一次函数单元测试题
初中数学人教版八年级下册 第十九章 一次函数单元检测卷(含详解)
一次函数单元检测卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列函数中是一次函数的是( )A .y =B .C .y =x 2D .y =kx +b (k ,b 为常数)2.小明家到学校5公里,则小明骑车上学的用时t 与平均速度v 之间的函数关系式是( )A .B .C .D .3.若是关于的一次函数,则的值为( )A .B .C .D .4.下列图象中,表示y 是x 的函数的是( )A .B .C .D .5.“五一”期间,一体育用品商店搞优惠促销活动,其活动内容是:“凡在该商店一次性购物超过100元者,超过100元的部分按九折优惠”在此活动中,小东到该商店为学校一次性购买单价为70元的篮球个(),则小东应付货款(元)与篮球个数(个)的函数关系式是( )A .B .C .D .6.已知函数和 的图象交于点P (-2,-1),则关于x ,y 的二元一次方程组的解是( )A .B .C .D .7.将函数的图象沿y 轴向下平移1个单位长度后,所得图象与x 轴的交点坐标为( )2x 2y x=5t =v 5v t =+5t v =5v t=()2 1 3my m x -=-+x m 11-1±2±x 2x >y x ()632y x x =>()631002y x x =+>()63102y x x =+>()63902y x x =+>3y ax =-y kx =3y ax y kx =-⎧⎨=⎩21x y =⎧⎨=-⎩21x y =-⎧⎨=-⎩21x y =⎧⎨=⎩21x y =-⎧⎨=⎩2y x =A .B .C .D .8.一次函数(,,是常数)的图象如图所示,则关于的方程的解是( )A .B .C .D .9.已知一次函数和,函数和的图象可能是 ( )A .B .C .D .10.若点,都在一次函数的图象上,则与的大小关系是( )A .B .C .D .不能确定11.已知点P (m ,n )在第四象限,则直线y=nx+m图象大致是下列的( )(0,1)-(1,0)-1(,0)21(0,)2y kx b =+0k ≠k b x 4kx b +=3x =3x =-0x =x b=1y ax b =+2y bx a =+()a b ≠1y 2y ()12,y -()22,y ()0y kx b k =+<1y 2y 12y y <12y y =12y y >A .B .C .D .12.关于正比例函数,下列结论中正确的是( ).A .函数图象经过点B .y 随x 的增大而减小C .函数图象经过第一、三象限D .不论x 取何值,总有二、填空题13.从肥城到北京大约450km ,一辆客车以80km/h 的速度从肥城出发至北京,则客车离北京的距离y 表示为行驶时间t 的函数关系式应为: .14.直线在轴上的截距是 .15.函数中,当满足时,它是一次函数.16.如果一次函数y=(k ﹣2)x+1的图象经过一、二、三象限,那么常数k 的取值范围是 .17.元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分打八折,小明到该商场一次性购买单价为60元的礼盒x 件,则应付款y (元)与x (件)之间的关系式,化简后的结果是 .三、解答题18.如图所示,汽车油箱的余油量与汽车的行驶时间的关系为一次函数,由此可知,汽车行驶的最长时间是多少?2y x =-()2,1-0y <23y x =--y 2(1)1y k x k =++-k ()2x >(L)y (h)x19.已知y 与(m 为常数)成正比例,且当时,当时.(1)求y 关于x 的函数表达式;(2)若点在(1)中函数的图象上,求的值.20.如图,在平面直角坐标系中,正比例函数的图象与一次函数的图象的交点坐标为.(1)求的值和一次函数的解析式;(2)直接写出使函数的值大于函数的值的自变量的取值范围.x m +3x =5y =1x =1y =(),P a b 22423a b b ---xOy y x =y kx k =-()2A m ,m y kx k =-y x =x21.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A 、B 两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A 库的容量为70吨,B 库的容量为110吨.从甲、乙两库到A 、B 两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)(1)若甲库运往A 库粮食x 吨,请写出将粮食运往A 、B 两库的总运费y (元)与x (吨)的函数关系式;(2)当甲、乙两库各运往A 、B 两库多少吨粮食时,总运费最省,最省的总运费是多少.22.如图(1),某商场在楼层之间设有上、下行自动扶梯和楼梯,甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走楼梯.甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系,乙离一楼地面的高度y (单位:m )与下行时间x (单位:s )之间的函数关系如图(2)所示.(1)求y 关于x 的函数表达式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.0.66h x =-+参考答案:1.A【详解】解:A 、y =是一次函数,故此选项符合题意;B 、y =是反比例函数,不是一次函数,故此选项不合题意;C 、y =x 2是二次函数,故此选项不符合题意;D 、当k =0时,y =kx +b (k ,b 为常数)不是一次函数,故此选项不合题意;故选:A .2.D【详解】解:根据速度,时间与路程的关系得∴.故选D .3.B【详解】解:∵是一次函数,∴. ∴.∵,∴.故选B .4.B【详解】解:根据函数的定义可知,每给定自变量x 一个值,都有唯一的函数值y 与之相对应,所以A 、C 、D 不合题意.故选:B .5.C【详解】解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按九折优惠,∴小东到该商店为学校一次性购买单价为70元的篮球x 个(x >2),则小东应付货款y (元)与篮球个数x (个)的函数关系式是:2x2x5vt =5v t =()213my m x -=-+21m -=1m =±10m -≠1m =-y =(70x -100)×0.9+100=63x +10(x >2),故选:C .6.B【详解】解:∵函数y =ax -3和y =kx 的图象交于点P 的坐标为(-2,﹣1),∴关于x ,y 的二元一次方程组的解是.故选B .7.C【详解】将函数的图象沿y 轴向下平移1个单位长度后得到:,令,解得,所得图象与x 轴的交点坐标为.故选C .8.A【详解】由图像可知,点(3,4)在一次函数的图象上,∴当x =3时,y =4,∴关于的方程的解为x =3,故选A .9.A【详解】①当,、的图象都经过一、二、三象限 ②当,、的图象都经过二、三、四象限③当,的图象都经过一、三、四象限,的图象都经过一、二、四象限④当,的图象都经过一、二、四象限,的图象都经过一、三、四象限满足题意的只有A.故选A.10.C【详解】∵一次函数,∴函数为递减函数,y 随x 的增大而减小,3y ax y kx =-⎧⎨=⎩21x y =-⎧⎨=-⎩2y x =21y x =-0y =12x =∴1(,0)2y kx b =+x 4kx b +=0,0a b >>1y 2y 0,0a b <<1y 2y 0,0a b ><1y 2y 0,0a b <>1y 2y ()0y kx b k =+<∵,都在一次函数的图象上,,∴,故选:C .11.D ∴m >0,n <0,∴图象经过一、二、四象限,故选:D .12.B【详解】解:A 、当x =﹣2时,y =﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误,不符合题意;B 、由于k=﹣2<0,所以y 随x 的增大而减小,故本选项正确,符合题意;C 、由于k =﹣2<0,所以图象经过二、四象限,故本选项错误,不符合题意;D 、∵x >0时,y <0,x <0时,y >0,∴不论x 为何值,总有y <0错误,故本选项错误,不符合题意.故选B .13..【详解】∵h ,∴∴根据题意可列出函数关系式:.故答案为:.14.【详解】解:当时,,∴直线在y 轴上的截距是.故答案为:.15.【详解】解:函数中,当满足时,它是一次函数.故答案为:()12,y -()22,y ()0y k b k =+<22-<12y y >4545080(0)8y t t =-≤≤45450808÷=4508t ≤≤4545080(08y t t =-≤≤4545080(08y t t =-≤≤3-0x =233y x =-=-23y x =--3-3-1k ≠-2(1)1y k x k =++-k 1k ≠-1k ≠-16.k >2;【详解】根据一次函数图像与性质,可知图像过一、二、三象限时,k-2>0,解得k >2.故答案为k >2.17.【详解】解:由题意可得:,故答案为:.18.【详解】解:设与的函数关系式为,根据图象得,解得,即与的函数关系式为,当时,,得,答:车行驶的最长时间是.19.(1)(2)【详解】(1)解:由题意设比例系数为,则,将,代入得,解得,∴,∴y 关于x 的函数表达式为;(2)解:∵点在(1)中函数的图象上,∴,4820y x =+()1000.860100x y +-=1004880x =+-4820x =+4820y x =+8hy x y kx b =+40325b k b =⎧⎨+=⎩540k b =-⎧⎨=⎩y x 540y x =-+0y =0540x =-+8x =8h 21y x =-2-k ()y k x m =+()35,()11,()()5311k m k m ⎧=+⎪⎨=+⎪⎩122m k ⎧=-⎪⎨⎪=⎩12212y x x ⎛⎫=-=- ⎪⎝⎭21y x =-(),P a b 21b a =-∴,∴的值为.20.(1),一次函数解析式为;(2)自变量x 的取值范围是.【详解】(1)解:把代入得,则点A 的坐标为,把代入得,解得,所以一次函数解析式为;(2)解:观察函数图象得到当时,直线都在的上方,即函数的值大于函数的值.所以自变量x 的取值范围是.21.(1)y=-30x+39200,其中0≤x≤70;(2)从甲库运往A 库70吨粮食,往B 库运送30吨粮食,从乙库运往A 库0吨粮食,从乙库运往B 库80吨粮食时,总运费最省为37100元.【详解】解:(1)依题意有:若甲库运往A 库粮食x 吨,则甲库运到B 库(100-x )吨,乙库运往A 库(70-x )吨,乙库运到B 库(10+x )吨.则 ,解得:0≤x≤70.y=12×20x+10×25(100-x )+12×15(70-x )+8×20×[110-(100-x )]=-30x+39200其中0≤x≤70;(2)上述一次函数中k=-30<0∴y 随x 的增大而减小∴当x=70吨时,总运费最省最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A 库70吨粮食,往B 库运送30吨粮食,从乙库运往A 库0吨粮食,从乙22423a b b ---()22412a b =-+-()2242112a a =--+-22442a a =--2=-22423a b b ---2-2m =22y x =-2x >()2A m ,y x =2m =()22,()22A ,y kx k =-22k k -=2k =22y x =-2x >y kx k =-y x =y kx k =-y x =2x >010*******+0x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪≥⎩库运往B 库80吨粮食时,总运费最省为37100元.故答案为(1)y=-30x+39200,其中0≤x≤70;(2)从甲库运往A 库70吨粮食,往B 库运送30吨粮食,从乙库运往A 库0吨粮食,从乙库运往B 库80吨粮食时,总运费最省为37100元.22.(1);(2)甲先到达一楼地面【详解】解:(1)设y 关于x 的函数表达式是将,代入得:解得:∴y 关于x 的函数表达式是(2)当时;,得当时;,得∵∴甲先到达一楼地面.165y x =-+y kx b=+()0,6()15,36153b k b =⎧⎨+=⎩156k b ⎧=-⎪⎨⎪=⎩165y x =-+0h =00.66x =-+10x =0y =1065x =-+30x =1030<。
一次函数单元测试卷(含答案)
一次函数单元测试卷班级___________座号___________##___________评分___________一、选择题〔每小题5分,共25分〕1、下列函数〔1〕y =πx <2>y =2x -1 <3>y =错误! <4>y =2-1-3x <5>y =x 2-1中,是一次函数的有〔〕A 、4个B 、3个C 、2个D 、1个2、下列哪个点在一次函数43-=x y 上〔〕.A 、<2,3>B 、<-1,-1>C 、<0,-4>D 、<-4,0>3、若一次函数y =kx -4的图象经过点〔–2,4〕,则k 等于〔〕A 、–4B 、4C 、–2D 、24、点P 1〔x 1,y 1〕,点P 2〔x 2,y 2〕是一次函数y =-4x + 3 图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是〔〕.A 、y 1>y 2B 、y 1>y 2 >0C 、y 1<y 2D 、y 1=y 25、2012年"国际攀岩比赛"在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打 让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是< >二、填空题〔每小题5分,共50分〕6、当k =________时,y =<k +1>x 2k +k 是一次函数;当m =_______时,y =<m -1>x 2m 是正比例函数.7、若一次函数y =<m -3>x +<m -1>的图像经过原点,则m =,此时y 随x 的增大而.8、一个函数的图象经过点〔1,2〕,且y 随x 的增大而增大,则这个函数的解析式是〔只需写一个〕9、一次函数y =-3x -1的图像经过点〔0,〕和〔,-7〕.10、一次函数y = -2x +4的图象与x 轴交点坐标是,与y 轴交点坐标是,图象与坐标轴所围成的三角形面积是.11、一次函数y =-2x +3的图像不经过的象限是_________12、若三点)1,0(),,2(),0,1(-P 在一条直线上,则P 的值为_________13、已知函数4-=+-=mx y m x y 与的图象的交点在x 轴的负半轴上,则=m ______.14、某市出租车的收费标准是:3千米以内〔包括3千米〕收费5元,超过3千米,每增加1千米加收1.2元,则路程x 〔x ≥3〕时,车费y 〔元〕与路程x 〔千米〕之间的关系式为:.15、我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此出租车最远能到达公里处三、解答题〔每小题9分,共45分〕 16、某移动通讯公司开设两种业务."全球通":先缴50元月租费,然后每通话1分钟,再付0.4元,"神州行":不缴纳月租费,每通话1分钟,付话费0.6元.若设一个月内通话x 分钟,两种方式的费用分别为y 1和y 2元.〔1〕写出y 1、y 2与x 之间的函数关系式.〔2〕一个月内通话多少分钟,两种费用相同.〔3〕某人估计一个月内通话300分钟,应选择哪种合算?17、已知一次函数y =kx +b 的图象经过点<0, -3>,且与正比例函数y = 错误!x 的图象相交于点<2,a >, 求: <1>a 的值; <2> k ,b 的值;18、已知y 与z 成正比例,z +1与x 成正比例,且当x =1时,y =1;当x =0时,y =-3.求y 与x的函数关系式.19、已知一次函数434+-=x y .<1>求其图象与坐标轴围成的图形的面积;<2>求其图象与坐标轴的两个交点间的线段AB的长度;<3>求原点到该图象的垂线段OC的长度.20、在社会主义新农村建设中,衢州某乡镇决定对A,B两村之间的公路进行改造,并由甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y<米>与施工时间x<天>之间的函数图象,请根据图象所提供的信息解答下列问题:〔1〕乙工程队每天修公路多少米?〔2〕分别求甲、乙工程队修公路的长度y<米>与施工时间x<天>之间的函数关系式. 〔3〕若该工程由甲、乙两工程队一直合作施工,需几天完成?参考答案一、1、B 2、C 3、A 4、A 5、B二、6、1,-1 7、1,减小 8、y =2x 9、-1,-210、〔2,0 〕,〔0,4〕,4 11、第四象限 12、1 13、-214、y =1.2x +1.4 15、13三、16、 <1>y 1=50+0.4x ,y 2=0.6x<2>令y 1=y 2得:50+0.4x =0.6xx =250,即一个月通话250分钟时,费用相同.<3>当x =300时,y 1=170,y 2=180∴选择"全球通"合算.17、〔1〕将<2,a > 代入y = 错误!x 可解得:1=a ,〔2〕将<0, -3> ,<2,1>分别代入y =kx +b 可解得:3,2-==b k .18、解:设z +1=kx ,则z =kx -1,又设y =mz =m 〔kx -1〕=mkx -m .当x =1时,y =1,∴ 1=mk -m ,当x =0时,y =-3,∴ -3=0-m ,解得m =3.34k =, ∴ y =4x -3; 19、解:设一次函数434+-=x y 的图象与坐标轴交点为A 、B . 〔1〕分别将y =0,x =0代入434+-=x y ,得A 〔3,0〕,B 〔0,4〕 ∴3||=OA ,4||=OB .∴ 64321||||21=⨯⨯=⋅=∆OB OA S OAB . 〔2〕由勾股定理得543||22=+=AB .〔3〕∵ ||||21OC AB S AOB ⋅=∆,〔|OC |为原点到图象的垂线段长度〕,则 6||521=⋅⋅OC ,∴ 512||=OC . 20、[解析]〔1〕乙工程队一共修公路720米,总共修了<9-3>天;〔2〕观察图象,用待定系数法求修公路的长度y <米>与施工时间 x <天>之间的函数关系式. 〔3〕列出一元一次方程求解.解:〔1〕∵720÷<9-3>=120∴乙工程队每天修公路120米.〔2〕设y 乙=kx+b ,则309720k b k b +⎧⎨+⎩== ∴120360k b ⎧⎨-⎩==∴y 乙=120x -360 当x =6时,y 乙=360设y 甲=kx ,则360=6k ,k =60,∴y 甲=60x〔3〕当x =15时,y 甲=900,∴该公路总长为:720+900=1620<米>设需x 天完成,由题意得,<120+60>x =1620解得x =9答:需9天完成[点评]本题考查了函数的图象和一次函数的应用,培养学生观察图象的能力,分析解决问题的能力,要培养学生视图知信息的能力.解决此类题目最关键的地方是经过认真审题,从中整理出一次函数模型,用一次函数的知识解决此类问题.。
一次函数单元测试卷及答案
《一次函数》单元测验题班级:班级: 姓名:姓名: 座号:座号: 成绩:________一.选择题(每小题3分,共30分)1.在平面直角坐标系中,点(-1,-2)所在的象限是所在的象限是 ( ) A 、第一象限、第一象限 B 、第二象限、第二象限 C 、第三象限、第三象限 D 、第四象限、第四象限2. 2.函数函数1y x =-中,自变量x 的取值范围是的取值范围是 ( ) ( ) A . x < 1 B . x ≤ 1 C . x > 1 D . x ≥13. 3. 在函数在函数在函数 y y y==3x 3x--2,y =1xx +3,y =-=-2x 2x 2x,,y =-=-x x 2+7 7 是正比例函数的有是正比例函数的有( ) A . 0 . 0 个个 B . 1 . 1 个个 C . 2 . 2 个个 D . 3 . 3 个个4.点M (1,2)关于x 轴对称点的坐标为(轴对称点的坐标为( )A 、(-1,2)B 、(-1,-2)C 、(1,-2)D 、(2,-1)5. 如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相 位于点(3,-2)上,则○炮位于点(位于点() A. (-1,1) B. (-1,2)C. (-2,1)D. (-2,2)6. 一次函数y=y=--2x+3的图像不经过的象限是(的图像不经过的象限是( )).A A 第一象限第一象限第一象限B B B 第二象限第二象限第二象限C C C 第三象限第三象限第三象限D D D 第四象限第四象限第四象限7.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( )A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶.小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后分钟后登山的速度比小军快登山的速度比小军快8.下列函数中,y 随x 的增大而减小的有(的增大而减小的有( )①12+-=x y ② x y -=6③ 31xy +-= ④x y )21(-=A.1个B.2个C.3个D.4个9.直线.直线 y=43 x +4与 x 轴交于轴交于 A,与y 轴交于B, O 为原点,则为原点,则图3相帅炮ab a k= ,b= .k= ,b= . 0 9 9 16 16 30 t /min S /km 40 12 19.(8分) 已知正比例函数x k y 1=的图像与一次函数92-=x k y 的图像交于点P (3,-6)。
一次函数单元测试卷含答案
一次函数单元测试卷含答案一次函数单元测试卷班级:___________ 座号:___________ 姓名:___________ 评分:___________一、选择题(每小题5分,共25分)1、下列函数中,是一次函数的有()A、y=πxB、y=2x-1C、y=D、y=x2-12、下列哪个点在一次函数y=3x-4上().A、(2,3)B、(-1,-1)C、(0,-4)D、(-4,0)3、若一次函数y=kx-4的图象经过点(–2,4),则k等于()A、–4B、4C、–2D、24、点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+ 3图象上的两个点,且x1<x2,则y1与y2的大小关系是().A、y1>y2B、y1>y2>C、y1<y2D、y1=y25、2012年“国际攀岩比赛”在重庆举行.XXX从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时XXX也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设XXX从家出发后所用时间为t,XXX与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()二、填空题(每小题5分,共50分)6、当k=-1时,y=(k+1)xk+k是一次函数;当m=2时,y=(m-1)xm是正比例函数。
7、若一次函数y=(m-3)x+(m-1)的图像经过原点,则m=4,此时y随x的增大而增大。
8、一个函数的图象经过点(1,2),且y随x的增大而增大,则这个函数的解析式是y=2x。
9、一次函数y=-3x-1的图像经过点(1,-4)和(-2,5)。
10、一次函数y=-2x+4的图象与x轴交点坐标是(2,0),与y轴交点坐标是(0,4),图象与坐标轴所围成的三角形面积是4.11、一次函数y=-2x+3的图像不经过第三象限。
12、若三点(1,2),(2,P),(3,1)在一条直线上,则P的值为-3.13、已知函数y x m与y mx4的图象的交点在x 轴的负半轴上,则m=3.14、某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程x(x≥3)的费用为y=1.2(x-3)+5.15、根据收费标准,XXX有19元钱只能乘坐公里数为38的出租车。
一次函数单元测试题含参考答案
x (cm ) 20 5 15 12.5 一次函数单元测试题一、填空(每小题3分,共30分)1、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=kx+b (5)y=x 2-1 (6) y=x 2-x(x-3) 中,是一次函数的有( )A.4个B.3个C.2个D.1个2、弹簧的长度y cm 与所挂物体的质量x(kg)的关系是一次函数,图象如右图所示,则弹簧不挂物体时的长度是( )(A)9cm (B)10cm (C)10.5cm (D)11cm3、下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=12x - C .y=24x - D .y=2x +·2x -4、若把一次函数y=2x -3,向下平移3个单位长度,得到图象解析式是( )(A) y=2x (B) y=2x -6(C ) y=5x -3 (D )y=-x -35、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( )A 、 x>1B 、 x>2C 、 x<1D 、 x<2 6、一次函数1y kx b =+与2y x a =+的图象如图6,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是 ( )A .0B .1C .2D .37、已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1、 y 2大小关系 是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较 8、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限9、若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 10、如图3,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( )A .2y x =-+B .2y x =+C .2y x =-D .2y x =-- 二.填空(每小题4分,共32分) 11、请你写出一个图象经过点(0,5),且y 随x 的增大而减小的一次函数解析式12、 一次函数y= -2x+8的图象与x 轴交点坐标是 ,与y 轴交点坐标是13、若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.14、若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而增大,•则k____0,b______015、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________yO x A B 2图3x y O 3 图6 第5题16、如果直线y=-2x+k 与两坐标轴所围成的三角形面积是16,则k 的值为____17、直线y=(m-1)x+m 2+1与y 轴的交点坐标是(0,5),且直线经过第一、二、四象限,则m=18、已知y+2与x-1成正比例函数,且x=4时y=5 , 则y 与x 之间的函数关系式三、解答题(本大题7小题,共58分)19、(6分)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题:(1)试求降价前y 与x 之间的关系式(2)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?20、(4分)已知,函数()1321y k x k =-+-,试回答:(1)k 为何值时,图象交x 轴于点(34,0)(2)k 为何值时,y 随x 增大 而增大 21、(本题5分)如图,在直角坐标系中,直线y=kx+4与x 轴正半轴交于一点A ,与y 轴交于点B ,已知△OAB 的面积为10,求这条直线的解析式。
八年级数学上册 第12章 一次函数 单元测试卷(沪科版 2024年秋)
八年级数学上册第12章一次函数单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1. 司机王师傅到加油站加油,如图是所用的加油机上的数据显示牌,其中的常量是()(第1题)A.金额B.数量C.单价D.金额和数量2.下列不能表示y是x的函数的是()A. B.C.D.y=2x+13.函数y=x+1x中的自变量x的取值范围是()A.x>0 B.x≥-1C.x>0且x≠-1 D.x≥-1且x≠04.某登山队大本营所在地的气温为5 ℃,海拔每升高1 km气温下降6 ℃,登山队员由大本营向上登高x km时,他们所在位置的气温为y℃,则y与x的函数关系式为()A.y=5+6x B.y=5-6x C.y=5-x6D.y=5-6 x5.要得到函数y=3x+5的图象,只需将函数y=3x的图象() A.向左平移5个单位B.向右平移5个单位C.向下平移5个单位D.向上平移5个单位6.点A(-2,y1),B(-1,y2)都在直线y=-x+b上,则y1与y2的大小关系为()A.y1=y2B.y1>y2 C.y1<y2D.不能确定7.下列关于一次函数y=-4x-8的说法中,正确的是()A.该函数图象不经过第三象限B.该函数图象经过点(2,0)C.该函数值y随x的增大而增大D.该函数图象与坐标轴围成的三角形面积为88.已知直线y=kx+b不经过第二象限,那么k,b的取值范围分别是() A.k>0,b<0 B.k<0,b<0 C.k>0,b≤0 D.k<0,b≤0 9.若直线y=-x+m与直线y=2x+4的交点在第二象限,则m的取值范围是()A.-2<m<4 B.-2<m<3 C.-1<m<3 D.1<m<4 10.如图,在长方形OABC中,已知B(8,6), 动点P从点A出发,沿A-B -C-O的路线匀速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()(第10题) (第12题) (第13题) 二、填空题(本大题共4小题,每小题5分,满分20分)11.若正比例函数y=(m-1)x的图象从左到右逐渐上升,则m的取值范围是______________.12.如图,一次函数y=kx+b与y=-x+4的图象相交于点P(m,1),则关于x,y的二元一次方程组{x+y=4,kx-y+b=0的解是____________.13.李老师开车从甲地到相距240 km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________L.14.已知一次函数y=ax+8-2a(a为常数,且a≠0).(1)若该一次函数图象经过点(-1,2),则a=________;(2)当-2≤x≤5时,y有最大值11,则a的值为________.三、(本大题共2小题,每小题8分,满分16分)15.小明从家出发骑单车去上学,他骑了一段路时想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校,如图是他本次上学离家距离s(m)与所用的时间t(min)的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是________m,本次上学途中,小明一共行驶了________m.(2)小明在书店停留了________min,本次上学,小明一共用了________min.(3)在整个上学的途中哪个时间段小明骑车速度最快?最快的速度是多少?(第15题)16.已知y与3x-2成正比例,且当x=2时,y=8.(1)求y与x的函数关系式;(2)求当x=-2时,y的值.四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=2kx+b的图象与直线y=-3x-7平行,且经过点(2,-11).(1)求一次函数y=2kx+b的表达式;(2)判断点A ⎝ ⎛⎭⎪⎫16,-112是否在一次函数y =2kx +b 的图象上.18.水是生命之源,节约用水是每位公民应尽的义务.水龙头关闭不严会造成滴水,为了调查漏水量V (mL)与漏水时间t (min)的关系,某同学在滴水的水龙头下放置了一个能显示水量的容器,每5 min 记录一次容器中的水量,如下表:漏水时间t /min 0 5 10 15 20 … 漏水量V /mL255075100…(1)请在图中描出以表中数据为坐标的各点;(2)根据(1)中各点的分布规律,求出V 关于t 的函数表达式; (3)请估算这种漏水状态下一天的漏水量.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.如图,直线l 2:y =kx +b 与x 轴交于点A ,且经过点B (3,1),直线l 1:y =2x -2与l 2交于点C (m ,2). (1)求m 的值;(2)求直线l2的表达式;(3)根据图象,直接写出关于x的不等式组1<kx+b<2x-2的解集.(第19题)20.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮一年内来此游泳馆游泳的次数为x,选择方式一的总费用为y1元,选择方式二的总费用为y2元.(1)请分别写出y1,y2与x之间的函数表达式;(2)请根据小亮一年内的游泳次数确定选择哪种方式比较划算;(3)若小亮计划拿出1 400元用于一年内在此游泳馆游泳,采用哪种方式比较划算?六、(本题满分12分)21.如图,直线l 1的表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A (4,0),B ⎝ ⎛⎭⎪⎫3,-32,直线l 1,l 2交于点C .(1)点D的坐标为________,直线l 2的表达式为_____________________________________________; (2)求三角形ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得三角形ADP 与三角形ADC 的面积相等,请直接写出点P 的坐标.(第21题)七、(本题满分12分)22.某商店购进A ,B 两种礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该商店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15 000元,求最大利润;(3)在(2)的条件下,该商店对A 种礼盒以每个优惠m (0<m <20)元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且m -n =4,若最大利润为4 900元,请直接..写出m 的值.八、(本题满分14分)23.甲、乙两车分别从相距480 km的A,B两地相向而行,乙车比甲车先出发1 h,并以各自的速度匀速行驶,途经C地,甲车到达C地后停留1 h,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车到各自出发地的距离y(km)与甲车出发后所用的时间x(h)之间的关系如图,结合图象信息解答下列问题.(1)乙车的速度是________km/h,t=________,a=________;(2)求甲车到它出发地的距离y(km)与它出发后所用的时间x(h)之间的函数表达式,并写出自变量x的取值范围;(3)求乙车出发多久后两车相距120 km.(第23题)答案一、1.C 2.A 3.D 4.B 5.D 6.B 7.D 8.C 9.A 10.C二、11.m >1 12.⎩⎨⎧x =3,y =113.2014.(1)2 (2)1或-34 点拨:当a >0时,y 随x 增大而增大,则当x =5时,y有最大值,所以5a +8-2a =11,解得a =1;当a <0时,y 随x 增大而减小,则当x =-2时,y 有最大值,所以-2a +8-2a =11,解得a =-34.综上所述,a 的值为1或-34.三、15.解:(1)1 500;2 700 (2)4;14(3)折回之前的速度为1 200÷6=200(m/min),折回去书店时的速度为(1 200-600)÷(8-6)=300(m/min),买书后从书店到学校的速度为(1 500-600)÷(14-12)=450(m/min),经过比较可知,小明在买书后从书店到学校的时间段速度最快,最快的速度是450 m/min.16.解:(1)由题意知,y 与3x -2成正比例,则设出关系式为y =k (3x -2)(k ≠0),把x =2,y =8代入,得8=k (3×2-2),所以k =2.所以y 与x 之间的函数关系式为y =2(3x -2)=6x -4.(2)把x =-2代入y =6x -4,得y =6×(-2)-4=-16. 四、17.解:(1)由题意可知⎩⎨⎧2k =-3,4k +b =-11,所以⎩⎨⎧2k =-3,b =-5.所以所求一次函数的表达式为y =-3x -5. (2)当x =16时,y =-3x -5=-112.所以点A ⎝ ⎛⎭⎪⎫16,-112在此一次函数的图象上.18.解:(1)如图所示.(第18题)(2)根据(1)中各点的分布规律,可知V 是关于t 的正比例函数,设所求函数表达式为V =kt (k ≠0).因为当t =5时,V =25,所以5k =25,解得k =5.所以V 关于t 的函数表达式为V =5t .(3)由(2)可知,在这种状态下一天的漏水量为5×60×24=7 200(mL). 五、19.解:(1)把C (m ,2)的坐标代入y =2x -2,得2m -2=2,解得m =2.(2)把C (2,2),B (3,1)的坐标代入y =kx +b ,得⎩⎨⎧2k +b =2,3k +b =1,解得⎩⎨⎧k =-1,b =4,所以直线l 2的表达式为y =-x +4. (3)解集是2<x <3.20.解:(1)y 1=30x +200,y 2=40x .(2)当y 1<y 2,即30x +200<40x 时,解得x >20,所以当小亮一年内的游泳次数大于20时,选择方式一比较划算;当y 1=y 2,即30x +200=40x 时,解得x =20,所以当小亮一年内的游泳次数等于20时,选择两种方式的总费用相同;当y 1>y 2,即30x +200>40x 时,解得x <20,所以当小亮一年内的游泳次数小于20时,选择方式二比较划算.(3)当y 1=1 400时,1 400=30x +200,解得x =40;当y 2=1 400时,1 400=40x ,解得x =35,40>35,故采用方式一比较划算. 六、21.解:(1)(1,0);y =32x -6(2)解⎩⎪⎨⎪⎧y =-3x +3,y =32x -6,得⎩⎨⎧x =2,y =-3,所以C (2,-3).因为AD =4-1=3,所以S 三角形ADC =12×3×|-3|=92. (3)P (6,3).七、22.解:(1)根据题意得,购进A 种礼盒x 个,且x ≥60,则购进B 种礼盒(100-x )个,且100-x >0,故y =(220-160)x +(160-120)(100-x ),整理得,y =20x +4 000.故y 与x 之间的函数关系式为y =20x +4 000(60≤x <100).(2)根据题意得,160x +120(100-x )≤15 000,整理得,x ≤75,故60≤x ≤75,因为y =20x +4 000,且20>0,所以y 随着x 的增大而增大,所以当x =75时,y 取得最大值,此时y =20×75+4 000=5 500.所以最大利润为5 500元. (3)m =10.八、23.解:(1)60;3;7(2)①当0≤x ≤3时,设y =k 1x ,把点(3,360)的坐标代入,可得3k 1=360,解得k 1=120,所以y =120x . ②当3<x ≤4时,y =360.③当4<x ≤7时,设y =k 2x +b ,把点(4,360)和(7,0)的坐标分别代入,可得⎩⎨⎧4k 2+b =360,7k 2+b =0,解得⎩⎨⎧k 2=-120,b =840, 所以y =-120x +840.综上可得,y =⎩⎨⎧120x (0≤x ≤3),360(3<x ≤4),-120x +840(4<x ≤7).(3)①当甲车朝B 地,乙车朝A 地行驶时,(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(h).②当甲车停留在C 地时,(480-360+120)÷60=240÷60=4(h).③两车都朝A 地行驶时,设乙车出发m h 后两车相距120 km ,则60m -{480-[-120(m -1)+840]}=120, 解得m =6.综上可得,乙车出发83h ,4 h ,6 h 后两车相距120 km.。
第四章一次函数单元测试 2024—2025学年北师大版数学八年级上册
第四章一次函数单元测试北师大版2024—2025学年秋季八年级上册(考试时间:120 分钟试卷满分: 120分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.若点(3,m)在函数y=x+2的图象上.则m的值为()A.0B.1C.2D.32.一个正比例函数的图象经过点(﹣2,4),它的表达式为()A.y=﹣2x B.y=2x C.y=﹣x D.y=x3.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)4.关于一次函数y=2x+4,下列说法正确的是()A.图象经过第一、三、四象限B.图象与y轴交于点(0,﹣2)C.函数值y随自变量x的增大而增大D.当x>﹣1时,y<25.点A(2,y1)与点B(3,y2)在直线y=﹣2024x+2024上,则y1与y2的关系是()A.y1<y2B.y1≤y2C.y1>y2D.y1=y26.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明在公园停留的时间为5分钟D.小明与爸爸第二次相遇时,离家的距离是960米7.若一次函数y=(4﹣3k)x﹣2的图象经过点A(x1,y1)和点B(x2,y2),当x1>x2时,y1<y2,则k的取值范围是()A.B.C.D.8.一次函数y=kx﹣k和正比例函数y=kx在同一平面直角坐标系中的函数图象可能是()A.B.C.D.9.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 10.一次函数y=(m﹣1)x+m+2的图象过一、二、三象限,则m的取值范围是()A.m>1B.﹣1<m<2C.﹣2<m<1D.m>﹣2二、填空题(每小题3分,满分18分)11.已知关于x的函数y=(k﹣1)x|k﹣2|是正比例函数,则k=.12.当直线y=(2﹣2k)x+k﹣3,不经过第一象限时,则k的取值范围是.13.在函数y=中,自变量x的取值范围是.14.若,则直线y=kx﹣k必经过第象限.15.如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB 上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是.16.如图,在平面直角坐标系中,一次函数y=k(x﹣1)的图象分别交x 轴,y轴于A,B两点,且OB=2OA,将直线AB绕点B按顺时针方向旋转45°,交x 轴于点C,则直线BC的函数表达式是.第II卷第四章一次函数单元测试北师大版2024—2025学年秋季八年级上册考生注意:本试卷共三道大题,24道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18题每题8分,19、20、21、22每题9分,23、24每题10分,共计72分,解答题要有必要的文字说明)17.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.18.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+1与y轴交于点C,直线l1和直线l2相交于点D.(1)直接写出点A、B、C的坐标分别为:A,B,C;(2)在x轴上是否存在一点P,使得S△ADP=4,若存在,求点P坐标;若不存在,请说明理由.19.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?20.已知y=y1+y2,y1与x成正比例,y2与x﹣2成正比例,当x=1时,y=﹣3;当x=﹣2时,y=0.(1)求y与x的函数关系式;(2)当x=3时,求y的值.21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.23.已知函数y=其中m为常数,该函数的图象记为G.(1)当m=﹣2时,若点D(3,n)在图象G上,求n的值;(2)当3﹣m≤x≤4﹣m时,若函数最大值与最小值的差为,求m的值;(3)已知点A(0,1),B(0,﹣2),C(2,1),当图象G与△ABC有两个公共点时,直接写出m的取值范围.24.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)求一次函数y=kx+b的解析式;(2)求四边形AOCD的面积;(3)在平面内直线CD的右侧是否存在点P,使得以点P,C,D为顶点的三角形是以CD为腰的等腰直角三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.。
一次函数单元测试题(含答案)
第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x -2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:xy1234-2-1CA-14321O(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
一次函数单元测试题(含答案)
一次函数测试题一、选择题(每小题3分,共24分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<36.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-17.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、填空题(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、应用题(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?xy1234-2-1CA-14321O答案:411.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
一次函数_单元测试含答案
二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。
4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。
12、一次函数y=kx+5的图象过点A(-2,-1),则k=________.13、正比例函数y=2x的图象经过第________象限.14、两港相距600千米,轮船以10千米/小时的速度航行,t小时后剩下的距离y与t的函数关系式________.15、已知一次函数的图象与y轴的交点的纵坐标为-2,且经过点(5,3),则此函数的表达式为________.16、当b为________时,直线与直线的交点在x轴上.17、已知函数y=的图象经过点B(m,),则m=________。
一次函数单元测试题
第六章 一次函数测试题姓名 班级 分数一、选择题(每题3分共30分) 1、下列说法中不正确的是( )A 、一次函数不一定是正比例函数B 、不是一次函数就一定不是正比例函数C 、正比例函数是特殊的一次函数D 、不是正比例函数就一定不是一次函数 2、下列函数中,y 随x 的增大而增大的函数是( )A 、x y -=2B 、12+-=x yC 、2-=x yD 、2--=x y 3、下列各点中,在函数52+-=x y 的图像上的是( )A 、(0,5-)B 、(2,9)C 、(2-,9-)D 、(4,3-) 4、函数1-=x y 的自变量x 的取值范围是( )A 、1≥xB 、1>xC 、1≤xD 、1≠x 5、一次函数b kx y +=图像如右图:则k 、b 的符号为( )A 、0>k ,0>bB 、0>k ,0<bC 、0<k ,0>bD 、0<k ,0<b 6、将直线4y x =+向下平移2个单位,得到的直线表达式为( )A 、6y x =+B 、2y x =+C 、24y x =+D 、24y x =-+ 7、已知322)2(-+=mx m m y ,如果y 是x 的正比例函数,则m 的值为( )A 、2B 、2-C 、2±D 、08、点A (1x ,1y )和点B(2x ,2y )在同一直线b kx y +=上,且0<k ,若210x x >>,则1y 、2y 与b 的关系是( )A 、b y y >>21B 、b y y <<21C 、12y b y >>D 、21y b y >> 9、一根弹簧原长为12cm ,它能挂的重量不能超过15kg ,并且每挂重1kg 就伸长21cm ,写出挂重后的弹簧长度y (cm)与挂重x (kg )之间的函数表达式是( ) A 、112(015)2y x x =+<≤ B 、112(015)2y x x =+≤≤ C 、112(015)2y x x =+<≤ D 、112(015)2y x x =+<< 10、甲、乙两人赛跑,所跑路程与时间的关系如图所示(实线为甲的路程与时间的关系图像,虚线为乙的路程与时间的关系图像),小王根据图像得到如下四个信息,其中错误的是( )A 、这是一次1500m 赛跑B 、甲、乙两人中先到达终点的是乙C 、甲、乙同时起跑D 、甲在这次赛跑中的速度为5m/s二、填空题(每空4分,共24分)11、一次函数4y与x轴的交点坐标为 .=x2-12、关于x的一次函数3y,若要使其成为正比例函数,则m= .x+5-=m13、函数4>y.y中,x时,03+=x-14、某函数kx-)则这个函数的表达式为.y=的图像过点(3,915、一次函数2x=my的图像不过第二象限,则m的取值范围是 .m++)4(+16、平面直角坐标系中,x轴上的点P到点A(1,4)、点B(4,2)的距离和最短,则点P的坐标是 .三、解答题:(共46分)17、(12分)已知一次函数b=()0≠k的图像经过点(1,3)和点(0,1).y+kx(1)求这个函数的表达式;(2)判断点P(1-,1)是否在这个函数的图像上;(3)求当5x时,函数y的值.=18、(7分)如图,点A(3-,4)在一次函数5∆y的图像上,图像与y轴的交点为B,求A O B3-=x-19、(8分)在同一坐标系中作出1-=的图像.y3y,x=x2+20、(6分)若直线3y与两坐标轴所围成的三角形的面积为6,求此函数的解析式.=kx+21、(9分)某单位计划12月份组织员工到外地旅游,估计人数在6~15人之间.甲、乙两旅行社的服务质量相同,且对外报价都是200元,该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠.(1)分别写出两旅行社所报旅游费用y与人数x的函数表达式.(2)若有11人参加旅游,应选择那个旅行社?(3)人数为多少时可随意选择?22、(4分)如图所示,直线1l :1+=x y 和2l :)0(2>+-=m m x y 交于点P ,并且1l 交x 轴于点A ,交y 轴于点Q ,2l 交x 轴于点B ,若四边形PQOB 的面积是65,求直线2l 的解析式.。
(完整版)一次函数单元测试题(含答案)(可编辑修改word版)
2 - x4 -x 2x + 2一次函数专题训练一、相信你一定能填对!(每小题 3 分,共 30 分) 1. 下列函数中,自变量 x 的取值范围是 x≥2 的是( )1A. y=B .y=C .y=D .y= ·1 2. 下面哪个点在函数 y= x+1 的图象上( )2A .(2,1)B .(-2,1)C .(2,0)D .(-2,0)3.下列函数中,y 是 x 的正比例函数的是( )xA. y=2x-1B .y=3C .y=2x 2D .y=-2x+14. 一次函数 y=-5x+3 的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四5. 若函数 y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则 m 的值为( )1 1 1 1 A .m>B .m=C .m<D .m=-22226. 若一次函数 y=(3-k )x-k 的图象经过第二、三、四象限,则 k 的取值范围是( )A .k>3B .0<k≤3C .0≤k<3D .0<k<37. 已知一次函数的图象与直线 y=-x+1 平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1⑧.汽车开始行驶时,油箱内有油 40 升,如果每小时耗油 5 升,则油箱内余油量 y (升)与行驶时间 t (时)的函数关系用图象表示应为下图中的( )9. 李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程 y (千米)与行进时间 t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数 y=kx+b 的图象经过点(2,-1)和(0,3), 那么这个一次函数的解析式为( ) 1A .y=-2x+3B .y=-3x+2C .y=3x-2D .y= x-32x - 2x - 2⎩二、你能填得又快又对吗?(每小题 3 分,共 30 分)11. 已知自变量为 x 的函数 y=mx+2-m 是正比例函数,则 m= , 该函数的解析式为. 12. 若点(1,3)在正比例函数 y=kx 的图象上,则此函数的解析式为 .13. 已知一次函数 y=kx+b 的图象经过点 A (1,3)和 B (-1,-1),则此函数的解析式为 .14. 若解方程 x+2=3x-2 得 x=2,则当 x时直线 y=x+ 2 上的点在直线 y=3x-2 上相应点的上方.15.已知一次函数 y=-x+a 与 y=x+b 的图象相交于点(m ,8),则 a+b= .16. 若一次函数 y=kx+b 交于 y 轴的负半轴, 且 y 的值随 x 的增大而减少, 则 k0,b 0.(填“>”、“<”或“=”)⎧x - y - 3 = 0 17.已知直线 y=x-3 与 y=2x+2 的交点为(-5,-8),则方程组⎨2x - y + 2 = 0 的解是.18. 已知一次函数 y=-3x+1 的图象经过点(a ,1)和点(-2,b ),则 a= ,b= .19. 如果直线 y=-2x+k 与两坐标轴所围成的三角形面积是 9,则 k 的值为.20. 如图,一次函数 y=kx+b 的图象经过A 、B 两点,与 x 轴交于点C ,则此一次函数的解析式为 ,△AOC 的面积为 .三、认真解答,一定要细心哟!(共 60 分)21.(14 分)根据下列条件,确定函数关系式:(1)y 与 x 成正比,且当 x=9 时,y=16; (2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12 分)一次函数 y=kx+b 的图象如图所示:(1) 求出该一次函数的表达式; (2) 当 x=10 时,y 的值是多少? (3) 当 y=12 时, x 的值是多少?23.(12 分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克 0.4 元将剩余土豆售完,这时他手中的钱(含备用零钱)是26 元,问他一共带了多少千克土豆?24.(10 分)如图所示的折线 ABC 表示从甲地向乙地打长途电话所需的电话费 y(元)与通话时间 t(分钟)之间的函数关系的图象.(1)写出 y 与 t 之间的函数关系式.(2)通话 2 分钟应付通话费多少元?通话 7 分钟呢?25.(12 分)已知雅美服装厂现有 A 种布料 70 米,B 种布料 52 米,现计划用这两种布料生产 M、N 两种型号的时装共 80 套.已知做一套 M 型号的时装需用 A 种布料 1. 1 米,B 种布料 0.4 米,可获利 50 元;做一套N 型号的时装需用 A 种布料 0.6 米,B 种布料 0. 9 米,可获利45 元.设生产M 型号的时装套数为 x,用这批布料生产两种型号的时装所获得的总利润为 y 元.①求 y(元)与 x(套)的函数关系式,并求出自变量的取值范围;②当 M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?⎨y = -8答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11. 2; y=2x 12. y=3x 13. y=2x+1 14. <2 15.16 16.<;< 17.⎧x = -5⎩ 18.0;7 19.±6 20.y=x+2;421.①y=16 x ;②y= 1 x+ 722.y=x-2;y=8;x=14 95 523.①5 元;②0.5 元;③45 千克24.①当 0<t≤3 时,y=2.4;当 t>3 时,y=t-0.6.②2.4 元;6.4 元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0. 6(80- x )]米,共用 B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得 40≤x≤44, 而 x 为整数,∴x=40,41,42,43,44,∴y 与 x 的函数关系式是 y=5x+3600(x=40,41, 42,43,44);②∵y随x 的增大而增大,∴当 x=44 时,y 最大=3820,即生产 M 型号的时装 44 套时,该厂所获利润最大,最大利润是 3820 元.。
《一次函数》单元测试
《一次函数》单元测试一、选择题1、下列哪个选项不是一次函数?()A. y = 2x + 1B. y = 2x - 3C. y = 2x² + 12、如果y = kx + b,k + b = 0,那么k和b的关系是()A. k和b相等B. k和b互为相反数C. k和b互为倒数3、下列哪个选项的图形是一条直线?()A. y = 2x + 1的图象B. y = x的图象C. y = 2的图象二、填空题1、如果y = kx + b,当x = 0时,y = - 3,那么这个函数的解析式是________。
2、一次函数y = kx + b的图象是一条________,该直线一定经过________和________。
3、如果y与x的关系式是y = kx + b,当k>0时,y随x的增大而________;当k<0时,y随x的增大而________。
4、如果函数y = kx + b的图象平行于直线y = x,那么k的值为________;如果函数y = kx + b的图象平行于直线y = - x,那么k的值为________。
5、当k=________时,一次函数y=kx+3与直线y=x平行。
6、当b=________时,一次函数y=kx+b的图象经过原点。
7、如果函数y = kx + b的图象经过第二、三、四象限,则k、b的取值范围是________。
8、如果一次函数y = kx + b的图象与直线y = - x平行,则k的值为________。
一次函数单元测试一、选择题1、以下函数中,哪个是一次函数()A. y = 3xB. y = x + 7C. y = 5x - 2D. y = 4x + 2正确答案是:B. y = x + 7。
2、已知一次函数y = kx + b的图象经过点(1,5)和(0,-3),则()A. k = 8,b = -3B. k = -8,b = -3C. k = -8,b = 3D. k = 8,b = 3正确答案是:B. k = -8,b = -3。
(完整版)(一次函数单元测试题含答案)
一次函数单元测试题(分数120分时间:120分钟)一、选择题(本大题共10小题,共30分)1.一次函数y=(k+2)x+k2−4的图象经过原点,则k的值为()A. 2B. −2C. 2或−2D. 32.已知一次函数y=kx+b−x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<03.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.4.已知直线y=(m−3)x−3m+1不经过第一象限,则m的取值范围是()A. m≥13B. m≤13C. 13≤m<3 D. 13≤m≤35.下列函数关系式中:①y=2x+1;②y=1x ;③y=x+12−x;④s=60t;⑤y=100−25x,表示一次函数的有()A. 1个B. 2个C. 3个D. 4个6.如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A. (−3,0)B. (−6,0)C. (−32,0) D. (−52,0)7.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A. 乙前4秒行驶的路程为48米B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等D. 在4至8秒内甲的速度都大于乙的速度8.如图,△ABC是等腰直角三角形,∠A=90∘,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )A. B. C. D.9.小明、小华从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小华骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小华先到达青少年宫;②小华的速度是小明速度的2.5倍;③a=24;④b=480.其中正确的是()A. ①②④B. ①②③C. ①③④D. ①②③④10.已知一次函数y=ax+4与y=bx−2的图象在x轴上相交于同一点,则ba的值是( )A. 4B. −2C. 12D. −12二、填空题(本大题共10小题,共30分)11.函数y=√x+2−√3−x中自变量x的取值范围是______.12.如果直线y=−2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .13.已知y−2与x成正比例,当x=1时,y=5,那么y与x的函数关系式是______ .14.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是 .15.已知一次函数y=(−3a+1)x+a的图象经过一、二、三象限,不经过第四象限,则a的取值范围是______ .16.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .17.如图,在平面直角坐标系中,直线y=−√52x+2√5与x轴,y轴分别交于点A,B,将△AOB沿过点A的直线折叠,使点B落在x轴的负半轴上,记作点C,折痕与y轴交于点D,则点D的坐标为______ 。
一次函数单元测试题
一次函数单元测试题一、选择题(每题3分,共30分)1、以下各曲线中不能表示y 是x 的函数是( )。
1)y 2-4x 3(5)3y =,其中是一次函数的是A 、4个B 、3个C 、2个D 、1个 3、y=kx+b 图象如图则( )A .k>0 , b>0B .k>0 , b<0C .k<0 , b<0D .k<0 , b>04.已知一次函数y=(k –2)x+k 图象不经过第三象限,则k 的取值范围是( A .k ≠2 B .k>2 C .0<k<2 D .0≤k<2 5.以下图象可能是函数与mnx =的是( )B C 、6、若点A (2, 4)在函数y =k x -2的图象上,则以下各点在此函数图象上的是( ) A 、(0,-2) B 、(1.5,0) C 、(8, 20) D 、(0.5,0.5)。
7.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( ) A 、y=2x B 、 y=2x -6 C 、 y=5x -3 D 、y=-x -3 8、已知一次函数m x 25y +=和n x 21y +-=的图象都经过点A (-2,0),且分别交y 轴于B 、C 两点,那么△ABC 的面积是( )A 、3B 、 4C 、 5D 、 69、假如一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b < C .0k <,0b >D .0k <,0b <10、如图,一次函数图象经过点A ,且与正比例函数y x =-的图象 交于点B ,则该一次函数的表达式为( )A .2y x =-+B .2y x =+C .2y x =-D .2y x =-- 二.填空(每题3分,共18分) 11.已知函数()8k x3k y --=是正比例函数,则k=________.12.直线y=x –1和y=x+3的位置关系是_____,由此可知方程组⎩⎨⎧+=-=3x y 1x y 解的情况为_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数测试题(时间:90分钟 总分120分)
姓名: 分数:
一、选择(每小题3分,共30分)
1.下列函数中,y 是x 的正比例函数的是( )
A .y=2x-1
B .y=3
x
C .y=2x 2
D .y=-2x+1
2.下面哪个点在函数y=1
2
x+1的图象上( )
A .(2,1)
B .(-2,1)
C .(2,0)
D .(-2,0)
3.直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )
4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四
5.要从y=34x 的图像得到直线y=324-x ,就要把直线y=3
4
x ( )
A.向上平移32个单位
B.向下平移3
2
个单位
C.向上平移2个单位
D.向下平移2个单位
6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1
8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )
9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车
耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
10.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是 ( )
A .
B .
C .
D . 二、填空(每小题3分,共30分)
11.对于函数y =5x+6,y 的值随x 值的减小而___________
12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.
13.若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;
14.点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;
15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________. 16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,
•则k____0,b______0.(填“>”、“<”或“=”)
17.已知自变量为x 的函数y=mx+2-m 是正比例函数,该函数的解析式为_________. 18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 19. b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上.
20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.
x
y
12
34
-1
C
A
-1
4
321
O
三、解答题(共40分)
21.若函数y=3x+b经过点(2,-6),求函数的解析式。
22、直线y=kx+b的图像经过A(3,4)和点B(2,7),
23.一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。
24.(12分)一次函数y=kx+b 的图象如图所示:
(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?
566
-2
x
y
1
234
-2-15-1
43
21
O
25.已知点(3,3)在函数6y ax =-的图象上, (1)求a 的值;(2)求此图象上到x 轴距离为6的点的坐标.
26.如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?
27.已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB 的面积;
B
A
12340
4
321
A
F
E
o
y
x
28.如图,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;
(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中, 试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;。