,||0,|0x x ay y bu ux a y b x y u u V u u ====⎧∂∂+=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩的本征函数为 ,本征值为 。
物理数学方法试题及答案
物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。
答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。
答案:复频域3. 线性微分方程的解可以表示为______的线性组合。
答案:特解4. 复数z = a + bi的共轭复数是______。
答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。
答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。
2. 什么是波动方程?请给出其一般形式。
答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。
3. 请解释什么是特征值和特征向量,并给出一个例子。
答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。
特征向量则是对应的非零向量。
例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。
数学物理方法期末考试试题
数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。
7. 解释什么是边界层理论,并说明它在流体力学中的重要性。
8. 描述格林函数在求解偏微分方程中的作用。
## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。
10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。
假设\( \rho \) 是常数,求解 \( V(x) \)。
## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。
请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。
数学物理方法考试试题
数学物理方法考试试题1. 求解方程(1) 求解方程$3x^2 + 4x - 7 = 0$;(2) 求解方程$\sin x + \cos x = 1$。
2. 矢量运算已知矢量$\boldsymbol{a} = 2\hat{i} - \hat{j} + 3\hat{k}$,$\boldsymbol{b} = \hat{i} + 2\hat{j} - 3\hat{k}$,求$\boldsymbol{a} + \boldsymbol{b}$和$\boldsymbol{a} \cdot \boldsymbol{b}$。
3. 微积分计算积分$\int_0^1 x^2\mathrm{d}x$。
4. 偏微分方程求解偏微分方程$u_t = \alpha^2 u_{xx}$,其中$\alpha$为常数。
5. 线性代数设矩阵$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$,求$A$的特征值和特征向量。
6. 复变函数计算函数$f(z) = \text{Re}(z^2)$的柯西黎曼方程,并判断$f(z)$在何种条件下解析。
7. 量子力学利用定态薛定谔方程,求一维谐振子的能量本征值和本征函数。
8. 物理学基础推导光的双缝干涉公式$I = I_0 \cos^2$$\left(\frac{\pi d \sin\theta}{\lambda}\right)$,并解释各符号的含义。
9. 统计力学计算理想气体的内能$U$与温度$T$的关系式,并讨论其在高温极限下的行为。
通过以上试题,考生可以全面复习数学物理方法的基础知识和解题技巧,提高应试水平,取得优异成绩。
祝各位考生考试顺利!。
数学物理方法期末考试卷与解答
《数学物理方法》试卷(A 卷)参考答案姓名: 学号:题号 一 二 三 四 五 六 七八 总分 得分注:本试卷共一页,共八大题。
答案请做在答题纸上,交卷时,将试题纸与答题纸填好姓名与学号,必须同时交齐,否则考卷作废!可能用到的公式:1). (2l +1)xP l (x )=lP l −1(x )+(l +1)P l+1(x ), 2). P 0(x )=1, P 1(x )=x ;3))(~)]([00k k f x f eF xik −=;4))]([1])([x f F ikd f F x=∫∞−ξξ; 5).])1(1[2sin )(I 333n ln l xdx l n x l x −−=−=∫ππ一、 简答下列各题。
(12分,每题6分)1. 试在复平面上画出3)arg(0π<−<i z ,4Re 2<<z 点集的区域。
解:如图阴影部分为所求区域 (6分)2. 填空题:函数3)2)(1()(i z z z f +−=是单值的还是多值的?多值的(1分);若是多值,是几值?3值(2分);其支点是什么?1,-2i ,∞(3分)。
二、 (9分) 试指出函数3sin )(zzz z f −=的奇点(含ㆀ点)属于哪一类奇点? 解:22112033)12()1(])12()1([1sin )(−∞=+∞=∑∑+−=+−−=−=n n nn n n n n n z n z z z z z z f (3分) z=0为f (z )的可去奇点;(3分)z=∞为f (z )的本性奇点;(3分)三、 (9分) 已知解析函数f (z ) = u (x ,y ) + iv (x ,y )的虚部v (x,y ) = cos x sh y , 求f (z )= ? 解:由C-R 条件x y x v yy x u y y x v x y x u ∂∂−=∂∂∂∂=∂∂),(),(,),(),( (3分)得 u x (x,y ) = v y (x,y ) = cos x ch y u y (x,y ) = −v x (x,y ) = sin x sh y (3分)高数帮帮数帮高数帮高f (z ) = f (x +iy ) = u (x ,y ) + iv (x ,y ) = sin x ch y +i cos x sh y + c上式中令 x=z, y=0, 则 f (z ) = f (z+i0) = sinz + c (3分)四、 (10分) 求积分dz z e I Lz∫−=6)1(其中曲线L 为(a)圆周21=z ;(b)圆周2=z 解:(a) 6)1()(−=z e z f z 在圆周21=z 内解析,I = 0;(5分) (b) 在圆周2=z 内有一奇点,I = 2πiRes f (1)= 2π i !52)1()1()!16(166551lim e i z e z dx d z z π=−−−→(5分) 五、 (10分) 计算拉普拉斯变换?]2sin [=t t L (提示:要求书写计算过程)解:已知 42]2[sin ,][sin 222+=+=p t L p t L 也即ωωω(2分) 由象函数微分定理)3(4)(4p4)(4p ]2sin []2sin )[()2(4)(4p )42(]2sin )[()3(,)()1()]()[(2222222分分分+=+−−=−=−∴+−=+=−−=−p p t t L t t L p p dp d t t L p f dp d t f t L nnnn六、 (15分) 将f (x )= (35/8)x 4 + 5x 3−(30/8)x 2 +(10/3)x +1展开为以{ P l (x ) }基的广义付里叶级数。
数学物理方法期末考试大题
四、球函数(12 分) 1、一空心圆球区域,内半径为 r1 ,外半径为 r2 ,内球面上有恒定电势 u0 ,外球面上电势保 持为 u1 cos 2 , u0 、 u1 均为常数,试求内外球面之间空心圆球区域的电势分布。
一、拉普拉斯变换(8 分) 1、求积分 I t
0
cos tx dx x2 a2
二、齐次方程的分离变数法(15 分) 1、 求解细杆导热问题,杆长 l ,b 为常数,两端保持为零度,初始温度分布
u |t 0 bx l x l 2
2、 长为 l 的杆,一端固定,另一端受力 F0 而伸长,求解杆在放手后的振动。
y
求解板的稳定温度分布。
三、非齐次方程的分离变数法(15 分) 1、 长为 l 的均匀细杆两端固定,杆上单位长度受有纵向外力 f 0 sin 2 x l cos t ,初始位 移为 sin x l ,初始速度为零,求解杆的纵振动。
2
2、 求解热传导问题
ut a 2u xx A sin t u x |x 0 0, u |x l 0 u | x t 0
3、 求解薄膜的恒定表面浓度扩散问题,薄膜厚度为 l ,杂质从两面进入薄膜。由于薄膜周 围气氛中含有充分的杂质,薄膜表面上的杂质浓度得以保持为恒定的 N 0 ,对于较大的 t 把所得答案简化。
4、 均匀的薄板占据区域 0 x a , 0 y b 。边界上的温度
u |x 0 0 , u |x a 0 , u | y 0 u0 , lim u 0
3、 两端固定弦在点 x0 受谐变力 f t f0 sin t 作用而振动,求解振动情况。[提示: 外加力的线密度可表示为 f x, t f 0 sin t x x0 ]
数学物理方法试卷
数学物理方法试卷数学物理方法是一门重要的学科,它将数学和物理学相结合,以求解物理问题为目标。
本文档旨在提供一份针对数学物理方法的试卷,帮助学生加深对该学科的理解和应用能力。
一、选择题(共10题,每题2分)1. 下列哪个是四位数?A. 123B. 12345C. 123456D. 12342. 如何计算三角形的面积?A. 底乘高除以2B. 长乘宽C. 半径的平方乘以πD. 无法计算3. 下列哪个是速度的单位?A. 米/秒B. 千克C. 焦耳D. 牛顿4. 什么是牛顿第三定律?A. 物体的加速度和作用力成正比B. 物体的质量和加速度成正比C. 在力的作用下,物体会产生加速度D. 任何作用力都有一个相等且方向相反的反作用力5. 单位矩阵是什么?A. 所有元素都为1的矩阵B. 所有元素都为0的矩阵C. 对角线上元素都为1,其他元素为0的矩阵D. 所有元素都相等的矩阵6. 下列哪个是圆的面积公式?A. πr^2B. 2πrC. πd^2D. 0.5πr^27. 加速度的单位是什么?A. 米/秒^2B. 米/秒C. 十米/秒^2D. 千米/小时8. 下列哪个公式用于计算动能?A. F = maB. W = FdC. E = mc^2D. KE = 1/2mv^29. 如何计算两个向量的点积?A. 向量相乘再求和B. 向量相除C. 向量相减D. 无法计算10. 下列哪个没被广义相对论所解释?A. 引力B. 黑洞C. 宇宙膨胀D. 电磁力二、解答题(共3题,每题10分)1. 请用泰勒级数展开sin(x),并计算在x=π/6时的近似值。
2. 请用微分方程求解y'' + 4y = 0,并给出其特解。
3. 请解释质心是什么,并说明为什么在某些问题中质心坐标系非常有用。
本试卷针对数学物理方法的知识进行了全面的考察。
选择题部分测试了学生的基础知识和概念理解能力,而解答题则要求学生能够运用所学的数学物理方法进行实际问题的求解和解释。
数学物理方法期末考试卷与解答
华南师范大学信息光电子科技学院2008-2009年(一)学期末考试试卷光电工程系《数学物理方法》试卷(A 卷)参考答案注:本试卷共一页,共八大题。
答案请做在答题纸上,交卷时,将试题纸与答题纸填好姓名与学号,必须同时交齐,否则考卷作废! 可能用到的公式:1). (2l +1)xP l (x )=lP l −1(x )+(l +1)P l+1(x ), 2). P 0(x )=1, P 1(x )=x ;3))(~)]([00k k f x f e F xik −=;4))]([1])([x f F ikd f F x=∫∞−ξξ; 5).])1(1[2sin )(I 333n ln l xdx l n x l x −−=−=∫ππ一、 简答下列各题。
(12分,每题6分)1. 试在复平面上画出3)arg(0π<−<i z ,4Re 2<<z 点集的区域。
解:如图阴影部分为所求区域 (6分)2. 填空题:函数3)2)(1()(i z z z f +−=是单值的还是多值的?多值的(1分);若是多值,是几值?3值(2分);其支点是什么?1,-2i ,∞(3分)。
二、 (9分) 试指出函数3sin )(zzz z f −=的奇点(含ㆀ点)属于哪一类奇点? 解:22112033)12()1(])12()1([1sin )(−∞=+∞=∑∑+−=+−−=−=n n nn n n n n n z n z z z z z z f (3分) z=0为f (z )的可去奇点;(3分)z=∞为f (z )的本性奇点;(3分)三、 (9分) 已知解析函数f (z ) = u (x ,y ) + iv (x ,y )的虚部v (x,y ) = cos x sh y , 求f (z )= ? 解:由C-R 条件xy x v y y x u y y x v x y x u ∂∂−=∂∂∂∂=∂∂),(),(,),(),( (3分)得 u x (x,y ) = v y (x,y ) = cos x ch y u y (x,y ) = −v x (x,y ) = sin x sh y (3分)du (x,y ) =u x (x,y )d x + u y (x,y )dy = cos x ch y dx + sin x sh y dy=d (sin x ch y ) f (z ) = f (x +iy ) = u (x ,y ) + iv (x ,y ) = sin x ch y +i cos x sh y + c上式中令 x=z, y=0, 则 f (z ) = f (z+i0) = sinz + c (3分)四、 (10分) 求积分dz z e I Lz∫−=6)1(其中曲线L 为(a)圆周21=z ;(b)圆周2=z 解:(a) 6)1()(−=z e z f z 在圆周21=z 内解析,I = 0;(5分) (b) 在圆周2=z 内有一奇点,I = 2πiRes f (1)= 2π i !52)1()1()!16(166551lim e i z e z dx d z z π=−−−→(5分) 五、 (10分) 计算拉普拉斯变换?]2sin [=t t L (提示:要求书写计算过程)解:已知 42]2[sin ,][sin 222+=+=p t L p t L 也即ωωω(2分) 由象函数微分定理)3(4)(4p4)(4p ]2sin []2sin )[()2(4)(4p )42(]2sin )[()3(,)()1()]()[(2222222分分分+=+−−=−=−∴+−=+=−−=−p p t t L t t L p p dp d t t L p f dp d t f t L nnnn六、 (15分) 将f (x )= (35/8)x 4 + 5x 3−(30/8)x 2 +(10/3)x +1展开为以{ P l (x ) }基的广义付里叶级数。
试题一-数学物理方法-西北师范大学
西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A 卷)系别:专业:级别:班级:学号:姓名:任课教师:题号一二三四五六七八总分得分一、(10分)在经典数学物理方程中,以二阶线性偏微分方程为主要研究对象.请问二阶线性偏微分方程从数学上分为哪几类?在物理上分别对应于什么过程?并写出各类方程的标准形式.二、(10分)数学物理方程有两大基本任务:导出定解问题和求解相应的定解问题.请问什么是定解问题?定解问题包括哪些要素?我们学习了哪些定解问题?以及求解这些定解问题的主要方法有哪些?三、(10分)定解问题的适定性对于导出定解问题和求解定解问题具有重要的指导意义.请问什么是定解问题的适定性?适定性包括哪些方面?并从物理角度分析如下定解问题是不适定的(提示:可以从温度场或静电场出发,解可能不存在).∆u =f (f =0)(在区域D 内)∂u ∂n S =0(S 为区域D 的边界,n 为边界S 的外法线方向)四、(5分)一根长为l 的均匀细杆,其温度分布满足如下定解问题:u t −a 2u xx =0(0<x <l,t >0)u (0,t )=0,u x (l,t )=0(t ≥0)u (x,0)=200(0≤x ≤l )《数学物理方法》试卷(A 卷)第1页(共3页)不求解定解问题,从物理角度直观分析细杆上温度随时间的变化情况,并考察t →+∞时细杆上的温度.五、(30分)分离变量法是求解定解问题的重要方法之一.请问分离变量法对定解问题有什么要求?分离变量法有哪些基本步骤?关键的步骤是什么?请用分离变量法求解如下弦振动方程的混合问题(要求写出完整的求解过程),并分析解的物理意义.u tt =a 2u xx (0<x <l,t >0)u (0,t )=0,u (l,t )=0(t ≥0)u (x,0)=sin 2πx l ,u t (x,0)=0(0≤x ≥l )六、(15分)一根无限长的均匀细杆,其振动满足如下定解问题:u tt =a 2(u xx +2x u x )(−∞<x <∞,t >0)u (x,0)=ϕ(x )(−∞<x <∞)u t (x,0)=ψ(x )(−∞<x <∞)其中ϕ(x ),ψ(x )为充分光滑的已知函数.请求解该定解问题,并说明解的物理意义(提示:令v (x,t )=xu (x,t )).七、(10分)格林函数又称点源影响函数,请用镜像法求出Laplace 方程上半空间Dirichlet 问题的格林函数,并说明其物理意义.同时请写出Laplace 方程上半空间Dirichlet 问题∆u =0(z >0,−∞<x <∞,−∞<y <∞)u (x,y,0)=f (x,y )(−∞<x <∞,−∞<y <∞)解的积分公式.八、(10分)求解常微分方程的本征值问题时,会得到各种各样的特殊函数,诸如Legendre(勒让德)多项式、Bessel(贝塞耳)函数、Hermite(厄密)多项式《数学物理方法》试卷(A 卷)第2页(共3页)和Laguerre(拉盖尔)多项式等.对连带Legendre多项式,请填空(每空2分):l阶连带Legendre微分方程的一般形式为,其中有两个本征值l(l+1)和m.l的取值范围为,相应m的取值范围为.l阶连带Legendre微分方程的解为l阶连带Legendre多项式,连带Legendre多项式的性、性和完备性是使它成为一个坐标函数系的三个重要性质.《数学物理方法》试卷(A卷)第3页(共3页)西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A卷)参考答案一、(10分)二阶线性偏微分方程从数学上分为双曲型、抛物型、椭圆型三类,在物理上,双曲型方程对应于波动过程,抛物型方程对应于传输和扩散过程,椭圆型方程对应于稳定场过程.双曲型方程的标准形式为u tt−a2∆u=f,抛物型方程的标准形式为u t−a2∆u=f,椭圆型方程的标准形式为∆u=f.二、(10分)物理问题在数学上的完整提法是:在给定的定解条件下,求解数学物理方程.数学物理方程加上相应的定解条件就构成定解问题.定解问题包括泛定方程和定解条件.物理规律用偏微分方程表达出来,叫作数学物理方程.数学物理方程,作为同一类物理现象的共性,反映的是矛盾的普遍性,与具体条件无关,是解决问题的依据,所以又称为泛定方程.定解条件包括边界条件和初始条件,有时还需要衔接条件.边界条件和初始条件反映了具体问题特定的环境和历史,即矛盾的特殊性.泛定方程提供解决问题的依据,定解条件提出具体的物理问题,泛定方程和定解条件作为一个整体,合称为定解问题.学习的定解问题有:对波动过程:针对有界弦,提出了弦振动方程的混合问题;针对无界弦,提出了弦振动方程的初值问题(或Cauchy问题).对传输和扩散过程:针对有界杆,提出了热传导方程的混合问题;针对无界杆,提出了热传导方程的初值问题;针对一端有界的杆,提出了热传导方程的半无限问题.对稳定场过程:提出了Laplace方程圆、球、半空间、半平面的Dirichlet问题.求解这些定解问题的主要方法有:分离变量法(有界空间、无界空间、极坐标系、球坐标系)、Fourier级数法(齐次泛定方程、非齐次泛定方程)、行《数学物理方法》试卷(A卷)参考答案第1页(共4页)波解法(或D’Alembert解法)、冲量定理法、格林函数法(波动、热传导、镜像法)等.三、(10分)定解问题是对真实的物理问题经过一定的近似后得到的,近似就涉及到是否合理的问题,即定解问题是否提的正确,这一问题称为定解问题的适定性.定解问题的适定性包括解的存在性、解的唯一性和解的稳定性三个方面.该定解问题如果从温度场来考虑,反映的是这样一种温度场:区域D内存在热源,而边界上是绝热的.热源不停的放出热量,而热量又不能经由边界散发出去,D内的温度必然要不停的升高,其温度分布不可能是稳定的,故该问题不能由Possion方程来描述,因此该定解问题的解是不存在的.从而该定解问题是不适定的.(注:从静电场分析类似,只不过内部有电荷分布,而电场的法向分量为零.)四、(5分)从该定解问题可以看出:杆的左端温度为0,右端绝热,杆内部没有热源,杆上初始时刻各处温度均为常数200.根据热传导规律,杆上的温度将随时间降低,越靠近左端,温度降得越快,最后当t→+∞时细杆的温度将和左端的温度相等,即杆上各处的温度均为0.五、(30分)分离变量法要求定解问题的泛定方程与边界条件必须是齐次的.分离变量法其基本步骤为:1、变量分离;2、求解本征值问题;3、求解另外的常微分方程;4、特解的叠加;5、利用定解条件确定叠加系数.分离变量法关键的步骤是求解本征值问题.1.变量分离设u(x,t)=X(x)T(t),代入泛定方程得X +λX=0T +λa2T=0,其中λ为分离常数.将u(x,t)=X(x)T(t)代入边界条件得X(0)=0,X(l)=0.《数学物理方法》试卷(A卷)参考答案第2页(共4页)2.求解本征值问题X +λX =0X (0)=0,X (l )=0本征值λn =n 2π2l 2,本征函数X n (x )=sin nπxl ,n =1,2,···.3.求解常微分方程T+n 2π2a 2l 2T =0,n =1,2,···T n (t )=C n cos nπa l t +D n sin nπalt ,n =1,2,···.其中C n ,D n 为任意常数.得一系列特解u n (x,t )=X n (x )T n (t )=C n cos nπa l t +D n sin nπa l t sin nπxl,n =1,2,···.4.特解的叠加u (x,t )=∞ n =1u n (x,t )=∞ n =1C n cos nπal t +D n sin nπa l t sin nπx l.5.利用初始条件确定叠加系数C n ,D nu (x,0)=∞ n =1C n sinnπx l =sin 2πxl =⇒C 2=1C n =0,n =2.u t (x,0)=∞ n =1D n nπa l sin nπxl=0=⇒D n =0,n =1,2,···.所以该定解问题的解为u (x,t )=cos2πa l t sin 2πxl.解的物理意义:该Fourier 级数解在物理上表示驻波.六、(15分)令v (x,t )=xu (x,t ).化原定解问题为:v tt =a 2v xx (−∞<x <∞,t >0)v (x,0)=xϕ(x )(−∞<x <∞)v t (x,0)=xψ(x )(−∞<x <∞)利用D’Alembert 公式,有《数学物理方法》试卷(A 卷)参考答案第3页(共4页)v(x,t)=(x−at)ϕ(x−at)+(x+at)ϕ(x+at)2+12ax+atx−atαψ(α)dα.所以,u(x,t)=1xv(x,t)=12x(x−at)ϕ(x−at)+(x+at)ϕ(x+at)+1ax+atx−atαψ(α)dα.解的物理意义:f(x−at)表示右行波(或右传播波、正行波),f(x+at)表示左行波(或左传播波、逆行波),u(x,t)表示沿x轴正、负方向传播的行波,其中前一项来源于初始位移ϕ(x),后一项来源于初始速度ψ(x).七、(10分)Laplace方程上半空间Dirichlet问题的格林函数为:G(M,M0)=1r MM−g(M,M0)=1r MM−1r MM1=1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2,其中1r MM=1(x−x0)2+(y−y0)2+(z−z0)2在静电学上表示M0(x0,y0,z0)处单位正电荷在M(x,y,z)处产生的电势,−g(M,M0)表示接地导体平面z=0上感应负电荷在M(x,y,z)处产生的电势,其可以用镜像点M1(x0,y0,−z0)处单位负电荷产生的电势−1(x−x0)2+(y−y0)2+(z+z0)2来代替.Laplace方程上半空间Dirichlet问题解的积分公式为:u(x0,y0,z0)=−14πf∂G(M,M0)∂ndS=14π∞−∞∞−∞f(x,y)·∂∂z1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2z=0dx dy=z02π∞−∞∞−∞f(x,y)(x−x0)2+(y−y0)2+z203/2dxdy八、(10分)(1−x2)d2ydx2−2xdydx+l(l+1)−m21−x2y=0.l=0,1,2,3,···,m=0,1,2,···,l.正交、归一.《数学物理方法》试卷(A卷)参考答案第4页(共4页)。
(完整版)南昌大学2011-2012历年数学物理方法期末试卷ABC套卷(附所有答案)
—南昌大学考试试卷—
【适用时间:2011 ~2012 学年第二学期试卷类型:[B]卷】
2. 考查下面的无限长弦的振动问题:
其中,。
这是一个达朗贝尔公式定解问题。
(1)首先给出达朗贝尔公式及相应定解问题的一般形式;
(2)利用达朗贝尔公式求解。
3. 已知矩形区域上的函数满足方程和
齐次边界条件,按以下步骤求解:
(1)分离变数并找到本问题中包含的本征值问题;
(2)求解此本征值问题,确定本征值和本征函数;
(3)给出满足上述方程和条件的的一般解。
—南昌大学考试试卷—
【适用时间:2011 ~2012 学年第二学期试卷类型:[C]卷】
—南昌大学考试试卷—
【适用时间:2011 ~2012 学年第二学期试卷类型:[A]卷】
—南昌大学考试试卷—
【适用时间:2011 ~2012 学年第二学期试卷类型:[A]卷】答案
—南昌大学考试试卷参考答案及评分标准—【适用时间:20 11 ~20 12 学年第二学期试卷类型:[ B ]卷】。
2018-2019(1)数学物理方法期末复习题
2018-2019(1)数学物理方法期末复习题1、将下列复数表示为sin θ,cos θ的幂的形式(1)cos5θ;(2)sin 5θ2、计算下列复数(1)(101−+;(2(3)()i +Ln 1;3、根据已知条件,求解析函数()()(),,f z u x y iv x y =+(1) 已知:()22,u x y x y xy =−+,()00f =(2) 已知:32(,)3=−u x y x xy ,()00f =(3) 已知:(),sin px v x y e y =,p 为待定值。
4、计算下列积分:(1)z 2()(3)dz z i z =−+⎰; (2)3||1cos (z i z dz z i −=−⎰); (3)z 4(2)(3)dz z z =++⎰; (4)2sin d 210x x x x x +∞−∞−+⎰;(5)201d ,1sin x a a x π>+⎰;(6)220cos d (1)x x x +⎰π 5、计算积分()Re cz dz ⎰,(1)c 是连结点0到1+i 的直线段;(2)c 是由1+i 到1+2i ,再到3+2i 的折线段。
6、试将函数1()1z f z z −=+在z=1的邻域内展开成泰勒级数。
7、将函数21()-32f z z z =+在(1)0<|z |<1(2)1<|z |<2(3)|z |>2分别展开成洛朗级数。
8、求解下列本征值问题的本征值和本征函数:(1)()()0(0)0,()0X x X x X X l λ''+=⎧⎨==⎩;(2)()()0(0)0,()0X x X x X X l λ''+=⎧⎨'==⎩;(3)()()0(0)0,()0X x X x X X l λ''+=⎧⎨''==⎩9、已知勒让德多项式的正交性: 112 () P ()P ()d 210 ()n l n l x x x l n l −⎧=⎪=+⎨⎪≠⎩⎰, 前几阶勒让德多项式:0P ()1x =;1P ()x x =;2122P ()(31)x x =−;3132P ()(53)x x x =−(1)计算11(12)()n x P x dx −+⎰; (2)证明:12212(1)(1)[()]21n n n x P x dx n +−+'−=+⎰(3)以勒让德多项式为基,在[-1,1]上把f (x )= x 3展开为广义Fourier 级数 。
数学物理方法期末试卷
2013 —2014 学年度第 一 学期 《数学物理方法》试卷(A )学院 专业 班 学号 姓名 分数一、(本题10分)写出下列物理问题的定解问题1.一长度为l 的细杆,杆的侧面和两端保持绝热,初始杆上温度分布为x ,写出此定解问题。
并指出+∞→t 时的杆上的温度分布情况。
2.一半带形区域(0,0≥≤≤y a x ),已知边界0=x 和0=y 上的电势都为零,而边界a x =上的电势为 u 0,写出此半带形区域内电势满足的定解问题。
二、(本题10分)计算积分 dx x xJ I ⎰=)(2将计算结果用零阶和一阶贝塞尔函数表示,因为工程上有零阶、一阶贝塞尔函数表可查。
三、(本题15分)定解问题 ⎪⎪⎩⎪⎪⎨⎧====><<=-====0,5,0)0,0(30002t t t x x xx tt u x u u u t x u a u ππ1)若要使边界条件齐次化,求其辅助函数,并写出边界条件齐次化后相应的定解问题。
2)当方程的非齐次项和边界条件都与自变量t 无关时,可以选择特定的辅助函数w ,使得经变换w v u +=后所得v 的泛定方程和边界条件都是齐次的。
求满足本定解问题的辅助函数)(x w 。
四、(本题15分)有一内、外半径分别为a 和2a 的均匀球壳,其内球壳的电势分布为θ20cos u ,外球壳的电势为零,球壳内、外均无电荷。
求: 1)球壳内)2(a r a <<的电势分布;2)将单位正电荷从球壳的球心移到球壳内表面电场力所做的最大功是多少。
五、(本题20分)分离变量法和本征函数法1)定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧====><<=-====000)0,0(sin sin 0002t t t l x x xx ttu u u u t l x t lx A u a u ωπ用本征函数法展开求解时,关于)(t T 满足的方程和初始条件是什么。
2)利用分离变量法求解下列热传导问题⎪⎪⎩⎪⎪⎨⎧===><<=-===x u u u t x Du u t x x x x xx t 200sin 80)0,0(0ππ六、(本题15分)一维无界波动问题1)写出一维无界波动问题⎪⎪⎩⎪⎪⎨⎧==>+∞<<-∞=-==)()()0,(0002x u x u t x u a u t t t xx tt ψϕ的通解。
数学物理方法考试试题
数学物理方法考试试题一、选择题1. 在坐标系中,以下哪个曲线表示了函数 y = e^x 的图像?A. y = x^2B. y = eC. y = e^(-x)D. y = ln(x)2. 一个小球从地面上方以速度 v0 抛下,忽略空气阻力。
以下哪个公式正确地描述了小球的下降高度 h(t) 随时间变化的关系?A. h(t) = v0 * t - 0.5 * g * t^2B. h(t) = v0 * t + 0.5 * g * t^2C. h(t) = v0 * t + g * t^2D. h(t) = v0 * t - g * t^23. 空间中有一个电场 E = 2x i + 3y j + 4z k。
一个电子从点 (1, 2, 3) 处开始沿电场方向运动,电子的加速度大小是多少?A. 7B. 5C. 6D. 44. 一个质点在平面上做匀速圆周运动,其角速度大小为 2 rad/s。
质点的速度大小和圆周半径分别是多少?A. v = 2rB. v = 4rC. v = 6rD. v = 8r5. 一辆汽车以匀加速度 a 行驶,在时刻 t1 时起动,时刻 t2 时速度为 v2。
以下哪个公式可以用于计算汽车在时间区间 [t1, t2] 内行驶的距离?A. s = v2 - v1B. s = a * (t2 - t1)C. s = v1 * (t2 - t1) + 0.5 * a * (t2 - t1)^2D. s = v1 * (t2 + t1) + 0.5 * a * (t2 - t1)^2二、计算题1. 计算下列函数的导数:(1) f(x) = x^3 - 2x^2 + 3x - 4(2) g(x) = e^x * sin(x)2. 一个弹簧的劲度系数为 k,质量为 m 的物体悬挂在弹簧上。
当物体受到外力 F(t) = 2cos(t) 作用时,确定物体的运动方程并解释物体的运动特性。
3. 一个半径为 R 的圆形铁环在匀强磁场 B 的作用下,磁通量在时间区间 [0, t] 内以恒定速率增大。
数学物理方法试卷与答案
数学物理方法试卷与答案《数学物理方法》试卷一、选择题(每题4分,共20分)1.柯西问题指的是()A.微分方程和边界条件.B.微分方程和初始条件.C.微分方程和初始边界条件.D.以上都不正确.2.定解问题的适定性指定解问题的解具有()A.存在性和唯一性.B.唯一性和稳定性.C.存在性和稳定性.D.存在性、唯一性和稳定性.2u0,3.牛曼内问题u有解的必要条件是()nfA.f0.B.u0.C.fdS0.D.udS0.某''(某)某(某)0,0某l4.用分离变量法求解偏微分方程中,特征值问题某(0)某(l)0的解是()nnnn某).B.(某).A.(,co,inllll(2n1)(2n1)(2n1)(2n1)某).D.(某).C.(,co,in2l2l2l2l22225.指出下列微分方程哪个是双曲型的()A.u某某4u某y5uyyu某2uy0.B.u某某4u某y4uyy0.C.某2u某某2某yu某yy2uyy某yu某y2uy0.D.u某某3u某y2uyy0.二、填空题(每题4分,共20分)2u2u220,0某,t0t某1.求定解问题u某02int,u某2int,t0的解是_______________ut00,utt02co某,0某______________________.2.对于如下的二阶线性偏微分方程a(某,y)u某某2b(某,y)u某yc(某,y)uyydu某euyfu0其特征方程为________________________________________________________.3.二阶常微分方程y''(某)1'13y(某)(2)y(某)0的任一特解y__________某44某_______________________________________________.4.二维拉普拉斯方程的基本解为________________________________________,三维拉普拉斯方程的基本解为__________________________________________.5.已知J1(某)222in某,J1(某)co某,利用Beel函数递推公式求某某2J3(某)_______________________________________.2三、(15分)用分离变量法求解如下定解问题22u2ut2a某20,0某l,t0uu0,0,t0某某l某某0u某,utt00,0某l.t02四、(10分)用行波法求解下列问题2u2u2u320,y0,某,22某yy某u2u3某,0,某.y0yy0五、(10分)用Laplace变换法求解定解问题:u2u2,0某2,t0,t某u某0u某20,t0,ut0in某,0某2.3六、(15分)用格林函数法求解下定解问题2u2u某2y20,y0,uf(某),某.y0七、(10分)将函数f某某在区间[0,1]上展成Beel函数系{J1(m(1)某)}m1的级数,其中m(1)为Beel函数J1(某)的正零点,m1,2,.42022—2022学年第二学期《数学物理方法》试卷B答案一、选择题(每题4分,共20分)1.柯西问题指的是(B)A.微分方程和边界条件.B.微分方程和初始条件.C.微分方程和初始边界条件.D.以上都不正确.2.定解问题的适定性指定解问题的解具有(D)A.存在性和唯一性.B.唯一性和稳定性.C.存在性和稳定性.D.存在性、唯一性和稳定性.2u0,3.牛曼内问题u有解的必要条件是(C)fnA.f0.B.u0.C.fdS0.D.udS0.某''(某)某(某)0,0某l4.用分离变量法求解偏微分方程中,特征值问题某(0)某(l)0的解是(B)nnnn某).B.(某).A.(,co,inllll(2n1)(2n1)(2n1)(2n1)某).D.(某).C.(,co,in2l2l2l2l22225.指出下列微分方程哪个是双曲型的(D)A.u某某4u某y5uyyu某2uy0.B.u某某4u某y4uyy0.C.某2u某某2某yu某yy2uyy某yu某y2uy0.5D.u某某3u某y2uyy0.二、填空题(每题4分,共20分)2u2u220,0某,t0t某1.求定解问题u某02int,u某2int,t0的解是(2intco某).ut00,utt02co某,0某2.对于如下的二阶线性偏微分方程a(某,y)u某某2b(某,y)u某yc(某,y)uyydu某euyfu0其特征方程为(a(某,y)(dy)22b(某,y)d某dyc(某,y)(d某)20).3.二阶常微分方程y''(某)或0).4.二维拉普拉斯方程的基本解为(ln1().r1),三维拉普拉斯方程的基本解为r1'13y(某)(2)y(某)0的任一特解y(J某44某1(某)3225.已知J1(某)222in某,J1(某)co某,利用Beel函数递推公式求某某23J3(某)(221221din某(in某co某)某()()).某某某d某某三、(15分)用分离变量法求解如下定解问题22u2ut2a某20,0某l,t0uu0,0,t0某某某l某0u某,utt00,0某l.t06解:第一步:分离变量(4分)设u(某,t)某(某)T(t),代入方程可得某''(某)T''(某)某(某)T(t)a某(某)T(t)某(某)a2T(某)''2''此式中,左端是关于某的函数,右端是关于t的函数。
数学物理方程期末考试试题及答案
数学物理方程期末考试试题及答案一、求解方程(15分)⎧utt -a2uxx=0⎪⎨ux-at=0=ϕ(x)⎪u⎩x+at=0=ψ(x).其中ϕ(0)=ψ(0)。
⎧ξ=x-at解:设⎨则方程变为:η=x+at⎩uξη=0,u=F(x-at)+G(x+at)(8’)由边值条件可得:F(0)+G(2x)=ϕ(x),F(2x)+G(0)=ψ(x)由ϕ(0)=ψ(0)即得:u(x,t)=ϕ(x+at x-at)+ψ()-ϕ(0)。
22二、利用变量分离法求解方程。
(15分)⎧utt -a2uxx=0,(x,t)∈Q,⎪⎨ux=0=ux=l=0,t≥0,⎪u=ϕ(x),ut t=0=ψ(x)⎩t=0其中0≤x≤l。
a>0为常数解:设u=X(x)T(t)代于方程得:X''+λX=0,T''+λa2T=0(8’)X=C1cosλx+C2sinλx,T=C1cosλat+C2sinλat由边值条件得:C 1=0,λ=(∞n π2)ln πx lu =∑(B n cos λat +A n sin λat )sin n =1B n =2l n πx 2l n πx ,ϕ(x )sin dx A =ψ(x )sin dx n ⎰⎰00l l an πl2三.证明方程u t -a u xx -cu =0(c ≥0)具有狄利克雷边界条件的初边值问题解的唯一性与稳定性. (15分)证明:设v =e -ct u 代入方程:⎧v t-a 2v xx =0⎪⎨v t =0=ϕ(x )⎪v (0,t )=g (t ),v (l ,t )=g (t ).12⎩设v 1,v 2都是方程的解设v =v 1-v 2代入方程得:⎧v t-a 2v xx =0⎪⎨v t =0=0⎪v (0,t )=,v (l ,t )=0⎩由极值原理得v =0唯一性得证。
(8’)由v 1-v 2≤v 1-v 2得证。
τ≤ε,稳定性得证由v =e -ct u 知u 的唯一性稳定性四.求解二维调和方程在半平面上的狄利克雷问题(15分).∆u =u xx +u yy +u zz=0,z >0,u z =0=f (x ).解:设p (ξ,η,ζ)是上半平面内一点,在该点放置单位点电荷,其对称点p (ξ,η,-ς)格林函数:G (x ,y ,ξ,η)=-14π14π1(x -ξ)+(y -η)+(z -ς)1(x -ξ)+(y -η)+(z +ς)222222+∂G∂G=-∂n∂z z=0=ς2π[(x-ξ)+(y-η)+ς]2223/2方程的解:u(ξ,η)=ς2πϕ(x,y)⎰[(x-ξ)2+(y-η)2+ς2]3/2dx R2五、证明下列初边值问题解的唯一性.(20分)u utt-a2(uxx+uyy)=f(x,y,t) t=0=ϕ(x,y),=ψ(x,y),ut t=0uΓ=g(x,y,t).其中t>0,(x,y)∈Ω,Γ为Ω的边界.解:设u1,u2都是方程的解设u=u1-u2代入方程得:u tt -a(uxx+uyy)=0u u t t=02 =0=0 t=0uΓ=0.设E(t)=12222[u+a(u+u]dxdy t x y⎰⎰2ΩdE(t)=2⎰⎰[ut utt+a2(uxuxt+uyuyt)]dxdydtΩ=2[ut [utt-a(uxx+uyy)]dxdyΩ⎰⎰2=0(10’)E(t)=E(0)=0,u=C,由边值条件得:u=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C)
D)
二、 填空题(每题 3 分) 1. 定解问题
用本征函数发展开求解时,关于 T(t) 满足的方程是: __________
2. Legendre 多项式
的 x 的值域是 ___________。_
Bessel 函数
的 x 的值域是 ____________________。__
3. 一圆柱体内的定解问题为
其解的形式为
,下列哪一个结论是错误的 ______。
A)
B)圆形膜固有振动模式是
和
C) 是零阶 Bessel 函程
4.
是下列哪一个方程的解 _________。
A)
B)
C)
D)
5. 根据整数阶 Bessel 函数的递推公式,下列结论哪一个是正确的
________。
A)
B)
(6 ) Bessel 函数的递推关系
,写出球外的电位满足的定解
1)则定解问题关于 ρ满足的方程是: _____________________________; 相应方程的解为 ___________________________;
2)关于 z 满足的方程是 _______________________________________;
4. 计算积分
5. 计算积分
三、 (10 分)长为 的弦,两端固定,初始位移为 四、 (10 分)定解问题
,初始速度为 4 x,写出此物理问题的定解问题。
, 若要使边界条件齐次化,,求其辅助函数,并写出相应的定解问题 五、( 10 分)利用达朗贝尔公式求解一维无界波动问题
六、 (15 分)用分离变量法求解定解问题
计算积分 七、 (15 分)有一半径为 R 的薄圆盘,若圆盘的上下面绝热,圆盘边缘的温度分布为
数学物理方法期末考试试题
一、 单项选择题(每小题 2 分)
1. 齐次边界条件
的本征函数是 _______。
A)
B)
C)
D)
2. 描述无源空间静电势满足的方程是 ________。
A) 波动方程
B) 热传导方程
C) Poisson 方程
D)Laplace 方程
3. 半径为 R 的圆形膜,边缘固定,其定解问题是
,试求圆盘上稳定的温度分布
。
八、( 15 分)设有一半径为 R 的球壳,其球壳的电位分布
问题,并求球外的电位分布
参考公式
(1 ) 柱坐标中 Laplace 算符的表达式
(2 ) Legendre 多项式
(3) (4)
Legendre 多项式的递推公式 Legendre 多项式的正交关系
(5 ) 整数阶 Bessel 函数