第二章圆锥曲线与方程2.3双曲线(3)教案新人教A版选修2_1

合集下载

人教A版高中数学选修1-1《二章 圆锥曲线与方程 2.3 抛物线 圆锥曲线的光学性质及其应用》优质课教案_3

人教A版高中数学选修1-1《二章 圆锥曲线与方程  2.3 抛物线  圆锥曲线的光学性质及其应用》优质课教案_3

高中数学人教A版2003课标版选修1-1第二章圆锥曲线与方程→2.3抛物线→阅读与思考圆锥曲线的光学性质及其应用《圆锥曲线的光学性质及其应用》的教学设计第一课时抛物线的光学性质及其应用一、教学目标1.理解抛物线的光学性质,并会应用数学推理得出抛物线的光学性质,并会应用它解决数学问题。

2.会用数学建模的思想将实际生活问题数学化,也会用数学建模的思想将数学问题生活化。

二、教学重点理解抛物线的光学性质并会推导。

三、教学难点数学建模思想的应用。

四、教学过程(一)课题引入问题一:手电筒一只很小的灯泡发出的光,会分散地射向各方,但把它装在圆柱形手电筒里,经过适当调节,就能射出一束比较强的平行光线。

这是为什么呢?设计意图:从生活中的一个例子出发,提出问题,引发学生的求知欲,从而提出课题。

(二)课题提出抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴。

抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的.问题二:生活问题数学化要探究抛物线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证,那么我们如何用数学语言阐述并证明抛物线的光学性质?设计意图:提出抛物线的光学性质,并通过列举它在生活中的大量应用,让学生感知数学无处不在,并有将生活问题数学化的欲望。

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1

合作探究 课堂互动
高效测评 知能提升
(2)设双曲线的方程为 mx2+ny2=1(mn<0), ∵双曲线经过点(3,0),(-6,-3),
∴93m6m++0= 9n1=,1, 解得nm==-19,13, ∴所求双曲线的标准方程为x92-y32=1.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
定义法求方程
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2= 9,动圆M同时与圆C1及圆C2相外切,求动圆的圆心M的轨迹方 程.
思路点拨: 根据两圆外切的定义从中找出相关的几何关 系,与所学椭圆、双曲线的定义进行对比可解.
数学 选修2-1
第二章 圆锥曲线与方程
合作探究 课堂互动
高效测评 知能提升
(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲 线标准方程的类型“焦点跟着正项走”,若x2项的系数为正, 则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时, 双曲线的方程才具有标准形式.
(4)双曲线的标准形式的特征是数xⅠ2 +数yⅡ2 =1,数Ⅰ与
合作探究 课堂互动
高效测评 知能提升
3.与双曲线x82-1y02 =1 具有相同焦点的双曲线方程是 ________(只写出一个即可).
解析: 与x82-1y02 =1 具有相同焦点的双曲线方程为8+x2 k -10y-2 k=1(-8<k<10).
答案: x62-1y22 =1
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程

人教A版选修2-1第二章 圆锥曲线与方程全章教案

人教A版选修2-1第二章 圆锥曲线与方程全章教案

第二章圆锥曲线与方程课题:2.1曲线与方程一、教学目标(一)知识教学点使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.二、教材分析1.重点:求动点的轨迹方程的常用技巧与方法.(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法.(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.)教具准备:与教材内容相关的资料。

教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.三、教学过程(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P为线段AB的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=16b4-4a4b2=0,即a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果.练习题用一小黑板给出.1.△ABC一边的两个端点是B(0,6)和C(0,-6),另两边斜率的2.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?3.求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程.答案:义法)由中点坐标公式得:(四)、教学反思求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1.两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2.动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹.3.已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1.以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=42.∵|PF2|-|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线六、板书设计课题:椭圆及其标准方程教学目标:1.知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.2.过程与方法目标:培养学生观察、实验、探究、验证与交流等数学活动能力。

2021_2022高中数学第二章圆锥曲线与方程3双曲线2双曲线的简单几何性质1课件新人教A版选修2

2021_2022高中数学第二章圆锥曲线与方程3双曲线2双曲线的简单几何性质1课件新人教A版选修2

渐近线方程为
y=±
2 2 x.
典例剖析
一.已知双曲线的方程,研究其几何性质
• 求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长 、离心率和渐近线方程,并作出草图.
• [分析] 将双曲线方程化成标准方程,求出a、b、c的值,然后依 据各几何量的定义作答.
[解析] 将 9y2-4x2=-36 变形为x92-y42=1, 即3x22-2y22=1,∴a=3,b=2,c= 13, 因此顶点为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0), 实轴长是 2a=6,虚轴长是 2b=4,
∴双曲线的标准方程为y22-x42=1.
三.双曲线的离心率
已知 F1、F2 是双曲线ax22-by22=1(a>0,b>0)的两个焦点,PQ 是经过 F1 且垂直于 x 轴的双曲线的弦.如果∠PF2Q=90°,求 双曲线的离心率.
• [解析] 设F1(c,0),由|PF2|=|QF2|, ∠PF2Q=90°,
)
B.x42-y52=1 D.x22- y25=1
• [答案] B
[解析] e=32,c=3,∴a=2,∴b2=c2-a2=5, 即双曲线的标准方程为x42-y52=1.
4.已知双曲线ax22-y52=1 的右焦点为(3,0),则该双曲线的
离心率等于( )
A.3 1414
B.3 4 2
C.32
D.43
第二章 圆锥曲线与方程
2.3 双曲线
2.3.2 双曲线的简单几何性质
学习目标
• 1.类比椭圆的性质,能根据双曲线的标准方程,讨论它的几何性质 .
• 2.能运用双曲线的性质解决一些简单的问题.

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

a=13,b=m1 ,
9 m2
取顶点0,13,一条渐近线为 mx-3y=0, 所以15=|-m32×+139|,则 m2+9=25,
∵m>0,∴m=4.
答案: D
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知点(2,3)在双曲线 C:ax22-by22=1(a>0,b>0)上, C 的焦距为 4,则它的离心率为________.
合作探究 课堂互动
高效测评 知能提升
1.双曲线 2x2-y2=8 的实轴长是( )
A.2
B.2 2
C.4
D.4 2
解析: 双曲线方程可化为x42-y82=1,∴a2=4,a=2,
则 2a=4,故选 C. 答案: C
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
c e=__a__
__y_=__±_ba_x_
_y_=__±_ab_x__
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
等轴双曲线
___实__轴__和___虚__轴___等长的双曲线叫做等轴双曲线.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
由①②联立,无解.
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令 y=0,解得 x=±3,因此顶点坐标为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0). 实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程 y=±bax=±23x. 作出草图(如图所示).

2018-2019学年高中数学 第二章 圆锥曲线与方程 2.3 双曲线 2.3.2 第1课时 双曲线

2018-2019学年高中数学 第二章 圆锥曲线与方程 2.3 双曲线 2.3.2 第1课时 双曲线
设 Q(x,y)为双曲线上一点,依题意
|PQ|= x2+y-52= 54y-42+5-b2,
其中 y≥2b,若 2b≤4,当 y=4 时,|PQ|最小=2. 从而,5-b2=4,即 b2=1,双曲线方程为y42-x2=1. 若 2b>4,当 y=2b 时,|PQ|最小=2,从而54(2b-4)2+5-b2=4,所以 b=72或 b =32(与 b>2 矛盾). 所以双曲线方程为4y92 -44x92=1. 故所求双曲线方程为y42-x2=1 或4y92 -44x92=1.
离心率 渐近线
c e=__a____∈_____(_1_,__+__∞_)____
____y=__±__ba_x _____
___y_=__±_ab_x______
• 2.等轴双曲线 • 实轴和虚轴等长的双曲线,标准方x2程-为y2=__a2____________.
1.双曲线x42-y2=1 的实轴长为 A.4 C. 3
『规律总结』 1.求双曲线的离心率,常常利用已知条件列出关于 a、b、c 的等式,利用 a2+b2=c2 消去 b 化为关于 a、c 的齐次式,再利用 e=ac化为 e 的方 程求解.
2.学习双曲线中应注意的几个问题: (1)双曲线是两支曲线,而椭圆是一条封闭的曲线; (2)双曲线只有两个顶点,离心率 e>1; (3)等轴双曲线是一种比较特殊的双曲线,其离心率为 2,实轴长与虚轴长相 等,两条渐近线互相垂直; (4)注意双曲线中 a、b、c、e 的等量关系与椭圆中 a、b、c、e 的不同.
B.2 D.1
( A)
[解析] ∵双曲线ax22-by22=1 的实轴长为 2a,∴双曲线x42-y2=1 的实轴长为 2a =4.
2.(江西九江一中 2017-2018 期末)双曲线y42-x2=1 的离心率 e=

人教A版高中数学选修1-1《二章 圆锥曲线与方程 2.3 抛物线 2.3 抛物线(通用)》优质课教案_3

人教A版高中数学选修1-1《二章 圆锥曲线与方程  2.3 抛物线  2.3 抛物线(通用)》优质课教案_3

2.4.1 抛物线及其标准方程的教学设计2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。

并进抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、教学过程(一)复习旧知在初中,我们学习过了二次函数,知道二次函数的图象是一条抛物线,例如:(1),(2)的图象(展示两个函数图象):(二)讲授新课1.课题引入在实际生活中,我们也有许多的抛物线模型,(展示几个抛物线模型)到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征征?它的方程是什么呢?这就是我们今天要研究的内容.(板书:课题§2.4.1 抛物线及其标准方程)2.将一根细绳的一端固定在三角板的直角顶点C处,另一端固定在一定点F处,三角板的一条直角边沿着一条直线向上滑动,用一支铅笔将笔尖放在M处,随着三角板向上移,笔尖向右移动,画出一部分曲线,调换三角板位置,沿同一条直线并垂直向下滑动,画出另一部分曲线,这样画出的曲线就是抛物线。

(学生观察画图过程,并讨论)可以发现,点M随着三角板运动的过程中,始终有|MC|=|MF|,即点M与定点F和定直线L 的距离相等。

(也可以用几何画板度量|MC|,|MF|的值)(定义引入):我们把平面内与一个定点F和一条定直线L(L不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线L 叫做抛物线的准线.(板书)3.抛物线的标准方程从抛物线的定义中我们知道,抛物线上的点M 满足到焦点F的距离与到准线L 的距离相等。

那么动点M 的轨迹方程是什么,即抛物线的方程是什么呢?要求抛物线的方程,必须先建立直角坐标系.问题设焦点F到准线L 的距离为P ,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.推导过程:取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴建立直角坐标系,如右图所示,则有F(p/2 ,0),l的方程为x=p/2 .设动点M(x,y),由抛物线定义化简得y2=2px(p>0)师:我们把方程叫做抛物线的标准方程,它表示的抛物线的焦点坐标是(p/2 ,0),准线方程是x=p/2 。

双曲线及其标准方程教学设计

双曲线及其标准方程教学设计

《2.3.1 双曲线及其标准方程》教学设计一、教学内容解析(一)课标要求:《双曲线及其标准方程》是人教A版普通高中课程选修2-1第二章的第三节内容. 课程标准对本节内容的要求是:了解双曲线的定义、几何图形和标准方程.通过圆锥曲线与方程的学习,进一步体会数形结合的思想.(二)教材地位双曲线与科研、生产以及人类生活有着密切的关系,因此,研究它的几何特征及其性质有着极其现实的意义。

学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步巩固、深化和提高.如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章.所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质以及进一步学习抛物线,解决更复杂的解析几何综合问题奠定良好的基础.教学重点:理解和掌握双曲线的定义及其标准方程.突出重点的手段:通过画图揭示出双曲线上的点所满足的条件,再通过讨论归纳得出双曲线的定义;对于双曲线的方程,可类比椭圆方程的推导得出方程并加以比较,加深认识.二、教学目标设置依据教材的地位与作用,以及新课改对教学目标的要求,确定本节课的教学目标为:1、理解双曲线的定义并能独立推导标准方程;2、通过定义及标准方程的挖掘与探究,使学生进一步体验类比、数形结合等思想方法的运用,提高学生的观察与探究能力;3、通过教师指导下的学生交流探索活动,让学生体会数学的理性和严谨,培养学生实事求是和锲而不舍的钻研精神,形成学习数学知识的积极态度.三、学生学情分析授课班级为宁夏吴忠市吴忠中学高二年级学生。

从知识方面来说,学生从必修“平面解析几何初步”到选修“圆锥曲线”,已经学习直线、圆和椭圆,较为系统地研究了他们的性质,对解析几何的基本思想方法有了一定的认识,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,并对数形结合、类比推理的思想方法有一定的体会.从能力方面来说,作为高二年级的学生,其学习能力与理性思维都达到了一定的水平.具备一定的计算、推理、知识迁移、归纳概括和分析问题、解决问题的能力等能力,并对数形结合、类比等思想方法有了一定的感悟.教学难点:双曲线定义的得出和标准方程的建立.突破难点的策略:始终以“类比”作为主线,引导学生动手实验、观察、交流、归纳定义;回顾坐标法求椭圆方程的步骤,亲自体验建立双曲线标准方程的过程.四、教学策略分析著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现.”双曲线的定义和标准方程与椭圆很类似,学生已经有了一些学习椭圆的经验,所以本节课采用了“启发探究”、“类比教学”的教学方式,重点突出以下两点:1、以类比思维作为教学的主线2、以自主探究作为学生的学习方式授之以“鱼”不如授之以“渔”,教师只是课堂教学的引导者、启发者,在新课程改革理念的指导下,要注重突出学生的主体作用.因此,在学习方法的制定上,将充分发挥学生在学习活动中的作用,通过学生主动探索、动手实践调动学生学习的积极性,转变学生的学习方式,形成理性、严谨的解决问题的态度.五、教学过程设计(一)回顾旧知,实验探索师:前面我们学习了椭圆,回顾一下,椭圆是如何定义的?(请一位同学回答.)生:平面内与两个定点F1 、F2. 的距离的和等于常数2a (2a >| F1 F2 | )的点的轨迹叫做椭圆.师:若将椭圆定义中的“距离之和”改为“距离之差”.即平面内与两个定点21,F F 的距离的差等于非零常数的点的轨迹是什么?学生表示不知道.师:我们不妨通过画图来探究.教师借助于拉链来说明作图方法.(如图)师:取一条拉链,拉开它的一部分,在拉链拉开的两边上各选择一点,分别固定在纸板上的点F 1 ,F 2处,取拉头处为M 点,由于拉链两段是等长的,则221FF MF MF =-,把笔尖放在点M 处,随着拉链的拉开或闭拢,M 点到F 1 ,F 2的距离的差为常数.这样的动点M 的轨迹是什么呢?【学生活动】请一位同学上黑板演示(用两段绳子来模拟拉链,进行作图),其他同学观察、思考.学生画出一条曲线(如图1).教师带领学生分析:这条曲线就是满足下面条件的点的集合:12P={M||MF |-|MF |=}常数师:如果使点M 到F 2的距离减去到点F 1的距离所得的差等于同一个常数,就得到另一条曲线(图2).这条曲线是满足什么条件的点的集合?生:21P={M||MF |-|MF |=}常数.师:现在我们知道,平面内到两定点距离的差为常数的点的轨迹是这样的两条曲线. 这两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.它是满足这两个条件 ①12MF -MF =常数②21MF -MF =常数的点的集合.能不能将这两个条件统一起来呢? 生:用绝对值.即12MF MF = 常数.师:很好.下面我们借助于几何画板来更直观地感受一下双曲线的形成.【师生活动】 教师用多媒体演示双曲线的形成,引导学生观察,在点M 运动的过程中, 12MF MF 与的差有什么特征?学生不难发现,这个差是一组相反数,即动点M 满足条件12MF -MF =常数.再次验证画图结果.师:双曲线在科研和日常生产生活中应用广泛.(出示双曲线相关图片——冷却塔、立交 图1 图2桥、广州塔、埃菲尔铁塔) 这是继椭圆之后我们要学习的第二种圆锥曲线.(板书课题:2.3.1 双曲线及其标准方程 指明本节课的学习内容.)【设计意图】通过复习回顾椭圆概念,引出新问题.从学生认知的最近发展区入手,激发学生的求知欲.通过画图让学生直观地感受双曲线的形成,并通过优美图片的展示,渗透数学美的教育,让学生感受数学美的同时体会数学的应用价值. 再次激发学生的学习兴趣.(二)抽象概括,归纳定义提出问题:刚才我们通过直观演示,观察到动点的轨迹是双曲线.你们能根据刚才画双曲线的过程,类比椭圆的定义,归纳概括出双曲线的定义吗?(出示椭圆图形及定义,引导学生类比.)学生讨论交流,很快可以得出结果:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于21F F )的点的轨迹叫做双曲线.两个定点12F ,F 叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距.记为21F F =2c .[师生活动]若学生能够得出常数小于21F F ,继续后续问题,如果学生没有发现,教师需要引导学生观察、分析.师:我们通常将定义中的常数记为2a,也就是说,双曲线就是点集:1212P={M |MF |-|MF |=202F F }<<a a ,.【设计意图】本环节在学生经历双曲线形成的基础上,类比椭圆定义,归纳概括双曲线定义,有助于学生对双曲线定义的理解.在这个过程中,培养学生的动手实验能力、归纳概括能力、对比分析能力,体会类比和数形结合思想方法.同时渗透数学美的教育,让学生感受数学美的同时体会数学的应用价值. 再次激发学生的学习兴趣.(三)类比椭圆,建立方程师:得到了双曲线的定义,知道了它的基本几何特征,这只是一种“定性”的描述,但是对于这种曲线还具有哪些性质,尚需进一步研究. 根据解析几何的基本思想方法,我们需要利用坐标法先建立双曲线的方程“定量”的描述,然后通过对双曲线的方程的讨论,来研究其几何性质.师:坐标法建立椭圆标准方程的步骤有哪些?[师生活动]请学生回顾坐标法建立椭圆方程的步骤,分析双曲线的几何特征.请一位同学回答.提出探究内容:你能类比椭圆标准方程的建立过程,建立适当的坐标系,推导双曲线的标准方程吗?【师生活动】这一环节是本节课的难点,但前面经历了椭圆标准方程的建立过程,学生不会感到太困难,因此本环节放手让学生去尝试,有困难可以互相讨论.教师教师巡视、个别予以点拨指导.绝大多数学生会选择建立焦点在x 轴上的双曲线方程.分析如下:(1)建系设点:取过焦点12F ,F 的直线为x 轴,线段12F ,F 的垂直平分线为y 轴(如图所示)建立直角坐标系,设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么12F ,F 的坐标分别是1F (-c,0),2F (c,0).又设点M 与F1、F2的距离的差的绝对值为2a .(2)写动点满足的集合:由定义可知,点M 满足集合:1212P={M |MF |-|MF |=2}={M |MF |-|MF |=2}±a a .(3)列方程(用坐标表示条件):1||MF =,2||MF =2=±a(4)化简方程:将这个方程移项,使式子两边平衡,再两边平方得:2222222222222()44(),:(c -)x -y =(c -)++=±+-+x c y a x c y a a a a 移项整理两边平方可得类比椭圆的标准方程的处理方式进行简化,使其简洁美观 ,即22222x y 1c --=a a(教师待学生得到以上的结论时,请学生展示成果.讲评关键点. 特别强调在方程的形式上可以仿照椭圆的标准方程的处理方式:由双曲线定义2c >2a , 即c >a ,设222c -=b (b >0)a ,代入上式22222x y -=1c -a a ,将式子进一步简化,使其简洁、对称,得到方程:()2222x y -=1>0,b >0ba a . (5)验证说明(由教师带领学生分析.) 师:由推导过程可知,双曲线上任意一点的坐标都满足方程()2222x y -=1>0,b >0ba a ,同时,以方程的解为坐标的点到双曲线的两个焦点1F (-c,0),2F (c,0)的距离之差的绝对值为2a,即以方程的解为坐标的点都在双曲线上.由曲线与方程的关系可知,该方程就是双曲线的方程,我们把它叫做双曲线的标准方程.它表示的双曲线焦点在x 轴上,焦点坐标分别为1F (-c,0),2F (c,0),这里222c +b =a .(教师板书两种形式的标准方程)师:你能得到焦点在y 轴上的双曲线的标准方程吗?生:类比椭圆,只要交换方程中的x 和y 即可.这样就得到了焦点在y 轴上的双曲线的标准方程, 即为()222210,0-=>>y x a b a b.(教师板书) 得到了双曲线的定义和方程.借助于表格进行双曲线再认识.强化概念.【设计意图】这一过程由学生自主完成,这样设计使学生完全成了学习的主人,由被动的接受变成主动的获取.通过双曲线标准方程的建立过程,训练学生的运算能力、推理论证能力、探究能力、分析问题、解决问题的能力,培养学生的合作意识和严谨的学习态度,渗透数形结合的数学思想.并感受双曲线方程、图形的对称美,获得成功的喜悦!(四)初步应用,例题讲析师:学习了新知识,就要应用,来看习题.练习:(1)已知两定点)0,5()0,5(21F F -若动点P 到21,F F 的距离的差的绝对值等于6,则动点P 的轨迹是 ( )A 双曲线 B圆 C射线 D 线段(2)已知两定点)0,5()0,5(21F F -若动点P 满足621=-PF PF ,则动点P 的轨迹是( )A. 双曲线的右支B. 双曲线的左支C. 以1F 为顶点的射线D. 以2F 为顶点的射线例1、已知双曲线两个焦点的坐标为 F1 (-5,0) F2(5,0) ,双曲线上一点P 到F1、F2 的距离之差的绝对值等于6,求双曲线标准方程.【师生活动】先由学生独2立去做,待大部分同学完成后,由学生叙述,教师板书.例1要强调待定系数法求双曲线方程的步骤:先确定焦点位置,再待定出方程,然后求解方程中的a 和b ,最后写出所求方程.例2、求适合下列条件的双曲线的方程(1)a=4,b=5,焦点在x 轴上;(2)a=3,c=5.练习是属于概念辨析题,可以进一步理解双曲线的定义.例1主要是运用待定系数法求解双曲线的标准方程.例2在例1的基础上再次强化待定系数法的应用,同时对学生进行分类讨论数学思想的渗透,达到拓展知识、提高能力的目的.【设计意图】 数学概念是要在运用中得以巩固的,通过例题使学生进一步理解双曲线的定义,掌握双曲线标准方程的求解方法,并在解题过程中渗透数形结合的数学思想.通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识的再次深化.(五)知识总结,形成体系出示问题:1.本节课你学到了什么知识?2.研究双曲线用到了什么思想方法?让学生自己进行总结,相互补充,教师点评:本节课首先通过画图揭示出双曲线上的点所满足的条件,由此归纳概括出双曲线的定义,运用坐标法建立了双曲线的标准方程,在习题中应用待定系数法求双曲线的标准方程.在整个过程中,类比椭圆的定义、图象和标准方程的探究思路来处理双曲线的类似问题.在这一学习过程中也进一步体会了数形结合的思想.【设计意图】以问题形式来引导学生自我总结.通过总结使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养概括能力.同时,通过提炼数学的基本思想方法,提高学生的数学素养.(六)布置作业,巩固提高必做题: 课本55页练习2,3题选做题: 课本61页习题A 组2题课外作业:查阅资料:GPS中的双曲线导航原理.【设计意图】作业设计有梯度,分为必做题和选做题,注重不同层次的学生的认知水平,学生可以根据自己的实际学习情况完成作业,尽量做到让不同层次的学生都能有所收获.课外作业为学生利用双曲线性质解决实际问题做准备,既可以拓展学生的知识,又可以让学生体会到数学在现实中的广泛应用.板书设计:板书力求重点突出,结构清晰,美观整齐.六、教学设计说明1. 本节课以新课程的教学理念为指导,充分体现素质教育的重点:培养学生的创新精神和实践能力.2.本节课不仅重视结论,也重视知识的生成过程,整个教学过程注重启发探究、类比教学方式的应用,是研究性教学的一次有益尝试.在教学过程中,教师作为引导者、参与者、合作者,努力引导学生动手、探索、分析,亲身经历知识形成的过程.在整个教学过程中渗透了类比、数形结合等数学思想.3.在教学过程中通过学生动手实践、自主探索,培养其分析、交流、抽象概括及数学表达的能力. 在建立双曲线的标准方程的过程中,提高学生运用坐标法解决几何问题的能力及运算能力.以上就是我对这节课的设计和说明,敬请指正,谢谢!。

2021_2022高中数学第二章圆锥曲线与方程3双曲线1双曲线及其标准方程2课件新人教A版选修2

2021_2022高中数学第二章圆锥曲线与方程3双曲线1双曲线及其标准方程2课件新人教A版选修2

4m+445n=1 196×7m+16n=1
,解得mn==19-116

∴所求双曲线方程为-1x62 +y92=1,即y92-1x62 =1.
• [例5] 已知双曲线8kx2-ky2=8的一个焦点为(0,3),求k的值.
[误解] 将双曲线方程化为标准方程x12-y82=1.因为 kk
焦点在 y 轴上,所以 a2=8k,b2=1k,所以 c= a2-b2= 8k-1k=3,即7k=9,所以 k=79.
人教版 选修2-1
第二章 圆锥曲线与方程
2.3 双曲线
2.3识与技能 • 记住双曲线的定义,会推导双曲线的标准方程. • 2.过程与方法 • 会用待定系数法确定双曲线的方程 • 与椭圆的标准方程比较,加以区分.
• 本节重点:双曲线的定义及其标准方程.
• 本节难点:双曲线标准方程的推导.
• 当a=5时,|PF1|-|PF2|=2a=10=|F1F2|, • ∴P点轨迹是以F2为始点的一条射线.
• 2.在方程mx2-my2=n中,若mn<0,则方程的曲线是 •( )
• A.焦点在x轴上的椭圆 • B.焦点在x轴上的双曲线 • C.焦点在y轴上的椭圆 • D.焦点在y轴上的双曲线 • [答案] D
• ∴焦距2c=10.
• 三、解答题
• 7.已知双曲线的一个焦点坐标为F1(0,-13),双曲线上一点 P到两焦点距离之差的绝对值为24,求双曲线标准方程.
[解析] 设双曲线方程为:ay22-bx22=1(a>0,b>0) 由已知得,2a=24,∴a=12,c=13,∴b=5, ∴双曲线的标准方程为:1y424-2x52 =1.
变式训练
已知双曲线过 P1(-2,32

高中数学第2章圆锥曲线与方程2.3.1双曲线及其标准方程教学用书教案新人教A版选修2_1

高中数学第2章圆锥曲线与方程2.3.1双曲线及其标准方程教学用书教案新人教A版选修2_1

2.3 双曲线2.3.1双曲线及其标准方程学习目标核心素养1.理解双曲线的定义、几何图形和标准方程的推导过程.(重点) 2.掌握双曲线的标准方程及其求法.(重点)3.会利用双曲线的定义和标准方程解决简单的问题.(难点) 1.通过双曲线概念的学习,培养学生的数学抽象的核心素养.2.通过双曲线标准方程的求解、与双曲线有关的轨迹问题的学习,提升学生的数学运算、逻辑推理及数学抽象等核心素养.1.双曲线的定义把平面内与两个定点F1,F2距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.思考:(1)双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?(2)双曲线的定义中,F1、F2分别为双曲线的左、右焦点,若|MF1|-|MF2|=2a(常数),且2a<|F1F2|,则点M的轨迹是什么?[提示](1)当距离之差的绝对值等于|F1F2|时,动点的轨迹是两条射线,端点分别是F1,F2,当距离之差的绝对值大于|F1F2|时,动点的轨迹不存在.(2)点M在双曲线的右支上.2.双曲线的标准方程焦点在x轴上焦点在y轴上标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)焦点F1(-c,0),F2(c,0) F1(0,-c),F2(0,c) a,b,c的关系c2=a2+b21.动点P到点M(1,0)的距离与点N(3,0)的距离之差为2,则点P的轨迹是() A.双曲线B.双曲线的一支C .两条射线D .一条射线D [由已知|PM |-|PN |=2=|MN |,所以点P 的轨迹是一条以N 为端点的射线NP .] 2.双曲线y 23-x 2=1的焦点坐标是( )A .(±2,0)B .(0,±2)C .(0,±2)D .(±2,0)C [根据题意,双曲线的方程为y 23-x 2=1,其焦点在y 轴上,且c =3+1=2;则其焦点坐标为(0,±2).]3.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 应满足的条件是( )A .k >3B .2<k <3C .k =2D .0<k <2C [双曲线x 2k -y 23=1的焦点坐标为(±3+k ,0),椭圆的焦点坐标为(±9-k 2,0),由椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,可得3+k =9-k 2,因为k >0,所以解得k =2.]4.与双曲线x 28-y 210=1具有相同焦点的双曲线方程是________(只写出一个即可).x 26-y 212=1 [与x 28-y 210=1具有相同焦点的双曲线方程为x 28+k -y 210-k=1(-8<k <10).]双曲线的定义及应用【例1】 已知F 1,F 2是双曲线x 9-y 16=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若点P 是双曲线上的一点,且∠F 1PF 2=60°,求△F 1PF 2的面积. 思路探究:(1)直接利用定义求解. (2)在△F 1PF 2中利用余弦定理求|PF 1|·|PF 2|.[解] (1)设|MF 1|=16,根据双曲线的定义知||MF 2|-16|=6,即|MF 2|-16=±6.解得|MF 2|=10或|MF 2|=22.(2)由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, ∴102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=163.PF 1F 2面积的方法(1)①根据双曲线的定义求出||PF 1|-|PF 2||=2a ;②利用余弦定理表示出|PF 1|、|PF 2|、|F 1F 2|之间满足的关系式;③通过配方,整体的思想求出|PF 1|·|PF 2|的值;④利用公式S △PF 1F 2=12×|PF 1||PF 2|·sin ∠F 1PF 2求得面积.(2)利用公式S △PF 1F 2=12×|F 1F 2|×|y P |求得面积.[跟进训练]1.(1)已知定点F 1(-2,0),F 2(2,0),在平面内满足下列条件的动点P 的轨迹中为双曲线的是( )A .|PF 1|-|PF 2|=±3B .|PF 1|-|PF 2|=±4C .|PF 1|-|PF 2|=±5D .|PF 1|2-|PF 2|2=±4A [|F 1F 2|=4,根据双曲线的定义知选A .](2)已知定点A 的坐标为(1,4),点F 是双曲线x 24-y 212=1的左焦点,点P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.9 [由双曲线的方程可知a =2,设右焦点为F 1,则F 1(4,0).|PF |-|PF 1|=2a =4,即|PF |=|PF 1|+4,所以|PF |+|P A |=|PF 1|+|P A |+4≥|AF 1|+4,当且仅当A ,P ,F 1三点共线时取等号,此时|AF 1|=(4-1)2+42=25=5,所以|PF |+|P A |≥|AF 1|+4=9,即|PF |+|P A |的最小值为9.]求双曲线的标准方程【例(1)a =4,经过点A ⎝⎛⎭⎫1,-4103;(2)与双曲线x 216-y 24=1有相同的焦点,且经过点(32,2);(3)过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5且焦点在坐标轴上. 思路探究:(1)结合a 的值设出标准方程的两种形式,将点A 的坐标代入求解. (2)因为焦点相同,所以所求双曲线的焦点也在x 轴上,且c 2=16+4=20,利用待定系数法求解,或设出统一方程求解.(3)双曲线焦点的位置不确定,可设出一般方程求解.[解] (1)当焦点在x 轴上时,设所求标准方程为x 216-y 2b 2=1(b >0),把点A 的坐标代入,得b 2=-1615×1609<0,不符合题意;当焦点在y 轴上时,设所求标准方程为y 216-x 2b2=1(b >0),把A 点的坐标代入,得b 2=9.故所求双曲线的标准方程为y 216-x 29=1. (2)法一:∵焦点相同,∴设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),∴c 2=16+4=20,即a 2+b 2=20.① ∵双曲线经过点(32,2),∴18a 2-4b 2=1.②由①②得a 2=12,b 2=8,∴双曲线的标准方程为x 212-y 28=1. 法二:设所求双曲线的方程为x 216-λ-y 24+λ=1(-4<λ<16).∵双曲线过点(32,2),∴1816-λ-44+λ=1,解得λ=4或λ=-14(舍去).∴双曲线的标准方程为x 212-y 28=1.(3)设双曲线的方程为Ax 2+By 2=1,AB <0. ∵点P ,Q 在双曲线上,∴⎩⎨⎧9A +22516B =1,2569A +25B =1,解得⎩⎨⎧A =-116,B =19.∴双曲线的标准方程为y 29-x 216=1.1.求双曲线标准方程的步骤(1)确定双曲线的类型,并设出标准方程; (2)求出a 2,b 2的值.2.当双曲线的焦点所在坐标轴不确定时,需分焦点在x 轴上和y 轴上两种情况讨论,特别地,当已知双曲线经过两个点时,可设双曲线方程为Ax 2+By 2=1(AB <0)来求解.[跟进训练]2.求以椭圆x 216+y 29=1的短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程.[解] 由题意,知双曲线的两焦点为F 1(0,-3), F 2(0,3).设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),将点A (4,-5)代入双曲线方程, 得25a 2-16b 2=1. 又a 2+b 2=9,解得a 2=5,b 2=4, 所以双曲线的标准方程为y 25-x 24=1.与双曲线有关的轨迹问题[1.到两定点F 1,F 2的距离之差是常数(小于|F 1F 2|)的点的轨迹是双曲线的两支还是一支? [提示] 一支.2.求以两定点F 1,F 2为焦点的双曲线方程时,应如何建系?[提示] 以直线F 1F 2和线段F 1F 2的垂直平分线分别为x 轴和y 轴建系.【例3】 如图所示,在△ABC 中,已知|AB |=42,且三个内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.思路探究:[解] 以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =|BC |2R ,sin B =|AC |2R ,sin C =|AB |2R (R 为△ABC 的外接圆半径).∵2sin A +sin C =2sin B ,∴2|BC |+|AB |=2|AC |, 即|AC |-|BC |=|AB |2=22<|AB |. 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点). 由题意,设所求轨迹方程为x 2a 2-y 2b 2=1(x >a ),∵a =2,c =22,∴b 2=c 2-a 2=6. 即所求轨迹方程为x 22-y 26=1(x >2).求与双曲线有关的点的轨迹问题的方法 (1)列出等量关系,化简得到方程.(2)寻找几何关系,由双曲线的定义,得出对应的方程. 提醒:①双曲线的焦点所在的坐标轴是x 轴还是y 轴. ②检验所求的轨迹对应的是双曲线的一支还是两支.[跟进训练]3.如图所示,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.[解] 圆F 1:(x +5)2+y 2=1,圆心F 1(-5,0),半径r 1=1. 圆F 2:(x -5)2+y 2=42,圆心F 2(5,0),半径r 2=4. 设动圆M 的半径为R ,则有|MF 1|=R +1,|MF 2|=R +4, ∴|MF 2|-|MF 1|=3<10=|F 1F 2|.∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a =32,c =5,于是b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为x 294-y 2914=1⎝⎛⎭⎫x ≤-32.1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出关于a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1(mn <0)的形式求解.1.已知双曲线的一个焦点F 1(0,5),且过点(0,4),则该双曲线的标准方程为 ( )A .x 29-y 216=1B .y 216-x 29=1C .x 29-y 225=1D .y 225-x 29=1B [由已知得,c =5,a =4,所以b =3.所以双曲线的标准方程为y 216-x 29=1.]2.若k ∈R ,方程x 2k +3+y 2k +2=1表示焦点在x 轴上的双曲线,则k 的取值范围是( )A .-3<k <-2B .k <-3C .k <-3或k >-2D .k >-2A [由题意可知⎩⎪⎨⎪⎧k +3>0,k +2<0,解得-3<k <-2,选择A .]3.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.16 [由点F (0,5)可知该双曲线y 2m -x 29=1的焦点落在y 轴上,所以m >0,且m +9=52,解得m =16.]4.已知双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求双曲线方程.[解] 因为椭圆x 227+y 236=1的焦点为(0,-3),(0,3),A 点的坐标为(15,4)或(-15,4),设双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0),所以⎩⎪⎨⎪⎧a 2+b 2=9,16a 2-15b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=5,所以所求的双曲线的标准方程为y 24-x 25=1.。

高中数学 第二章 圆锥曲线与方程 2.3 双曲线 2.3.1 双曲线及其标准方程讲义 新人教A版选修

高中数学 第二章 圆锥曲线与方程 2.3 双曲线 2.3.1 双曲线及其标准方程讲义 新人教A版选修

2.3.1 双曲线及其标准方程1.双曲线 (1)定义□01平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. (2)双曲线的集合描述设点M 是双曲线上任意一点,点F 1,F 2是双曲线的焦点,则由双曲线的定义可知,双曲线就是集合□02P ={M |||MF 1|-|MF 2||=2a,0<2a <|F 1F 2|}. 2.双曲线的标准方程1.判一判(正确的打“√”,错误的打“×”)(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程x 2a 2-y 2b2=1中,a >0,b >0且a ≠b .( )(3)双曲线的标准方程可以统一为Ax 2+By 2=1(其中AB <0).( ) 答案 (1)× (2)× (3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线x 24-y 216=1上一点M 到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x 2-4y 2=1的焦距为________.(3)(教材改编P 55T 1)已知双曲线a =5,c =7,则该双曲线的标准方程为________. (4)下列方程表示焦点在y 轴上的双曲线的有________(把序号填在横线上).①x 2-y 22=1;②x 2a +y 22=1(a <0);③y 2-3x 2=1;④x 2cos α+y 2sin α=1⎝ ⎛⎭⎪⎫π2<α<π.答案 (1)4或12 (2) 5 (3)x 225-y 224=1或y 225-x 224=1(4)②③④解析 (3)∵a =5,c =7,∴b =c 2-a 2=24=2 6. 当焦点在x 轴上时,双曲线方程为x 225-y 224=1; 当焦点在y 轴上时,双曲线方程为y 225-x 224=1.探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x 2+y 2sin θ=cos θ表示的曲线是( ) A .焦点在y 轴上的双曲线 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在x 轴上的椭圆[解析] 曲线方程可化为x 2cos θ+y 2cos θsin θ=1,θ是第三象限角,则cos θ<0,cos θsin θ>0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A 拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为x 2m +y 2n=1,则当mn <0时,方程表示双曲线.若⎩⎪⎨⎪⎧m >0,n <0,则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n >0,则方程表示焦点在y 轴上的双曲线.【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 答案 C 解析 原方程化为y 2k 2-1-x 2k +1=1,∵k >1,∴k 2-1>0,k +1>0.∴方程所表示的曲线为焦点在y 轴上的双曲线.探究2 双曲线的标准方程例2 求满足下列条件的双曲线的标准方程.(1)焦点在坐标轴上,且过M ⎝ ⎛⎭⎪⎫-2,352,N ⎝ ⎛⎭⎪⎫473,4两点;(2)两焦点F 1(-5,0),F 2(5,0),且过P ⎝⎛⎭⎪⎫352,2. [解] (1)当双曲线的焦点在x 轴上时,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∵M ,N 在双曲线上,∴⎩⎪⎨⎪⎧(-2)2a 2-⎝ ⎛⎭⎪⎫3522b 2=1,⎝ ⎛⎭⎪⎫4732a 2-42b 2=1,解得⎩⎪⎨⎪⎧1a 2=-116,1b 2=-19(不符合题意,舍去).当双曲线的焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0). ∵M ,N 在双曲线上,∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫3522a 2-4b 2=1,42a 2-⎝ ⎛⎭⎪⎫4732b 2=1,解得⎩⎪⎨⎪⎧1a 2=19,1b 2=116,即a 2=9,b 2=16.∴所求双曲线方程为y 29-x 216=1.(2)由已知可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),代入点P ⎝⎛⎭⎪⎫352,2可得454a 2-4b 2=1,①又a 2+b 2=25,②由①②联立可得a 2=9,b 2=16, ∴双曲线方程为x 29-y 216=1. [解法探究] 例2(1)有没有其他解法呢? 解 ∵双曲线的焦点位置不确定,∴设双曲线方程为mx 2+ny 2=1(mn <0). ∵M ,N 在双曲线上,则有 ⎩⎪⎨⎪⎧4m +454n =1,169×7m +16n =1,解得⎩⎪⎨⎪⎧m =-116,n =19,∴所求双曲线方程为-x 216+y 29=1,即y 29-x 216=1.拓展提升利用待定系数法求双曲线标准方程的步骤(1)定位置:根据条件确定双曲线的焦点在哪条坐标轴上,还是两种都有可能.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0).(3)寻关系:根据已知条件列出关于a ,b ,c (m ,n )的方程组. (4)得方程:解方程组,将a ,b ,c (m ,n )代入所设方程即为所求.【跟踪训练2】 根据下列条件,求双曲线的标准方程. (1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)c =6,经过点(-5,2),焦点在x 轴上. 解 (1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1.由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a2-(15)2b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去).∴所求双曲线方程是x 25-y 2=1.探究3 双曲线定义的应用例3 如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. [解] 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22. (2)将|PF 2|-|PF 1|=2a =6,两边平方得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°,∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.拓展提升双曲线定义的两种应用(1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)双曲线中的焦点三角形双曲线上的点P 与其两个焦点F 1,F 2连接而成的三角形PF 1F 2称为焦点三角形.令|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ,因|F 1F 2|=2c ,所以有①定义:|r 1-r 2|=2a .②余弦公式:4c 2=r 21+r 22-2r 1r 2cos θ. ③面积公式:S △PF 1F 2=12r 1r 2sin θ.一般地,在△PF 1F 2中,通过以上三个等式,所求问题就会顺利解决.【跟踪训练3】 (1)已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的左、右焦点,且|PF 1|=17,求|PF 2|的值.解 由双曲线方程x 264-y 236=1可得a =8,b =6,c =10,由双曲线的图象可得点P 到右焦点F 2的距离d ≥c -a =2,因为||PF 1|-|PF 2||=16,|PF 1|=17,所以|PF 2|=1(舍去)或|PF 2|=33.(2)已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,则S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×64×32=16 3.探究4 与双曲线有关的轨迹问题例4 如图,在△ABC 中,已知|AB |=42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.并指出表示什么曲线.[解] 如图,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,则A (-22,0),B (22,0). 由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵2sin A +sin C =2sin B , ∴2a +c =2b ,即b -a =c2.从而有|CA |-|CB |=12|AB |=22<AB .∴由双曲线的定义知,点C 的轨迹为双曲线的右支且不包括顶点. ∵a =2,c =22,∴b 2=c 2-a 2=6. ∴顶点C 的轨迹方程为x 22-y 26=1(x >2).故C 点的轨迹为双曲线右支且除去点(2,0). 拓展提升用定义法求轨迹方程的一般步骤(1)根据已知条件及曲线定义确定曲线的位置及形状(定形,定位). (2)根据已知条件确定参数a ,b 的值(定参). (3)写出标准方程并下结论(定论).【跟踪训练4】 如图所示,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1, ∴圆心为F 1(-5,0),半径r 1=1. 圆F 2:(x -5)2+y 2=42, ∴圆心为F 2(5,0),半径r 2=4.设动圆M 的半径为R ,则有|MF 1|=R +1, |MF 2|=R +4,∴|MF 2|-|MF 1|=3<|F 1F 2|=10, ∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支, 且a =32,c =5,∴b =912,∴点M 的轨迹方程为49x 2-491y 2=1⎝ ⎛⎭⎪⎫x ≤-32.1.双曲线的定义中,一定要注意的几点(1)前提条件“平面内”不能丢掉,否则就成了空间曲面,不是平面曲线了;(2)不可漏掉定义中的常数小于|F 1F 2|,否则,当2a =|F 1F 2|时,||PF 1|-|PF 2||=2a 表示两条射线;当||PF 1|-|PF 2||>2a 时,不表示任何图形;(3)不能丢掉绝对值符号,若丢掉绝对值符号,其余条件不变,则点的轨迹为双曲线的一支. 2.求双曲线的标准方程时,应注意的两个问题 (1)正确判断焦点的位置;(2)设出标准方程后,再运用待定系数法求解.求双曲线的标准方程也是从“定形”“定式”和“定量”三个方面去考虑.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”是根据“形”设双曲线标准方程的具体形式;“定量”是指用定义法或待定系数法确定a ,b 的值.1.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值X 围是( )A .(-1,3)B .(-1,+∞)C .(3,+∞) D.(-∞,-1) 答案 B解析 依题意,应有m +1>0,即m >-1.2.已知双曲线x 216-y 29=1,则双曲线的焦点坐标为( )A .(-7,0),(7,0)B .(-5,0),(5,0)C .(0,-5),(0,5)D .(0,-7),(0,7) 答案 B解析 由双曲线的标准方程可知a 2=16,b 2=9,则c 2=a 2+b 2=16+9=25,故c =5.又焦点在x 轴上,所以焦点坐标为(-5,0),(5,0).3.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m 答案 B解析 ∵A ,B 在双曲线的右支上, ∴|BF 1|-|BF 2|=2a ,|AF 1|-|AF 2|=2a , ∴|BF 1|+|AF 1|-(|BF 2|+|AF 2|)=4a . ∴|BF 1|+|AF 1|=4a +m .∴△ABF 1的周长为4a +m +m =4a +2m .4.焦点在y 轴上,a =3,c =5的双曲线方程为________. 答案y 29-x 216=1 解析 ∵b 2=c 2-a 2=52-32=16,又焦点在y 轴上, ∴双曲线方程为y 29-x 216=1.5.已知双曲线的两个焦点F 1,F 2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的方程.解 若以线段F 1F 2所在的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系,则word- 11 - / 11 双曲线的方程为标准形式x 2a 2-y 2b 2=1(a >0,b >0).由题意得2a =24,2c =26. ∴a =12,c =13,b 2=132-122=25. 双曲线的方程为x 2144-y 225=1; 若以线段F 1F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立直角坐标系. 则双曲线的方程为y 2144-x 225=1.。

2019-2020学年浙江高二人A数学选修2-1第二章 圆锥曲线与方程_2.3.1 双曲线及其标准方程(讲义)

2019-2020学年浙江高二人A数学选修2-1第二章 圆锥曲线与方程_2.3.1 双曲线及其标准方程(讲义)

2.3.1 双曲线及其标准方程课标要求:1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.1.双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线定义的集合表示设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由双曲线的定义可知,双曲线可以视为动点M的集合,即点集P={M|||MF1|-|MF2||=常数,常数大于0且小于|F1F2|}.注意:(1)距离的差要加绝对值,否则只是双曲线的一支,若F1,F2表示双曲线的左、右焦点,有两种情形:①若点P满足|PF2|-|PF1|=2a(a>0),则点P在左支上.如图①所示.②若点P满足|PF1|-|PF2|=2a(a>0),则点P在右支上.如图②所示.(2)注意定义中的“小于|F1F2|”这一限制条件,其根据是“三角形两边之差小于第三边”.①若2a=2c,即||PF1|-|PF2||=|F1F2|,根据平面几何知识,当|PF1|-|PF2|=|F1F2|时,动点轨迹是以F2为端点向右延伸的一条射线;当|PF2|-|PF1|=|F1F2|时,动点轨迹是以F1为端点向左延伸的一条射线.②若2a>2c,即||PF1|-|PF2||>|F1F2|,根据平面几何知识,动点轨迹不存在.3.双曲线的标准方程注意:(1)标准方程中的两个参数a和b,确定了双曲线的形状和大小,是双曲线的定形条件,这里b2=c2-a2,它们恰好为一个直角三角形的三条边,其中c为斜边.注意与椭圆中b2=a2-c2相区别,在椭圆中a>b>0,而双曲线中,a,b大小则不确定.(2)焦点F1,F2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.可以根据项的正负来判断焦点所在的位置,即x2项的系数是正的,那么焦点在x轴上;y2项的系数是正的,那么焦点在y轴上.简言之,“焦点跟着正项走”.4.双曲线的一般方程当ABC ≠0时,方程Ax 2+By 2=C 可以变形为2x C A +2y C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB<0),将其化为标准方程,即21x A +21y B=1.因此,当A>0时,表示焦点在x 轴上的双曲线;当B>0时,表示焦点在y 轴上的双曲线. 5.共焦点的双曲线系方程 与双曲线22x a -22y b =1(a >0,b >0)有公共焦点的双曲线的方程为22x a λ+-22y b λ-= 1(a>0,b>0,-a 2<λ<b 2);与双曲线22y a -22x b =1(a>0,b>0)有公共焦点的双曲线的方程为22x a λ+-22y b λ-=1(a>0,b>0,-a 2<λ<b 2).6.双曲线的焦点三角形问题如图,P 是双曲线22x a -22yb =1上任意一点,当点P,F 1,F 2不在同一条直线上时,它们构成一个三角形——焦点三角形.设∠F 1PF 2=θ,则由双曲线的定义及余弦定理得, ||PF 1|-|PF 2||=2a ⇔|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,① |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos θ=|F 1F 2|2=4c 2,② 由②-①得2|PF 1|·|PF 2|·(1-cos θ)=4c 2-4a 2,则|PF 1|·|PF 2|=221cos bθ-. 又12PF F S=12|PF 1|·|PF 2|·sin θ, 从而12PF F S =b2·sin 1cos θθ-=2tan2b θ.1.已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P 的轨迹是( A ) (A)一条射线 (B)双曲线 (C)双曲线左支 (D)双曲线右支解析:如果是双曲线,那么|PM|-|PN|=4=2a, a=2.而两个定点M(-2,0),N(2,0)为双曲线的焦点, c=2.而在双曲线中c>a,所以把后三个关于双曲线的答案全部排除. 故选A.2.(2018·和平区三模)设F 1和F 2分别为双曲线22x a -22y b =1(a>0,b>0)的左、右焦点,若F 1,F 2,P(0,2b)为等边三角形的三个顶点,且双曲线经过点则该双曲线的方程为(D)(A)x 2-23y =1 (B)22x -22y =1(C)23x -29y =1 (D)24x -212y=1解析:F 1和F 2分别为曲线22x a -22y b =1(a>0,b>0)的左、右焦点,F 1,F 2,P(0,2b)构成正三角形, 所以c,即有3c 2=4b 2=3(a 2+b 2), 所以b 2=3a 2.双曲线22x a -22y b =1过点),所以25a -233a=1,解得a 2=4, 所以b 2=12, 所以双曲线方程为24x -212y =1.故选D.3.(2018·肇庆三模)已知定点F 1(-2,0),F 2(2,0),N 是圆O:x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M,线段F 1M 的中垂线与直线F 2M 相交于点P,则点P 的轨迹是( B ) (A)椭圆 (B)双曲线 (C)抛物线 (D)圆解析:连接ON,由题意可得ON=1,且N 为MF 1的中点, 所以MF 2=2.因为点F 1关于点N 的对称点为M,线段F 1M 的中垂线与直线F 2M 相交于点P,由垂直平分线的性质可得PM=PF 1,所以|PF 2-PF 1|=|PF 2-PM|=MF 2=2<F 1F 2,由双曲线的定义可得点P 的轨迹是以F 1,F 2为焦点的双曲线. 故选B.4.若双曲线2x m -23y =1的右焦点坐标为(3,0),则m= . 解析:由已知a 2=m,b 2=3, 所以m+3=9,所以m=6. 答案:65.一动圆过定点A(-4,0),且与定圆B:(x-4)2+y 2=16相外切,则动圆圆心的轨迹方程为 .解析:设动圆圆心为点P,则|PB|=|PA|+4即|PB|-|PA|=4<|AB|=8. 所以点P 的轨迹是以A,B 为焦点,且2a=4,a=2的双曲线的左支. 又因为2c=8,所以c=4. 所以b 2=c 2-a 2=12, 所以动圆圆心的轨迹方程为24x -212y =1(x ≤-2).答案:24x -212y =1(x ≤-2)题型一 双曲线定义的理解及应用[例1] (1)已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( )(A)双曲线 (B)双曲线的一支(C)直线 (D)一条射线 (2)如图,若F 1,F 2是双曲线29x -216y =1的两个焦点,P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,则△F 1PF 2的面积为 .解析:(1)F 1,F 2是定点,且|F 1F 2|=10,所以满足条件|PF 1|-|PF 2|=10的点P 的轨迹应为一条射线.故选D.(2)由双曲线方程29x -216y=1,可知=5.因为P 是双曲线左支上的点, |PF 2|-|PF 1|=2a=6, (*) 将(*)式两边平方,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, 所以|PF 1|2+|PF 2|2 =36+2|PF 1|·|PF 2| =36+2×32 =100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=22121212||||||2||||PF PF F F PF PF +-⋅=121001002||||PF PF -⋅ =0,所以∠F 1PF 2=90°,所以12F PF S=12|PF 1|·|PF 2|=12×32=16.答案:(1)D (2)16变式探究:若将例中的条件“|PF 1|·|PF 2|=32”改为“1PF ·2PF =0”,其他条件不变,则|PF 1|·|PF 2|的值为 .解析:由双曲线方程29x -216y=1,可知=5.由题意得,|PF 2|-|PF 1|=2a=6,所以|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36. ① 又1PF ·2PF =0,所以PF 1⊥PF 2.在Rt △PF 1F 2中,由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=100. ② 将②代入①式,得2|PF 1|·|PF 2|=64, 所以|PF 1|·|PF 2|=32. 答案:32(1)在解决与双曲线有关的焦点三角形问题时,应注意双曲线定义条件||PF 1|-|PF 2||=2a 的应用.(2)解题的关键是“|PF 1|·|PF 2|”形式的“配凑”,将双曲线定义及图形的平面几何性质(结合正、余弦定理)“和谐”地结合起来,注意整体思想的应用,从而达到简化运算的目的. 即时训练1-1:(1)设P 为双曲线x2-212y =1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,求△PF 1F 2的面积;(2)已知一个动点P(x,y)到两个定点F 1(-1,0),F 2(1,0)的距离差的绝对值为定值a(a ≥0),求点P 的轨迹. 解:(1)因为|PF 1|-|PF 2|=2a=2, 且|PF 1|∶|PF 2|=3∶2, 所以|PF 1|=6,|PF 2|=4. 又因为|F1F 2所以|PF 1|2+|PF 2|2=|F 1F 2|2, 所以12PF F S=12|PF 1|·|PF 2|=12×6×4=12. (2)因为|F 1F 2|=2,①当a=2时,轨迹是两条射线y=0(x ≥1)或y=0(x ≤-1); ②当a=0时,轨迹是线段F 1F 2的垂直平分线,即y 轴,方程x=0; ③当0<a<2时,轨迹是以F 1,F 2为焦点的双曲线; ④当a>2时,轨迹不存在. 题型二 双曲线标准方程的求法[例2] 根据下列条件,求双曲线的标准方程:(1)与双曲线216x -24y =1有相同的焦点,且经过点(2)过点P(3,154),Q(-163,5)且焦点在坐标轴上. 解:(1)法一 因为焦点相同,所以设所求标准方程为22x a -22y b =1(a>0,b>0),所以c 2=16+4=20,即a 2+b 2=20,① 因为双曲线经过点所以218a -24b =1,②由①②得a 2=12,b 2=8,所以双曲线的标准方程为212x-28y =1.法二 设所求双曲线方程为216x λ--24y λ+=1(-4<λ<16). 因为双曲线过点所以1816λ--44λ+=1, 解得λ=4,或λ=-14(舍去).所以双曲线的标准方程为212x-28y =1.(2)法一 当焦点在x轴上时,设标准方程为22x a -22y b =1(a>0,b>0),因为点P,Q 在双曲线上,所以222292251,16256251,9a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩此方程组无解.当焦点在y 轴上时,设标准方程为22y a -22x b =1(a>0,b>0),因为点P,Q 在双曲线上,所以222222591,16252561,9a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得229,16.a b ⎧=⎪⎨=⎪⎩所以双曲线的标准方程为29y -216x =1.法二 设双曲线方程为2x m+2yn =1,mn<0. 因为点P,Q 在双曲线上,所以92251,16256251,9m nm n⎧-=⎪⎪⎨⎪-=⎪⎩解得16,9.m n =-⎧⎨=⎩ 所以双曲线的标准方程为29y -216x=1.利用待定系数法求双曲线标准方程的步骤:即时训练2-1:(1)(2018·天心区校级月考)如图,已知双曲线以矩形ABCD 的顶点A,B 为左、右焦点,且过C,D 两点,若|AB|=4,|BC|=3,则此双曲线的标准方程为 .(2)写出下列条件的双曲线的标准方程.①a=4,c=5,焦点在x 轴上,则标准方程为 ;②a=4,经过点),则标准方程为 . 解析:(1)连接BD(图略),由题意知c=2, |DB|=5,|DA|=|BC|=3, 2a=|DB|-|DA|=5-3=2, 所以故双曲线的标准方程为x 2-23y =1. (2)①设双曲线方程为22x a -22y b =1(a>0,b>0). 因为a=4,c=5,所以b 2=c 2-a 2=25-16=9.所以双曲线的标准方程为216x -29y =1.②若所求的双曲线标准方程为22x a -22y b =1(a>0,b>0),则将a=4代入得216x -22yb =1.因为点)在双曲线上,所以116-21609b =1,由此得b 2<0,不合题意舍去. 若所求的双曲线标准方程为22y a -22x b =1(a>0,b>0),同理解得b 2=9.所以双曲线的标准方程为216y -29x =1.答案:(1)x 2-23y =1(2)①216x -29y =1 ②216y -29x =1题型三 双曲线标准方程的理解[例3] (1)若θ是第三象限角,则方程x 2+y 2sin θ=cos θ表示的曲线是( )(A)焦点在y 轴上的双曲线 (B)焦点在x 轴上的双曲线 (C)焦点在y 轴上的椭圆 (D)焦点在x 轴上的椭圆(2)已知21x k--2||3y k -=-1,当k 为何值时,①方程表示双曲线?②方程表示焦点在x 轴上的双曲线? ③方程表示焦点在y 轴上的双曲线?(1)解析:曲线方程可化为2cos x θ+2cos sin y θθ=1,θ是第三象限角,则cos θ<0,cos sin θθ>0,所以该曲线是焦点在y 轴上的双曲线.故选A. (2)解:①若方程表示双曲线,则10,||30k k ->⎧⎨->⎩或10,||30,k k -<⎧⎨-<⎩ 解得k<-3或1<k<3.②若方程表示焦点在x 轴上的双曲线,则10,||30,k k -<⎧⎨-<⎩ 解得1<k<3.③若方程表示焦点在y 轴上的双曲线,则10,||30k k ->⎧⎨->⎩ 解得k<-3.名师点评:(2)中对于①,只要两分母同号,就可以化成双曲线的标准方程;对于②,标准方程为21x k --23||y k -=1;对于③,标准方程为2||3y k --21x k-=1.即时训练3-1:(1)(2018·东湖区校级期中)若曲线24x k ++21y k -=1表示双曲线,则k 的取值范围是( ) (A)[-4,1](B)(-∞,-4)∪(1,+∞) (C)(-4,1)(D)(-∞,4]∪[1,+∞)(2)已知m,n 为两个不相等的非零实数,则方程mx-y+n=0与nx 2+my 2=mn 所表示的曲线可能是( )解析:(1)根据题意,若曲线24x k ++21y k -=1表示双曲线,则有(k+4)(k-1)<0,解得-4<k<1. 即k 的取值范围是(-4,1). 故选C.(2)A 中,由直线位置可知,m>0,n<0,曲线应为双曲线,故A 错;B 中,由直线位置可知,m<0,n>0,曲线应为双曲线,故B 错;C 中,由直线位置可知,m>0,n<0,曲线为焦点在x 轴上的双曲线,故C 正确;D 中,由直线位置可知,m>0,n>0,曲线应为椭圆,故D 错.故选C.。

高中数学人教A版选修2-1第二章第3节《双曲线及其标准方程》教案设计

高中数学人教A版选修2-1第二章第3节《双曲线及其标准方程》教案设计

《双曲线及其标准方程》教案教学目标:1、类比椭圆定义的学习,能概括出双曲线的定义2、类比椭圆标准方程的学习,能推导出双曲线的标准方程3、进一步加深对曲线与方程的关系的认识,进一步理解坐标法重难点分析:重点:了解双曲线的定义,掌握双曲线标准方程的推导难点:双曲线标准方程的推导与化简学习过程(一)温故知新问题1:椭圆的定义是什么?如何作椭圆?问题2:椭圆的标准方程是什么?怎么推导而来?(二)动手演示,感受双曲线形成问题3:在椭圆定义中,到两定点的距离之“和”改为到两定点的距离之“差”为定值,则曲线的轨迹又会如何?问题4:能否利用手头的工具来演示得到满足这样条件的曲线呢?(A) (B)(三)剖析特征,提炼双曲线定义1、分析绘图原理拉链在拉开、闭拢的过程中,拉开的两边长始终相等,即|MF1|=|MF2|+ ,动点M变化时,|MF1|与|MF2|在不断变化,但总有|MF1|-|MF2|= ,而|F2F|为,所以点M到两定点和的距离之为,记为|F2F|=2a,即|MF1|-|MF2|= ,如上图(B)。

如果点M到两定点F2和F1的距离之差为常数,即- =2a,就可得到另一条曲线,如上图(A)。

2、完善定义问题5:类比椭圆,你能给出双曲线的定义吗?★定义:平面内与两个定点 的距离的 的 等于 ( |F 1F 2|且不等于 )的点轨迹叫做双曲线。

这两个定点叫做双曲线的 ,两焦点之间的距离叫做 . 3、剖析定义问题5:①常数2a 为什么要有大于0小于︱F 1F 2︱?②若等于0呢? ③若等于︱F 1F 2︱呢? ④若大于︱F 1F 2︱呢?4、反馈练习请说出下列方程对应曲线的名称:(1)F 1(-5,0),F 2(5,0),||PF 1|-|PF 2||=6 (2)F 1(-5,0),F 2(5,0),|PF 1|-|PF 2|=6 (3)25)4()4(2222=++++-y x y x (4)8)4()4(2222=-+-++y x y x (四)类比椭圆,推导双曲线标准方程 问题7:如何推导双曲线的标准方程呢?1、回顾椭圆的标准方程的推导步骤:建系、设点、列式、化简2、小组讨论,请各小组代表汇报研讨成果,制定以下两种方案方案一 方案二 (以下以方案一为例)(1)建系:以 为x 轴,以 为y 轴, 为原点建立直角坐标系(2)设点:设M (x , y ),双曲线的焦距为2c (c>0),F 1(-c,0),F 2(c,0) 常数=2a (3)列式: =2a |MF 1|-|MF 2|= 即 (4)化简.问题8:化简的任务是什么?问题9:椭圆方程化简中是如何处理的?双曲线方程呢?问题10:推导的过程是一个等价变形的过程吗?需要添加限制条件吗? 3、归纳比较两种标准方程。

【数学】2.3.2《双曲线几何性质》课件(新人教A版选修2-1)

【数学】2.3.2《双曲线几何性质》课件(新人教A版选修2-1)
一.复习引入
1.双曲线的定义是怎样的?
2.双曲线的标准方程是怎样的?
x y - 2 =1 2 a b
2 2
y2 x2 - 2 = 1 2 a b
思考回顾 椭圆的简单几何性质 ? 对称性; 顶点; ①范围; ②对称性 ③顶点 范围 ④离心率等 回想:我们是怎样研究上述性质的? 回想:我们是怎样研究上述性质的? 双曲线是否具有类似的性质呢?
直线x= + a,和y=+b所围成的矩形里
对称性 关于X轴、Y轴、原点都对称。 (-a,0),B(0,b),B1(0,-b) 顶点 A(a,0) A1 c e (0<e<1) 离心率 = a 准线
一.双曲线的简单几何性质 1.范围:2.对称性: 3.顶点: 实轴,虚轴 y
N Q M B2 A1
4.渐进线: (1)渐进线的确定:对角线
例1.求双曲线9y – 16x =144的实半轴与虚 半轴长,焦点坐标,离心率及渐进线方程.
2 2
五,
例2.求一渐进线为 求一渐进线为3x+4y=0,一个焦点 一个焦点
的双曲线的标准方程. 为(5,0)的双曲线的标准方程 的双曲线的标准方程
x,y)到定点 到定点F 例3:点M(x,y)到定点F(5, 0)的距离和它到定直线 l:x=16/5的距离的比是常数5/4, 的距离的比是常数5/4 l:x=16/5的距离的比是常数5/4, 求点M的轨迹。 求点M的轨迹。
x y - 2 =1 2 a b
2 2
y
N Q B2 A1 O M
4.渐进线:
(1)渐进线的确定:矩形的对角线
b
b A2 a
B1
(2)直线的方程: y=±-x a
x

2014-2015学年高中数学(人教版选修2-1)配套课件第二章 2.3.1 双曲线及其标准方程

2014-2015学年高中数学(人教版选修2-1)配套课件第二章 2.3.1 双曲线及其标准方程
2 2 x y b2=c2-a2,则双曲线的标准方程为 2- 2=1(a>0,b>0). a b
栏 目 链 接
基 础 梳 理
例:焦点在x轴上的双曲线中,a=3,b=4,双曲线
x2 y2 - =1 的标准方程为______________ . 9 16
栏 目 链 接
3.取过焦点F1、F2的直线为y轴,线段F1F2的垂直平
y2
x2
所以所求双曲线的标准方程为 - =1. 9 16 点评:求双曲线标准方程的一般步骤:①根据条件确定双曲线 的焦点在哪条坐标轴上,还是有两种可能;②根据焦点位置设方程为 x 2 y2 y2 x 2 2 2- 2=1 或 2- 2=1(a>0,b>0),焦点不定时,可设方程为 mx + a b a b ny2=1(mn<0);③根据已知条件列出关于 a,b,c(或 m,n)的方程组; ④解方程组,将 a,b,c(或 m,n)代入方程,即得标准方程.
例:焦点在 y 轴上的双曲线中,a=3,c=4,双曲线的标
y2 x2 - =1 准方程为____________ . 9 7
栏 目 链 接
自 测 自 评
1.点 F1,F2 是两个定点,动点 P 满足||PF1|-|PF2||= 2a(a 为非负常数),则动点 P 的轨迹是( A.两条射线 B.一条直线 C.双曲线 D.前三种情况都有可能
y2 x2 解析:(1)设标准方程为 2- 2=1(a>0,b>0)且 c=4, a b ∵双曲线过点 P(2 2,-6),
36 8 a -b =1, ∴ =4 ,
栏 目 链 接
∴双曲线标准方程为
y2
12
分线为x轴,建立直角坐标系.设M(x,y)为双曲线上任意 一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别 是(0,-c)、(0,c).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线(3)教学目标:1.掌握双曲线的标准方程;
2.掌握双曲线的定义
教学重点:掌握双曲线的标准方程
教学难点:掌握双曲线的标准方程
为?
2 2
问题:若双曲线与x 4y =64有相同的焦点,它的一条渐近线方程
是x • .、3y =0,则双曲线的方程是?
任务2:认真理解双曲线的定义完成下列例题
例1双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为25m,高
为55m,试选择适当的坐标系,求出此双曲线的方程
例2点M(x,y)到定点F(5,0)的距离和它到定直线比是
常数5,求点M的轨迹.
4
2 2
例3过双曲线;日的右焦点,倾斜角为30的直线交双曲线于
AB两点,求A,B两点的坐标.
16
l : x ='6的距离的
5

变式:求AB ? .MF I B的周长?
巩固练习:
2 2 2 2
1右椭圆—+ =1和双曲线----- -- =1的共同焦点为F1, F2, P是两
25 16 4 5
曲线的一个交点,贝V Ph .PF?的值为()..
21
A. — B . 84 C . 3 D . 21
2
x2 v2
2 .以椭圆亦+話=1的焦点为顶点,离心率为2的双曲线的方程
().
2 2 2 2
A. X-丄=1
B. —
16 48 9 27
2 2 2 2
C. ——^—=1或——^― =1
D. 以上都不对
16 48 9 27
3.过双曲线的一个焦点F2作垂直于实轴的直线,交双曲线于P、Q ,
F1是另一焦点,若/ PFQ =—,则双曲线的离心率e等于().
2
A.逅—1
B. 运
C. ^2+1
D.逅 +2
4.双曲线的渐近线方程为x ±2y =0 ,焦距为10 ,求双曲线的方程为?
2 2
5.方程x+-^=1表示焦点在x轴上的双曲线,求k的取值范围.。

相关文档
最新文档