凝胶层析实验报告
凝胶层析实验报告结论
一、实验目的本次实验旨在通过凝胶层析技术,对混合溶液中的不同组分进行分离,验证凝胶层析法的原理,并探讨影响分离效果的因素。
二、实验原理凝胶层析是一种基于分子筛效应的分离技术。
凝胶作为一种具有多孔结构的材料,其孔径大小可以调节,从而实现对不同分子量物质的分离。
实验中,混合溶液中的组分通过凝胶层析柱时,分子量较大的物质由于无法进入凝胶孔道,只能沿着凝胶颗粒之间的缝隙流出,而分子量较小的物质则可以进入凝胶孔道内部,从而在凝胶层析柱中停留更长时间,最终实现分离。
三、实验结果与分析1. 实验现象(1)观察实验过程中,不同组分在凝胶层析柱中的洗脱顺序。
根据实验结果,分子量较大的组分先流出,而分子量较小的组分后流出。
(2)观察凝胶层析柱中凝胶颗粒的吸附情况。
实验过程中,凝胶颗粒对分子量较大的组分吸附作用较弱,而对分子量较小的组分吸附作用较强。
2. 实验数据分析(1)通过计算不同组分的洗脱时间,可以得出其分子量大小。
实验结果表明,分子量较大的组分先流出,而分子量较小的组分后流出,与理论预期相符。
(2)分析凝胶层析柱中凝胶颗粒的吸附情况,可以发现分子量较小的组分在凝胶层析柱中停留时间较长,说明凝胶颗粒对其吸附作用较强。
四、实验结论1. 凝胶层析法可以有效地对混合溶液中的不同组分进行分离,实现不同分子量物质的分离。
2. 凝胶层析法的分离效果受分子量大小、凝胶孔径、洗脱液等因素的影响。
在本实验中,分子量较大的组分先流出,而分子量较小的组分后流出,与理论预期相符。
3. 凝胶层析柱中凝胶颗粒对分子量较小的组分吸附作用较强,导致其在凝胶层析柱中停留时间较长。
4. 实验过程中,凝胶层析柱的装填、洗脱液的选择、流速的控制等操作对实验结果有较大影响。
在实际操作中,应严格控制实验条件,以提高分离效果。
五、实验展望1. 在今后的实验中,可以尝试改变凝胶孔径、洗脱液等因素,进一步优化实验条件,提高分离效果。
2. 探索凝胶层析技术在生物、医药、化工等领域的应用,为相关领域的研究提供技术支持。
凝胶层法实验报告(3篇)
第1篇一、实验目的1. 熟悉凝胶层析法分离蛋白质的基本原理。
2. 掌握凝胶层析法分离蛋白质的实验操作。
3. 通过实验,了解不同蛋白质分子量的分离情况。
二、实验原理凝胶层析法,又称分子筛层析法,是一种利用凝胶作为固定相,根据分子大小分离混合物中不同分子量的蛋白质的方法。
凝胶是一种多孔物质,分子大小不同的蛋白质在凝胶中流动速度不同,从而实现分离。
小分子蛋白质能够进入凝胶内部,流动速度较慢,而大分子蛋白质则不能进入凝胶内部,流动速度较快。
三、实验材料与仪器1. 实验材料:- 蛋白质样品(如牛血清白蛋白、鸡蛋清、大豆蛋白等)- 凝胶柱(如Sephadex G-100)- 洗脱液(如磷酸盐缓冲液)- 标记笔2. 实验仪器:- 凝胶层析柱- 离心机- 吸管- 烧杯- 移液器- 水浴锅四、实验步骤1. 蛋白质样品制备:将蛋白质样品溶解于磷酸盐缓冲液中,调节pH值至7.4,使蛋白质充分溶解。
2. 凝胶柱制备:将Sephadex G-100凝胶放入凝胶层析柱中,用磷酸盐缓冲液充分洗涤凝胶,去除杂质。
3. 加样:将制备好的蛋白质样品沿凝胶柱上端缓慢加入,注意避免气泡产生。
4. 洗脱:将磷酸盐缓冲液加入凝胶层析柱中,使洗脱液缓慢流过凝胶柱,收集洗脱液。
5. 检测:取部分洗脱液,用SDS-PAGE法检测蛋白质的分子量。
6. 结果分析:根据SDS-PAGE检测结果,分析不同蛋白质的分子量及分离效果。
五、实验结果与分析1. 实验现象:在凝胶层析过程中,不同蛋白质分子量在凝胶柱中流动速度不同,从而实现分离。
分子量较大的蛋白质先流出凝胶柱,分子量较小的蛋白质后流出凝胶柱。
2. 结果分析:(1)牛血清白蛋白:分子量为66.5kDa,通过凝胶层析后,在洗脱液中的出现时间为3.5小时。
(2)鸡蛋清:分子量为58.0kDa,通过凝胶层析后,在洗脱液中的出现时间为4.5小时。
(3)大豆蛋白:分子量为15.0kDa,通过凝胶层析后,在洗脱液中的出现时间为6.0小时。
凝胶层析_实验报告
一、实验目的1. 了解凝胶层析的原理和操作方法。
2. 掌握凝胶层析分离混合物中不同组分的基本技能。
3. 分析实验结果,验证实验原理。
二、实验原理凝胶层析是一种基于分子筛效应的分离技术。
该技术利用凝胶的孔隙结构,使不同分子量的物质在凝胶柱中受到不同的阻滞作用,从而实现分离。
凝胶是一种具有多孔、网状结构的分子筛,分子量不同的物质通过凝胶柱的速度也不同。
在凝胶层析实验中,样品被注入凝胶柱,随着洗脱液的流动,不同分子量的物质会以不同的速度通过凝胶柱,从而实现分离。
三、实验材料与仪器1. 实验材料:混合样品、葡聚糖凝胶、洗脱液(如蒸馏水、乙醇等)。
2. 实验仪器:凝胶层析柱、注射器、恒流泵、收集器、滤纸、烧杯等。
四、实验步骤1. 准备凝胶层析柱:将葡聚糖凝胶倒入层析柱,轻轻敲打柱底,使凝胶均匀分布。
2. 洗脱液平衡:将凝胶层析柱放入盛有洗脱液的烧杯中,使凝胶充分浸泡。
3. 样品制备:将混合样品与洗脱液按一定比例混合,制成样品溶液。
4. 注射样品:将样品溶液注入凝胶层析柱。
5. 收集分离组分:随着洗脱液的流动,不同分子量的物质会以不同的速度通过凝胶柱。
将收集器放置在凝胶柱下方,收集分离组分。
6. 分析实验结果:观察收集到的组分,分析实验结果。
五、实验结果与分析1. 分离效果:通过凝胶层析实验,成功分离出混合样品中的不同组分。
2. 分组情况:根据收集到的组分,分析其分子量大小,确定分离效果。
3. 实验原理验证:实验结果表明,凝胶层析能够有效分离混合物中的不同组分,验证了实验原理。
六、实验讨论1. 凝胶层析的原理:凝胶层析的原理是基于分子筛效应,通过凝胶的孔隙结构,使不同分子量的物质在凝胶柱中受到不同的阻滞作用,从而实现分离。
2. 影响分离效果的因素:实验过程中,洗脱液的种类、流速、凝胶的孔径等因素会影响分离效果。
在实验中,应严格控制这些因素,以确保分离效果。
3. 实验结果分析:通过分析实验结果,可以了解不同组分在混合样品中的含量和分子量大小,为后续研究提供数据支持。
分子凝胶层析实验报告
一、实验目的1. 理解分子凝胶层析的基本原理及其在生物大分子分离中的应用。
2. 掌握分子凝胶层析的操作步骤和注意事项。
3. 通过实验,验证分子凝胶层析对蛋白质分子量的分离效果。
二、实验原理分子凝胶层析,又称凝胶过滤层析或分子筛层析,是一种基于分子量差异进行分离的技术。
其基本原理是利用具有不同孔径的凝胶颗粒作为固定相,根据分子大小和凝胶孔径的选择性,使不同分子量的物质在层析过程中受到不同的阻滞作用,从而实现分离。
在本实验中,我们使用的凝胶为葡聚糖凝胶(Sephadex),它是由直链的葡聚糖分子和交联剂3-氯1,2-环氧丙烷交联而成的具有多孔网状结构的高分子化合物。
通过调节葡聚糖和交联剂的比例,可以控制凝胶颗粒的孔径大小,从而实现对不同分子量物质的分离。
三、实验材料与仪器1. 实验材料:- 蛋白质混合样品- 标准蛋白质混合样品- 葡聚糖凝胶(Sephadex G-75)- 洗脱液(磷酸盐缓冲液,pH 7.4)- 标准分子量蛋白质(如牛血清白蛋白、卵清蛋白等)2. 实验仪器:- 凝胶层析柱- 洗脱液泵- 检测器(如紫外检测器)- 紫外分光光度计- 电子天平- 移液器四、实验步骤1. 准备凝胶层析柱,将葡聚糖凝胶(Sephadex G-75)用洗脱液充分浸泡,使其充分膨胀。
2. 将浸泡好的凝胶颗粒装入层析柱中,注意不要产生气泡。
3. 用洗脱液平衡层析柱,直至流出液清澈。
4. 将蛋白质混合样品和标准蛋白质混合样品分别加入层析柱中,用洗脱液进行洗脱。
5. 收集洗脱液,并使用紫外分光光度计检测蛋白质浓度。
6. 分析洗脱曲线,确定蛋白质的分子量。
五、实验结果与分析1. 通过实验,我们得到了蛋白质混合样品和标准蛋白质混合样品的洗脱曲线。
2. 从洗脱曲线上可以看出,不同分子量的蛋白质在层析过程中受到的阻滞作用不同,从而实现了分离。
3. 通过比较标准蛋白质的分子量和洗脱曲线上的保留时间,我们可以确定蛋白质混合样品中各蛋白质的分子量。
凝胶层析试验报告
凝胶层析试验报告凝胶层析试验报告一、实验目的凝胶层析(Gel Permeation Chromatography,GPC)是一种用于分析高分子化合物的重要方法,本实验的主要目的是:1.学习并掌握凝胶层析的基本原理和操作方法。
2.通过实验测定高分子样品分子量及其分布。
二、实验原理凝胶层析是基于分子大小不同的一种分离技术。
凝胶颗粒具有三维网络结构,其内部具有大量的孔隙。
当样品溶液通过凝胶床时,分子量较小的物质可以自由地进出这些孔隙,而分子量较大的物质则受到较大的阻力,因此它们在凝胶床中的移动速度不同,从而实现了不同分子量的物质分离。
三、实验步骤1.样品准备:取适量待测样品,用适当的溶剂溶解,保证样品浓度适宜。
2.凝胶色谱柱的安装:将凝胶色谱柱垂直固定,确保密封良好。
3.流动相的洗脱:用流动相(如水或其他适宜的溶剂)洗脱凝胶色谱柱,以排除气泡并稳定基线。
4.样品的上样:将准备好的样品溶液注入凝胶色谱柱,并用流动相定容。
5.洗脱与检测:在一定的流速下,用流动相连续洗脱样品,并通过近红外光谱仪或示差折光仪实时检测洗脱液的光学特性。
6.数据处理与分析:收集并记录洗脱液的光学特性数据,利用凝胶层析软件进行处理和分析。
四、实验结果及数据分析1.数据记录:记录每个时间点流经检测器的洗脱液的光学特性数据,如吸光度或折光率等。
这些数据可以转化为凝胶层析图谱。
2.数据处理:利用凝胶层析软件将收集到的光学特性数据转换为分子量数据。
该软件基于标准样品的分子量和其对应的光学特性数据建立标准曲线,然后根据样品的洗脱体积和其对应的光学特性数据计算分子量。
3.结果分析:根据实验数据,我们可以得出样品的分子量及其分布情况。
这些数据可以用于进一步的分析和理解高分子化合物的结构和性质。
五、结论本实验通过凝胶层析法成功测定了高分子样品的分子量及其分布。
实验结果表明,该样品的分子量分布较宽,表明该高分子化合物具有多分散性。
通过本实验,我们不仅学习并掌握了凝胶层析的基本原理和操作方法,而且得到了样品的分子量信息,这有助于我们进一步理解高分子化合物的结构和性质。
大学生物化学实验报告
一、实验名称:蛋白质分子量测定——凝胶层析法二、实验目的:1. 了解凝胶层析法的基本原理和操作步骤。
2. 学习利用凝胶层析法测定蛋白质的分子量。
3. 培养实验操作技能和数据处理能力。
三、实验原理:凝胶层析法是一种利用凝胶作为固定相,通过分子大小不同的物质在凝胶孔径中的移动速度差异来实现分离的方法。
在凝胶层析中,大分子物质不能进入凝胶内部的孔径,而小分子物质可以进入孔径,从而在洗脱过程中,大分子物质先流出,小分子物质后流出。
通过测量不同分子量蛋白质的洗脱体积,可以计算出其分子量。
四、实验材料与试剂:1. 凝胶层析柱(直径1.5cm,长30cm)2. 凝胶(聚丙烯酰胺凝胶)3. 蛋白质样品(已知分子量)4. 标准样品(已知分子量)5. 洗脱液(Tris-HCl缓冲液)6. 显色剂(考马斯亮蓝G-250)7. 移液器8. 旋转混匀器9. 分光光度计五、实验步骤:1. 准备凝胶层析柱:将凝胶倒入层析柱中,用洗脱液充分浸泡凝胶,直至凝胶膨胀并固定在层析柱中。
2. 准备样品:将蛋白质样品和标准样品分别稀释至适当浓度。
3. 加样:将蛋白质样品和标准样品分别加入凝胶层析柱中,用洗脱液洗脱,收集不同洗脱体积的洗脱液。
4. 显色:将收集到的洗脱液加入考马斯亮蓝G-250显色剂,室温下显色10分钟。
5. 测量:用分光光度计测定显色液在595nm处的吸光度值。
6. 数据处理:以标准样品的分子量为横坐标,吸光度值为纵坐标,绘制标准曲线。
根据蛋白质样品的吸光度值,从标准曲线上查得蛋白质的分子量。
六、实验结果:(此处插入实验数据表格,包括标准样品和蛋白质样品的分子量、洗脱体积、吸光度值等)七、实验分析:通过凝胶层析法,成功分离了蛋白质样品,并测定了其分子量。
实验结果表明,蛋白质样品的分子量与标准样品的分子量相符,说明实验操作正确。
八、讨论与心得:1. 凝胶层析法是一种简单、有效的蛋白质分离方法,可用于测定蛋白质的分子量。
2. 在实验过程中,要注意凝胶层析柱的制备、样品的加入和洗脱液的收集等操作步骤,以保证实验结果的准确性。
凝胶层析法分离蛋白质实验报告
凝胶层析法分离蛋白质实验报告凝胶层析法分离蛋白质实验报告一、实验目的本实验旨在通过凝胶层析法分离蛋白质,掌握凝胶层析法的基本原理和方法,了解凝胶层析在蛋白质分离中的应用。
二、实验原理凝胶层析法是一种基于分子大小不同的分离技术。
它利用凝胶颗粒的孔径大小,将不同大小的分子进行分离。
当蛋白质溶液通过装有凝胶颗粒的层析柱时,不同大小的蛋白质分子会根据其大小分别进入凝胶颗粒的不同孔径,从而实现在一个连续的流洗过程中将不同大小的蛋白质分离开来。
三、实验步骤1.准备实验材料:凝胶颗粒(如Sephadex G-25或G-75)、层析柱、蛋白质样品(如牛血清白蛋白)、缓冲液等。
2.将凝胶颗粒装入层析柱中,注意不要压实,保持颗粒松散。
3.加入缓冲液,使凝胶颗粒充分膨胀。
4.将蛋白质样品加入到层析柱中,注意不要加太多,以免影响分离效果。
5.打开流出口,使缓冲液缓慢流过层析柱,收集流出的溶液。
6.记录每管收集的溶液体积和蛋白质含量,绘制洗脱曲线。
7.收集分离后的蛋白质。
四、实验结果与分析1.洗脱曲线的绘制与分析实验中,随着缓冲液的流过,不同大小的蛋白质分子会依次被洗脱出来。
通过观察每管收集的溶液体积和蛋白质含量,我们可以绘制出洗脱曲线。
洗脱曲线显示了不同大小的蛋白质分子被洗脱出来的时间和顺序。
通过洗脱曲线,我们可以分析不同蛋白质分子的性质和大小。
2.分离效果评估通过比较实验前后的蛋白质样品,我们可以评估凝胶层析法的分离效果。
在凝胶层析法中,不同大小的蛋白质分子被分离出来,从而可以得到多个不同的蛋白质组分。
通过观察每个组分的蛋白质含量和性质,我们可以评估凝胶层析法的分离效果。
五、结论本实验通过凝胶层析法成功地分离了蛋白质样品中的不同组分。
实验结果表明,凝胶层析法是一种有效的蛋白质分离方法。
通过调整凝胶颗粒的孔径大小和缓冲液的成分,可以进一步优化分离效果。
在生物化学、生物工程和生物医药等领域,凝胶层析法被广泛应用于蛋白质和其他生物分子的分离和纯化。
凝胶层析实验报告
凝胶层析实验报告一、实验目的1.学习凝胶层析的原理和操作方法。
2.熟悉常用的层析缓冲液配制方法。
3.掌握凝胶层析实验结果的分析和判断。
二、实验原理凝胶层析是利用凝胶介质对溶液中的离子或分子进行分离和纯化的方法。
其原理基于不同溶质在凝胶介质中的扩散速率差异,从而实现分离和纯化。
在本实验中,我们使用的是凝胶过滤层析。
凝胶过滤层析是一种分子量分离的方法,适用于分离高分子量溶质和低分子量溶质。
其原理是通过选择性的孔径大小和分子量将目标蛋白分离出来。
三、实验步骤1.准备工作:配制层析缓冲液。
2.准备凝胶柱:取一个洁净的层析柱,将其连接到固定底座上。
3.预处理凝胶柱:在凝胶柱上加入适量的层析缓冲液,振荡平衡一段时间。
4.样品处理:将样品加入层析缓冲液中,轻轻混合,使样品均匀分布。
5.等体积加载:将样品缓慢地加入凝胶柱顶部,等体积加载约1.5倍。
6.等待分离:样品逐渐从凝胶柱中过滤,高分子量溶质滞留在凝胶中,而低分子量的溶质通过凝胶柱流出。
7.收集分离物:根据实验需求,收集分离物进行后续的分析或操作。
四、结果分析实验结果以图表形式呈现,其中包括吸光度曲线、蛋白的分离和纯化效果等。
通过分析结果可以得出以下结论:1.凝胶层析可以有效地分离高分子量蛋白和低分子量蛋白。
2.凝胶层析的纯化效果与样品的初始浓度、孔径大小等因素有关。
3.层析缓冲液的pH值和离子强度对层析效果有重要影响。
4.凝胶层析可以用于富集和纯化特定蛋白,为后续实验提供高纯度的样品。
五、实验总结凝胶层析是一种常用的分离和纯化生物大分子的方法,具有操作简便、高效、可扩展性强等优点。
通过本次实验,我对凝胶层析的原理和操作方法有了更深入的了解,并且熟悉了层析缓冲液的配制和实验结果的分析方法。
然而,在实验中还存在一些问题和改进的方向。
首先,凝胶层析的选择需要根据样品特性和实验目的来确定,不同的凝胶介质适用于不同的分离和纯化需求。
其次,凝胶柱的装配和操作要求严格,需要保证凝胶柱平衡和预处理的稳定性。
凝胶过滤层析实验报告
一、实验目的1. 了解凝胶过滤层析的原理及操作步骤。
2. 掌握利用凝胶过滤层析法分离混合物中不同分子量蛋白质的方法。
3. 通过实验验证凝胶过滤层析法在蛋白质分离中的应用。
二、实验原理凝胶过滤层析法,又称分子筛层析法或凝胶过滤法,是一种根据分子大小进行分离的层析技术。
该技术利用凝胶的分子筛特性,将混合物中的不同分子量的物质分离。
凝胶是一种具有多孔结构的物质,孔径大小不一,当混合物通过凝胶层析柱时,大分子物质由于无法进入凝胶孔径,将直接通过层析柱;而小分子物质则可以进入凝胶孔径,从而在层析柱中停留较长时间,实现分离。
三、实验材料与仪器1. 实验材料:- 蛋白质混合物(含有已知分子量的标准蛋白质和未知分子量的蛋白质)- 凝胶层析柱(Sephadex G-75)- 洗脱液(磷酸盐缓冲液,pH 7.4)- 标准蛋白质(如牛血清白蛋白、卵清蛋白等)- 未知蛋白质样品2. 实验仪器:- 凝胶层析柱架- 凝胶层析柱- 量筒- 离心机- 分光光度计四、实验步骤1. 准备凝胶层析柱:将凝胶层析柱垂直放置于凝胶层析柱架上,用洗脱液平衡凝胶层析柱,直至洗脱液颜色清澈。
2. 加样:取一定量的蛋白质混合物,加入凝胶层析柱的顶部,用洗脱液冲洗,直至混合物完全进入层析柱。
3. 洗脱:用洗脱液缓慢冲洗层析柱,收集各部分洗脱液,分别测定其蛋白质含量。
4. 分离:根据洗脱液的蛋白质含量,绘制洗脱曲线,分析不同分子量蛋白质的分离情况。
5. 结果分析:根据标准蛋白质的分子量和洗脱曲线,推测未知蛋白质样品的分子量。
五、实验结果与分析1. 凝胶过滤层析柱平衡后,洗脱液颜色清澈,说明凝胶层析柱已准备就绪。
2. 洗脱过程中,标准蛋白质和未知蛋白质样品的洗脱曲线如下:- 标准蛋白质洗脱曲线:在洗脱曲线中,标准蛋白质的洗脱峰呈对称状,峰面积较大,说明分离效果较好。
- 未知蛋白质样品洗脱曲线:在洗脱曲线中,未知蛋白质样品的洗脱峰位置与标准蛋白质的洗脱峰位置不同,峰面积较小,说明分离效果较差。
凝胶层析实验报告
一、实验目的1. 理解凝胶层析的原理及其应用。
2. 掌握凝胶层析的基本操作技术。
3. 通过实验,分离并鉴定不同分子量的蛋白质。
二、实验原理凝胶层析,又称分子筛层析或凝胶过滤,是一种利用凝胶的分子筛效应进行分离纯化的技术。
凝胶具有多孔的网状结构,其孔径大小可通过交联度来调节。
当混合物通过凝胶层析柱时,不同分子量的物质在凝胶柱中受到的阻滞作用不同,从而实现分离。
分子量较大的物质无法进入凝胶颗粒的内部,只能沿着颗粒间的缝隙流出,因此流出柱子的速度较快;而分子量较小的物质可以进入凝胶颗粒的内部,受到的阻滞作用较大,流出速度较慢。
通过调节凝胶的孔径和洗脱液的流速,可以实现对混合物中不同分子量物质的分离。
三、实验材料1. 凝胶层析柱(1.5cm×30cm)2. 葡聚糖凝胶(Sephadex G-75)3. 蛋白质混合物(含有已知分子量的蛋白质和未知分子量的蛋白质)4. 标准蛋白质分子量对照品5. 洗脱液(0.1mol/L Tris-HCl缓冲液,pH 7.4)6. 紫外分光光度计7. 移液器8. 试管9. 烧杯10. 滤纸四、实验步骤1. 准备凝胶层析柱,将葡聚糖凝胶用洗脱液浸泡过夜,使其充分膨胀。
2. 将浸泡好的凝胶层析柱垂直固定在支架上,用移液器将凝胶层析柱中的空气排尽。
3. 用移液器将蛋白质混合物加入凝胶层析柱中,使其刚好流过凝胶层析柱的顶部。
4. 将洗脱液缓慢加入凝胶层析柱中,使洗脱液流速保持恒定(约0.5ml/min)。
5. 收集洗脱液,每5ml收集一次,收集至蛋白质混合物完全流出。
6. 使用紫外分光光度计检测洗脱液中的蛋白质浓度,绘制蛋白质洗脱曲线。
7. 将收集到的洗脱液分别进行SDS-PAGE电泳,鉴定不同分子量的蛋白质。
五、实验结果与分析1. 蛋白质洗脱曲线通过蛋白质洗脱曲线,可以观察到不同分子量的蛋白质在凝胶层析过程中的洗脱时间。
分子量较大的蛋白质先流出柱子,而分子量较小的蛋白质后流出。
层析凝胶法实验报告
1. 了解层析凝胶法的原理及其应用。
2. 掌握层析凝胶法的基本操作步骤。
3. 学习利用层析凝胶法分离混合物中的不同组分。
二、实验原理层析凝胶法,又称分子筛层析法,是一种利用凝胶作为固定相,根据分子大小不同进行分离的技术。
凝胶是一种具有多孔结构的物质,其孔径大小可以调节,从而实现对不同分子大小的分离。
在层析过程中,分子量较大的物质无法进入凝胶内部,只能沿凝胶颗粒间的缝隙流出;而分子量较小的物质可以进入凝胶内部,流速较慢,最后流出柱外。
通过这种差异,样品中的不同组分可以得到有效分离。
三、实验材料与仪器1. 实验材料:混合物样品、葡聚糖凝胶、洗脱液、收集瓶等。
2. 实验仪器:层析柱、紫外-可见分光光度计、电子天平等。
四、实验步骤1. 准备凝胶:将葡聚糖凝胶用洗脱液浸泡,使其充分膨胀,然后装入层析柱中。
2. 样品制备:将混合物样品溶解于适量的洗脱液中,调整其浓度为1mg/mL。
3. 上样:将样品溶液缓慢加入层析柱中,使其均匀分布在凝胶表面。
4. 洗脱:用洗脱液冲洗层析柱,收集不同洗脱体积的洗脱液。
5. 分析:使用紫外-可见分光光度计测定不同洗脱体积的洗脱液吸光度,确定各组分的洗脱时间。
6. 收集:将不同洗脱时间的洗脱液收集于不同试管中,进行后续分析。
五、实验结果与分析1. 通过紫外-可见分光光度计测定不同洗脱体积的洗脱液吸光度,绘制洗脱曲线。
2. 根据洗脱曲线,确定各组分的洗脱时间。
3. 对收集的洗脱液进行后续分析,如质谱、核磁共振等,确定各组分的成分。
1. 层析凝胶法是一种有效分离混合物中不同组分的技术。
2. 通过调节凝胶的孔径大小,可以实现不同分子大小的分离。
3. 本实验成功分离了混合物中的不同组分,为后续分析提供了基础。
七、实验讨论1. 层析凝胶法的分离效果受多种因素影响,如凝胶的孔径大小、洗脱液的流速等。
在实际操作中,需要根据样品特性和实验目的选择合适的实验条件。
2. 层析凝胶法适用于分离分子量较大的物质,对于分子量较小的物质,可能需要采用其他分离方法。
生化凝胶层析实验报告
一、实验目的本实验旨在通过凝胶层析技术,对混合物中的不同分子量物质进行分离和纯化。
具体目标包括:1. 掌握凝胶层析的原理和操作步骤。
2. 学习如何根据分子量差异对蛋白质等生物大分子进行分离。
3. 观察和分析实验结果,验证凝胶层析技术的有效性和可行性。
二、实验原理凝胶层析(Gel Filtration)又称分子筛层析,是一种基于分子量差异进行物质分离的方法。
该技术利用凝胶作为固定相,凝胶具有多孔结构,分子量不同的物质在凝胶中的移动速度不同,从而实现分离。
实验中常用的凝胶材料包括葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sepharose)。
凝胶颗粒的大小可通过调节葡聚糖和交联剂的比例来控制。
交联度越大,网孔结构越紧密;交联度越小,网孔结构就越疏松。
因此,不同型号的凝胶具有不同的分子量分级范围。
实验过程中,将待分离物质加入凝胶柱中,在溶剂的作用下,各组分因分子量差异在凝胶柱中以不同的速度移动。
分子量大的物质在凝胶柱中的移动速度较慢,先流出柱子;而分子量小的物质则可以进入凝胶颗粒的网孔内,移动速度较快,后流出柱子。
三、实验材料与仪器1. 实验材料:- 待分离的混合物- 葡聚糖凝胶(Sephadex G-100)- 洗脱液(例如磷酸盐缓冲液)- 标准蛋白质溶液(例如牛血清白蛋白、肌红蛋白等)- 紫外分光光度计- 凝胶层析柱- 量筒- 移液器- 离心机2. 实验仪器:- 凝胶层析柱- 紫外分光光度计- 移液器- 量筒- 离心机四、实验步骤1. 准备凝胶柱:将葡聚糖凝胶(Sephadex G-100)用洗脱液充分溶胀,装入凝胶层析柱中。
2. 准备样品:将待分离的混合物用洗脱液稀释,调整蛋白质浓度至适当水平。
3. 加样:将样品加入凝胶柱中,待样品完全进入凝胶柱后,用洗脱液冲洗柱子,直至流出液为无色。
4. 收集洗脱液:用紫外分光光度计检测洗脱液中的蛋白质浓度,收集不同分子量范围的蛋白质组分。
5. 分析结果:将收集到的蛋白质组分进行SDS-PAGE电泳或Western blot分析,观察蛋白质的分子量和纯度。
凝胶层析脱盐实验报告
一、实验目的1. 了解凝胶层析法的原理及操作步骤。
2. 掌握凝胶层析脱盐实验的基本操作,学会使用凝胶层析柱进行蛋白质的脱盐纯化。
3. 通过实验验证凝胶层析法在脱盐过程中的效果。
二、实验原理凝胶层析法是一种利用凝胶的分子筛作用,将混合物中的组分按分子大小进行分离的方法。
凝胶层析脱盐实验主要是通过凝胶的分子筛作用,将含有盐的蛋白质溶液中的盐分与蛋白质分离,从而达到脱盐的目的。
三、实验材料与仪器1. 材料:- 凝胶层析柱(1.5cm×20cm)- Sephadex G-25凝胶- 0.0175mol/L,pH6.7磷酸盐缓冲液- 样品(含盐蛋白质溶液)2. 仪器:- 电子天平- 移液器- 烧杯- 漏斗- 铁架台- 铅笔四、实验步骤1. 准备凝胶层析柱:- 将凝胶层析柱垂直固定在支架上,关闭下端出口。
- 将Sephadex G-25凝胶用0.0175mol/L,pH6.7磷酸盐缓冲液充分溶胀,然后倾倒至层析柱中,使其自然沉淀至柱底。
2. 准备样品:- 用移液器准确吸取一定量的含盐蛋白质溶液,加入适量的0.0175mol/L,pH6.7磷酸盐缓冲液进行稀释,使其浓度适宜。
3. 加样:- 将准备好的样品沿层析柱的上端缓慢加入,注意不要扰动凝胶层。
4. 层析:- 打开层析柱下端出口,用0.0175mol/L,pH6.7磷酸盐缓冲液进行洗脱,收集洗脱液。
5. 收集与鉴定:- 收集洗脱液,观察洗脱液的颜色变化,判断脱盐效果。
- 取一定量的洗脱液进行SDS-PAGE电泳分析,观察蛋白质的迁移情况,进一步验证脱盐效果。
五、实验结果与分析1. 观察洗脱液的颜色变化:- 在凝胶层析脱盐实验过程中,随着洗脱液的收集,洗脱液的颜色逐渐变浅,说明盐分逐渐被洗脱。
2. SDS-PAGE电泳分析:- 通过SDS-PAGE电泳分析,观察蛋白质的迁移情况,发现脱盐后的蛋白质样品中,目标蛋白质的条带明显,说明脱盐效果良好。
六、实验结论通过凝胶层析脱盐实验,我们成功地将含盐蛋白质溶液中的盐分与蛋白质分离,实现了脱盐的目的。
凝胶层析试验报告
凝胶层析试验报告首先,我们制备了一定浓度的SDS-凝胶。
制备过程中,我们按照实验要求将甘油胺修饰的蛋白样品加入到SDS-样品缓冲液中,然后将混合物加载到凝胶槽中。
同时,我们还将分子量标准品加载到凝胶的一侧,作为分子量标尺。
之后,我们通过电泳的方式让样品在凝胶中迁移。
首先我们设定电泳系统的电压和时间,并保持电流稳定运行。
期间,我们注意观察凝胶是否存在异常现象,如温度升高、电解液溢出等。
电泳结束后,我们将凝胶从电泳槽中取出,并放置在染色盒中。
接下来,我们进行染色和显影步骤。
首先,我们将染色剂溶液倒入染色盒中,然后将凝胶小心地放入盒中,确保凝胶完全浸泡在染色剂中。
染色时间一般为30分钟至1小时,根据染色剂的要求进行调整。
染色结束后,我们将染色剂排出,并用去离子水反复洗涤凝胶,使染色剂完全被洗去。
最后,我们在凝胶上观察和记录蛋白质的迁移和染色情况。
根据实验结果,我们发现样品中蛋白质分子量分布范围较广,主要集中在50kDa至200kDa之间。
具体来说,我们观察到了几个特定的蛋白质带。
首先,我们观察到了一个明显的带位于分子量标尺上的150kDa位置,这表明样品中存在一个分子量为150kDa的蛋白质。
其次,我们还观察到了一些较暗的带,它们位于分子量标尺上的100kDa左右和200kDa左右位置,分别代表样品中分子量约为100kDa和200kDa的蛋白质。
此外,我们还对样品中特定蛋白质的含量进行了定量分析。
通过将实验结果与标准曲线比对,我们可以计算出样品中该蛋白质的含量。
例如,我们发现样品中的蛋白质在凝胶上表现为一个较浓的带位于分子量标尺上的75kDa位置。
通过对标准曲线的分析,我们确定该带所代表的蛋白质浓度为200μg/mL。
综上所述,凝胶层析试验是一种简单有效的蛋白质分析方法。
通过该方法,我们可以确定蛋白质的分子量范围以及特定蛋白质的含量。
然而,需要注意的是,凝胶层析试验在蛋白质的分离和检测中存在一定的局限性,例如对于超大分子量的蛋白质会出现迁移受限的情况。
凝胶柱层析实验报告
1. 理解凝胶柱层析的基本原理和操作步骤。
2. 掌握凝胶柱层析在分离和纯化生物大分子中的应用。
3. 分析实验结果,验证实验原理。
二、实验原理凝胶柱层析是一种常用的分离技术,主要用于分离分子量不同的生物大分子。
其原理是利用凝胶的分子筛效应,将混合物中的大分子、中分子和小分子进行分离。
凝胶是一种具有三维网状结构的物质,其孔径大小不同,大分子无法进入孔径较小的凝胶颗粒,而小分子则可以自由进出。
在实验中,样品溶液通过凝胶柱,不同分子量的物质将在凝胶柱中形成不同的洗脱峰,从而实现分离。
三、实验材料与仪器1. 材料:蛋白质样品、标准分子量蛋白质、凝胶柱、洗脱液、缓冲液等。
2. 仪器:凝胶柱层析仪、离心管、移液器、微量注射器、凝胶柱等。
四、实验步骤1. 准备凝胶柱:将凝胶柱垂直固定在凝胶柱层析仪上,用缓冲液平衡凝胶柱,使其达到稳定的操作状态。
2. 样品制备:将蛋白质样品与缓冲液混合,用移液器取适量样品加入凝胶柱。
3. 洗脱:用洗脱液缓慢洗脱凝胶柱,收集不同洗脱峰的样品。
4. 样品分析:将收集到的洗脱峰样品进行SDS-PAGE电泳分析,观察蛋白质分子量的变化。
五、实验结果与分析1. 凝胶柱层析分离结果:通过凝胶柱层析实验,成功地将蛋白质样品中的大分子、中分子和小分子分离。
洗脱峰1主要包含大分子蛋白质,洗脱峰2主要包含中分子蛋白质,洗脱峰3主要包含小分子蛋白质。
2. SDS-PAGE电泳分析结果:将不同洗脱峰的样品进行SDS-PAGE电泳分析,结果显示洗脱峰1的蛋白质分子量最大,洗脱峰3的蛋白质分子量最小,与凝胶柱层析分离结果一致。
1. 凝胶柱层析是一种有效的分离技术,可以用于分离分子量不同的生物大分子。
2. 通过凝胶柱层析实验,成功地将蛋白质样品中的大分子、中分子和小分子分离,并验证了实验原理。
3. 实验结果表明,凝胶柱层析与SDS-PAGE电泳分析相结合,可以实现对蛋白质分子量的准确测定。
七、实验注意事项1. 在进行凝胶柱层析实验时,应注意凝胶柱的平衡和操作状态,以保证实验结果的准确性。
凝胶层析生化实验报告
1. 了解凝胶层析的原理和方法。
2. 掌握凝胶层析的操作技能。
3. 通过凝胶层析分离和纯化蛋白质。
二、实验原理
凝胶层析是一种基于分子大小差异的分离技术,其原理是利用凝胶的多孔性,使不同大小的分子在凝胶柱中以不同的速度移动,从而实现分离。凝胶层析可分为凝胶过滤和凝胶排阻两种类型,其中凝胶过滤适用于分离分子量相近的物质,凝胶排阻适用于分离分子量差异较大的物质。
本实验采用凝胶过滤法,以葡聚糖凝胶为固定相,通过凝胶柱对蛋白质混合物进行分离。
三、实验材料
1. 蛋白质混合物:含有多种蛋白质的溶液。
2. 葡聚糖凝胶磷酸盐缓冲液(pH 7.4)。
4. 其他:层析柱、恒流泵、紫外分光光度计、收集器等。
四、实验步骤
1. 准备凝胶柱:将葡聚糖凝胶加入层析柱中,使其自然沉降至底部,形成凝胶床。
3. 本实验中,蛋白质分子量分布较广,说明蛋白质混合物中存在多种分子量的蛋白质。通过凝胶层析,可以将这些蛋白质分离和纯化。
七、实验总结
本实验通过凝胶层析分离和纯化了蛋白质混合物,成功实现了蛋白质的分离和纯化。通过实验,掌握了凝胶层析的原理和操作技能,为今后的实验研究奠定了基础。
六、实验讨论
1. 凝胶层析的分离效果受多种因素影响,如凝胶的种类、洗脱液的pH、流速等。在本实验中,选用Sephadex G-100凝胶,以磷酸盐缓冲液(pH 7.4)为洗脱液,流速为1.0 mL/min,可得到较好的分离效果。
2. 凝胶层析具有操作简单、分离效果好、不影响蛋白质活性等优点,在蛋白质分离和纯化中具有广泛的应用。
五、实验结果与分析
1. 洗脱曲线:随着洗脱的进行,蛋白质分子量逐渐增大,洗脱峰的位置逐渐向后推移。根据洗脱峰的位置,可以判断蛋白质的分子量。
凝胶过滤层析实验报告
凝胶过滤层析实验报告凝胶过滤层析实验报告一、引言凝胶过滤层析是一种常用的生物分离和纯化技术,广泛应用于生物医学研究、生物制药等领域。
本实验旨在通过对凝胶过滤层析的研究,探讨其原理、方法和应用。
二、凝胶过滤层析原理凝胶过滤层析是利用凝胶材料的孔隙结构,通过分子的大小和形状选择性地分离混合物中的组分。
凝胶材料通常是多孔的,具有不同大小的孔隙,通过调整凝胶材料的孔隙大小,可以选择性地分离分子。
三、实验步骤1. 准备凝胶柱:将凝胶材料装入柱中,并将柱与收集容器连接。
2. 样品处理:将待分离的混合物样品处理,去除杂质和大分子。
3. 样品加载:将处理后的样品加载到凝胶柱上。
4. 洗脱:用缓冲液洗脱凝胶柱上的目标分子。
5. 收集:将洗脱液收集于容器中,得到纯化后的目标分子。
四、实验结果与讨论本实验使用了凝胶过滤层析技术对蛋白质混合物进行分离和纯化。
实验结果显示,凝胶过滤层析能够有效地分离目标蛋白质,并具有较高的纯度。
在实验过程中,我们发现凝胶材料的孔隙大小对分离效果有重要影响。
较大的孔隙可以让较大分子通过,而较小的孔隙则只允许较小分子通过。
因此,在选择凝胶材料时,需要根据目标分子的大小来选择合适的凝胶。
此外,凝胶过滤层析还可以用于去除杂质和浓缩目标分子。
在洗脱过程中,通过调整洗脱缓冲液的成分和pH值,可以更好地控制目标分子的洗脱效果。
凝胶过滤层析技术的应用非常广泛。
在生物医学研究中,它常用于蛋白质纯化和分析,可以帮助研究人员获取纯度较高的蛋白质样品,从而进行后续的功能研究。
在生物制药领域,凝胶过滤层析可以用于制备药物和疫苗,提高产品纯度和质量。
然而,凝胶过滤层析也存在一些局限性。
例如,对于较大的分子,凝胶材料的孔隙可能不够大,导致无法通过。
此外,凝胶过滤层析的操作相对较慢,需要较长的时间来完成分离和纯化过程。
综上所述,凝胶过滤层析是一种有效的生物分离和纯化技术,具有广泛的应用前景。
通过对凝胶过滤层析的实验研究,我们深入了解了其原理、方法和应用,并对其优缺点有了更清晰的认识。
凝胶层析实验报告
凝胶层析实验报告凝胶层析实验报告引言:凝胶层析是一种常用的生物分离技术,通过凝胶基质的孔隙大小和分子间作用力,对混合物中的生物大分子进行分离纯化。
本实验旨在通过凝胶层析技术,对不同分子量的蛋白质进行分离,并观察其迁移行为。
实验材料与方法:1. 实验材料:- 凝胶层析柱:根据实验需要选择合适的凝胶材料,如聚丙烯酰胺凝胶、聚丙烯酰胺凝胶等。
- 样品:待分离的蛋白质混合物。
- 缓冲液:根据实验需要选择合适的缓冲液,如Tris-HCl缓冲液、PBS缓冲液等。
- 蛋白质标记物:用于确定凝胶层析柱的分离范围。
2. 实验方法:- 准备凝胶层析柱:根据实验需要选择合适的凝胶层析柱,并按照厂家提供的说明书进行柱床填充和预处理。
- 样品预处理:将待分离的蛋白质混合物进行预处理,如去除杂质、浓缩等。
- 样品加载:将经过预处理的样品加载到凝胶层析柱上,并使用缓冲液进行洗脱。
- 凝胶层析分离:根据分子量的大小,不同蛋白质将在凝胶层析柱中以不同的速率迁移。
- 分析与检测:收集分离后的样品,使用合适的检测方法进行分析,如SDS-PAGE、Western blot等。
实验结果与讨论:本实验选择了聚丙烯酰胺凝胶层析柱进行分离,样品为不同分子量的蛋白质混合物。
通过实验观察,发现较大分子量的蛋白质在凝胶层析柱中迁移速度较慢,而较小分子量的蛋白质则迁移速度较快。
这是由于凝胶基质的孔隙大小限制了蛋白质的迁移,较大分子量的蛋白质难以通过较小的孔隙,因此迁移速度较慢。
此外,我们还使用了蛋白质标记物来确定凝胶层析柱的分离范围。
通过观察标记物的迁移位置,可以确定凝胶层析柱的分离效果和分离范围。
实验结果显示,标记物在凝胶层析柱中呈现出明显的分离带,证明了凝胶层析的有效性和准确性。
凝胶层析技术在生物分离纯化领域具有广泛的应用。
通过选择不同的凝胶材料和缓冲液,可以实现对不同生物大分子的分离纯化。
同时,凝胶层析技术还可以与其他分析方法相结合,如质谱分析、免疫学检测等,进一步提高分析的准确性和灵敏度。
凝胶分层实验报告
一、实验目的1. 理解凝胶层析的基本原理和操作方法。
2. 掌握利用凝胶层析分离混合物中不同组分的技术。
3. 通过实验验证不同分子量物质在凝胶层析中的分离效果。
二、实验原理凝胶层析是一种基于分子大小差异进行分离的技术。
实验中使用的凝胶是一种具有多孔结构的高分子材料,其孔径大小可通过调节凝胶的制备条件来控制。
在凝胶层析过程中,混合物中的组分在凝胶层析柱中受到的阻滞作用不同,从而实现分离。
三、实验材料1. 凝胶层析柱2. 混合样品(含有不同分子量的物质)3. 洗脱液4. 紫外吸收光谱仪5. 量筒6. 移液管7. 样品管四、实验步骤1. 准备凝胶层析柱:将凝胶层析柱垂直固定在支架上,加入适量的洗脱液,使其充满柱底。
2. 样品制备:将混合样品用适量的洗脱液溶解,制成样品溶液。
3. 加样:将样品溶液缓慢加入凝胶层析柱的顶部,确保样品溶液均匀分布在凝胶层析柱中。
4. 洗脱:将洗脱液以恒定流速(如1ml/min)加入凝胶层析柱,收集洗脱液,每分钟收集一次。
5. 收集分离物质:观察收集到的洗脱液,当出现第一个明显的吸收峰时,记录该峰对应的收集时间,收集该部分洗脱液。
重复收集,直至收集到所有组分。
6. 检测分离物质:将收集到的洗脱液分别用紫外吸收光谱仪进行检测,记录各峰对应的波长和吸光度。
五、实验结果与分析1. 观察洗脱液的变化:随着洗脱过程的进行,洗脱液的吸光度逐渐降低,表明不同分子量的物质被逐渐洗脱。
2. 收集分离物质:根据实验结果,分别收集到不同分子量的物质,并记录其收集时间。
3. 检测分离物质:将收集到的分离物质分别用紫外吸收光谱仪进行检测,分析各峰对应的波长和吸光度,确定各物质的分子量。
4. 结果讨论:根据实验结果,讨论不同分子量物质在凝胶层析中的分离效果,分析实验过程中可能出现的误差。
六、实验结论通过本次凝胶分层实验,成功实现了混合物中不同分子量物质的分离。
实验结果表明,凝胶层析是一种有效的分离技术,可以用于分离具有不同分子量的物质。
凝胶层析试验报告
摘要凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。
凝胶色谱法又称分子排阻色谱法。
根据分离的对象是水溶性的化合物还是有机溶剂可溶物,又可分为凝胶过滤色谱(GFC)和凝胶渗透色谱(GPC)。
GFC一般用于分离水溶性的大分子,如多糖类化合物。
本实验用凝胶色谱法对食用油中的甘油三酯进行了分离提取。
关键词:凝胶色谱甘油三酯食用油第一章简介凝胶层析法凝胶层析又称分子筛过滤、排阻层析等。
它的突出优点是层析所用的凝胶属于惰性载体,不带电荷,吸附力弱,操作条件比较温和,可在相当广的温度范围下进行,不需要有机溶剂,并且对分离成分理化性质的保持有独到之处。
对于高分子物质有很好的分离效果。
一、凝胶的选择根据实验目的不同选择不同型号的凝胶。
如果实验目的是将样品中的大分子物质和小分子物质分开,由于它们在分配系数上有显著差异,这种分离又称组别分离,一般可选用Sephadex G-25和G-50,对于小肽和低分子量的物质(1000-5000)的脱盐可使用Sephadex G-10,G-15及Bio-Gel-p-2或4。
如果实验目的是将样品中一些分子量比较近似的物质进行分离,这种分离又叫分级分离。
一般选用排阻限度略大于样品中最高分子量物质的凝胶,层析过程中这些物质都能不同程度地深入到凝胶内部,由于Kd不同,最后得到分离。
二、柱的直径与长度根据经验,组别分离时,大多采用2-30cm长的层析柱,分级分离时,一般需要100cm左右长的层析柱,其直径在1-5cm范围内,小于1cm产生管壁效应,大于5cm则稀释现象严重。
长度L与直径D的比值L/D一般宜在7-10之间,但对移动慢的物质宜在30-40之间。
三、凝胶柱的制备凝胶型号选定后,将干胶颗粒悬浮于5-10倍量的蒸馏水或洗脱液中充分溶胀,溶胀之后将极细的小颗粒倾泻出去。
自然溶胀费时较长,加热可使溶胀加速,即在沸水浴中将湿凝胶浆逐渐升温至近沸,1-2小时即可达到凝胶的充分胀溶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凝胶层析实验报告
一.实验目的:将血红蛋白与鱼精蛋白混合物进行分离
二.实验原理:
凝胶是一种具有多孔,网状结构的分子筛. 分子量不同通过凝胶柱的速度也不同,利用这种凝胶分子筛对大小不同的分子进行层析分离.
当样品溶液通过凝胶柱时,相对分子质量较大的物质由于直径大于凝胶网孔而只能沿着凝胶颗粒间的孔隙,随着溶剂流动,因此流程较短,向前移动速度快而首先流出层析柱;
反之,相对分子质量较小的物质由于直径小于凝胶网孔,可自由地进出凝胶颗粒的网孔,在向下移动过程中,它们从凝胶内扩散到胶粒孔隙后再进入另一凝胶颗粒,如此不断地进入与逸出,使流量增长,移动速率慢而最后流出层析柱.从而在大分子物质与小分子物质之间被洗脱.
这样,经过层析柱,使混合物中的各物质按其分子大小不同而被分离.
三.主要仪器和试剂:
铁架台层析柱胶管交联葡聚糖凝胶G-50
血红蛋白鱼精蛋白混合物(aq)
四.操作步骤:
1 连接装置:将层析柱固定在铁架台上,保持与水平面垂直,底部与胶管连接.胶管下端置于烧杯中.
2 装柱:将尼龙网放入层析柱底部, 使其水平固定;夹住胶管向柱中注水,松手放水,使水流到剩一厘米,让气泡流出,夹住胶管.
3 灌胶:将凝胶搅拌均匀,用玻璃棒引流将凝胶溶液一次性倒入层析柱约20ml;夹住胶管片刻,然后打开夹子,让凝胶沉淀约20分钟(凝胶与水分层),当水流至离凝胶约5mm处时,夹住胶管.用玻璃棒取滤纸一片伸入层析柱,放置于凝胶表面之上水面之下,打开夹子,当露出滤纸,关闭夹子.
4 加样:用胶头滴管取血红蛋白’鱼精蛋白混合液,滴入层析柱,约两滴.
5 洗脱:当待分离混合液渗入滤纸后,加少量水,开夹放水,(水面始终位于滤纸之上),反复两三次;关闭止水夹到入大量水,再开夹.等待分离
6 回收:将洗净的凝胶回收以便再次利用
五.实验现象:
观察看到红色的液体先被分离,流至烧杯中;黄色液体流速很慢,最终流入烧杯.
六.结论与分析:
结论:血红蛋白分子量比鱼精蛋白分子量大的多,利用分子筛效应先分离出血红蛋白; 使其混合物分离. 分析:。