浙江省高中物理 第五章 课时训练1 万有引力定律(含解析)

合集下载

高中物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)

高中物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)

高中物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。

若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。

(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。

已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。

【答案】(1) 322m r T gR= (2)29.6 【解析】 【详解】(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则222m MmG mr r T π⎛⎫=⋅ ⎪⎝⎭地球表面的物体受到的万有引力约等于重力,则02GMm m g R= 解得 322m r T gR=(2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即2m e t t ωπω=+而2m mT πω=2e eT πω=解得 29.6t =天2.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.3.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36R T g =2)0133t gRω-V =【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅=地球表面的物体受到重力等于万有引力2Mmmg G R =联立解得6T =; (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π,所以100222t T V ===πππωωω--;4.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMTh R π因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π(3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ= (2)v gR =22324gT R h R π= 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v gR =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h T R h π=++,解得:22324gT R h R π=-3.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=. 联立得()2πR H R HV TR++=4.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数33μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR =mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.5.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR+=23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R g+=(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+代入④得()203t R gR h ω=-+6.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:h R =7.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G mr r T π⎛⎫= ⎪⎝⎭解得23024r M GTπ= b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=8.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π; (3) 2324rT Rπ 【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==9.我国预计于2022年建成自己的空间站。

高中物理万有引力定律的应用及其解题技巧及练习题(含答案)及解析

高中物理万有引力定律的应用及其解题技巧及练习题(含答案)及解析

高中物理万有引力定律的应用及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMTh R π因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π(3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ= (2)v gR =22324gT R h R π= 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v gR =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h T R h π=++,解得:22324gT R h R π=-3.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转的角速度为ω,地球半径为R . (2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50kg 的人对水平地板的压力大小.取地面附近的重力加速度g=10m/s 2,地球自转的角速度ω=7.3×10-5rad/s ,地球半径R=6.4×103km . 【答案】(1)22111()2m R h ω+;(2)11.5N 【解析】试题分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小. 解:(1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度v=(R+h 1)ω, 货物相对地心的动能.(2)根据,因为a=,,联立解得N==≈11.5N.根据牛顿第三定律知,人对水平地板的压力为11.5N.4.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M,自转周期为T,引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F0.①若在北极上空高出地面h处称量,弹簧测力计读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R s和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②23 22 041F R F GMTπ=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.5.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。

2019-2020学年浙江省高中物理学业水平复习练习:第五章 课时训练1 万有引力定律 Word版含答案

2019-2020学年浙江省高中物理学业水平复习练习:第五章 课时训练1 万有引力定律 Word版含答案

第五章万有引力与航天课时训练1 万有引力定律基础巩固1.经国际小行星命名委员会批准,紫金山天文台发现的一颗绕太阳运行的小行星被命名为“南大仙林星”。

如图所示,轨道上a,b,c,d四个位置中,该行星受太阳引力最大的是( A )A.aB.bC.cD.d2.根据牛顿运动理论,地球绕着太阳旋转所需的向心力来自( B )A.地球本身的重力B.太阳与地球之间的引力C.太阳与月球吸引地球的力的合力D.太阳及其他行星对地球引力的合力3.万有引力定律的发现让人们认识到天上物体的运动规律也是可以认知的,对解放人们的思想起到了积极的作用。

物理学家狄拉克为此写下了美丽的诗句:“在地球上摘朵花,你就移动了最远的星球!”关于万有引力,以下说法中正确的是( A )A.太阳对地球有引力B.太阳对地球的大气层没有引力C.地球对着陆于火星的“勇气号”探测器没有引力的作用D.宇宙飞船内处于失重状态的宇航员没有受到地球的引力4.发现万有引力定律和测出引力常量的科学家分别是( A )A.牛顿、卡文迪许B.伽利略、卡文迪许C.开普勒、牛顿D.牛顿、伽利略解析:万有引力定律的发现者是牛顿,测出引力常量的科学家是卡文迪许,选项A正确。

5.关于行星运动的规律,下列说法符合史实的是( B )A.开普勒在牛顿运动定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律解析:开普勒在大量研究前人常年观测的天文数据基础上,总结出了行星运动的规律。

牛顿发现了万有引力定律,选项A,C,D错误,B正确。

6.对于万有引力定律的表达式F=G,下列说法正确的是( D )A.公式中G为引力常量,它是由牛顿通过实验测得的B.当r趋于零时,万有引力趋于无穷大C.质量为m1,m2的物体之间的引力是一对平衡力D.质量为m1,m2的物体之间的引力总是大小相等的解析:万有引力常量是卡文迪许通过扭秤实验测出的,故A错误;当物体之间的距离r趋于零时,物体不能简化为质点,万有引力公式不再适用,故B错误;质量为m1,m2的物体之间的引力是一对作用力与反作用力,大小总是相等,故C错误,D正确。

浙江省高中物理第五章课时训练1万有引力定律(含解析)

浙江省高中物理第五章课时训练1万有引力定律(含解析)

课时训练 1万有引力定律基础稳固1.经国际小行星命名委员会同意, 紫金山天文台发现的一颗绕太阳运转的小行星被命名为“南大仙林星”。

如下图 , 轨道上 a,b,c,d 四个地点中 , 该行星受太阳引力最大的是 ( A )A.aB.bC.cD.d2.依据牛顿运动理论 , 地球绕着太阳旋转所需的向心力来自 ( B ) A. 地球自己的重力B.太阳与地球之间的引力C.太阳与月球吸引地球的力的协力D.太阳及其余行星对地球引力的协力3. 万有引力定律的发现让人们认识到天上物体的运动规律也是能够认知的, 对解放人们的思想起到了踊跃的作用。

物理学家狄拉克为此写下了漂亮的诗句: “在地球上摘朵花 , 你就挪动了最远的星球 ! ”对于万有引力 , 以下说法中正确的选项是 ( A)A. 太阳对地球有引力B. 太阳对地球的大气层没有引力C. 地球对着陆于火星的“勇气号”探测器没有引力的作用D. 宇宙飞船内处于失重状态的宇航员没有遇到地球的引力4. 发现万有引力定律和测出引力常量的科学家分别是( A)A. 牛顿、卡文迪许B. 伽利略、卡文迪许C. 开普勒、牛顿D. 牛顿、伽利略分析 : 万有引力定律的发现者是牛顿, 测出引力常量的科学家是卡文迪许,选项 A正确。

5.对于行星运动的规律 , 以下说法切合史实的是 ( B ) A. 开普勒在牛顿运动定律的基础上 , 导出了行星运动的规律B. 开普勒在天文观察数据的基础上, 总结出了行星运动的规律C. 开普勒总结出了行星运动的规律, 找出了行星依据这些规律运动的原由D. 开普勒总结出了行星运动的规律, 发现了万有引力定律分析 : 开普勒在大批研究古人常年观察的天文数据基础上, 总结出了行星运动的规律。

牛顿发现了万有引力定律, 选项 A,C,D 错误 ,B 正确。

6. 对于万有引力定律的表达式F=G, 以下说法正确的选项是( D )A. 公式中 G为引力常量 , 它是由牛顿经过实验测得的B. 当 r 趋于零时 , 万有引力趋于无量大C. 质量为 m1,m2的物体之间的引力是一对均衡力D. 质量为 m1,m2的物体之间的引力老是大小相等的分析 : 万有引力常量是卡文迪许经过扭秤实验测出的, 故 A 错误 ; 当物体之间的距离r 趋于零时 ,物体不可以简化为质点 , 万有引力公式不再合用 , 故 B错误 ; 质量为 m1,m2的物体之间的引力是一对作使劲与反作使劲 , 大小老是相等 , 故 C 错误 ,D 正确。

2020年高考物理一轮复习第五单元万有引力定律第1讲万有引力定律及其应用练习(含解析)新人教版

2020年高考物理一轮复习第五单元万有引力定律第1讲万有引力定律及其应用练习(含解析)新人教版

万有引力定律及其应用万有引力定律与航空是每年高考的必考内容之一,一般以选择题的形式出现,命题素材突出物理与现代科技,特别是在当前星际探索成为世界新的科技竞争焦点的形势下,试题与现代航天技术的联系会更加密切。

该部分内容常与牛顿运动定律、机械能守恒、动能定理等力学规律来综合考查。

具体特点有:(1)考查万有引力定律的应用,结合牛顿第二定律,估算重力加速度、天体质量、密度等问题。

(2)以卫星或探测器的匀速圆周运动为背景,考查速度、角速度、周期和向心加速度与轨道半径的关系。

(3)考查卫星的发射与变轨时各物理量的比较。

(4)考查万有引力定律在双星或多星中的应用。

(5)结合卫星或探测器的运动考查动能定理与机械能守恒等知识在天体运动中的具体应用。

预测2020年高考对万有引力定律与航空的考查主要有两点:一是该定律与牛顿第二定律结合估算重力加速度、天体质量、密度;二是以卫星、飞船等航天器为素材分析其运行规律。

值得注意的是,由于近年来我国在航天方面的迅猛发展,高考常常结合我国的航天实际成就来命题,特别是我国的载人航天已取得了成功,我国载人空间站工程启动实施,我国自主研发的“北斗卫星导航系统”的运用,探月计划也进入实质性进程之中,等等,高考结合这些素材命题的可能性较大,因此我们应高度重视这些知识点的应用。

第1讲万有引力定律及其应用1 开普勒行星运动定律(1)开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

说明:每个椭圆有两个焦点,所有行星的椭圆轨道有一个焦点是相互重合的,太阳就处在这个重合的焦点上;不同行星绕太阳运行时的椭圆轨道是不同的。

(2)开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。

说明:行星运动的线速度大小在轨道上各点是不同的;行星在近日点的速率大于在远日点的速率。

(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,表达式为=k。

高中物理万有引力定律的应用的技巧及练习题及练习题(含答案)

高中物理万有引力定律的应用的技巧及练习题及练习题(含答案)

高中物理万有引力定律的应用的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ= (3)02v R v t = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g =可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMm mg R =得:2202v R gR M G Gt== 因为343R V π= 则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R= 该星球的第一宇宙速度02v R v gR t== 【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R .(1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hR v =【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小.【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2Mm R =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小v 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求:(1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400r g T π= 【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10Mm G mg r =,则得:222400100GM r g r T π==4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。

高中物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析

高中物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析

高中物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.在不久的将来,我国科学家乘坐“嫦娥N 号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v 0的初速度竖直上抛一物体,经过时间t 1,物体回到抛出点;在月球的“两极”处仍以大小为v 0的初速度竖直上抛同一物体,经过时间t 2,物体回到抛出点。

高中物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高中物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高中物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.由三颗星体构成的系统,忽略其他星体对它们的影响,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做角速度相同的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)若A 星体的质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力的大小F A ; (2)B 星体所受合力的大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .【答案】(1)2223Gm a (2)227Gm a (3)74a (4)3πa T Gm= 【解析】 【分析】 【详解】(1)由万有引力定律,A 星体所受B 、C 星体引力大小为24222A B R CA m m m F G G F r a===,则合力大小为223A m F G a=(2)同上,B 星体所受A 、C 星体引力大小分别为2222222A B AB C B CBm m m F G G r am m m F G G r a==== 则合力大小为22cos 602Bx AB CB m F F F G a =︒+=22sin 603By AB m F F G a=︒=.可得22227B BxBym F F F G a=+=(3)通过分析可知,圆心O 在中垂线AD 的中点,2231742C R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭ (4)三星体运动周期相同,对C 星体,由22227C B C m F F G m R a T π⎛⎫=== ⎪⎝⎭可得22a T Gm π=2.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用3.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。

高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析

高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析

高考必备物理万有引力定律的应用技巧全解及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间t,又已知该星球的半径为 R,己知万有引力常量为G,求:(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞翔轨道近似为圆形,距月球表面高度为H,飞翔周期为T,月球的半径为R,引力常量为G.求:(1)嫦“娥一号”绕月飞翔时的线速度大小;(2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】(1)2R H(2)42R H32RHRH( 3)T GT2T R【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小2π(R H )v 1.T( 2 )设月球质量为M . “嫦娥一号 ”的质量为 m .Mm2H )依据牛二定律得Gm 4π (RH )2T 2(R23解得 M4π (R H ) .GT 2( 3)设绕月飞船运转的线速度为 V,飞船质量为Mm 0V 2又m 0 ,则 Gm 023M4π (R H ) .GT 2联立得 V2π RHRHT R3. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为 求:(1) 行星的质量 M ;(2) 行星表面的重力加快度g ; (3) 行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【分析】【详解】(1)设宇宙飞船的质量为 m ,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.万有引力定律揭露了天体运动规律与地上物体运动规律拥有内在的一致性.(1)用弹簧测力计称量一个相关于地球静止的物体的重力,随称量地点的变化可能会有不 同结果.已知地球质量为M ,自转周期为 T ,引力常量为 G .将地球视为半径为R 、质量分布平均的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0.① 若在北极上空超出地面h 处称量,弹簧测力计读数为 F 1,求比值 的表达式,并就h=1.0%R 的情况算出详细数值(计算结果保存两位有效数字); ② 若在赤道表面称量,弹簧测力计读数为F 2 ,求比值的表达式.( 2)假想地球绕太阳公转的圆周轨道半径为 r 、太阳半径为 R s 和地球的半径 R 三者均减小为此刻的 1 .0%,而太阳和地球的密度平均且不变.仅考虑太阳与地球之间的互相作用, 以现实地球的 1 年为标准,计算 “假想地球 ”的 1 年将变成多长?2 3【答案】( 1) ① 0.98,②F 214R2F 0GMT( 2) “假想地球 ”的 1 年与现实地球的 1 年时间同样【分析】试题剖析:( 1)依据万有引力等于重力得出比值的表达式,并求出详细的数值.在赤道,因为万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力,依据该规律求出比值的表达式( 2)依据万有引力供给向心力得出周期与轨道半径以及太阳半径的关系,进而进行判断.解:( 1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式 ①② 能够得出:=0.98.③由① 和③ 可得:(2)依据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为此刻的 1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍旧为 1 年.【评论】解决此题的重点知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力.5.天文学家将相距较近、仅在相互的引力作用下运转的两颗恒星称为双星.双星系统在银河系中很广泛.利用双星系统中两颗恒星的运动特点可计算出它们的总质量.已知某双星系统中两颗恒星环绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试计算这个双星系统的总质量.(引力常量为G)【答案】【分析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w1,w 2.依据题意有w1=w2①(1分)r1+r2=r② (1分)依据万有引力定律和牛顿定律,有G③(3分)G④(3分)联立以上各式解得⑤ (2分)依据解速度与周期的关系知⑥ (2分)联立 ③⑤⑥ 式解得(3 分)此题考察天体运动中的双星问题,两星球间的互相作使劲供给向心力,周期和角速度同样,由万有引力供给向心力列式求解6. 假定在半径为 R 的某天体上发射一颗该天体的卫星 ,若这颗卫星在距该天体表面高度为 h 的轨道做匀速圆周运动 ,周期为 T ,已知万有引力常量为 G ,求 : (1)该天体的质量是多少 ? (2)该天体的密度是多少 ?(3)该天体表面的重力加快度是多少? (4)该天体的第一宇宙速度是多少 ?【答案】 (1)4 2 (R h)3;3 (R h) 34 2 (R h)3;4 2 (R h)3GT(2)2R 3; (3)(4)RT 22GT R 2T2【分析】【剖析】( 1)卫星做匀速圆周运动,万有引力供给向心力,依据牛顿第二定律列式求解; ( 2)依据密度的定义求解天体密度;( 3)在天体表面,重力等于万有引力,列式求解;( 4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动 ,万有引力供给向心力 ,依据牛顿第二定律有 :Mm22G( R h)2 =m T(R+h)解得 : M= 4 2 (R h)3①GT 2(2)天体的密度 :42(R h)3 3M GT 2 3 ( R h)ρ= =4=GT 2R 3 .V3R3(3)在天体表面 ,重力等于万有引力,故 :Mm ②mg=GR 2联立①②解得 : g=4 2 (R h)3③R 2T 2(4)该天体的第一宇宙速度是近地卫星的环绕速度 ,依据牛顿第二定律 ,有:mg=m④联立③④解得 : v= gR = 4 2( R h)3.RT 2【点睛】此题重点是明确卫星做圆周运动时,万有引力供给向心力,而地面邻近重力又等于万有引力,基础问题.v 2R24-1122,一7.地球的质量 M=5.98 × 10kg ,地球半径 R=6370km ,引力常量 G=6.67 × 10 N ·m /kg 颗绕地做圆周运动的卫星环绕速度为 v=2100m/s ,求:(1)用题中的已知量表示此卫星距地面高度 h 的表达式(2)此高度的数值为多少?(保存3 位有效数字)【答案】( 1 ) GM 7hR ( 2) h=8.41 × 10mv 2【分析】试题剖析:( 1 )万有引力供给向心力,则GM解得:hv 2R×7( 2)将( 1)中结果代入数占有 h=8.41 10m 考点:考察了万有引力定律的应用8.“嫦娥一号 ”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经过发射轨道进入停靠轨道,在停靠轨道经过调速后进入地月转移轨道,再次调速后进入工 作轨道 .已知卫星在停靠轨道和工作轨道运转的半径分别为R 和 R 1,地球半径为 r ,月球半径为 r 1,地球表面重力加快度为g ,月球表面重力加快度为 .求:(1)卫星在停靠轨道上运转的线速度大小;(2)卫星在工作轨道上运转的周期.【答案】 (1) (2)【分析】(1)卫星停靠轨道是绕地球运转时,依据万有引力供给向心力:解得:卫星在停靠轨道上运转的线速度;物体在地球表面上,有,获得黄金代换 ,代入解得 ;(2)卫星在工作轨道是绕月球运转,依据万有引力供给向心力有,在月球表面上,有,得 ,联立解得:卫星在工作轨道上运转的周期.9. 侦探卫星在经过地球两极上空的圆轨道上运转,它的运转轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的状况所有都拍摄下来 ,卫星在经过赤道上空时,卫星上的拍照像机起码应拍地面上赤道圆周的弧长是多少?设地球半径为,R 地面处的重力加快度为 g,地球自转的周期为 T .4 2 ( h R) 3【答案】 lgT【分析】 【剖析】【详解】设卫星周期为 T 1 ,那么 :Mm 4 2m( R h), ①G2T 12( R h)又MmG R 2mg , ②由①②得T 12 ( h R) 3R.g设卫星上的摄像机起码能拍摄地面上赤道圆周的弧长为 l ,地球自转周期为 T ,要使卫星在一天(地球自转周期 )的时间内将赤道各处的状况全都拍摄下来,则Tl 2 R .T 1因此2 RT 14 2 (h R)3lT.Tg【点睛】摄像机只需将地球的赤道拍摄全,便能将地面各处所有拍摄下来;依据万有引力供给向心力和万有引力等于重力争出卫星周期 ;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再依据弧长与圆心角的关系求解.10. 今年 6 月 13 日,我国首颗地球同步轨道高分辨率对地观察卫星高分四号正式投入使 用,这也是世界上地球同步轨道分辨率最高的对地观察卫星.如下图,卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加快度为A 是地球的同步g,求:( 1)同步卫星离地面高度 h( 2)地球的密度 ρ(已知引力常量为 G)2 23g【答案】( 1) 3gR TR (2)4 24 GR【分析】【剖析】【详解】( 1)设地球质量为 M ,卫星质量为 m ,地球同步卫星到地面的高度为 h ,同步卫星所受万有引力等于向心力为G mM4 2 R hm( R h)2T2在地球表面上引力等于重力为MmGR2mg故地球同步卫星离地面的高度为h3gR 2T242R(2)依据在地球表面上引力等于重力MmGR2mg联合密度公式为gR 2MG3gV4R 3 4GR3。

浙江省2019_2020学年高中物理第五章课时1万有引力定律课件

浙江省2019_2020学年高中物理第五章课时1万有引力定律课件

解析:在月球表面根据下落高度、时间只能利用 H= 1 gt2,计算出月球表面 2
的重力加速度,无法计算月球的密度,选项 A 错误;根据选项 B 给出的条件, 无法求出月球的质量,故 B 错误;知道“嫦娥四号”距月球表面的高度 H, 但不知道月球的半径,故无法求出月球的密度,选项 C 错误;设绕月球表面 做匀速圆周运动的“嫦娥四号”的周期为 T,则根据万有引力提供向心力有
=ω 2r= 4π2 T2
r。
2.涉及天体密度问题时结合ρ = M 和 V= 4 π R3 进行分析求解。
V
3
典例4 (2019·金华期末)2018年12月8日2时23分,我国自行研制的“嫦 娥四号”无人探测器发射成功,开启人类首次月球背面软着陆探测之旅。 若已知引力常量G,那么在下列给出的各种情景中,能根据测量的数据估算 月球密度的是( ) A.在月球表面释放一个小球做自由落体运动,测出下落高度H和时间t B.观察月球绕地球的匀速圆周运动,测出月球的直径D和运行周期T C.“嫦娥四号”绕月球做匀速圆周运动,测出距月球表面的高度H和运行 周期T D.“嫦娥四号”靠近月球表面绕月球做匀速圆周运动,测出运行周期T
考点2 万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线 上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的 二次方成反比。 2.公式:F=G m1m2 ,其中 G=6.67×10-11N·m2/kg2,叫做引力常量。由英国科学
r2 家卡文迪许用扭秤装置比较准确地测量出。 3.适用条件:严格来说公式只适用于质点之间的相互作用。
4.与万有引力定律发现相关的物理史实 (1)德国天文学家开普勒提出天体运动的开普勒三大定律。 (2)牛顿总结了前人的科研成果,在此基础上,经过研究得出了万有引力 定律。 (3)英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力 常量。 说明 (1)对质量均匀的球体或球壳,在研究与球外物体的引力时,可视为质量 集中在球心而应用公式; (2)当两个物体间的距离远远大于物体本身大小时,公式适用。对于两 个不规则又相互靠近的物体间的万有引力均不能直接用公式运算。

高中物理万有引力定律的应用及其解题技巧及练习题(含答案).docx

高中物理万有引力定律的应用及其解题技巧及练习题(含答案).docx

高中物理万有引力定律的应用及其解题技巧及练习题( 含答案 )一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为 G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g ;(3)行星的第一宇宙速度v.【答案】(1)( 2)( 3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使 21 世纪的世界发生革命性变化,其发现者由此获得 2010 年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.(1)若 “太空电梯 ”将货物从赤道基站运到距地面高度为 h 1 的同步轨道站,求轨道站内质量为 m 1 的货物相对地心运动的动能.设地球自转的角速度为 ω,地球半径为 R .(2)当电梯仓停在距地面高度 h =4R 的站点时,求仓内质量m =50kg 的人对水平地板的压22力大小.取地面附近的重力加速度2-5g=10m/s ,地球自转的角速度 ω=7.3 ×10rad/s ,地球半3径 R=6.4×10km .【答案】 (1) 1m 1 2 (R h 1 )2 ;( 2)11.5N2【解析】试题分析:( 1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.( 2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小.解:( 1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度 v=(R+h 1) ω,货物相对地心的动能.(2)根据,因为 a=, ,联立解得N= =≈ 11. 5N .根据牛顿第三定律知,人对水平地板的压力为11.5N .3. 探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。

高考物理高考物理万有引力定律的应用及其解题技巧及练习题(含答案)

高考物理高考物理万有引力定律的应用及其解题技巧及练习题(含答案)

高考物理高考物理万有引力定律的应用及其解题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:2322=4GMTh R π- 因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π- (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R=3310m/s v gR ==⨯3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值的表达式,并就h=1.0%R 的情形算出具体数值(计算结果保留两位有效数字); ②若在赤道表面称量,弹簧测力计读数为F 2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r 、太阳半径为R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②2322041F R F GMTπ=- (2)“设想地球”的1年与现实地球的1年时间相同 【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断. 解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.5.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化.卫星将获得的信息持续用微波信号发回地球.设地球和月球的质量分别为M和m,地球和月球的半径分别为R和R1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r和r1,月球绕地球转动的周期为T.假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M、m、R、R1、r、r1和T表示,忽略月球绕地球转动对遮挡时间的影).【答案】311131cos cos Mr R R R Tt arc arc mr r r π⎛⎫-=- ⎪⎝⎭【解析】 【分析】 【详解】如图,O 和O ′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线OO ′与地月球面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星圆轨道的交点.根据对称性,过A 点的另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在上运动时发出的信号被遮挡.设探月卫星的质量为m 0,万有引力常量为G ,根据万有引力定律有:222Mm G m r r T π⎛⎫= ⎪⎝⎭①20012112mmG m r r T π⎛⎫= ⎪⎝⎭②式中T 1是探月卫星绕月球转动的周期.由①②式得2311T r M T m r ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭③ 设卫星的微波信号被遮挡的时间为t,则由于卫星绕月做匀速圆周运动,应用1t T αβπ-=④ 式,α=∠CO ′A ,β=∠CO ′B ,由几何关系得r cos α=R -R 1⑤ r 1cos β=R 1⑥由③④⑤⑥式得311131arccos arccos Mr R R R Tt mr r r π⎛⎫-=- ⎪⎝⎭6.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t ;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:02tana v R GMv gR R t===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:0022tan αtan t RtT Rv R v ππα==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.7.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL= 同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比)又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.8.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形,2017年6月,“神舟十号”与“太空一号”成功对接.现已知“太空一号”飞行器在轨运行周期为To ,运行速度为0v ,地球半径为R ,引力常量为.G 假设“天宫一号”环绕地球做匀速圖周运动,求:()1“天宫号”的轨道高度h . ()2地球的质量M .【答案】(1)00 2v T h R π=- (2)300 2v T M Gπ=【解析】 【详解】(1)设“天宫一号”的轨道半径为r ,则有:002rv T π=“天宫一号”的轨道高度为:h r R =- 即为:002v T h R π=- (2)对“天宫一号”有:22204Mm G m r r T π=所以有:3002v T M Gπ=【点睛】万有引力应用问题主要从以下两点入手:一是星表面重力与万有引力相等,二是万有引力提供圆周运动向心力.9.根据我国航天规划,未来某个时候将会在月球上建立基地,若从该基地发射一颗绕月卫星,该卫星绕月球做匀速圆周运动时距月球表面的高度为h ,绕月球做圆周运动的周期为T ,月球半径为R ,引力常量为G .求: (1)月球的密度ρ;(2)在月球上发射绕月卫星所需的最小速度v .【答案】(1)3233()R h GT R π+(2 【解析】 【详解】(1)万有引力提供向心力,由牛顿第二定律得:G 2()Mm R h =+m 224Tπ(R +h ), 解得月球的质量为:2324()R h M GTπ+=; 则月球的密度为:3233()M R h V GT Rπρ+==; (2)万有引力提供向心力,由牛顿第二定律得:G 2Mm R =m 2v R,解得:v =10.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动。

2020届高考物理总复习第五单元万有引力定律第1讲万有引力定律及其应用教师用书含解析

2020届高考物理总复习第五单元万有引力定律第1讲万有引力定律及其应用教师用书含解析

万有引力定律及其应用万有引力定律与航空是每年高考的必考内容之一,一般以选择题的形式出现,命题素材突出物理与现代科技,特别是在当前星际探索成为世界新的科技竞争焦点的形势下,试题与现代航天技术的联系会更加密切。

该部分内容常与牛顿运动定律、机械能守恒、动能定理等力学规律来综合考查。

具体特点有:(1)考查万有引力定律的应用,结合牛顿第二定律,估算重力加速度、天体质量、密度等问题。

(2)以卫星或探测器的匀速圆周运动为背景,考查速度、角速度、周期和向心加速度与轨道半径的关系。

(3)考查卫星的发射与变轨时各物理量的比较。

(4)考查万有引力定律在双星或多星中的应用。

(5)结合卫星或探测器的运动考查动能定理与机械能守恒等知识在天体运动中的具体应用。

预测2020年高考对万有引力定律与航空的考查主要有两点:一是该定律与牛顿第二定律结合估算重力加速度、天体质量、密度;二是以卫星、飞船等航天器为素材分析其运行规律。

值得注意的是,由于近年来我国在航天方面的迅猛发展,高考常常结合我国的航天实际成就来命题,特别是我国的载人航天已取得了成功,我国载人空间站工程启动实施,我国自主研发的“北斗卫星导航系统”的运用,探月计划也进入实质性进程之中,等等,高考结合这些素材命题的可能性较大,因此我们应高度重视这些知识点的应用。

第1讲万有引力定律及其应用1 开普勒行星运动定律(1)开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

说明:每个椭圆有两个焦点,所有行星的椭圆轨道有一个焦点是相互重合的,太阳就处在这个重合的焦点上;不同行星绕太阳运行时的椭圆轨道是不同的。

(2)开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。

说明:行星运动的线速度大小在轨道上各点是不同的;行星在近日点的速率大于在远日点的速率。

(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,表达式为=k。

高中物理 第5章 万有引力定律及其应用 第1节 万有引力定律及引力常量的测定随堂检测(含解析)鲁科版

高中物理 第5章 万有引力定律及其应用 第1节 万有引力定律及引力常量的测定随堂检测(含解析)鲁科版

2017-2018学年高中物理第5章万有引力定律及其应用第1节万有引力定律及引力常量的测定随堂检测(含解析)鲁科版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中物理第5章万有引力定律及其应用第1节万有引力定律及引力常量的测定随堂检测(含解析)鲁科版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中物理第5章万有引力定律及其应用第1节万有引力定律及引力常量的测定随堂检测(含解析)鲁科版必修2的全部内容。

万有引力定律及引力常量的测定1.(对应要点一)地球绕太阳公转,地球本身绕地轴自转,形成了一年四季:春夏秋冬.则下面说法中正确的是()A.春分地球公转速率最小B.夏至地球公转速率最小C.秋分地球公转速率最小D.冬至地球公转速率最小解析:由开普勒第二定律知,地球与太阳的连线在相等的时间内扫过相等的面积,在夏至时节,地球运动至远日点,离太阳最远,故其速率最小.答案:B2.(对应要点二)关于万有引力和万有引力定律的理解正确的是()A.不能看做质点的两物体间不存在相互作用的引力B.只有能看做质点的两物体间的引力才能用F=G m1m2r2计算C.由F=G错误!知,两物体间距离r减小时,它们之间的引力增大D.万有引力常量的大小首先是由牛顿测出来的,且等于6。

67×10-11N·m2/kg2解析:任何物体间都存在相互作用的引力,故称为万有引力,A错;两个质量均匀的球体间的万有引力也能用F=G错误!来计算,B错;物体间的万有引力与它们距离r的二次方成反比,故r减小,它们间的引力增大,C对;引力常量G是由卡文迪许精确测出的,D错。

高中物理 第5章 万有引力定律及其应用 第1节 万有引力定律及引力常量的测定课下作业(含解析)鲁科版

高中物理 第5章 万有引力定律及其应用 第1节 万有引力定律及引力常量的测定课下作业(含解析)鲁科版

2017-2018学年高中物理第5章万有引力定律及其应用第1节万有引力定律及引力常量的测定课下作业(含解析)鲁科版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中物理第5章万有引力定律及其应用第1节万有引力定律及引力常量的测定课下作业(含解析)鲁科版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中物理第5章万有引力定律及其应用第1节万有引力定律及引力常量的测定课下作业(含解析)鲁科版必修2的全部内容。

万有引力定律及引力常量的测定1.对于质量为m1和质量为m2的两个物体间的万有引力的表达式F=G m1m2r2,下列说法正确的是()A.公式中的G是引力常量,它是人为规定的B.当两个物体间的距离r趋于零时,万有引力趋于无穷大C.m1和m2所受引力大小总是相等的D.两个物体间的引力总是大小相等、方向相反的,是一对平衡力解析:引力常量G是由英国物理学家卡文迪许运用构思巧妙的“精密”扭秤实验第一次测定出来的,所以选项A错误;两个物体之间的万有引力是一对作用力与反作用力,它们总是大小相等、方向相反,分别作用在两个物体上,所以选项C正确,D错误;公式F=G错误!适用于两质点间的相互作用,当两物体相距很近时,两物体不能看成质点,所以选项B错误。

答案:C2.关于引力常量G,下列说法中不正确的是( )A.G值的测出使万有引力定律有了真正的实用价值,可用万有引力定律进行定量计算B.引力常量G的大小与两物体质量乘积成反比,与两物体间距离的平方成正比C.引力常量G的物理意义是,两个质量都是1 kg的物体相距1 m时相互吸引力为6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时训练1 万有引力定律基础巩固1.经国际小行星命名委员会批准,紫金山天文台发现的一颗绕太阳运行的小行星被命名为“南大仙林星”。

如图所示,轨道上a,b,c,d四个位置中,该行星受太阳引力最大的是( A )A.aB.bC.cD.d2.根据牛顿运动理论,地球绕着太阳旋转所需的向心力来自( B )A.地球本身的重力B.太阳与地球之间的引力C.太阳与月球吸引地球的力的合力D.太阳及其他行星对地球引力的合力3.万有引力定律的发现让人们认识到天上物体的运动规律也是可以认知的,对解放人们的思想起到了积极的作用。

物理学家狄拉克为此写下了美丽的诗句:“在地球上摘朵花,你就移动了最远的星球!”关于万有引力,以下说法中正确的是( A )A.太阳对地球有引力B.太阳对地球的大气层没有引力C.地球对着陆于火星的“勇气号”探测器没有引力的作用D.宇宙飞船内处于失重状态的宇航员没有受到地球的引力4.发现万有引力定律和测出引力常量的科学家分别是( A )A.牛顿、卡文迪许B.伽利略、卡文迪许C.开普勒、牛顿D.牛顿、伽利略解析:万有引力定律的发现者是牛顿,测出引力常量的科学家是卡文迪许,选项A正确。

5.关于行星运动的规律,下列说法符合史实的是( B )A.开普勒在牛顿运动定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律解析:开普勒在大量研究前人常年观测的天文数据基础上,总结出了行星运动的规律。

牛顿发现了万有引力定律,选项A,C,D错误,B正确。

6.对于万有引力定律的表达式F=G,下列说法正确的是( D )A.公式中G为引力常量,它是由牛顿通过实验测得的B.当r趋于零时,万有引力趋于无穷大C.质量为m1,m2的物体之间的引力是一对平衡力D.质量为m1,m2的物体之间的引力总是大小相等的解析:万有引力常量是卡文迪许通过扭秤实验测出的,故A错误;当物体之间的距离r趋于零时,物体不能简化为质点,万有引力公式不再适用,故B错误;质量为m1,m2的物体之间的引力是一对作用力与反作用力,大小总是相等,故C错误,D正确。

7.我国首颗人造月球卫星“嫦娥一号”的发射具有里程碑意义,如图所示为“嫦娥一号”卫星奔月路线示意图,设地球对卫星的引力为F地,月球对卫星的引力为F月,则卫星在奔月轨道上由a点向b点运动的过程中( B )A.F地减小,F月减小B.F地减小,F月增大C.F地增大,F月减小D.F地增大,F月增大解析:“嫦娥一号”卫星在奔月过程中,离地球的距离逐渐增大,与月球距离逐渐减小,由万有引力定律可知,卫星与地球间引力减小,与月球间引力增大,选项B正确。

8.(2019·杭州期末)2018年12月12日,“嫦娥四号”探测器经过约110 h奔月飞行,到达月球附近,成功实施近月制动,顺利完成“太空刹车”,被月球捕获,进入了近月点100千米,远月点400千米的环月椭圆轨道。

关于“嫦娥四号”在此环月轨道上运行时的说法正确的是( D )A.线速度不变B.角速度不变C.向心加速度不变D.运行周期不变解析:根据开普勒第二定律知,“嫦娥四号”从远月点向近月点运动时,线速度变大,故A错误;“嫦娥四号”从远月点向近月点运动时,线速度变大,半径r变小,根据v=ωr知,角速度变大,根据a n=知,向心加速度变大,故B,C错误;根据开普勒第三定律,“嫦娥四号”的轨道半长轴大小不变,周期恒定,故D正确。

9.如有两艘轮船,质量都是1.0×107 kg,相距10 km,已知引力常量G=6.67×10-11 N·m2/ kg2,则可估算它们之间的万有引力的大小,并和两船自身的重力相比的结果是( A )A.引力大小为6.67×10-5 N,相比于船自身的重力,该引力可忽略B.引力大小为6.67×10-5 N,相比于船自身的重力,该引力不能忽略C.引力大小为6.67×106 N,相比于船自身的重力,该引力能忽略D.引力大小为6.67×106 N,相比于船自身的重力,该引力不能忽略解析:由万有引力定律F=G可得F=6.67×10-11× N=6.67×10-5N,作为估算,g取10m/s2,则万有引力与重力的比值==6.67×10-13,所以,相比于船自身的重力,该引力可忽略。

10.(2018·浙江4月学考)土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约为1.2×106 km。

已知引力常量G=6.67×10-11 N·m2/kg2,则土星的质量约为( B )A.5×1017 kgB.5×1026 kgC.7×1033 kgD.4×1036 kg解析:根据万有引力提供向心力可得G=mr,解得M=,代入数据得B正确。

11.太阳系中有两个行星质量分别为m A和m B,轨道半径分别为r A和r B,太阳对两个行星的引力分别为F A和F B,已知m A>m B,r A<r B。

则( A )A.F A>F BB.F A<F BC.F A=F BD.无法判断解析:由万有引力定律F=可知,F A=,F B=,由于m A>m B,r A<r B,故F A>F B,A正确。

12.(2018·浙江11月学考)20世纪人类最伟大的创举之一是开拓了太空的全新领域。

现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt内速度的改变为Δv,和飞船受到的推力F(其他星球对它的引力可忽略)。

飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v在离星球的较高轨道上绕星球做周期为T 的匀速圆周运动。

已知星球的半径为R,引力常量用G表示。

则宇宙飞船和星球的质量分别是( D )A.,B.,C.,D.,解析:根据牛顿第二定律,有F=ma,又a=,解得m=;飞船做圆周运动的周期T=,半径为R=,根据万有引力提供向心力,有G=m,解得M==,故D正确。

能力提高13.物体在一行星表面附近自由落下,第1 s内下落了9.8 m,若该行星的半径为地球半径的一半,那么它的质量是地球的( A )A. B.2倍 C. D.4倍解析:在地球表面有mg=,在行星表面有mg′=,=;由自由落体运动规律知行星表面重力加速度g′==2×9.8 m/s2=2g,则=2,又=,得=,选项A正确。

14.设想随着科学技术的发展,人类不断向月球“移民”,经过较长时间后,月球和地球仍可视为均匀的球体,总人数不变,且地球的总质量仍大于月球的总质量。

月球仍按原轨道运动,则与“移民”前相比,以下说法中错误的是( A )A.地球与月球间的万有引力将变小B.月球绕地球运动的周期将变长C.月球绕地球运动的线速度将变小D.月球绕地球运动的加速度将变小解析:设月球质量为m,地球质量为M,月球与地球之间的距离为R,根据万有引力定律得:地球与月球间的万有引力F=G,假想人类不断向月球“移民”,经过较长时间后,m增大,M减小。

由数学知识可知,当它们的质量之差逐渐减小时,m与M的乘积将增大,它们之间的万有引力值将增大,故A错误。

假想人类不断向月球“移民”,经过较长时间后,月球和地球仍可视为均匀球体,根据万有引力提供向心力得G=m=m=ma,得T=2πR,v=,a=;假想人类不断向月球“移民”,经过较长时间后,月球绕地球运动的周期将变大,月球绕地球运动的向心加速度和线速度将变小。

故B,C,D 正确。

15.1821年,人们发现天王星的实际轨道与由万有引力定律计算出的理论轨道存在较大的差异,当时人们提出了以下各种猜想,之后被证明符合事实的是( C )A.可能是天文观测的数据还不够准确B.可能是天王星内侧的土星和木星对它的吸引而产生的C.可能是天王星外侧的一颗未知行星对它的吸引而产生的D.可能是天王星的一颗质量很大的卫星对它的吸引造成的解析:天王星的实际轨道与由万有引力定律计算出的理论轨道存在较大的差异,是因为天王星外侧的海王星(当时未知)对它的吸引而产生的。

16.(2017·浙江4月学考)如图所示,设行星绕太阳的运动是匀速圆周运动,金星自身的半径是火星的n倍,质量为火星的k倍。

不考虑行星自转的影响,则( B )A.金星表面的重力加速度是火星的倍B.金星的“第一宇宙速度”是火星的倍C.金星绕太阳运动的加速度比火星小D.金星绕太阳运动的周期比火星大解析:质量为m的物体在行星表面有mg=G,即g=,可知=,选项A错误,根据“第一宇宙速度”的表达式v=可知,=,选项B正确;行星绕太阳运动时,万有引力充当向心力,则有G=m行a n,即a n=,而r金<r火,则a n金>a n火,选项C错误;根据开普勒第三定律=k,可知T金<T火,选项D错误。

17.如图所示,在火星与木星轨道之间有一小行星带。

假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。

下列说法正确的是( C )A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值解析:各小行星到太阳中心的距离皆大于地球到太阳中心的距离,根据万有引力公式G=m=m()2r=ma知,太阳对各小行星的引力不一定相同,各小行星绕太阳运动的周期均大于一年,则选项A,B错误,由a=和v2=知,r小,a大,r大,v小,则选项C正确,D错误。

18.若某黑洞的半径R约为45 km,质量M和半径R的关系满足=(其中c为光速,G为引力常量),则该黑洞表面重力加速度的数量级为( C )A.108 m/s2B.1010 m/s2C.1012 m/s2D.1014 m/s2解析:黑洞实际为一天体,天体表面的物体受到的重力近似等于物体与该天体之间的万有引力,对黑洞表面的某一质量为m的物体有G=mg,又有=,联立解得g=,代入数据得重力加速度的数量级为 1012 m/s2,C正确。

相关文档
最新文档