中考数学几何图形专题训练50题含参考答案
中考数学四边形专题训练50题含答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若一个多边形的内角和是720︒,则该多边形是()A.四边形B.五边形C.六边形D.八边形2.下列哪个度数可能成为某个多边形的内角和()A.240°B.600°C.1980°D.21800°3.下列说法中错误..的是()A.平行四边形的对边相等B.正方形的对角线互相垂直平分且相等C.菱形的对角线互相垂直平分D.矩形的对角线互相垂直且相等4.有两张宽为3,长为9的矩形纸片如图所示叠放在一起,使重叠的部分构成一个四边形,则四边形的最大面积是A.27B.12C.15D.185.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∥DAC=∥ACD6.每一个外角都等于36︒,这样的正多边形边数是()A.9B.10C.11D.127.如图,点O是ABCD对角线的交点,EF过点O分别交AD,BC于点E,F.下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠ D .CFE DEF ∠=∠8.对角线互相平分且相等的四边形一定是( )A .等腰梯形B .矩形C .菱形D .正方形 9.如图,在平行四边形ABCD 中,∥B =70°,AE 平分∥BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∥1=( )A .45°B .55°C .50°D .60° 10.下列说法正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线相等的平行四边形是正方形D .对角线相等的菱形是正方形 11.如图,ABC 的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为Q ,ACB ∠的平分线垂直于AD ,垂足为P ,若10BC =,则PQ 的长为( )A .32B .52C .3D .412.有一边长为2的正方形纸片ABCD ,先将正方形ABCD 对折,设折痕为EF (如图∥);再沿过点D 的折痕将角A 翻折,使得点A 落在EF 的H 上(如图∥),折痕交AE 于点G ,则EG 的长度为( )A .6 B .3 C .8﹣D .4﹣13.下列说法错误的是( )A .对角线互相垂直的平行四边形是正方形B .四条边都相等的四边形是菱形C .四个角都相等的四边形是矩形D .一组对边平行一组对角相等的四边形是平行四边形14.已知:如图,四边形ABCD 中,90,60A B C ∠=∠=︒∠=︒,2,3CD AD AB ==.在AB 边上求作点P ,则PC PD +的最小值为( )A .4B .6C .8D .10 15.如图,矩形ABCD 的两条对角线相交于点O ,602AOD AD ∠==°,,则AB 的长是( )A .2B .4C .D .16.如图,菱形ABCD 的对角线12AC =,面积为24,∥ABE 是等边三角形,若点P 在对角线AC 上移动,则PD PE +的最小值为( )A.4 B .C . D .617.如图,ABC 的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且8AB =,17BC =,15CA =,则阴影部分(即四边形AEOF )的面积是( )A .4B .6.25C .7.5D .9 18.如图,点E 在边长为5的正方形ABCD 的边CD 上,将ADE 绕点A 顺时针旋转90︒到ABF 的位置,连接EF ,过点A 作FE 的垂线,垂足为点H ,与BC 交于点.G 若2CG =,则CE 的长为( )A .54B .154C .4D .9219.如图,菱形ABCD 的对角线AC =12,面积为24,∥ABE 是等边三角形,若点P 在对角线AC 上移动,则PD +PE 的最小值为( )A .4B .C .D .6 20.如图,在矩形ABCD 中,AB =8,BC =4.将矩形沿AC 折叠,CD ′与AB 交于点F ,则AF :BF 的值为( )A.2B.53C.54D二、填空题21.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O处,再分别取OA,OB的中点M,N,量得50mMN=,则池塘的宽度AB为______m.22.如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是P A、PR 的中点.如果DR=5,AD=12,则EF的长为_____.23.如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点则四边形EFGH的周长等于___cm.24.如图,已知矩形ABCD中,8AB=,5πBC=.分别以B,D为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为________(用含π的式子表示)25.如图,四边形ABCD的对角线AC BD=,E,F,G,H分别是各边的中点,则四边形是___________(平行四边形,矩形,菱形,正方形中选择一个)26.如图,在△ABC 中,4BC =,D ,E 分别是AB ,AC 的中点,G ,H 分别是AD ,AE 的中点,则GH =______.27.已知O 是平行四边形ABCD 两条对角线的交点,24AB =,36AD =,则OBC △的周长比AOB 的周长大___________.28.平行四边形ABCD 中,∥A 比∥B 小20°,那么∥C =_____.29.如图,在ABCD 中,对角线AC 、BD 相交于点O ,BC =6,AC +BD =14,那么∥BOC 的周长是_____.30.如图,矩形ABCD 的对角线AC ,BD 交于点O ,分别以点A ,C 为圆心,AO 长为半径画弧,分别交AB ,CD 于点E ,F .若BD =6,∥CAB =30°,则图中阴影部分的面积为 _____.(结果保留π)31.如图,ABCD 的顶点A ,B ,C 的坐标分别是(0,1),(2,2)--,(2,2)-,则顶点D 的坐标是_________.32.判断题,对的画“√”错的画“×”(1)对角线互相垂直的四边形是菱形( )(2)一条对角线垂直另一条对角线的四边形是菱形( )(3)对角线互相垂直且平分的四边形是菱形( )(4)对角线相等的四边形是菱形( )33.如图,在菱形ABCD 中,2A B ∠=∠,2AB =,点E 和点F 分别在边AB 和边BC 上运动,且满足AE CF =,则DF CE +的最小值为_______.34.如果一个梯形的上底长为2cm ,中位线长是5cm ,那么这个梯形下底长为__________cm .35.如图,正方形ABCD 的边长是3cm ,在AD 的延长线上有一点E ,当BE 时,DE 的长是_____cm .36.如图,在菱形ABCD 中,∥BAD =110°,AB 的垂直平分线交AC 于点N ,点M 为垂足,连接DN ,则∥CDN 的大小是______.37.如图,在▱ABCD 中,BM 是∥ABC 的平分线,交CD 于点M ,且DM =2,平行四边形ABCD 的周长是16,则AB 的长等于______.38.已知:如图,正方形ABCD 中,点E 、M 、N 分别在AB 、BC 、AD 边上,CE =MN ,∥MCE =35°,∥ANM 的度数______.39.如图,在边长为8的正方形ABCD 中,E 、F 分别是边AB 、BC 上的动点,且EF =6,M 为EF 中点,P 是边AD 上的一个动点,则CP +PM 的最小值是_____.40.如图,在ABC 中,M 是BC 边上的中点,AP 是BAC ∠的平分线,BP AP ⊥于点P ,已知16AB =,24AC =,那么PM 的长为________.三、解答题41.如图,在ABCD 中,AE CF =.求证:ABE CDF ∠=∠.42.已知,如图长方形ABCD 中,3cm AB =,9cm AD =,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求EF 的长.43.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.44.如图,在平面直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为()6,4,E 为AB 的中点,过点()8,0D 和点E 的直线分别与BC 、y 轴交于点F ,G .(1)求直线DE 的函数关系式;(2)函数2y mx =-的图象经过点F 且与x 轴交于点H ,求出点F 的坐标和m 值; (3)在(2)的条件下,求出四边形OHFG 的面积.45.如图,AMN 是边长为2的等边三角形,以AN ,AM 所在直线为边的平行四边形ABCD 交MN 于点E 、F ,且30EAF ∠=︒.(1)当F 、M 重合时,求AD 的长;(2)当NE 、FM )NE FM EF +=; (3)在(2)的条件下,求证:四边形ABCD 是菱形. 46.如图,在ABC 中,90ACB ∠=︒,30CAB ∠=︒,线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形;(2)若4AB =,求平行四边形BCFD 的面积.47.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点D ,交AC 于点E .已知,3,5CD BE CD BE ⊥==,求BC DE +的值. 小明发现,过点E 作//EF DC ,交BC 的延长线于点F ,构造∆BEF ,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.48.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将A ,B 两点向右平移1个单位,再向上平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标;(2)若点P 在直线BD 上运动,连接PC ,PO .∥若点P 在线段BD 上(不与B ,D 重合)时,求S △CDP +S △BOP 的取值范围;∥若点P 在直线BD 上运动,试探索∥CPO ,∥DCP ,∥BOP 的关系,并证明你的结论.49.Rt∥ABC 中,∥BAC =90°,(1)如图1,分别以AB 、AC 、BC 为边向外作正方形ABFG 、ACPE 、BCDE ,其面积分别记为S 1,S 2,S 3,∥若AB =5,AC =12,则S 3= ;∥如图2,将正方形BCDE 沿C 折,点D 、E 的对应点分别记为M 、M ,若点从M 、N 分别在直线FG 和PH 上,且点M 是GO 中点时,求S 1∥S 2∥S 3;∥如图3,无论Rt∥ABC 三边长度如何变化,点M 必定落在直线FG 上吗? 请说明理由;(2)如图4,分别以AB ,AC ,BC 为边向外作正三角形ABD ,ACF ,BCE ,再将三角形BCE沿BC翻折,点E的对应点记为P,若AB=保持不变,随着AC的长度变化,点P也随之运动,试探究AP的值是否变化,若不变,直接写出AP的值;若改变,直接写出AP的最小值.50.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)∥请直接写出图1中线段BG、线段DE的数量关系及所在直线的位置关系;∥将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形.请你通过观察、测量等方法判断∥中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4~6),且,试判断(1)∥中得到的结论哪个成立,哪个不成立?(写出你的判断,不必证明.)(3)在图5中,连结DG、BE,且,则.参考答案:1.C【分析】根据多边形内角和定理进行求解即可.【详解】解;设这个多边形的边数为n ,由题意得;()1802720n ︒⋅-=︒,解得6n =,∥这个多边形是六边形,故选C .【点睛】本题主要考查了多边形内角和定理,熟知对于n 边形其内角和为()1802n ︒⋅-是解题的关键.2.C【分析】本题可根据多边形的内角和为(n ﹣2)×180°来确定解决本题的方法,即判断哪个度数可能是多边形的内角和,就看它是否能被180°整除,从而根据这一方法解决问题.【详解】判断哪个度数可能是多边形的内角和,我们主要看它是否能被180°整除. ∥只有1980°能被180°整除.故选C .【点睛】本题考查了多边形的内角和的计算公式.熟练掌握多边形内角和公式是解答本题的关键.3.D【分析】根据平行四边形的性质,正方形的性质,菱形的性质,矩形的性质对每个选项进行分析,即可得出答案.【详解】解:∥平行四边形的对边相等,∥选项A 不符合题意;∥正方形的对角线互相垂直平分且相等,∥选项B 不符合题意;∥菱形的对角线互相垂直平分,∥选项C 不符合题意;∥矩形的对角线相等但不一定互相垂直,∥选项D 符合题意;故选:D.【点睛】本题考查了平行四边形的性质,正方形的性质,菱形的性质,矩形的性质,熟练掌握平行四边形的性质,正方形的性质,菱形的性质,矩形的性质是解决问题的关键.4.C【分析】根据一组邻边相等的平行四边形是菱形判断出四边形的形状;当两张纸条如图所示放置时,菱形面积最大,然后根据勾股定理求出菱形的边长,然后根据菱形的面积公式计算即可.【详解】解:重叠的四边形的两组对边分别平行,那么可得是平行四边形,再根据宽度相等,利用面积的不同求法可得一组邻边相等,那么重叠的四边形应为菱形;如图,此时菱形ABCD的面积最大.设AB=x,EB=9-x,AE=3,则由勾股定理得到:32+(9-x)2=x2,解得x=5,S最大=5×3=15.故选C.【点睛】本题考查菱形的判定和性质,解题的关键是怎样放置纸条使得到的菱形的面积最大和最小,然后根据图形列方程.5.D【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∥,故B正确;∴AD BC∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.6.B【分析】根据多边形外角和为360°,然后除以36°即可得到正多边形的边数.【详解】每一个外角都等于36︒,这样的正多边形边数为360°÷36°=10,故选B【点睛】本题考查有关于多边形外角和的计算,记住多边形的外角和是360°是解题关键. 7.A【分析】首先可根据平行四边形的性质推出△AEO∥∥CFO,从而进行分析即可.【详解】∥点O是ABCD对角线的交点,∥OA=OC,∥EAO=∥CFO,∥∥AOE=∥COF,∥△AEO∥∥CFO(ASA),∥OE=OF,A选项成立;∥AE=CF,但不一定得出BF=CF,则AE不一定等于BF,B选项不一定成立;∠=∠,则DO=DC,若DOC OCD由题意无法明确推出此结论,C选项不一定成立;由△AEO∥∥CFO得∥CFE=∥AEF,但不一定得出∥AEF=∥DEF,则∥CFE不一定等于∥DEF,D选项不一定成立;故选:A.【点睛】本题考查平行四边形的性质,理解基本性质,利用全等三角形的判定与性质是解题关键.8.B【详解】分析:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,判断即可.详解:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故选B.点睛:考查矩形的判定:对角线相等的平行四边形是矩形.9.B【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∥1的度数即可.【详解】:解:∥AD∥BC,∥B=70°,∥∥BAD=180°-∥B=110°.∥AE平分∥BAD∥∥DAE=12∥BAD=55°. ∥∥AEB=∥DAE=55°∥CF∥AE∥∥1=∥AEB=55°.故选B .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质是解题的关键. 10.D【分析】根据矩形、正方形、菱形的判定即可判断出正确答案.【详解】A 、对角线相等的四边形有可能是等腰梯形,故本选项错误;B 、对角线相互垂直的四边形有可能是等腰梯形或者是针形;故本选项错误;C 、对角线相等且垂直且相互平分的四边形是正方形,故本选项错误;D 、对角线相等的菱形是正方形,故本选项正确.故选D【点睛】本题考查了矩形、正方形、菱形的判定,熟记和掌握矩形、正方形、菱形的判定是解题关键.11.C【分析】首先判断BAE 、CAD 是等腰三角形,从而得出BA BE =,CA CD =,由ABC 的周长为26,及10BC =,可得6DE =,利用中位线定理可求出PQ .【详解】解:由题意得:BQ AE ⊥,BQ 平分ABE ∠,∥ABQ EBQ ∠=∠,90AQB BQE ∠=∠=︒,又∥BQ BQ =,∥()ASA ABQ EBQ ≌,∥,AB BE AQ QE ==,∥BAE 是等腰三角形,Q 为AE 的中点,同法可得:CA CD =,CAD 是等腰三角形,P 为AD 的中点,∥ABC 的周长2026AB BC AC BE BC CD BC BC DE DE =++=++=++=+=, ∥6DE =, ∥132PQ DE ==; 故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,以及三角形的中位线定理.根据已知条件,证明三角形全等,是解题的关键.12.B【分析】由于正方形纸片ABCD的边长为2,所以将正方形ABCD对折后AE=DF=1,由翻折不变性的原则可知AD=DH=2,AG=GH,在Rt△DFH中利用勾股定理可求出HF的长,进而求出EH的长,再设EG=x,在Rt△EGH中,利用勾股定理即可求解.【详解】∥正方形纸片ABCD的边长为2,∥将正方形ABCD对折后AE=DF=1,∥∥GDH是△GDA沿直线DG翻折而成,∥AD=DH=2,AG=GH,在Rt△DFH中,HF==在Rt△EGH中,设EG=x,则GH=AG=1-x,∥GH2=EH2+EG2,即(1-x)2=(2+x2,解得.故选B.【点睛】考查的是图形翻折变换的性质,解答此类题目最常用的方法是设所求线段的长为x,再根据勾股定理列方程求解.13.A【分析】根据正方形、菱形、矩形及平行四边形的判定定理对各选项逐一判断即可得答案.【详解】A.对角线互相垂直的平行四边形是菱形,故该选项说法错误,符合题意,B.四条边都相等的四边形是菱形,故该选项说法正确,不符合题意,C.四个角都相等的四边形是矩形,故该选项说法正确,不符合题意,D.一组对边平行一组对角相等的四边形是平行四边形,故该选项说法正确,不符合题意,故选A.【点睛】本题考查了正方形、菱形、矩形及平行四边形的判定,注意正方形是特殊的菱形或者矩形.熟练掌握各特殊四边形的判定定理是解题关键.14.B【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D'E∥BC于E,则EB=D'A=AD,先根据等边对等角得出∥DCD'=∥DD'C,然后根据平行线的性质得出∥D'CE=∥DD'C,从而求得∥D'CE=∥DCD',得出∥D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD 的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E∥BC于E,则EB=D'A=AD.∥CD=2AD,∥DD'=CD,∥∥DCD'=∥DD'C.∥∥DAB=∥ABC=90°,∥四边形ABED'是矩形,∥DD'∥EC,D'E=AB=3,∥∥D'CE=∥DD'C,∥∥D'CE=∥DCD'.∥∥DCB=60°,∥∥D'CE=30°,∥D'C=2D'E=2AB=2×3=6,∥PC+PD的最小值为6.故选:B.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,30°角的直角三角形的性质等,确定出P点是解答本题的关键.15.C【分析】根据矩形的对角线相等且互相平分可得OA=OB=OD,然后判断出△AOD是等边三角形,再根据等边三角形的性质求出OD=AD,然后求出BD,再利用勾股定理列式计算即可得解.【详解】在矩形ABCD中,OA=OC,OB=OD,AC=BD,∥OA=OB=OD,∥∥AOD=60°,∥∥AOD是等边三角形,∥OD=AD=2,∥BD=2OD=4,由勾股定理得,AB=.故选:C.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,勾股定理的应用,熟记性质并判断出△AOD是等边三角形是解题的关键.16.C【分析】如图,连接BD交AC于O,连接PB.因为AC与BD互相垂直平分,推出PD=PB,推出PE+PD=PE+PB,因为PE+PB≥BE,推出当E、P、B共线时,PE+PD的值最小,最小值为BE的长,求出BE即可解决问题;【详解】解:如图,连接BD交AC于O,连接PB.∥S菱形ABCD=12•AC•BD,∥24=12×12×BD,∥BD=4,∥OA=12AC=6,OB=12BD=2,AC∥BD,∥AB=∥AC 与BD 互相垂直平分,∥PD =PB ,∥PE +PD =PE +PB ,∥PE +PB ≥BE ,∥当E 、P 、B 共线时,PE +PD 的值最小,最小值为BE 的长,∥∥ABE 是等边三角形,∥BE =AB∥PD +PE 的最小值为故选:C .【点睛】本题考查轴对称-最短问题,等边三角形的判定和性质、菱形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.17.D【分析】先根据勾股定理的逆定理判定ABC 是直角三角形,再利用正方形的判定确定四边形OFAE 是正方形,进而利用圆的切线性质可知线段的关系,进而求出阴影部分的面积.【详解】解:∥8AB =,17BC =,15CA =,∥222AB CA BC +=,∥ABC 为直角三角形,90A ∠=︒,∥O 与AB AC ,分别相切于点F 、E ,∥OF AB ⊥ ,OE AC ⊥,OF OE =,∥四边形OFAE 是正方形,设OE r =,则AE AF r ==,∥ABC 的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,∥8BD BF r ==-,15CD CE r ==-,∥81517r r -+-=, ∥8151732r +-==, ∥阴影部分的面积是:239=,故选:D .【点睛】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等,三角形的内心到顶点的连线平分这个内角;勾股定理的逆定理和切线性质等相关知识点.熟练运用知识点是解决问题的关键.18.B【分析】连接EG ,根据AG 垂直平分EF ,即可得出EG FG =,设CE x =,则5DE x BF =-=,8FG EG x ==-,再根据Rt CEG △中,222CE CG EG +=,即可得到CE 的长.【详解】解:如图所示,连接EG ,由旋转可得,ADE ∥ABF △,AE AF ∴=,DE BF =,又AG EF ⊥,H ∴为EF 的中点,AG ∴垂直平分EF ,EG FG ∴=,设CE x =,则5DE x BF =-=,8FG x =-,8EG x ∴=-,90C ∠=︒,Rt CEG ∴中,222CE CG EG +=,即2222(8)x x +=-, 解得154x =, CE ∴的长为154, 故选:B . 【点睛】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.C【分析】如图,连接BD交AC于O,连接PB,由菱形的性质可得AC与BD互相垂直平分,可得PD=PB,于是PE+PD=PE+PB,因为PE+PB≥BE,故当E、P、B共线时,PE+PD的值最小,最小值为BE的长,所以求出BE即可解决问题,而根据菱形的面积、菱形的性质和勾股定理即可求出AB的长,再根据等边三角形的性质即得答案.【详解】解:如图,连接BD交AC于O,连接PB.∥S菱形ABCD=12•AC•BD,∥24=12×12×BD,∥BD=4,∥四边形ABCD是菱形,∥OA=12AC=6,OB=12BD=2,AC∥BD,∥AB=∥AC与BD互相垂直平分,∥PD=PB,∥PE+PD=PE+PB,∥PE+PB≥BE,∥当E、P、B共线时,PE+PD的值最小,最小值为BE的长,∥∥ABE是等边三角形,∥BE=AB=∥PD+PE的最小值为故选:C.【点睛】本题考查了菱形的性质、菱形的面积公式、等边三角形的性质、勾股定理以及轴对称﹣最短问题,正确添加辅助线、熟练掌握上述知识是解题的关键.20.B【分析】由折叠的性质可得∥DCA=∥ACF,由平行线的性质可得∥DCA=∥CAB=∥ACF,可得FA=FC,设BF=x,在Rt∥BCF中,根据CF2=BC2+BF2,可得方程(8﹣x)2=x2+42,可求BF=3,AF=5,即可求解.【详解】解:设BF=x,∥将矩形沿AC折叠,∥∥DCA=∥ACF,∥四边形ABCD是矩形,∥CD∥AB,∥∥DCA=∥CAB=∥ACF,∥FA=FC=8﹣x,在Rt∥BCF中,∥CF2=BC2+BF2,∥(8﹣x)2=x2+42,∥x=3,∥BF=3,∥AF=5,∥AF:BF的值为53,故选:B.【点睛】本题考查矩形的性质、翻折变换、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.100【分析】根据三角形中位线的性质定理解答即可.【详解】解:∥点M、N是OA、OB的中点,∥MN是∥ABO的中位线,∥AB=2MN.又∥MN=50m,∥AB=100m.故答案是:100.【点睛】此题考查了三角形中位线的性质定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.22.6.5【分析】根据题意,连接AR,在直角∥ADR中,DR=5,AD=12,根据勾股定理可得AR.AR=13,又因为E、F分别是PA、PR的中点,即为∥PAR的中位线,故EF=12【详解】∥∥D=90°,DR=5,AD=12,∥AR,∥E、F分别是PA、PR的中点,AR=6.5,∥EF=12故答案为6.5.【点睛】本题考查了三角形中位线长度的求取,本题的解题关键是不要因为动点问题的包装而把题目想的复杂,根据中位线的性质解题即可.23.16.【分析】连接AC、BD,根据三角形的中位线求出HG、GF、EF、EH的长,再求出四边形EFGH的周长即可.【详解】如图,连接AC、BD,∥四边形ABCD是矩形,∥AC=BD=8cm,∥E、F、G、H分别是AB、BC、CD、DA的中点,AC=4cm,∥HG=EF=12BD=4cm,EH=FG=12∥四边形EFGH的周长=HG+EF+EH+FG=4cm+4cm+4cm+4cm=16cm,故答案为:16.【点睛】本题考查了矩形的性质,三角形的中位线的应用,解题的关键是能求出四边形的各个边的长.矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.24.4π【分析】根据阴影面积=三角形面积-2个扇形的面积即可求解.【详解】∥S △ABD =5π×8÷2=20π;设ABD n ∠=︒,S 扇形BAE =64360n π⨯;S 扇形DFM =()9064360n π-⨯; ∥阴影面积=20π-()649064360n n ππ⨯+-⨯=20π-16π=4π.故答案为:4π▱ 【点睛】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积解题关键是找到所求的量的等量关系.25.菱形 【分析】根据三角形中位线定理可得1122EH BD EH BD FG BD FG BD ==∥∥,,,,进一步可得EH FG EH FG =∥,,同理可得EF HG EF HG =∥,,又根据AC BD =即可得EF HG ==EH FG =,进一步即可得证.【详解】解:∥E ,F ,G ,H 分别是各边的中点, ∥1122EH BD EH BD FG BD FG BD ==∥∥,,,, ∥EH FG EH FG =∥,,同理可证EF HG EF HG =∥,,又∥AC BD =,∥EF HG ==EH FG =,∥四边形EFGH 是菱形.故答案为:菱形.【点睛】本题考查了菱形的判定和三角形中位线定理,解决本题的关键是掌握三角形中位线定理.26.1【分析】利用三角形中位线定理求得GH =12DE ,DE =12BC .【详解】解:∥D ,E 分别是AB ,AC 的中点,∥DE 是△ABC 的中位线,∥DE= 12BC=12×4=2,∥G,H分别是AD,AE的中点,∥GH是△ADE的中位线,∥GH=12DE=12×2=1,故答案为:1.【点睛】本题考查了三角形的中位线,熟记三角形的中位线等于第三边的一半是解题的关键.27.12【分析】根据平行四边形的性质可以得到OA=OC,BC=AD,然后根据AB=24,AD=36,即可计算出∥OBC的周长与∥AOB的周长之差.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AD=BC,∵AB=24,AD=36,∴BC=36,∴C△OBC﹣C△AOB=(OB+OC+BC)﹣(OB+OA+AB)=OB+OC+BC﹣OB﹣OA﹣AB=BC﹣AB=36﹣24=12,故答案为:12.【点睛】本题考查平行四边形的性质,解答本题的关键是明确△OBC的周长与△AOB的差就是BC与AB的差.28.80°【分析】根据平行四边形的性质分别求出∥A和∥B的度数,然后根据平行四边形对角相等的性质可得∥C=∥A,即可求解.【详解】∥四边形ABCD为平行四边形,∥18020A BB A∠∠∠∠+=︒⎧⎨-=︒⎩,解得:80100AB∠∠=︒⎧⎨=︒⎩,∥∥C=∥A=80°.故答案为80°.【点睛】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.29.13 【分析】先根据平行四边形的性质可得11,22OC AC OB BD ==,从而可得7OB OC +=,再根据三角形的周长公式即可得. 【详解】解:四边形ABCD 是平行四边形,11,22OC AC OB BD ∴==, 14AC BD +=,()172OB OC BD AC ∴+=+=, 又6BC =, BOC ∴的周长为7613OB OC BC ++=+=,故答案为:13.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题关键.30.32π 【分析】利用矩形的性质求得OA =OC =OB =OD =3,再利用扇形的面积公式求解即可.【详解】解:∥矩形ABCD 的对角线AC ,BD 交于点O ,且BD =6,∥AC=BD =6,∥OA =OC =OB =OD =3, ∥22303236032AOE S S ππ⨯⨯===阴影扇形, 故答案为:32π. 【点睛】本题考查了矩形的性质,扇形的面积等知识,解答本题的关键是明确题意,利用数形结合的思想解答.31.()41,【分析】首先根据B 、C 两点的坐标确定线段BC 的长,然后根据A 点向右平移线段BC 的长度得到D 点,即可由A 点坐标求得点D 的坐标.【详解】解:∥B ,C 的坐标分别是(−2,−2),(2,−2),∥BC=2−(−2)=2+2=4,∥四边形ABCD是平行四边形,∥AD=BC=4,∥点A的坐标为(0,1),∥点D的坐标为(4,1).故答案为:(4,1).【点睛】本题主要考查了平行四边形的性质及坐标与图形性质的知识,解题的关键是求得线段BC的长,难度不大.32.××√×【分析】根据菱形的判定定理即可解答.【详解】(1)错误,对角线相互垂直且平分的四边形是菱形.(2)错误,对角线相互垂直且平分的四边形是菱形.(3)正确,对角线相互垂直且平分的四边形是菱形.(4)错误,对角线相互垂直且平分的四边形是菱形.【点睛】本题考查菱形的判定定理,熟悉掌握是解题关键.33.4【分析】由“SAS”可证∥ABF∥∥CBE,可得AF=CE,则DF+CE=DF+AF=DF+FH,即当点F,点D,点H三点共线时,DF+CE的最小值为DH的长,由勾股定理可求解.【详解】解:连接AC,作点A关于BC的对称点H,连接AH,交BC于N,连接FH,如图所示:∥四边形ABCD为菱形,∥,∥AB=BC=CD=AD=2,AD BC∥180BAD ABC ∠+∠=︒,∥∥BAD =2∥B ,∥∥B =60°,∥∥ABC 是等边三角形,∥点A ,点H 关于BC 对称,∥AH ∥BC ,AN =NH ,∥FH =AF ,又∥∥ABC 是等边三角形,∥BN =NC =112BC =,AN ∥AH =2AN=∥AE =CF ,AB =BC ,∥BE =BF ,∥在∥ABF 和∥CBE 中AB BC B B BF BE ⎧⎪∠∠⎨⎪⎩===,∥∥ABF ∥∥CBE (SAS ),∥AF =CE ,∥DF +CE =DF +AF =DF +FH ,∥当点F ,点D ,点H 三点共线时,DF +CE 的最小值为DH 的长,∥AH ∥BC ,∥90HNC ∠=︒,∥AD BC ∥,∥90HAD HNC ∠=∠=︒,∥4DH ==, 即DF CE +的最小值为4.故答案为:4.【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,勾股定理,轴对称的性质,证明三角形全等是解题的关键.34.8。
2023年 九年级数学中考复习 几何图形变换综合压轴题 专题训练(含答案)
2023年春九年级数学中考复习《几何图形变换综合压轴题》专题训练(附答案)1.如图,△ABC和△ECD都是等边三角形,直线AE,BD交于点F.(1)如图1,当A,C,D三点在同一直线上时,∠AFB的度数为,线段AE与BD的数量关系为.(2)如图2,当△ECD绕点C顺时针旋转α(0°≤α<360°)时,(1)中的结论是否还成立?若不成立,请说明理由;若成立,请就图2给予证明.(3)若AC=4,CD=3,当△ECD绕点C顺时针旋转一周时,请直接写出BD长的取值范围.2.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D、E两点分别在AC、BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A、B、E三点共线时,若CE=5,AC=4,直接写出线段AD的长.3.已知:如图1,线段AD=5,点B从点A出发沿射线AD方向运动,以AB为底作等腰△ABC,使得AC=BC=AB.(1)如图2,当AB=10时,求证:CD⊥AB;(2)当△BCD是以BC为腰的等腰三角形时,求BC的长;(3)当AB>5时,在线段BC上是否存在点E,使得△BDE与△ACD全等,若存在,求出BC的长;若不存在,请说明理由;(4)作点A关于直线CD的对称点A′,连接CA′当CA′∥AB时,CA′=(请直接写出答案).4.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系是:;数量关系是:;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系为:;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.5.如图,平面直角坐标系中O为原点,Rt△ABC的直角顶点A在y轴正半轴上,斜边BC 在x轴上,已知B、C两点关于y轴对称,且C(﹣8,0).(1)请直接写出A、B两点坐标;(2)动点P在线段AB上,横坐标为t,连接OP,请用含t的式子表示△POB的面积;(3)在(2)的条件下,当△POB的面积为24时,延长OP到Q,使得PQ=OP,在第一象限内是否存在点D,使得△OQD是等腰直角三角形,如果存在,求出D点坐标;如果不存在,请说明理由.6.如图1,已知△ABC中,∠ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD =AB.(Ⅰ)求BD的长度;(Ⅱ)如图2,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;②连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(Ⅲ)如图3,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD',若点M 为AC的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.7.如图①,将两个等腰直角三角形纸片OAB和OCD放置在平面直角坐标系中,点O(0,0),点A(0,+1),点B(+1,0),点C(0,1),点D(1,0).(Ⅰ)求证:AC=BD;(Ⅱ)如图②,现将△OCD绕点O顺时针方向旋转,旋转角为α(0°<α<180°),连接AC,BD,这一过程中AC和BD是否仍然保持相等?说明理由;当旋转角α的度数为时,AC所在直线能够垂直平分BD;(Ⅲ)在(Ⅱ)的情况下,将旋转角α的范围扩大为0°<α<360°,那么在旋转过程中,求△BAD的面积的最大值,并写出此时旋转角α的度数.(直接写出结果即可)8.在△ABC中,AB=AC,∠BAC=α,过点A作直线l平行于BC,点D是直线l上一动点,连接CD,射线DC绕点D顺时针旋转α交直线AB于点E.(1)如图1,若α=60°,当点E在线段AB上时,请直接写出线段AC,AD,AE之间的数量关系,不用证明;(2)如图2,若α=60°,当点E在线段BA的延长线上时,(1)中的结论是否成立?若成立,请证明;若不成立,请写出正确结论,并证明.(3)如图3,若α=90°,BC=6,AD=,请直接写出AE的长.9.有一根直尺短边长4cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为16cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D 与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x ≤12,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=;当x=12cm时,S=.(2)当0<x<8(如图乙、图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为28cm2?若存在求出此时x的值.10.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.11.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.12.(1)如图1,平面直角坐标系中A(0,a),B(a,0)(a>0).C为线段AB的中点,CD⊥x轴于D,若△AOB的面积为2,则△CDB的面积为.(2)如图2,△AOB为等腰直角三角形,O为直角顶点,点E为线段OB上一点,且OB=3OE,C与E关于原点对称,线段AB交x轴于点D,连CD,若CD⊥AE,试求的值.(3)如图3,点C、E在x轴上,B在y轴上,OB=OC,△BDE是以B为直角顶点的等腰直角三角形,直线CB、ED交于点A,CD交y轴于点F,试探究:是否为定值?如果是定值,请求出该定值;如果不是,请求出其取值范围.13.在△ABC中,AB=AC,∠BAC=90°.(1)如图1,点P,Q在线段BC上,AP=AQ,∠BAP=15°,求∠AQB的度数;(2)点P,Q在线段BC上(不与点B,C重合),AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②用等式表示线段BP,AP,PC之间的数量关系,并证明.14.【问题背景】如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;【尝试应用】如图2,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE;【拓展创新】如图3,A是△BDC内一点,∠ABC=∠ADB=45°,∠BAC=90°,BD =,直接写出△BDC的面积为.15.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点.(1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标;(2)当a+b=0时,①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF;②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小.16.已知:在Rt△ABC中,∠C=90°,∠B=30°,BC=6,左右作平行移动的等边三角形DEF的两个顶点E、F始终在边BC上,DE、DF分别与AB相交于点G、H.(1)如图1,当点F与点C重合时,点D恰好在斜边AB上,求△DEF的周长;(2)如图2,在△DEF作平行移动的过程中,图中是否存在与线段CF始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设C点与F点的距离为x,△DEF与△ABC的重叠部分的面积为y,求y与x的函数关系式,并写出定义域.17.在△ABC中,∠C=90°,AC=2,BC=2,点D为边AC的中点(如图),点P、Q 分别是射线BC、BA上的动点,且BQ=BP,联结PQ、QD、DP.(1)求证:PQ⊥AB;(2)如果点P在线段BC上,当△PQD是直角三角形时,求BP的长;(3)将△PQD沿直线QP翻折,点D的对应点为点D',如果点D'位于△ABC内,请直接写出BP的取值范围.18.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长.(2)如图2,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M,N为边AB上两点满足∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程.19.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.20.【教材呈现】如图是苏科版九年级下册数学教材第92页的第17题.一块直角三角形木板,它的一条直角边AC长为1.5m,面积为1.5m2.甲乙两人分别按图1、图2把它加工成一个正方形的桌面,请说明哪个正方形的面积较大.【解决问题】(1)记图1、图2中的正方形面积分别为S1,S2,则S1S2.(填“>”、“<”或“=”).【问题变式】若木板形状是锐角三角形A1B1C1.某数学兴趣小组继续思考:按图3、图4、图5三种方式加工,分别记所得的正方形面积为S3、S4、S5,哪一个正方形的面积最大呢?(2)若木板的面积S仍为1.5m2.小明:记图3中的正方形为“沿B1C1边的内接正方形”,图4中的正方形为“沿A1C1边的内接正方形”,依此类推.以图3为例,求“沿B1C1边的内接正方形DEFG”的面积.设EF =x ,B 1C 1=a ,B 1C 1边上的高A 1H =h ,则S =ah .由“相似三角形对应高的比等于相似比”易得x =;同理可得图4、图5中正方形边长,再比较大小即可.小红:若要内接正方形面积最大,则x 最大即可;小莉:同一块木板,面积相同,即S 为定值,本题中S =1.5,因此,只需要a +h 最小即可.我们可以借鉴以前研究函数的经验,令y =a +h =a +=a +(a >0).下面来探索函数y =a +(a >0)的图象和性质.①根据如表,画出函数的图象:(如图6)a… 1 2 3 4 … y … 12 9 6 4 3 3 4 4…②观察图象,发现该函数有最小值,此时a 的取值 ;A .等于2;B .在1~之间;C .在~之间;D .在~2之间.(3)若在△A 1B 1C 1中(如图7),A 1B 1=5,A 1C 1=,高A 1H =4.①结合你的发现,得到S 3、S 4、S 5的大小关系是 (用“<”连接). ②小明不小心打翻了墨水瓶,已画出最大面积的内接正方形的△A 1B 1C 1原图遭到了污损,请用直尺和圆规帮他复原△A 1B 1C 1.(保留作图痕迹,不写作法)参考答案1.解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABF中,∠AFB=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠CBF+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AFB=60°,故答案为:∠AFB=60°,AE=BD;(2)(1)中结论仍成立,证明:∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠AFB+∠CBD=∠ACB+∠CAE,∴∠AFB=∠ACB,∵∠ACB=60°,∴∠AFB=60°;(3)在△BCD中,BC+CD>BD,BC﹣CD<BD,∴点D在BC的延长线上时,BD最大,最大为4+3=7,当点D在线段BC上时,BD最小,最小为4﹣3=1,∴1≤BD≤7,即BD长的取值范围为1≤BD≤7.2.解:(1)∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∠B=45°,∵DE∥AB,∴∠DEC=∠B=45°,∠CDE=∠A=90°,∴△DEC为等腰直角三角形,∴cos∠C==,∵DE∥AB,∴==,故答案为:;(2)由(1)知,△BAC和△CDE均为等腰直角三角形,∴==,又∠BCE=∠ACD=α,∴△BCE∽△ACD,∴==,即=;(3)①如图3﹣1,当点E在线段BA的延长线上时,∵∠BAC=90°,∴∠CAE=90°,∴AE===3,∴BE=BA+AE=4+3=7;由(2)知,=.故AD=.②如图3﹣2,当点E在线段BA上时,AE===3,∴BE=BA﹣AE=4﹣3=1,由(2)知,=.故AD=.综上所述,AD的长为或,故答案为:或.3.解:(1)如图2中,∵AB=10,AD=5,∴AD=DB,∵CA=CB,AD=DB,∴CD⊥AB.(2)如图1中,当AB<AD时,BC=BD.设AB=10k,则AC=BC=6k,∵AD=5,∴10k+6k=5,∴k=,∴BC=6k=.如图1﹣1中,当AB>AD时,BC=BD,同法可得10k﹣6k=5,解得k=,∴BC=6k=,综上所述,BC的值为或.(3)如图3﹣1中,当△ADC≌△BED时,BD=AC=BC,由(2)可知,BC=.如图3﹣2中,当△ADC≌△BCE时,点E与C重合,此时AB=10k=10,∴k=1,BC=6k=6.综上所述,BC的值为或6.(4)如图3中,当CA′∥AB时,∵CA′∥AB,∴∠ADC=∠A′CD,由翻折可知,∠A′CD=∠ACD,∴∠ACD=∠ADC,∴AC=AD=5,∴CA′=CA=5.故答案为5.4.解:(1)结论:BD=AC,BD⊥AC.理由:延长BD交AC于F.∵AE⊥CB,∴∠AEC=∠BED=90°.在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∠CAE=∠EBD,∵∠AEC=90°,∴∠ACB+∠CAE=90°,∴∠CBF+∠ACB=90°,∴∠BFC=90°,∴AC⊥BD,故答案为:BD⊥AC,BD=AC.(2)如图2中,不发生变化,设DE与AC交于点O,BD与AC交于点F.理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,故答案为:BD=AC.②能;设BD与AC交于点F,由①知,△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC的夹角中的锐角的度数为60°.5.解:(1)∵B、C两点关于y轴对称,且C(﹣8,0),∴点B(8,0),BO=CO,又∵AO⊥BC,∴AC=AB,∵∠CAB=90°,AC=AB,CO=BO,∴AO=CO=BO=8,∴点A(0,8);(2)如图1,过点P作PM⊥OB于M,∵点P的横坐标为t,∴OM=t,∴MB=8﹣t,∵∠CAB=90°,AC=AB,∴∠ABO=45°,∴∠BPM=∠ABO=45°,∴PM=MB=8﹣t,∴S△POB=×OB×PM=×8×(8﹣t)=32﹣4t;(3)∵△POB的面积为24,∴32﹣4t=24,∴t=2,∴点P(2,6),如图2,当点Q为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,∵PQ=OP,点P(2,6),∴点Q(4,12),∵∠OQD=90°=∠OHQ=∠QGD,∴∠OQH+∠DQG=90°=∠OQH+∠HOQ,∴∠HOQ=∠GQD,又∵OQ=QD,∴△OHQ≌△QGD(AAS),∴OH=QG=12,HQ=GD=4,∴HG=16,∴点D(16,8);当点D为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,过点D作DN ⊥y轴于N,同理可求△QDG≌△ODN,∴ON=QG,DN=DG,∵DN=QG+HQ=4+QG,DG=HN=12﹣ON,∴ON=QG=4,DN=DG=8,∴点D(8,4),综上所述:点D(16,8)或(8,4).6.解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵∠ACB=90°,AC=BC=6,CH⊥AB,∴AB=CD=6,CH=BH=AB=3,∠CAB=∠CBA=45°,∴DH===3,∴BD=DH﹣BH=3﹣3;(Ⅱ)①如图2,过点E作EF⊥CD'于F,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴CD=CD'=6,∠DCD'=30°=∠CDA=∠CD'A',∴CE=D'E,又∵EF⊥CD',∴CF=D'F=3,EF=,CE=2EF=2,∴DE=DC﹣CE=6﹣2;②如图2﹣1,∵∠ABC=45°,∠ADC=30°,∴∠BCD=15°,∴∠ACD=105°,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴AC=A'C,CD=CD',∠ACA'=∠DCD'=α,∴CB=CA',又∵A′D=BD′,∴△A'CD≌△BCD'(SSS),∴∠A'CD=∠BCD',∴105°﹣α=15°+α,∴α=45°;如图2﹣2,同理可证:△A'CD≌△BCD',∴∠A'CD=∠BCD',∴α﹣105°=360°﹣α﹣15°,∴α=225°,综上所述:满足条件的α的度数为45°或225°;(Ⅲ)如图3,当A'D'⊥AC时,N是AC与A'D'的交点时,MN的长度最小,∵∠A'=45°,A'D'⊥AC,∴∠A'=∠NCA'=45°,∴CN=A'N=3,∵点M为AC的中点,∴CM=AC=3,∴MN的最小值=NC﹣CM=3﹣3;如图4,当点A,点C,点D'共线,且点N与点D'重合时,MN有最大值,此时MN=CM+CN=6+3,∴线段MN的取值范围是3﹣3≤MN≤6+3.7.解:(Ⅰ)∵点A(0,+1),点B(+1,0),点C(0,1),点D(1,0),∴OA=+1,OB=+1,OC=1,OD=1,∴AC=OA﹣OC=+1﹣1=,BD=+1﹣1=,∴AC=BD;(Ⅱ)由题意知,OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠AOC=∠AOB﹣∠COB=90°﹣∠COB,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,如图1(注:点C在x轴上,为了不要出现误解,点C没画在x轴上),延长AC交BD 于D,连接BC,在Rt△AOB中,OA=OB,∴∠OAB=∠OBA=45°,∴∠CAB+∠ABD=∠OAB﹣∠OAC+∠ABO+∠BOD=∠OAB+∠OBA=90°,∴AC⊥BD,∵AC垂直平分BD,∴CD=BC,设点C的坐标为(m,n),∴m2+n2=1①,由旋转知,CD==,∵B(+1,0),[m﹣(+1)]2+n2=2②,联立①②解得,m=1,n=0,∴点C在x轴上,∴旋转角为∠AOC=90°,故答案为:90°;(Ⅲ)如图2,∵OA=OB=+1,∴AB=OA=2+,过点O作OH⊥AB于H,∴S△AOB=OA•OB=AB•OH,∴OH====,过点D作DG⊥AB于G,S△ABD=AB•DG=(2+)DG,要使△ABD的面积最大,则DG最大,由旋转知,点D是以O为圆心,1为半径的圆上,∴点D在HO的延长线上时,DG最大,即DG的最大值为D'H=OD'+OH=1+=,∴S△ABD最大=AB•D'H=(2+)×=,在Rt△AOB中,OA=OB,OH⊥AB,∴∠BOH=45°,∴旋转角∠BOD'=180°﹣45°=135°.8.解:(1)AC=AE+AD.证明:连接CE,∵线段DC绕点D顺时针旋转α交直线AB于点E,α=60°,∵AB=AC,∠BAC=60°,∴CB=CA=AB,∠ACB=60°,∵AD∥BC,∴∠DAF=∠ACB=60°,∵∠FDC=∠EAF=60°,∠AFE=∠DFC,∴△AFE∽△DFC,∴,∴,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴∠DAF=∠FEC=60°,∴△DEC是等边三角形,∴CD=CE,∠ECD=60°,∴∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴BE=AD,∴AB=AE+BE=AE+AD,∴AC=AE+AD;(2)不成立,AD=AC+AE.理由如下:在AC的延长线上取点F,使AF=AD,连接DF,当α=60°时,∠BAC=∠EDC=60°,∵AB=AC,∴△ABC是等边三角形,∴AB=AC=BC∠BCA=60°,∵l∥BC,∴∠DAC=∠BCA=60°,∠EAD=∠ABC=60°,∵AF=AD,∴∠ADF=∠AFD=60°,AD=FD=AF,∴∠EDC=∠ADF=60°,∴∠EDC﹣∠ADC=∠ADF﹣∠ADC,即∠EDA=∠CDF,∵AD=FD,∠EAD=∠AFD=60°,∴△EAD≌△CFD(ASA),∴AE=CF,∴AD=AF=AC+CF=AC+AE;(3)AE的长为或.当点E在线段AB上,过点D作直线l的垂线,交AC于点F,如图3所示.∵△ABC中,∠BAC=90°,AC=AB,∴∠ACB=∠B=45°.∵直线l∥BC,∴∠DAF=∠ACB=45°.∵FD⊥直线l,∴∠DAF=∠DF A=45°.∴AD=FD.∵∠EDC=∠ADF=90°,∴∠ADE=∠FDC.由(1)可知DC=DE,∴△ADE≌△FDC(SAS),∴AE=CF.∵AD=,∴AF=2,∵BC=6,∴AC=AB=3,∴AE=AC﹣AF=3﹣2.当点E在线段AB的延长线上时,如图4所示.过点D作直线l的垂线,交AB于点M,同理可证得△ADC≌△MDE(SAS),∴AC=EM=3,∵AD=,∴AM=2,∴EM+AM=3+2.综合以上可得AE的长为3+2或3﹣2.9.解:(1)当x=0cm时,S=4×4÷2=8cm2;当x=12cm时,S=4×4÷2=8cm2.故答案为:8cm2;8cm2.(2)①当0<x<4时,∵△CAB为等腰直角三角形,∴∠CAB=45°,∴△ADG和△AEF都是等腰直角三角形,∴AD=DG=x,AE=EF=x+4,∴梯形GDEF的面积=×(GD+EF)×DE=×(x+x+4)×4=4x+8.②如图所示:过点C作CM⊥AB于点M.当4<x<8时,梯形GDMC的面积=(GD+CM)×DM=(x+8)(8﹣x)=﹣x2+32,梯形CMEF的面积=(EF+CM)×ME=[16﹣(x+4)+8][(x+4)﹣8]=(20﹣x)(x﹣4)=﹣x2+12x﹣40,S=梯形GDMC的面积+梯形CMEF的面积=(﹣x2+32)+(﹣x2+12x﹣40)=﹣x2+12x ﹣8.综合以上可得,S=.(3)当0<x<4时s最大值小于24,当x=4时,S=24cm2,所以当S=28cm2时,x必然大于4,即﹣x2+12x﹣8=28,解得x1=x2=6,当x=6cm时,阴影部分面积为28cm2.当8<≤12时,由对称性可知s的最大值也是小于24,不合题意舍去.∴当x=6cm时,阴影部分面积为28cm2.10.解:(1)∵△ABC和△CDE都是等边三角形,∴∠B=∠DCE=60°,AB=BC,CE=CD,∴CE∥AB,∵BC≠CD,∴CE≠AB,∴四边形ABCE是梯形,∵点F,G分别是BC,AE的中点,∴FG是梯形ABCE的中位线,∴FG∥AB,∴∠GFC=60°,同理:∠GHB=60°,∴∠FGH=180°﹣∠GFC﹣∠GHB=60°=∠GFC=∠GHB,∴△FGH是等边三角形,故答案为:等边三角形;(2)成立,理由如下:如图1,取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°,又F,G,H分别是BC,AE,CD的中点,∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB,∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°,∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°﹣∠PCE,∴∠FCH=360°﹣∠ACB﹣∠ECD﹣∠PCE=360°﹣60°﹣60°﹣(180°﹣∠GPC)=60°+∠GPC,∴∠FPG=∠FCH,∴△FPG≌△FCH(SAS),∴FG=FH,∠PFG=∠CFH,∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°,∴△FGH为等边三角形;(3)①当点D在AE上时,如图2,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC=2,∵△CDE是等边三角形,∴∠CED=∠CDE=60°,CE=CD=DE=4,过点C作CM⊥AE于M,∴DM=EM=DE=2,在Rt△CME中,根据勾股定理得,CM===2,在Rt△AMC中,根据勾股定理得,AM===4,∴AD=AM﹣DM=4﹣2=2,∵∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,连接BE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD=2,∠ADC=∠BEC,∵∠ADC=180°﹣∠CDE=120°,∴∠BEC=120°,∴∠BEA=∠BEC﹣∠CED=60°,过点B作BN⊥AE于N,∴∠BNE=90°,在Rt△BNE中,∠EBN=90°﹣∠BEA=30°,∴EN=BE=1,∴BN=EN=,DN=DE﹣EN=3,连接BD,根据勾股定理得,BD===2,∵点H是CD的中点,点F是BC的中点,∴FH是△BCD的中位线,∴FH=BD=,由(2)知,△FGH是等边三角形,∴△FGH的周长为3FH=3,②当点D在AE的延长线上时,如图3,同①的方法得,FH=,∴△FGH的周长为3FH=3,即满足条件的△FGH的周长为3或3.11.(1)证明:如图1中,过点P作PT∥AB.∵AB∥CD,AB∥PT,∴AB∥PT∥CD,∴∠1=∠APT,∠2=∠CPT,∴∠APC=∠APT+∠CPT=∠1+∠2.(2)证明:如图2中,连接PP′.∵∠3=∠MPP′+∠MP′P,∠4=∠NPP′+∠NP′P,∠APC=∠MP′N,∴∠3+∠4=2∠APC,∵∠APC=∠1+∠2,∴∠3+∠4=2(∠1+∠2).(3)结论不成立.结论是:∠P=∠2﹣∠1,∠4﹣∠3=2(∠2﹣∠1).理由:如图3中,设PC交AB于E,AP交NP′于F.∵AB∥CD,∴∠PEB=∠2,∵∠PEB=∠1+∠P,∴∠2=∠P+∠1,∴∠P=∠2﹣∠1.∵∠4=∠P+∠PFN,∠PFN=∠3+∠P′,∠P=∠P′,∴∠4=∠P+∠3+∠P,∴∠4﹣∠3=2∠P=2(∠2﹣∠1),∴∠4﹣∠3=2(∠2﹣∠1).12.解:(1)∵A(0,a),B(a,0)(a>0),∴OA=a,OB=a,∵△AOB的面积为2,∴S△AOB=×a×a=2,∴a=2(负值舍去),∴A(0,2),B(2,0),∵C为线段AB的中点,∴C(1,1),∴OD=BD=CD=1,∴S△CDB=×1×1=.故答案为:.(2)连AC,过点D作DM⊥BC于M,∵△AOB是等腰直角三角形,∴AO⊥BO,AO=BO,∠B=∠OAB=45°,又CO=EO,∴AO是CE的垂直平分线,∴AE=AC,不妨设AE、CD交于F,AO、CD交于G,∴∠CGA=∠OAE+∠AFC=∠OCD+∠COA,∵∠AFC=∠COA=90°,∴∠OAE=∠OCD=∠OAC,又∵∠CAD=∠CAO+∠OAB=∠OCD+∠B=∠CDA,∴CD=CA=EA,∴△AOE≌△CMD(AAS),∴OE=DM,∴===3,∴=2;(3)=2,理由如下:作点C关于y轴的对称点N,连接BN,作DM∥BC交y轴于M,∵OB=OC=ON,∠BON=90°,∴△BON等腰直角三角形,∴∠BNO=∠BMD=45°,∴∠MBD=∠OBE+∠DBE=∠OBE+∠BOE=∠BEN,又∵BD=BE,∴△BMD≌△ENB(AAS),∴EN=BM,BN=DM=BC,又∵∠BFC=∠DFM,∠BCF=∠FDM,∴△BCF≌△MDF(AAS),∴BF=MF,∴CO﹣EO=NO﹣EO=NE=BM=2BF,即=2.13.解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠APQ是△ABC的一个外角,∴∠APQ=∠B+∠BAP,∵∠BAP=15°,∴∠APQ=60°,∵AP=AQ,∴∠APQ=∠AQB=60°.(2)①图形如图2所示.②解:结论:PC2+BP2=2AP2.理由:连接MC.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵AP=AQ,∴∠APQ=∠AQP,∴∠BAP=∠CAQ,∴△ABP≌△ACQ(SAS),∴BP=CQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,CQ=CM,∠CAM=∠CAQ,∠ACM=∠ACQ=45°,∴AP=AM,∠B=∠ACM=45°,∠BAP=∠CAM,BP=CM,∴∠BAC=∠P AM=90°,在Rt△APM中,AP=AM,∠P AM=90°,∴PM=,∵∠ACQ=∠ACM=45°,∴∠PCM=90°,在Rt△PCM中,∠PCM=90°,∴PC2+CM2=PM2,∴PC2+BP2=2AP2.14.【问题背景】证明:如图1,∵∠BAC=∠DAE=90°,∴∠DAB=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).【尝试应用】证明:如图2,过点D作DK⊥DC交FB的延长线于K.∵DK⊥CD,BF⊥AB,∴∠BDK=∠ABK=90°,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBK=∠K=45°,∴DK=DB,∵△ABD≌△ACE,∴∠ABD=∠ACE=135°,DB=EC=DK,∴∠ECG=45°,∵BF⊥AB,CA⊥AB,∴AG∥BF,∴∠G=∠DFK,在△ECG和△DKF中,,∴△ECG≌△DKF(AAS),∴DF=EG,∵DE=AE,∴DF+EF=AE,∴EG+EF=AE,即FG=AE.【拓展创新】解:如图3中,过点A作AE⊥AD交BD于E,连接CE..∵∠ADB=45°,∠DAE=90°,∴△ADE与△ABC都是等腰直角三角形,同法可证△ABD≌△ACE,∴CE=BD=2,∵∠AEC=∠ADB=45°,∴∠CED=∠CEB=90°,∴S△BDC=•BD•CE=×2×2=6.故答案为:6.15.解:(1)∵2a2+4ab+4b2+2a+1=0,∴(a+2b)2+(a+1)2=0,∵(a+2b)2≥0 (a+1)2≥0,∴a+2b=0,a+1=0,∴a=﹣1,b=,∴A(﹣1,0)B(0,).(2)①证明:如图1中,∵a+b=0,∴a=﹣b,∴OA=OB,又∵∠AOB=90°,∴∠BAO=∠ABO=45°,∵D与P关于y轴对称,∴BD=BP,∴∠BDP=∠BPD,设∠BDP=∠BPD=α,则∠PBF=∠BAP+∠BP A=45°+α,∵PE⊥DB,∴∠BEF=90°,∴∠F=90o﹣∠EBF,又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,∴∠F=45o+α,∴∠PBF=∠F,∴PB=PF.②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,∵∠BOQ=∠BQF=∠FHQ=90°,∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,∴∠BQO=∠QFH,∵QB=QF,∴△FQH≌△QBO(AAS),∴HQ=OB=OA,∴HO=AQ=PC,∴PH=OC=OB=QH,∴FQ=FP,又∠BFQ=45°∴∠APB=22.5°.16.解:(1)在Rt△ABC中,∠C=90°,∠B=30°,BC=6,∴AC=2,∠A=60°,∵△DEF是等边三角形,∴∠DCE=60°,∴∠ACD=30°,∴∠ADC=90°,∴CD=AC=3,∴△DEF的周长=9;(2)解:结论:CF=DG.理由:∵BC=6,EF=DF=DE=3,∴CF+BE=BC﹣EF=6﹣3=3,∵△DEF是等边三角形,∴∠DEF=60°,∵∠DEF=∠B+∠EGB,∴∠B=∠EGB=∠DGE=30°,∴EG=BE,∵EG+DG=CF+BE=3,∴CF=DG;(3)∵S△DEF=×32=,S△DGH=•GH•DH=•x•x=x2,y=S△DFE﹣S△DHG=﹣x2(0≤x≤3).17.解:(1)在Rt△ABC中,AC=2,BC=2,根据勾股定理得,AB===4,∴=,∵BQ=BP,∴=,∴,∵∠QBP=∠CBA,∴△BPQ∽△BAC,∴∠BQP=∠ACB=90°,∴PQ⊥AB;(2)∵点D是AC的中点,∴AD=CD=AC=1,由(1)知,PQ⊥AB,∴∠AQP=90°,∴∠PQD<90°,∵△PQD是直角三角形,∴①当∠DPQ=90°时,如图1,在Rt△ABC中,AC=2,AB=4,∴sin∠ABC==,∴∠ABC=30°,∴∠QPB=90°﹣∠ABC=60°,∴∠DPC=90°﹣∠BPQ=30°,∴CP===,∴BP=BC﹣CP=,②当∠PDQ=90°时,∴∠ADQ+∠PDC=90°,如图2,过Q作QE⊥AC于E,∴∠DEQ=90°=∠ACB,∴∠ADQ+∠DQE=90°,∴∠DQE=∠PDC,∴△EQD∽△CDP,∴,∴,设BP=t,则CP=BC﹣BP=2﹣t,在Rt△BQP中,BQ=BP cos30°=t,∴AQ=AB﹣BQ=4﹣t,在Rt△AEQ中,QE=AQ cos30°=(4﹣t)•=2﹣t,AE=AQ=2﹣t,∴DE=AD﹣AE=t﹣1,∴,∴t=或t=(大于2,舍去)∴BP=;即BP=或;(3);理由:如图3,①当点D'恰好落在边BC上时,由折叠知,PD'=PD,PQ⊥DD',由(1)知,PQ⊥AB,∴DD'∥AB,∴∠DD'C=∠ABC=30°,∴CD'=CD=,设BP=m,则CP=BC﹣BP=2﹣m,∴DP=D'P=CD'﹣CP=m﹣,在Rt△CDP中,根据勾股定理得,DP2=CP2+CD2,∴(m﹣)2=(2﹣m)2+1,∴m=,②当点D'落在D时,即PQ过点D,在Rt△CDP'中,∠P'=90°﹣∠DD'P'=30°,∴CP'===,∴BP'=BC+CP'=,综上:.18.(1)解:当MN最长时,BN===;当BN最长时,BN===,综合以上可得BN的长为或;(2)证明:如图,把△CBN绕点C逆时针旋转90°,得到△CAN',连接MN',∴△AN'C≌△BNC,∴CN'=CN,∠ACN'=∠BCN,∠CBN=∠CAN',∵∠MCN=45°,∴∠N'CA+∠ACM=∠ACM+∠BCN=45°,∴∠MCN'=∠BCM,∴△MN'C≌△MNC(SAS),∴MN'=MN,∵AC=BC,∠ACB=90°,∴∠B=∠CAM=45°,∴∠CAN'=45°,∴∠MAN'=∠CAN'+∠CAM=45°+45°=90°,在Rt△MN'A中,AN'2+AM2=N'M2,∴BN2+AM2=MN2,∴点M,N是线段AB的勾股分割点.19.问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,当且仅当P、E、B三点共线时取等号,∴BP的最大值为+1.20.解:(1)由AC长为1.5m,△ABC的面积为1.5m2,可得BC=2m,如图①,设加工桌面的边长为xcm,∵DE∥CB,∴△ADE∽△ACB,∴=,即=,解得:x=;如图②,设加工桌面的边长为ym,过点C作CM⊥AB,分别交DE、AB于点N、M,∵AC=1.5m,BC=2m,∴AB===2.5(m),∵△ABC的面积为1.5m2,∴CM=m,∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:y=,∴x>y,即S1>S2,故答案为:>.(2)①函数图象如图6所示:②观察图象,发现该函数有最小值,此时a的取值~2之间.故选D.(3)①由(2)可知,S5<S4<S3.故答案为:S5<S4<S3.②如图7,△A1B1C1即为所求作.。
中考数学图形与几何专题知识易错题50题含答案
中考数学图形与几何专题知识易错题50题含答案一、单选题1.检查一条直线和一个非水平面是否垂直,正确的方法是用()A.长方形纸片B.梯形纸片C.铅垂线D.合页型折纸2.一个圆锥形的零件,底面积为19cm2,高是12cm,这个零件的体积是()A.76cm3B.114cm3C.228cm3D.684cm33.两个圆的半径相差1cm,则周长相差().A.1cm B.2cm C.3.14cm D.6.28cm4.如图,反比例函数的一个分支与O有两个交点,且平分这个圆,以下说法正确的是()A.劣弧AB等于120︒B.反比例函数的这个分支平分圆的周长C.反比例函数的这个分支平分圆的面积D.反比例函数图象必过圆心O5.一个圆的半径为2cm,则它的面积是()(π取3.14).A.6.28cm B.12.56cm C.26.28cm12.56cm D.2 6.一个扇形,如果半径缩小2倍,圆心角扩大2倍,那么扇形的面积()A.扩大2倍B.缩小2倍C.缩小4倍D.不变7.草坪上有一个洒水龙头,它最远洒水至30米处,可以作150°的旋转,那么可以被这个龙头洒到水的草坪的面积是()A.375π平方米B.380π平方米C.385π平方米D.390π平方米8.下列说法正确的是()A.圆柱和圆锥都只有一条高B.圆的半径扩大到原来的2倍,直径就扩大到原来的4倍C.圆柱体体积是圆锥表面积的三倍D.正数和负数可以表示两种相反意义的量9.用两个半径为1cm的圆和长与宽分别为6.28cm和3.14cm的长方形组成一个圆柱,该圆柱的高是( )A .6.28cmB .3.14cmC .1cmD .6.28cm 或3.14cm10.以下表述中不正确的是( )A .长方体中任何一条棱都与两个面平行B .长方体中相对的两个面的面积相等C .长方体中任何一个面都与四个面垂直D .长方体中棱与棱不是相交就是异面11.如图是某几何体从不同方向看所得到的的图形,根据图中数据,求得该几何体的侧面积为( )A .πB .2πC .32πD .812.下列立体图形中,从上面和正面看到的形状图不同的是( )A .B .C .D . 13.一个圆至少对折( )次,就可以找到圆心.A .1B .2C .3D .414.一个圆形井盖的半径为30厘米,它能盖住的井口面积可能是( )A .2800平方厘米B .2830平方厘米C .2850平方厘米D .2880平方厘米 15.如图,沿半圆形草坪外铺一条1米宽的小路,小路的面积是多少?列式正确的是( )A .23.1412⨯÷B .23.14122⨯÷C .()223.1413122⨯-÷D .23.14132⨯÷16.下列说法正确的有( )个①如果:4:3a b =,那么a 与b 的和一定是7;①一种商品先提价15,在降价15,则现价和原价一样; ①两圆周长相等,则这两个圆面积也相等;①女生人数是男生人数的35,则男生人数比女生人数多14. A .1 B .2 C .3 D .417.一个雷达圆形屏幕的直径是20厘米,则它的面积是( )平方米.A .100πB .0.1πC .0.01π18.某足够大的草地正中拴着一只羊,绳长10米,这只羊最多可以吃到草地上多少平方米的草?正确的算式是( )A .3.14102⨯⨯B .3.141010⨯⨯C .3.1410⨯ D .3.1410102⨯⨯÷ 19.以圆O 的半径OA 为边长画正方形OABD .若正方形OABD 的面积为3平方厘米,则圆O 的面积是( )A .3.14平方厘米B .6.28平方厘米C .9.42平方厘米D .11平方厘米 20.想要求圆的周长,就必须知道( )A .圆心B .圆周率C .直径和半径D .直径或半径二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.一个扇形的半径是5厘米,圆心角是60°,则此扇形的面积是______平方厘米,周长是______厘米.(π取3.14)23.在长方体ABCD EFGH -中,与棱EF 和棱EH 都异面的棱是______.24.一张光盘的刻录面为环形内圆的直径是4厘米,外圆直径是12厘米,这张光盘刻录面的面积是___平方厘米.25.如图,把一个半径为r厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成新的图形的周长比原来圆的周长多10厘米,则该圆的半径为___厘米.26.如图所示,它是一个正方体六个面的展开图,那么原正方体中与平面B互相平行的平面是_______.(用图中字母表示)27.等底等高的圆柱和圆锥的体积相差183dm.dm,则圆锥的体积是_____3∠的度数为______.28.如图所示,扇形OAB的面积是圆的六分之一,则图中AOB29.把一个圆剪成两个扇形,如果其中较小扇形的圆心角为135度,那么较小扇形的弧长是较大扇形的弧长的__________(填几分之几).-中,与平面BCGF垂直的棱有_____条______(填数30.在长方体ABCD EFCH字).31.已知扇形面积是212cm,半径为8cm,则扇形周长为_______.32.圆柱的侧面展开图是一个长6cm ,宽4cm 长方形,则这个圆柱的底面半径是____cm .(结果保留π)33.将6个棱长为1厘米的正方体拼成一个长方体,则表面积减少了_______平方厘米.34.长方体1111ABCD A B C D -中,与平面11AA D D 平行的棱共有________条.35.一个圆形花坛的直径是40米,那么它的半径是_________米.36.一个圆柱和一个圆锥等底等高,它们的体积之和是48立方分米,那么圆锥的体积是________立方分米,圆柱的体积比圆锥大________立方分米.37.半圆形的周长等于它所在圆的周长的一半,______(判断对错)38.在长方体中,任意一条棱与它既不平行也不相交的棱有________条.39.如果一个扇形的圆心角扩大为原来的2倍,半径长缩小为原来的一半,那么变化后所得扇形面积与原来的扇形面积的比值为______.40.如图所示,直径为单位1的圆从表示1-的点沿着数轴无滑动的向右滚动一周到达A 点,则A 点表示的数是______.三、解答题41.将一边长为6cm 正方形绕其一边所在直线旋转一周得到一个立体图形.(1)得到的立体图形名称为 .(2)求此立体图形的表面积.(结果保留π)42.如图,AB =a ,P 是线段AB 上一点,分别以AP ,BP 为直径作圆.(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 的大小. 43.看图列式计算(1)列式计算__________(2)求阴影部分面积(单位:分米,结果保留 );列式计算__________44.如图,长方体ABCD-EFGH,根据图形回答下列问题.(1)与棱CB相等的棱有哪几条?(2)与面ADHE相对的面有哪几个?(3)经过点A的面有哪几个?(4)从点D出发的棱有哪几条?45.如图所示的圆柱底面直径为4cm,高为5cm,请计算它的侧面积和体积.(结果保留π)46.如图所示是某森林公园二期改造工程的部分规划图.以“爱在方圆”为主题的设计中,正方形不与圆重叠的部分建造林地,圆不与正方形重叠的部分建造草地,重叠部分修建池塘.(1)若正方形ABCD面积的45是林地,圆C面积的34是草地,池塘的面积是125平方米,则林地和草地的面积分别是多少平方米?池塘面积占规划区域总面积的几分之几?(2)若正方形边长AB与圆半径CE的比为2:1,且池塘周长为71.4米.则林地的周长是多少米?47.已知,如图,正方形ABCD的边长为4厘米,点P从点A出发,经A→B→C沿正方形的边以2厘米/秒的速度运动;点Q在CD上,CQ=1.设运动时间为t秒,△APQ 的面积为S平方厘米.(1)当t=2时,△APQ的面积为平方厘米;(2)求BP的长(用含t的代数式表示);(3)当点P在线段BC上运动,且△APQ为等腰三角形时,求此时t的值;(4)求S与t的函数关系式.48.如图①是一个组合几何体,右边是它的两种从不同方向看的图形,根据两种图形中尺寸,计算这个组合几何体表面积和体积.(结果保留 )49.求出如图图形的体积.50.某家具厂的设计师根据1:10的比例尺,并按斜二侧画法在图纸上设计了一套柜子,柜子由一个框架、三个抽屉、两扇门组成.一个工人每天可以制作2个框架、或者制作3个抽屉、或者制作5扇门.(1)由刻度尺在图纸上测量可得,4cm AB =、 1.5cm BC =、6cm BD =,所以这个柜子的表面积是______2dm ,体积是______3dm .(2)工人有38名工人,如何分配工人的工作才能使每天恰好配套完成一定数量的柜子,并写出每天完成的柜子数量是多少只?参考答案:1.D【分析】根据长方体的概念直接排除选项即可.【详解】因为检查一条直线和一个非水平面是否垂直是用合页型折纸这个方法; 故选D .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键. 2.A【分析】根据圆锥体积计算公式即可得答案.【详解】311912763S cm =⨯⨯=锥 故选A【点睛】本题考查圆锥的体积计算,掌握公式是关键.3.D【分析】大圆半径为R ,小圆半径为r ,根据题意得到1R r -=,再表示出周长差,从而得到结果.【详解】解:设大圆半径为R ,小圆半径为r ,则1R r -=,①()2222 6.28R r R r ππππ-=-==,即周长相差6.28cm ,故选D .【点睛】本题考查了圆的周长,解题的关键是熟练掌握圆的周长公式.4.B【分析】由题意可知A ,B 两点连线为圆的直径,弧AB 为半圆,所对圆心角为180︒,由此可对各项进行判断.【详解】A .A ,B 两点连线为圆的直径,弧AB 为半圆,所对圆心角为180︒,不是120︒,故这个选项错误;B .反比例函数的这个分支平分O ,即反比例函数的这个分支把O 的周长平分,故这个选项正确;C .反比例函数的这个分支能平分周长,所以A ,B 两点连线为圆的直径,这个分支就不能把O的面积平分,故这个选项错误;D.反比例函数的这个分支不可能过圆心O,否则无法平分圆,故这个选项错误.故选B.【点睛】本题考查的是反比例函数的性质的运用,分别讨论可判断正误.5.C【分析】根据圆的面积公式求解即可.【详解】解:这个圆的面积=23.1422=12.56cm⨯⨯,故选:C.【点睛】本题主要考查了圆的面积,解题的关键是熟知圆面积公式.6.B【分析】根据题意可以分别表示出原来和后来扇形的面积,从而可以计算出这个扇形的面积扩大的倍数.【详解】解:设原来扇形的圆心角为α,半径为r,则原来扇形的面积为:2 360rαπ⋅,后来扇形的圆心角为2α,半径为12r,则后来扇形的面积为:2212()123602360r rαπαπ⋅⋅⋅=⨯,①扇形的面积缩小2倍.故选B.【点睛】本题考查了扇形的面积计算,熟记扇形的面积公式是解答本题的关键.7.A【分析】直接根据扇形面积:2S360n rπ=即可求解.【详解】解:215030S375360ππ==平方米.故选:A.【点睛】此题主要考查扇形的面积,正确理解扇形面积与所在圆的面积关系是解题关键.8.D【分析】根据圆柱和圆锥的意义、圆的半径与直径、正负数的意义逐一判断即可.【详解】解:A、圆柱有无数条高,圆锥只有一条高,原说法错误,该选项不符合题意;B、圆的半径扩大到原来的2倍,直径也扩大到原来的2倍,原说法错误,该选项不符合题意;C、圆柱体体积是圆锥表面积没有直接的关系,原说法错误,该选项不符合题意;D、正数和负数可以表示两种相反意义的量,原说法正确,该选项符合题意;故选:D.【点睛】本题考查了正数和负数,圆柱和圆锥的意义,注意基础知识的积累是解题的关键.9.B【分析】根据圆柱侧面展开图的特征,圆柱的侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高.首先根据圆的周长公式:C=2πr,求出半径为1cm的圆的周长,然后与长方形的长、宽进行比较,如果圆的周长等于长方形的长,那么长方形的宽就是圆柱的高,如果圆的周长等于长方形的宽,那么长方形的乘等于圆柱的高,据此解答.【详解】解:3.14×1×2=6.28(cm),圆的周长是6.28cm,6.28cm=6.28cm,所以该圆柱的高是3.14cm.故选:B.【点睛】此题考查的目的是理解掌握圆柱侧面展开图的特征及应用.10.D【分析】根据长方体中棱与面的关系判断即可;【详解】长方体中任何一条棱都与两个面平行,正确;长方体中相对的两个面的面积相等,正确;长方体中任何一个面都与四个面垂直,正确;长方体中棱与棱不是相交就是异面,不正确;故答案选D.【点睛】本题主要考查了长方体的棱与面的关系,准确分析是解题的关键.11.B【分析】根据题意,得出该几何体为圆柱,再根据图中的数据,得出圆柱的高和底面半径,再根据圆柱的侧面积的计算公式,计算即可.【详解】解:根据图形,可得:该几何体为圆柱,从正面看高为2,从上面看圆的直径为1,①圆柱的高为2,即2h =,底面直径为1,即1d =,①该几何体的侧面积为:122dh πππ=⨯⨯=.故选:B【点睛】本题考查了几何体的识别、圆柱的侧面积,解本题的关键在熟练掌握圆柱的侧面积计算方法.12.C【分析】根据三视图的定义,逐一判断选项,即可.【详解】A 、正方体从上面和正面看到的形状是正方形,不符合题意B 、圆柱体从上面和正面看到的形状是长方形,不符合题意C 、圆锥从上面的是中间有一个点的圆,正面看到的形状是三角形,符合题意,D 、球体从上面和正面看到的形状均为圆,不符合题意,故选:C .【点睛】本题主要考查几何体的三视图的定义,掌握三视图中的定义是解题的关键. 13.B【分析】一个圆对折实际上我们是沿直径对折的,对折后两条直径会出现一个交叉点,这个点就是圆心.【详解】解:如图所示:两条折痕交叉与O 点,这个点就是圆的圆心.故选:B .【点睛】本题考查了圆的对称性,掌握圆的基本概念是解题的关键.14.A【分析】根据圆的面积公式S =πr 2,代入数据,求出圆形井盖的面积即可得出结论.【详解】解:3.14×302=3.14×0.25=2826(平方米).选项A 中2800<2826.故它能盖住,而选项BCD 的面积均大于圆形井盖的面积,故不能盖住.故选:A【点睛】此题主要考查了圆的面积计算,代入数据即可解答.15.C【分析】根据圆环的面积公式22()R r π-求出圆环面积,再除以2即可求出小路面积.【详解】解:根据题意,沿半圆形草坪外铺一条1米宽的小路,则小路的面积为22223.14[(121)12]2 3.14(1312)2⨯+-÷=⨯-÷.故选:C .【点睛】本题主要考查了有关圆的应用题,解题关键是灵活运用圆的面积公式解决问题. 16.A【分析】根据比的定义可对①进行判断;根据分数的定义可对①①进行判断;根据圆的周长与面积公式可对①进行判断;综上即可得答案.【详解】①8:6=4:3,8+6=14,①如果:4:3a b =,那么a 与b 的和不一定是7,故①错误,设商品的原价为x ,①先提价15,在降价15后的价格为(1+15)(1-15)x =2425x ≠x ,故①错误, ①半径=周长÷π÷2,①两圆周长相等,半径也相等,①圆的面积=半径×半径×π,①两圆周长相等,则这两个圆面积也相等;故①正确,把男生人数看作单位“1”,①女生人数是男生人数的35, ①女生人数为35, ①男生人数比女生人数多(1-35)÷35=23,故①错误, 综上所述:正确的说法有①,共1个,故选:A .【点睛】本题考查比的定义、分数的定义及圆的周长与面积,熟练掌握定义及公式是解题关键.17.C【分析】利用圆的面积公式计算即可.【详解】解:一个雷达圆形屏幕的直径是20厘米,则它的面积是:220()1002ππ=(平方厘米),100π平方厘米=0.01π平方米;故选:C .【点睛】本题考查了圆的面积的计算和单位转换,解题关键是熟记圆面积公式. 18.B【分析】这只羊最多可以吃到草地上的面积是:以10米为半径的圆的面积.【详解】这只羊最多可以吃到草地上的面积是: 223.1410r π=⨯故选:B【点睛】考核知识点:圆的面积.把问题转化为求圆的面积是关键.19.C【分析】圆的面积S=2r π,即要求2r ,已知以圆O 的半径OA 为边长所画正方形面积为3,即2r =3,代入面积公式求解即可.【详解】S=2r π=3.14×3=9.42(平方厘米).故选:C .【点睛】本题主要考查圆的面积公式,熟记圆的面积公式是解题关键.20.D【分析】根据周长公式求解即可.【详解】C πd 或2C r π=.故选:D .【点睛】此题考查了周长公式,解题的关键是熟记圆的周长公式.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22. 13.08 15.23【分析】根据扇形的面积以及周长公式即可求解.【详解】解:扇形的面积为:60 3.145536013.08⨯⨯⨯÷=平方厘米 ;此扇形的周长为:60 3.1451805215.23⨯⨯÷+⨯=厘米.故答案为:13.08;15.23.【点睛】本题考查扇形面积及周长的计算,注意扇形的周长还包含了两条半径的长. 23.CG ##GC【分析】直接根据异面直线的概念即可求解.【详解】解:从长方体中,可以得到与棱EF 和棱EH 都异面的棱是CG ,故答案为:CG【点睛】本题考查了异面直线的概念,理解掌握不在同一平面内的直线是异面直线,或者说既不平行,也不相交的直线.24.32π【分析】圆环的面积()22R r π=-,由此代入数据即可作答. 【详解】解:22124()()22ππ⨯-⨯364ππ=-232()cm π=, 故答案为:32π.【点睛】此题考查了圆环的面积公式的计算应用.25.5【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米,所以圆的半径为5厘米【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.26.平面D【分析】只需要找出平面B 的对面即可;【详解】根据题意可知:平面B 的相对面是平面D ,所以平面D 与平面B 平行; 故答案是平面D .【点睛】本题主要考查了正方体的展开图,准确分析是解题的关键.27.9【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(3−1)倍,根据已知一个数的几倍是多少,求这个数,用除法解答.【详解】解:18÷(3−1)=18÷2=93dm ()答:圆锥的体积是93dm .故答案为:9.【点睛】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用. 28.60︒【分析】根据扇形和圆形的面积公式,结合题意即可求出AOB ∠的大小.【详解】设圆的半径为R ,圆心角AOB α∠=, ①2=360R S απ⨯⨯︒扇形, 根据题意可知1=6S S 扇形圆形,即: 221360=6R R αππ⨯⨯︒⨯. ①=60α︒,即60AOB ∠=︒.故答案为60︒.【点睛】本题考查扇形和圆形的面积公式.掌握已知圆心角的扇形的面积公式是解答本题的关键.29.3 5【分析】先求出较小扇形的弧长为328rπ⨯,较大扇形的弧长为528rπ⨯,根据分数的除法32 8rπ⨯÷528rπ⨯=383855⨯=即可.【详解】解:①1353= 3608,①较小扇形的弧长为328rπ⨯,①较大扇形的弧长为528rπ⨯,①328rπ⨯÷528rπ⨯()=383855⨯=①较小扇形的弧长是较大扇形的弧长35.故答案为:35.【点睛】本题考查圆的周长,圆心角、扇形弧长与圆的周长的关系,分数的除法,掌握圆的周长,圆心角、扇形弧长与圆的周长的关系,分数的除法是解题关键.30.4【分析】在长方体中,棱与面之间的关系有平行和垂直两种.【详解】与平面BCGF垂直的棱有AB、DC、EF、HG.共四条.故答案为4.【点睛】本题考查的知识点为:与一个平面内的任一条直线垂直的直线就与这个平面垂直.31.19cm【分析】根据扇形的面积公式求出弧长,然后根据周长的定义即可求出结论.【详解】解:12×2÷8=3cm扇形的周长=3+8×2=19cm故答案为:19cm.【点睛】此题考查的是求扇形的周长,掌握扇形的面积公式和周长的定义是解决此题的关键.32.32ππ或【分析】分两种情况进行讨论:当以长6cm 为底面圆的周长时;当以长4cm 为底面圆的周长时;根据圆的周长公式求解即可.【详解】解:当以长6cm 为底面圆的周长时,底面圆的半径为:6÷2÷π=3πcm ; 当以长4cm 为底面圆的周长时,底面圆的半径为:4÷2÷π=2πcm ; 故答案为:3π或2π. 【点睛】题目主要考查圆的周长公式及圆柱的展开图,理解题意,列出式子是解题关键. 33.10或14【分析】根据题意可得拼接方法有两种:一种是23⨯,一种是16⨯,然后进行分类求解即可.【详解】解:①如果是23⨯的拼法,拼法之前是6636⨯=(平方厘米),拼之后是()121323222⨯+⨯+⨯⨯=(平方厘米),减少了14平方厘米,①如果是16⨯的拼法,拼之前是36平方厘米,拼之后是()11616226+⨯+⨯⨯=(平方厘米),减少了10平方厘米.故答案为10或14.【点睛】本题主要考查长方体的表面积,关键是根据题意得到拼接方式,然后进行求解即可.34.4【分析】根据题意,画出图形,即可得出结论.【详解】解:如图所示,与平面11AA D D 平行的棱有BC 、1111BB CC B C 、、,共有4条 故答案为:4.【点睛】此题考查的是长方体中棱和平面位置关系的判断,掌握长方体的特征是解决此题的关键.35.20【分析】根据圆的半径等于直径的一半即可求解.【详解】解:一个圆形花坛的直径是40米,那么它的半径是20米,故答案为:20.【点睛】本题考查了求圆的半径,掌握圆的半径等于直径的一半是解题的关键.36.1224【分析】等底等高的圆柱的体积是圆锥体积的3倍,它们体积的和是圆锥体积的3+1=4倍,已知它们的之和是48立方分米,据此可求出圆锥的体积,进而可求了圆柱的体积,用圆柱的体积再减圆锥的体积即可.【详解】解:圆锥的体积是48÷(3+1)=48÷4=12(立方分米)48-12=36(立方分米)36-12=24(立方分米)答:圆锥的体积比圆柱少24立方分米.故答案为:12,24.【点睛】此题主要考查圆锥和圆柱的体积计算,根据等底等高的圆锥的体积是圆柱体积的1是解题的关键.337.错##【分析】根据半圆周长的意义,半圆的周长等于该圆周长的一半加上直径,据此作出判断即可.【详解】解:因为半圆的周长等于该圆周长的一半加上直径,所以半圆形的周长不等于它所在圆的周长的一半,因此,题干中的说法是错误的.故答案为:错.【点睛】本题主要考查的是理解掌握半圆周长的意义及应用.38.4【分析】直接根据长方体棱与棱的位置关系直接求解即可.【详解】如图所示:假设不与棱AB既不平行也不相交的棱有:EH、FG、HD、GC;共4条;故答案为4.【点睛】本题主要考查长方体中棱与棱的位置关系,正确理解概念是解题的关键.39.12【分析】πR2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角扩大到原来的2倍,面积扩大到原来的2倍,(圆心角扩大的基础上)半径缩小为原来的一半,面积缩小为14,总的算起来面积缩小为到原来12.【详解】原扇形面积=圆心角÷360°×π×R2,新扇形面积=(圆心角×2)÷360°×π×(12R)2=圆心角÷360×2×π×14R2=圆心角÷360°×π×R2×12,所以新扇形面积:原扇形面积=12:1=12.故答案为:12【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.40.1π-【分析】根据直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,可得圆的周长,根据两点间的距离是大数减小数,可得答案.【详解】解:由直径为单位1的圆从数轴上表示−1的点沿着数轴无滑动的向右滚动一周到达A点,得:A点与−1之间的距离是π.由两点间的距离是大数减小数,得:A点表示的数是1π-,故答案为:1π-.【点睛】本题考查了数轴和圆的周长,掌握数轴上两点间的距离是大数减小数是解题关键.41.(1)圆柱;(2)144π平方厘米.【分析】(1)根据面动成体可知将正方形围绕它的一条边为轴旋转一周,得到的是圆柱; (2)根据圆柱的高和圆柱的底面半径都是正方形的边长,由此数据利用圆柱的表面积=上下底面面积+侧面积解答即可.【详解】解:(1)将正方形围绕它的一条边为轴旋转一周,得到的是圆柱,故答案为:圆柱(2)立体图形的表面积=266+266=144πππ⨯⨯⨯⨯(平方厘米);答:这个图形的表面积是144π平方厘米.【点睛】解答此题的关键是找出旋转所得到的图形与原图形之间的数据关系,然后根据圆柱的表面积公式进行解答.42.(1)22111422a ax x πππ-+ (2)AP=13a 时的面积大于AP =12a 时的面积【分析】(1)用圆形的面积公式求解;(2)根据AP 的长度,分别计算两个圆形的面积之和,比较即可.(1)解:①AP =x ,①S =221()()22a x x ππ-+ 22111422a ax x πππ=-+. (2)当AP =13a 时,BP =23a , 22111()()63S a a ππ=+ 2536a π=, 当AP =12a 时,BP =12a ,2221144S a a ππ=+()()218a π=, ①2536a π218a π> ①AP=13a 时的面积大于AP =12a 时的面积. 【点睛】本题考查了动点问题的解决方法圆形的面积公式,完全平方公式,正确进行计算是解决本题的关键.43.(1)180204⨯=(棵) (2)()22π32π316π+-⨯=(平方分米)【分析】(1)把苹果树的数量看作单位“1”,梨树的数量比苹果树少14,根据一个数乘分数的意义,用乘法解答;(2)大圆面积减小圆面积即为所求圆环面积.(1) 解:180204⨯=(棵), 故答案为:180204⨯=(棵) (2)解:()22π32π316π+-⨯=(平方分米)故答案为:()22π32π316π+-⨯=(平方分米)【点睛】此题考查分数乘法应用题和求圆环的面积.解答图文应用题的关键是根据图、文所提供的信息,弄清条件和问题,然后再选择合适的方法列式、解答.44.(1)棱AD 、棱EH 、棱FG(2)面BCGF(3)面ABCD 、面ADHE 、面ABFE(4)棱DA 、棱DC 、棱DH .【分析】(1)找与棱CB 相等的棱,可找到与棱CB 平行的棱即是所求.(2)与面ADHE 相对的面是BCGF(3)找经过点A 的面,可找出所以经过A 点的棱组成的面即是所求.。
2020届中考数学 几何专题:与圆有关的性质(含答案)
2020届中考数学 几何专题:与圆有关的性质(含答案)一、选择题1.如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是( )A .15°B .30°C .45°D .60°2.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=,则弦AB 所对圆周角的度数为()A.30°B.60° C.30°或150° D.60°或120°3.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为,则弦AB 的长为( )A .3B .4C .6D .94.如图,△ABC 内接于⊙O ,若∠OAB =28°,则∠C 的大小为( )A .28°B .56°C .60°D .62°5.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD ,则AB 的长为( ) A .2 B .3 C .4 D .53 96.如图,∠AOB 是⊙0的圆心角,∠AOB =80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80°7.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =70o ,∠C =50o,那么sin ∠AEB 的值为( )A. B. C. D.8.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .5米9.如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( )A .55°B .60°C .65°D .70°10.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ).213322233A .0.4米B .0.5米C .0.8米D .1米11.如图,AB 是半圆O 的直径,点P 从点O 出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )12.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是( )A .AD =BDB .∠ACB =∠AOEC .D .OD =DE13.如图,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的 长是( )A .B .C .D .14.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5B .4C .3D .2OA AB BO --OP s t s t AE BE =O A . B .C .D .15.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( )A .2B .3C .4D .516.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O的半径为,则弦CD 的长为( )A .B .C .D .二、填空题1.如图,AB 为半圆O 的直径,延长AB 到点P ,使BP =AB ,PC 切半圆O 于点C ,点D 是上和点C 不重合的一点,则的度数为 .2.如图,在⊙O 中,∠ACB =20°,则∠AOB =______度.3.如图所示,A 、B 、C 、D 是圆上的点,则 度. cm 33cm 23cm 9cm 12AC D ∠17040A ∠=∠=°,°,C ∠=4.在⊙O 中,已知⊙O 的直径AB 为2,弦AC 长为,弦AD 长为.则DC 2=______5.如图,AB 是⊙O 的直径,点C 在⊙O 上 ,OD∥AC ,若BD =1,则BC 的长为6.已知的直径为上的一点,,则= _ .7.如图,的半径弦点为弦上一动点,则点到圆心的最短距离是 cm .8.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为上一点,若∠CEA =,则∠ABD =°.9.如图,AB 是⊙O 的直径,AC 是弦,若∠A CO =32°,则∠COB 的度数等于 . 32O ⊙8cm AB C =,O ⊙30BAC ∠=°BC cm O 5cm OA =,8cm AB =,P AB P O BC 28BABCD 1三、解答题1.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:CF =BF ;(2)若AD =2,⊙O 的半径为3,求BC 的长.2.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1的纵坐标为.求⊙O 1的半径.3.已知:如图,⊙O 的直径AD =2,,∠BAE =90°.(1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?5图2 BC CD DE ==4.如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:.【参考答案】选择题1. B2.DBF BG BC ⋅=23. C4. D5. B6. A7. D8. B9. C10. D11. C12. D13. D14. A15. A16. B填空题1. 30°2. 403. 304.5. 26. 47. 38. 289. 64º解答题1. 证明:(1) 连结AC ,如图。
2020中考数学 几何专题:平移和旋转(含答案)
2020中考数学几何专题:平移和旋转(含答案)例题1. 如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.例题2. 如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.例题3. 如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为.例题4. 如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=.巩固练习-旋转1.如图,在△ABC 中, 70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋 转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. 30B. 35C. 40D. 502.如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .3.如图,在Rt △ABC 中,∠ACB =90º,∠BAC=60º,AB =6.Rt △AB ´C ´可以看作是由Rt △ABC 绕A 点逆时针方向旋转60º得到的,则线段B ´C 的长为____________.4.如图,,可以看作是由绕点顺时针旋转角度得到的.若点在上,则旋转角的大小可以是( ) A 、 B 、 C 、 D 、9030AOB B ∠=∠=°,°A OB ''△AOB △O αA 'AB α30°45°60°90°A OBA 'B '5.如图,若将△ABC 绕点C, 顺时针旋转90°后得到,则A 点的对应点的坐标是 .6.下列图形中,中心对称图形有( ).7.下列几何图形中,即是中心对称图形又是轴对称图形的是( ) A .正三角形 B .等腰直角三角形 C .等腰梯形D .正方形8.如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .C B A ''∆A'9.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3)。
中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
中考数学四边形专题训练50题含参考答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知1234290∠+∠+∠+∠=︒,那么5∠的大小是( )A .60︒B .70︒C .80︒D .90︒ 2.在▱ABCD 中,∠A ,∠B 的度数之比为4∠5,则∠C 的度数为( )A .60°B .80°C .100°D .120° 3.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 作OE AB ⊥,垂足为E ,则BE 的长为( )A .1B .2C .3D .4 4.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若1AB =,2AC =,则矩形AEFC 的面积为( )A .2 BC .D .32 5.已知∠ABCD 相邻两个内角的比为2:3,则其中较大的内角是( ) A .60° B .72° C .120°D .108°6.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE △)的面积为( )A .6B .7.5C .10D .207.如图,在矩形ABCD 中,6cm,8cm AB BC ==,点E 是BC 的中点,点F 是边CD 上一动点,当AEF △的周长最小时,则DF 的长为( )A .1B .2C .3D .48.如图,在四边形ABCD 中,110C ∠=︒,与BAD ∠,ABC ∠相邻的外角都是120°,则α∠的值为( )A .50°B .55°C .60°D .65° 9.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若38CDE ∠=︒,则BFC ∠的度数为( )A .71︒B .72︒C .81︒D .82︒ 10.在平行四边形ABCD 中,点E 在DC 边上,连接AE ,交BD 于点F ,若DE ∠EC =3:2,则∠DEF 的面积与∠BAF 的面积之比为( )A.3:5B.9:4C.9:25D.3:211.如图,四边形ABCD是正方形,直线a、b、c分别经过A、D、C三点,且a b c∥∥.若a与b之间的距离是2,b与c之间的距离是3,则正方形ABCD的面积是()A.12B.13C.14D.1512.如图,在∠ABC中,点D在边BC上,过点D作DE∠AC,DF∠AB,分别交AB,AC于E,F两点.则下列说法不正确的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若BD=AD=DC,则四边形AEDF是矩形13.小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形14.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,点E是AD边的中点,连接OE,则OE的长为()A.10B.52C.5D.415.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()∠平行四边形;∠菱形;∠任意四边形;∠对角线互相垂直的四边形A.∠∠B.∠∠C.∠∠D.∠∠16.如图,已知点O为∠ABC的AC边上的中点,连接BO并延长到D,使得OD=OB,要使四边形ABCD为矩形,∠ABC中需添加的条件是()A.AB=BC B.∠ABC=90°C.∠BAC=45°D.∠BCA=45°17.如图,在矩形ABCD中,AB=10,BC=12,点M,N分别在AD,BC上,且=,3AM BN=,E为BC边上一动点,连接DE,将DCEAD AM∆沿DE所在直线折叠得到∠DC E',当C'点恰好落在线段MN上时,NE的长为()A.B.5C.3D.18.如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个19.如图,正方形ABCD边长为4,E,F分别为线段AD,BC上一点,且1AE=,CF=,AC与DF相交于H,I为线段AH上一点(不与端点重合),J为线段DH上1+的最小值为()一点(不与端点重合),则EI IJA B C D二、填空题20.如图,已知点A的坐标是(-2),点B的坐标是(1-,,菱形ABCD的对角线交于坐标原点O,则点D的坐标是______.21.如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA∠CA交DB的延长线于点E,若AB=3,BC=4,则OAAE的值为__________.22.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,若∠E=20°,则∠ADB=______.23.如图,□ABCD的对角线交于点O,且AB=4,∠OCD的周长为13,则□ABCD的两条对角线长度之和为________.24.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为_________. 25.如图,在矩形ABCD 中,5AB =,7BC =,点E 为BC 上一动点,把ABE 沿AE 折叠,当点B 的对应点B '落在ADC ∠或DAB ∠的角平分线上时,则点B '到BC 的距离为______________.26.如图,在平行四边形ABDC 中,点M 是CD 的中点,AM 与BC 相交于点N ,那么:ACN S △S 四边形BDMN 等于_______.27.如图,在周长为16,面积为6的矩形纸片ABCD 中,E 是AD 的中点.F 是AB 上一动点,将AEF ∆沿直线EF 折叠,点A 落在点'A 处.在EF 上任取一点G ,连接'GA ,GC ,则'A G GC +的最小值为___________.28.如图,∠ABC 中∠ACB =90°,BC =2,AC =4,若正方形DEFG 的顶点D 在AB 上,顶点F 、G 都在AC 上,射线AE 交BC 边于点H ,则CH 长为___.29.如图,在矩形ABCD 中,AB =6,AD =10,H 是CD 边上一点,现将BCH ∆沿BH 折叠,点C 的对应点C '正好落在AD 边上,点E 、F 分别是AD 、BH 边上的动点,再将四边形ABHD 沿EF 折叠,若点A 的对应点A '正好落在线段BH 上,且4BA HA ''=,则线段AE 的长为______.30.如图,在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,若出发t 秒后,2PA PC =,则t =_________秒.31.如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点122013,,,p p p ⋯,过(1,2,,2013)i p i =⋯作i i PE AB ⊥于i E ,i i PFAD ⊥于i F ,111122222013201320132013PE PF P E P F P E P F ++++⋯++的值为_______________32.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图∠是由边长10cm 的正方形薄板分成7块制作成的“七巧板”图∠是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号).33.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为_________________. 34.在菱形ABCD 的纸板中画O ,随意向其投掷一枚飞镖.若4AB =,60A ∠=,则飞镖落在O 中的概率的最大值为______.35.如图,在ABC ∆中,D 为BC 边中点,P 为AC 边中点,E 为BC 上一点且27BE CE =,连接AE ,取中点Q 并连接QD ,取QD 中点G ,延长PG 与BC 边交于点H ,若9BC =,则HE =_________.36.如图所示,AE 是▱ABCD 的∠DAB 的平分线,且交BC 于点E ,EF ∠AB 交AD 于点F ,则四边形ABEF 一定是____________.37.如图,在矩形ABCD 中,点M 在AB 边上,把∠BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ∠EC ,垂足为F ,若2CD =,4CF =,则线段AE 的长为______.38.如图,在矩形ABCD 中,3AB =,BC a =,点E 在边BC 上,且3.5BE a =连接AE ,将ABE 沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则a 的值为______ .39.如图,Rt∠ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三、解答题40.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在线段OA ,OC 上,且OB OD =,12∠=∠,AE=CF .(1)证明;BEO DFO ≌;(2)证明:四边形ABCD 是平行四边形.41. 如图.在Rt ∠ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点A 出发沿AC 方向以4cm ∕秒的速度向点C 匀速运动,同时点E 从点B 出发沿BA 方向以2cm ∕秒的速度向点A 匀速运动,设点D 、E 运动的时间是t 秒(0<t <15),过点D 作DF ∠BC 于点F ,连接DE 、EF .(1)求证:四边形AEFD 是平行四边形;(2)当t 为何值时,动点D 恰好在AF 的垂直平分线上;(3)点D 、F 在运动过程中是否存在t 的值,使∠DEF 是直角三角形,若存在求出t 的值,若不存在,说明理由.42.如图,在Rt ABC 中,90ACB ∠=︒,D ,E 分别是AB ,AC 的中点,连接CD ,过点E 作EF ∥CD ,交BC 的延长线于点F .(1)求证:四边形DCFE 是平行四边形;(2)若四边形DCFE 的周长是18,AC 的长为6,求线段AB 、 BC 的长.43.知:如图,n 边形12345n A A A A A A .(1)求证:n 边形12345n A A A A A A 的内角和等于()2180n -⋅︒;(2)在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20°,求这个多边形的内角和;(3)粗心的小明在计算一个多边形的内角和时,误把一个外角也加进去了,得其和为1180°,这个多加的外角度数为 ,多边形的边数为 .44.如图,在ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上任意一点,连接EO 并延长,交BC 于点F ,连接AF ,CE .(1)求证:四边形AFCE 是平行四边形;(2)若60DAC ︒∠=,15ADB ∠=°,4AC =.∠直接写出ABCD 的边BC 上的高h 的值;∠当点E 从点D 向点A 运动的过程中,下面关于四边形AFCE 的形状的变化的说法中,正确的是A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→菱形→平行四边形D .平行四边形→菱形→平行四边形→矩形→平行四边形45.如图,在∠ABC 中,AB =AC ,D 为BC 中点.四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形46.已知正方形OABC 在直角坐标系中(如图),A (1,﹣3),求点B 、C 的坐标.47.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .(正方形四条边都相等,四个角都是直角)1.我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)猜想图1中线段BG 和线段DE 的长度和位置关系:______________.(2)将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度a ,得到如图2.如图3情形.请你通过观察、测量等方法判断上述猜想是否仍然成立:_______(成立、不成立)若成立,请你选取图2或图3中的一种情况说明你的判断.48.在矩形ABCD 中,点P 是射线BC 上一动点,点B 关于直线AP 的对称点为E ,直线PE 与直线CD 交于点F .(1)如图1,当A ,C ,E 共线时,若30ACB ∠=︒,判断∠ACF 的形状,并证明;(2)若当点P 在线段BC 上的某个位置时(不与B ,C 重合),有45PAF ∠=︒,求证:当点P 在BC 延长线上任意位置时,都有45PAF ∠=︒.49.【教材呈现】下图是华师版数学教材的部分内容探索如图24.2.1,画Rt ABC ,并画出斜边AB 上的中线CD ,量一量,看看CD 与AB 有什么关系.相信你与你的伙伴一定会发现:CD 恰好是AB 的一半,下面让我们演绎推理证明这一猜想.已知:如图24.2.2,在Rt ABC ,90ACB ∠=,CD 是斜边AB 上的中线.求证:12CD AB =.【证明】请根据教材图24.2.2的提示,完成直角三角形的性质“直角三角形斜边中线等于斜边一半”的证明【延伸】如图∠,在四边形ABCD 中,90ADC ∠=︒,AB AC =,点E 、F 分别为AC ,BC 的中点,连结EF 、DE ,则线段DE 与EF 的数量关系是___________.【应用】(1)如图∠,在【延伸】的条件下,当AC 平分BAD ∠,90DEF ∠=时,则BAD ∠的大小为______.(2)如图∠,在【延伸】的条件下,当2AB =,四边形CDEF 是菱形时,直接写出四边形ABCD 的面积.参考答案:1.B【分析】根据多边形外角和为360︒度进行求解即可.【详解】解:∠1234290∠+∠+∠+∠=︒,12345360∠+∠+∠+∠+∠=︒,∠()5360123470=︒-∠+∠+∠+∠=︒∠,故选B .【点睛】本题主要考查了多边形外角和,熟知多边形外角和为360︒是解题的关键. 2.B【分析】根据平行四边形邻角互补,即可将角A 和角B 的度数求出,再利用对角相等即可求出角C.【详解】∠四边形ABCD 为平行四边形,∠∠A+∠B=180°,∠∠A ,∠B 的度数之比为4∠5 ∠∠A=180°49⨯=80°, 即∠C=80°,故选B.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键. 3.A【分析】先求出OB 的长和∠BOE 的度数,再根据30°角所对的直角边等于斜边的一半,即可求出BE 的值.【详解】解:在菱形ABCD 中,AB =AD ,60A ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,O 为BD 的中点,122OB BD ∴==, 60OE AB ABD ⊥∠=︒,,30BOE ∴∠=︒,112BE OB ∴==. 故选A .【点睛】本题考查了等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半,熟练掌握等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半是解题的关键.4.B【分析】根据勾股定理可求出BC 的长度,再求解∠ACB 的度数,进而求出CF 的长度,最后用矩形面积公式求解即可.【详解】∠四边形ABCD 和四边形AEFC 是两个矩形,∠∠ABC =90°,在Rt ∠ABC 中,由勾股定理可得:BC连接BD 交AC 于点O ,∠四边形AEFC 是矩形,∠BD =AC =2,∠CO =DO =12BD =1, ∠CD =1,∠∠CDO 为等边三角形,∠∠ACD =60°,∠∠ACB =30°,∠四边形AEFC 是矩形,∠AC EF ∥,∠∠CBF =∠ACB =30°,∠CF =12BC∠矩形AEFC 的面积=AC ×CF故选:B 【点睛】本题主要考查了矩形的性质,含有30°角的直角三角形,等边三角形的判定与性质,以及勾股定理,熟练地掌握相关内容是解题的关键.5.D【分析】根据平行四边形邻角互补的性质及题意,可得出较大内角的度数.【详解】解:∠平行四边形ABCD∠相邻内角和为108o∠相邻内角的比为2:3∠较大内角度数是:3180=1085o o ⨯ 故答案是:D.【点睛】本题主要考查平行四边形邻角互补,准确应用平行四边形的性质是解题的关键. 6.C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE △的面积. 【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯=故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.7.D【分析】作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,再根据CE F BE A ∽即可求出CF 的长,进而得出DF 的长.【详解】解:如图所示:作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,此时,∠AEF 的周长最小, ∠在矩形ABCD 中,AB =6,BC = 8,点E 是BC 中点,∠'4BE CE CE ,∠CF AB ∥,∠CE F BE A ''∽, ∠CE CF BE AB ='' ,即4846CF , 解得:2CF =, ∠624DF CD CF ;故选:D .【点睛】本题考查的是轴对称最短路线问题及相似三角形的判定与性质,根据题意作出E 点关于直线CD 的对称点E',再根据轴对称的性质求出CE'的长,利用相似三角形的对应边成比例即可得出结论,熟练应用轴对称和相似的判定与性质相关知识解决问题是解题的关键.8.A【分析】先求出∠ABC =∠BAD =60°,再根据四边形的内角和等于360°,可得∠ADC =130°,即可求解.【详解】解:∠与BAD ∠,ABC ∠相邻的外角都是120°, ∠∠ABC =∠BAD =60°,∠∠ADC =360°-∠ABC -∠BAD -∠BCD =130°,∠18050ADC ∠=︒-∠=︒α.故选:A.【点睛】本题主要考查了四边形的内角和定理、邻补角,熟练掌握四边形的内角和等于360°是解题的关键.9.A【分析】根据正方形的性质,得AD CD =,90ADC ∠=︒,得45ADB CDB ∠=∠=︒;根据ED CD =,得AD DE =;根据等边对等角,38CDE ∠=︒,可求出DAE ∠;根据三角形的内角和,得AFD ∠;根据ADF △和CDF 全等,得AFD CFD ∠=∠,即可求出BFC ∠的角度.【详解】∠四边形ABCD 正方形∠AD CD =,90ADC ∠=︒∠45ADB CDB ∠=∠=︒∠ED CD =∠AD DE =∠DAE DEA ∠=∠∠38CDE ∠=︒∠9038128ADE ∠=︒+︒=︒∠26DAE DEA ∠=∠=︒∠在ADF △中,180DAF AFD ADF ∠+∠+∠=︒∠2645180AFD ︒+∠+︒=︒∠109AFD ∠=︒∠在ADF △和CDF 中AD CD ADF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩∠ADF CDF ≅∠109AFD CFD ∠=∠=︒∠180180109BFC AFD ∠=︒-∠=︒-︒故选:A.【点睛】本题考查正方形和三角形的知识,解题的关键是掌握正方形的性质,全等三角形的性质和判定,等边对等角.10.C【分析】先判断∠DEF∠∠BAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∠四边形ABCD是平行四边形,∠DC∠AB,DC=AB,∠∠DEF∠∠BAF,∠2DEFBAFS DES AB⎛⎫= ⎪⎝⎭.又∠DE:EC=3:2,∠3==5 DE DE DEAB DC DE EC=+,∠2239==525 DEFBAFS DES AB⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭△△.故选C.【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.11.B【分析】先作辅助线AE∠直线b于点E,CF∠直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.【详解】解:作AE∠直线b于点E,作CF∠直线b于点F,则AE=2,CF=3,∠四边形ABCD是正方形,∠AD =DC ,∠ADC =90°,∠∠ADE +∠CDF =90°,∠AE ∠直线b ,CF ∠直线b ,∠∠AED =∠DFC =90°,∠∠ADE +∠DAE =90°,∠∠DAE =∠CDF ,在△AED 和△DFC 中,AED DFC DAE CDF AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠AED ∠∠DFC (AAS ),∠AE =DF ,∠AE =2,CF =3,∠CFD =90°,∠DF =2,∠CD∠正方形ABCD13,故选:B .【点睛】本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.12.C【分析】根据平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【详解】解:∠DE ∠AC ,DF ∠AB ,∠四边形AEDF 是平行四边形,故A 选项正确;∠四边形AEDF 是平行四边形,∠B +∠C =90°,∠∠BAC =90°,∠四边形AEDF 是矩形,故B 选项正确;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形,故C 选项错误;∠BD =AD =DC ,∠∠DBA =∠DAB ,∠DAC =∠DCA ,∠∠DAB +∠DAC =90°,即∠BAC =90°,∠四边形AEDF 是矩形,故选C .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形及菱形的判定方法,难度不大.13.B【分析】根据n 边形的内角和是(n -2)•180°,少计算了一个内角,结果得970度.则内角和(n -2)•180°与970°的差大于0度,且(n -2)•180°小于970°+180°.因而可以解不等式()9702180970180n <-⨯<+,多边形的边数n 一定是最小的整数值即可.【详解】解:设多边形的边数是n ,依题意有:()9702180970180n <-⨯<+ 解得:77781818n <<, ∠则多边形的边数n =8;故选B .【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键. 14.B【分析】根据菱形的性质得到OA =12AC =3,OD =12BD =4,AC ∠BD ,利用勾股定理求出AD ,再根据直角三角形斜边中线的性质求出OE 即可.【详解】∠四边形ABCD 为菱形,∠OA =12AC =3,OD =12BD =4,AC ∠BD ,∠AD 5,∠点E 是边AD 的中点,∠OE =12AD =52, 故选:B .【点睛】此题考查了菱形的性质,勾股定理,直角三角形斜边中线的性质,熟记菱形的性质是解题的关键.15.D【分析】根据中点四边形为平行四边形,当四边形的对角线互相垂直时则平行四边形为矩形,即可得到答案.【详解】解:顺次连接一个四边形的各边中点,得到的四边形是平行四边形,若四边形的对角线互相垂直,则所得平行四边形为矩形,则满足条件的是∠∠, 故选:D .【点睛】此题考查中点四边形的判定,矩形的判定,熟记判定定理是解题的关键. 16.B【分析】由题意可证四边形ABCD 是平行四边形,由矩形的判定可求解.【详解】解:∠点O 为∠ABC 的AC 边上的中点,∠AO =CO ,且OD =OB ,∠四边形ABCD 是平行四边形,∠有一个角为直角的平行四边形是矩形,对角线相等的平行四边形是矩形,∠添加条件为∠ABC =90°,故选B .【点睛】本题考查了矩形的判定,平行四边形的判定,熟练掌握矩形的判定是本题的关键.17.A【分析】设CE =x ,则C ′E =x ,证明四边形MNCD 是矩形,由矩形的性质得出∠DMN =∠MNC =90°,MN =CD =10,由折叠的性质得出C ′D =CD =10,求出6MC '=,则4NC '=,在Rt NEC '中,由勾股定理得出222(8)4x x --=,解方程可得出答案.【详解】解:设CE =x ,则C ′E =x ,∠矩形ABCD 中,AB =10,∠CD =AB =10,AD =BC =12,AD∥BC ,∠点M ,N 分别在AD ,BC 上,且3AM =AD ,BN =AM ,∠DM =CN =8,∠四边形CDMN 为平行四边形,∠∠NCD =90°,∠四边形MNCD 是矩形,∠∠DMN =∠MNC =90°,MN =CD =10,由折叠知,C ′D =CD ,10,∠6MC '==,∠1064CN '=-=,∠EN =CN -CE =8-x ,∠C ′E 2-NE 2=C ′N 2,∠222(8)4x x --=,解得,5x =,即853NE CN CE =-=-=.故选:C .【点睛】本题主要考查了矩形的性质与判定,勾股定理,一元一次方程的应用,折叠的性质,熟练掌握折叠的性质是解题的关键.18.C【分析】连结CE ,根据菱形的性质和全等三角形的判定可得∠ABE ∠∠CBE ,根据全等三角形的性质可得AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,可得∠ECF =∠EFC ,根据等角对等边可得CE =EF ,从而得到AE =EF ,在Rt∠ABO 中,根据含30°的直角三角形的性质得到AO =2,可得2≤AE ≤4,从而得到EF 的长的整数值可能是2,3,4.【详解】解:如图,连结CE,∠在菱形ABCD 中,AB =BC ,∠ABE =∠CBE =30°,BE =BE ,∠∠ABE ∠∠CBE ,∠AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,∠∠DEF =120°﹣(90°﹣a )=30°+a ,∠∠EFC =∠CDE +∠DEF =30°+30°+a =60°+a ,∠∠ECF=∠DCO+∠OCE=60°+a,∠∠ECF=∠EFC,∠CE=EF,∠AE=EF,∠AB=4,∠ABE=30°,∠在Rt∠ABO中,AO=2,∠OA≤AE≤AB,∠2≤AE≤4,∠AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明∠ABE∠∠CBE.19.C有最小值,如下【分析】作点E关于AC的对称点K,EI+IJ=KI+KJ,当EJ∠DF时EI IJ图所示,延长KJ交DC于N点,过N作NM∠AD,得到∠KMN∠∠FCD,再由∠DJ0N∠∠DCF求出J0N,最后KN减去J0N即为所求.【详解】解:如图,作点E关于AC的对称点K,当EJ∠DF时EI+IJ有最小值为KJ0,此时设KN与DF、CD的交点分别为J0和N点,过N点作MN∠AD交AB于点M.∠∠KND+∠FDC=90°,∠DFC+∠FDC=90°∠∠KND=∠DFC又∠AB∠CD∠∠MKN=∠KND=∠DFC在∠MKN 和∠CFD 中90∠=∠⎧⎪∠=∠=⎨⎪=⎩MKN CFD KMN FCD MN DC ,∠∠MKN∠∠CFD(AAS)∠1,112=====+=KM CF KN DF DN AM ,又∠DJ 0N∠∠DCF ∠0=J N DN CF DF,代入数据:01J N,得0J∠00=-==KJ KN J N 故答案为:C.【点睛】本题考查了正方形的性质、相似三角形的性质和判定、线段最值问题等,两条折线段的最值问题一般通过平移、对称等转移到一条线段上去,然后再根据两点之间线段最短或点到直线的距离垂线段最短求解即可.20.(1【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称, 因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∠四边形ABCD 是菱形,对角线相交于坐标原点O∠根据平行四边形对角线互相平分的性质,A 和C ; B 和D 均关于原点O 对称 根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B的坐标是(-1, ,则点D的坐标是( .故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.21.724 【分析】过点A 作AH BD ⊥于点H ,分别利用勾股定理和等面积法求出AH 和OH 的长度,从而可结合正切函数求出tan AOE ∠,进而结合题意可得出AE AO,即可得出结论.【详解】解:在Rt ABC 中,∠3,4AB BC ==,∠5AC =, ∠115222AO AC BD ===, 如解图,过点A 作AH BD ⊥于点H , ∠1122ABD S BD AH AB AD =⋅=⋅, ∠534AH =⨯, ∠125AH =,∠在Rt AOH 中,710OH ==, ∠tan 247AH OH AOE ==∠, 又∠EA CA ⊥,∠在Rt EAO △中,tan 247AE AO AOE ==∠, ∠724AO AE =, 故答案为:724.【点睛】本题考查矩形的性质,正切函数的定义等,理解矩形的基本性质,掌握正切函数的定义是解题关键.22.40°【分析】连接AC ,由矩形性质可得∠E =∠DAE 、BD =AC =CE ,知∠E =∠CAE ,而∠E =20°,可得∠ADB 度数.【详解】解:连接AC ,∠四边形ABCD是矩形,∠AD∠BE,AC=BD,且∠E=20°,∠∠E=∠DAE,又∠BD=CE,∠CE=CA,∠∠E=∠CAE,∠∠ADB=∠CAD=∠CAE+∠DAE=2∠E=40°,故答案为:40°.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.23.18【详解】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线看作一个整体.解:∠四边形ABCD是平行四边形,∠AB=CD=4,∠∠OCD的周长是13,∠OD+OC=13-4=9,∠BD=2DO,AC=2OC,∠平行四边形的两条对角线的和=BD+AC=2(DO+OC)=18故选A.“点睛”本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:∠平行四边形两组对边分别平行;∠平行四边形两组对边分别相等;∠平行四边形的两种对角分别相等;∠平行四边形的对角线互相平分.24.16【详解】设多边形的边数为n,依题意,得:(n−2)⋅180°=7×360°,解得n=16,故答案为16.25.2或1或52- 【分析】过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,分点B 的对应点B '落在ADC ∠的角平分线上和点B 的对应点B '落在DAB ∠的角平分线两种情况,利用勾股定理列方程,即可求得答案. 【详解】解:四边形ABCD 是矩形,5,7,90,AB CD AD BC ADC AD BC ∥,过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,∠当点B 的对应点B '落在ADC ∠的角平分线上时,连接B D ',45,ADB MB D,DM B M∠设DM B M x '==,则7AM x =-,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AM AB B M ,即()22275x x -=-, 解得:1234,x x ==,则点B '到BC 的距离为532MH B M '-=-=或541MH B M '-=-=.∠当点B 的对应点B '落在DAB ∠的角平分线上时,45,B AMMB A ,AM B M∠设AM m B M '==,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AB AM B M ,即2225m m =+,解得:12m m ==(不合题意,舍去),则点B '到BC 的距离为5MH B M '-=-故答案为:2或1或5- 【点睛】本题考查的是翻折变换的性质、勾股定理、矩形的性质、解一元二次方程等知识点,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.26.2:5【详解】试题分析:根据平行四边形的性质可得∠ABN∠∠MCN ,再结合点M 是CD 的中点,根据相似三角形的性质及三角形的面积公式求解即可.∠平行四边形ABDC∠∠ABN∠∠MCN∠点M 是CD 的中点∠AN=2MN∠∠CAN 的面积是∠MCN 的面积的2倍,∠BCD 的面积是∠MCN 的面积的6倍 ∠四边形BDMN 是∠MCN 的面积的5倍∠:ACN BDMN S S ∆四边形=2:5.考点:平行四边形的性质,相似三角形的判定和性质,三角形的面积公式点评:平行四边形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.27.【分析】连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,由勾股定理求出AC 的长,则可得出答案.【详解】解:连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,设AB =x ,BC =y ,∠矩形ABCD 的周长为16,面积为6,∠2()166x y xy +=⎧⎨=⎩, ∠22x y +52=,∠AC ==∠A 'G +GC 的最小值为故答案为:【点睛】本题考查翻折变换,矩形的性质,轴对称最短问题等知识,解题的关键是学会用转化的思想思考问题.28.43【分析】根据题意可知1tan =2BC DG BAC AC AG ==∠,tan =EF CH HAC AF AC=∠再利用正方形的性质求解即可.【详解】解:∠四边形DEFG 是正方形,∠DG=G F =EF ,∠DGF =∠EF A =90°,∠∠DGA =90°, ∠tan =DG BAC AG ∠,tan =EF HAC AF ∠ ∠∠ACB =90°,BC =2,AC =4, ∠1tan ==2BC BAC AC ∠,tan =CH HAC AC ∠ ∠1tan =2BC DG BAC AC AG==∠, ∠2AG DG =,∠3=3AF DG EF = ∠1tan =3EF CH HAC AF AC ==∠, ∠433AC CH ==, 故答案为:43【点睛】本题主要考查了正方形的性质和解直角三角形,解题的关键在于能够熟练掌握解直角三角形的相关知识.29.16936【分析】过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,则四边形ABMN 是矩形,AM =AN ,MN =AB =6,然后证明A MB HCB '△∽△,得到485AN BM BC ===,45A M HC '=,再由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,则可由勾股定理得到8AC '=,则2C D AD AC ''=-=,从而可以求得103CH =,得到8=3A M ',则10=3A N MN A M ''=-,设=AE A E y '=,则8EN y =-,由222A E A N EN ''=+,得到()2221083y y ⎛⎫=+- ⎪⎝⎭,解方程即可. 【详解】解:如图所示,过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,∠四边形ABCD 是矩形,∠=90A ABM BMN C ∠=∠=∠=︒∠ ,CD ∠BC ,∠四边形ABMN 是矩形,∠AM =AN ,∠A M BC '⊥,CD BC ⊥,∠A M CH '∥,∠A MB HCB '△∽△, ∠BA BM A M BH BC HC''==, ∠4BA HA ''=,∠5BH HA '=, ∠4=5BA BM A M BH BC HC ''==,∠485AN BM BC ===,45A M HC '=, 由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,∠8AC '=,∠2C D AD AC ''=-=,设C H CH x '==,则6DH x =-,∠222C H DH C D ''=+,∠()2264x x =-+, 解得103x =, ∠103CH =, ∠8=3A M ', ∠10=3A N MN A M ''=-, 设=AE A E y '=,则8EN y =-,∠222A E A N EN ''=+, ∠()2221083y y ⎛⎫=+- ⎪⎝⎭, 解得16936y =, ∠16936AE =, 故答案为:16936.【点睛】本题主要考查了矩形的性质与判定,折叠的性质,勾股定理,解题的关键在于能够熟练掌握矩形的性质与判定.30.【分析】根据矩形的性质和勾股定理,用含t 的代数式表示出P A ,PC ,再列出方程,即可求解.【详解】解:∠在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,∠P A =2t ,PC ∠2PA PC =,∠2t =t 1t 2, 故答案是:【点睛】本题主要考查矩形的性质,勾股定理,二次根式,一元二次方程,用用含t 的代数式表示出P A ,PC ,是解题的关键.31.2013【详解】试题分析:在菱形ABCD 中,BD∠AC ,BD 与AC 互相平分,因为∠BAD=60°,所以∠BAC=30°,又因为AC=2,设BD 的一半为x ,则AB=2x ,根据勾股定理,得1AP ,因为i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,利用等面积法,得12·AD·1P F +12·AB·1P E =12·BD·12AC 1P F +1P E )1P F +1P E =1,同理可得,111122222013201320132013PE PF P E P F P E P F ++++⋯++=2013×1=2013.考点:菱形的相关性质和等面积法的应用点评:该题主要考查学生对菱形性质的理解和掌握程度,同时要求学生提高对题目的观察能力,找出其中的规律.32.2【分析】由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等,所以大正方形的对角线长度为4倍小正方形边长,设出小正方形边长,利用大正方形面积列出方程,解出方程即可【详解】设小正方形边长为a ,由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等, 所以大正方形对角线长4a ,S 大正方形=442a a ⨯。
初中数学几何图形专题训练50题含答案
初中数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC 的度数为( )A .30ºB .45ºC .50ºD .60º 2.下列图形属于立体图形的是( )A .正方形B .三角形C .球D .梯形 3.已知∠AOB =75°,以O 为端点作射线OC ,使∠AOC =48°,则∠BOC 的度数为( )A .123°B .123°和27°C .23°D .27°4.如图,已知点C 是线段AB 的中点,2AC cm =, 1.5DC cm =,则BD =( )A .0.5cmB .1cmC .1.5cmD .2cm 5.已知A ,B ,C ,D 四点,任意三点都不在同一直线上,以其中的任意两点为端点的线段的数量是( )A .5B .6C .7D .8 6.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若2110∠=︒,那么1∠的度数是( )A .10°B .20°C .30°D .40° 7.如图,已知∠ACB=90°,CD∠AB ,垂足是D ,则图中与∠A 相等的角是( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B 8.在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和互补的角为()A.B.C.D.9.下列说法正确的是()A.连接两点的线段,叫做两点间的距离B.射线OA与射线AO表示的是同一条射线C.经过两点有一条直线,并且只有一条直线D.从一点引出的两条直线所形成的图形叫做角10.我军在海南举行了建国以来海上最大的军事演习,位于点O处的军演指挥部观测到军舰A位于点O的北偏东65︒方向(如图),同时观测到军舰B位于点O处的南偏西20︒方向,则AOB∠=()A .85︒B .105︒C .125︒D .135︒ 11.如图,小玮从A 处沿北偏东40°方向行走到点B 处,又从点B 处沿东偏南23°方向行走到点C 处,则∠ABC 的度数为( )A .99°B .107°C .127°D .129° 12.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,30B ∠=︒,100ACD ∠=︒,则E ∠的度数为( )A .10°B .15°C .20°D .25° 13.如图所示,正方体的展开图为( )A .B .C .D .14.如图方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上,点P 也在小正方形的顶点上.某人从点P 出发,沿图中已有的格点所连线段走一周(即不能直接走线段AC 且要回到P ),则这个人所走的路程最少是( )A .7B .14C .10D .不确定 15.如图,等边∠ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若AE =2,则EM +CM 的最小值为( )AB .C .D .16.已知A ,B ,C 三点在同一条直线上,M ,N 分别为线段AB ,BC 的中点,且AB =60,BC =40,则MN 的长为( )A .10B .50C .10或50D .无法确定 17.如图,从4点钟开始,过了40分钟后,分针与时针所夹角的度数是( )A .090B .0100C .0110D .0120 18.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒ 19.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°20.如图,直线AB MN∥,点C为直线MN上一点,连接AC、BC,∠CAB=40°,∠ACB=90°,∠BAC的角平分线交MN于点D,点E是射线AD上的一个动点,连接CE、BE,∠CED的角平分线交MN于点F.当∠BEF=70°时,令ECMα∠=,用含α的式子表示∠EBC为().A.52αB.10α︒-C.1102α︒-D.1102α-︒二、填空题21.如图,将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD,若∠AOB=15°,则∠AOD 的度数是______°.22.若∠A与∠B互余,则∠A+∠B=_____;若∠A与∠B互补,则∠A+∠B=_____. 23.如图,点A、O、B在一条直线上,且∠AOD=35°,OD平分∠AOC,则图中∠BOC=______度.24.如图,在直线AB 上有一点O ,OC ∠OD ,OE 是∠DOB 的角平分线,当∠DOE =20°时,∠AOC =___°.25.一个直棱柱有12条棱,则它是__棱柱.26.如图,EF 是ABC 的中位线,BD 平分ABC ∠交EF 于D ,若6,10AB BC ==,则DF =______.27.已知5526α∠=︒',则α∠的余角为____________28.在墙上钉一根细木条至少要钉2根钉才稳,根据是_________________________; 29.在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______.30.如图所示,//AB CD ,CE 平分ACD ∠,并且交AB 于E ,118A ∠=︒,则AEC ∠等于______.31.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若45BOD ∠=︒,20C ∠=︒,则ADC ∠=___________.32.一副三角板按如图放置,则下列结论:∠如果230∠=︒,则有AC DE ∥;∠如果BC AD ∥,则有245∠=︒;∠如果445∠=︒,那么160∠=︒;∠ BAE CAD ∠+∠ 随着2∠的变化而变化,其中正确的是____.33.已知C 是线段AB 的中点,AB=10,若E 是直线AB 上的一点,且BE=3,则CE=_____34.如图,C ,D 是线段AB 上两点,已知AC :CD :DB=1:2:3,M 、N 分别为AC 、DB 的中点,且AB=8cm ,求线段MN 的长_____.35.已知OC 为一条射线,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,当60AOB ∠=︒,OC 为AOB ∠内部任意一条射线时,MON ∠=_____; (2)如图2,当60AOB ∠=︒,OC 旋转到AOB ∠的外部时,MON ∠=_____; (3)如图3,当AOB α∠=,OC 旋转到AOB ∠(120BOC ∠<︒)的外部时,求MON ∠,请借助图3填空.解:因为OM 平分AOC ∠,ON 平分BOC ∠ 所以1122COM AOC CON BOC ∠=∠∠=∠,(依据是____________) 所以MON COM ∠=∠-_________12AOC =∠-_______12=________. 36.如图,已知60BAC ∠=︒,AD 是角平分线且20AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 的周长为 ______.37.平面内,已知AOB 90∠=,20,BOC OE ∠=平分,AOB OF ∠平分BOC ∠,则EOF ∠=______.38.如图所示,设L AB AD CD =++,M BE CE =+,N BC =.试比较M 、N 、L 的大小:________.39.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,点D 与点A 重合,8DE =,则EC =_________;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB =_______.三、解答题40.如图所示,在长方形ABCD 中,6cm BC ,8cm CD =,现绕这个长方形的一边所在直线旋转一周得到一个几何体.请解决以下问题:(1)说出旋转得到的几何体的名称?(2)如果用一个平面去截旋转得到的几何体,那么截面有哪些形状(至少写出3种)?(3)求旋转得到的几何体的表面积?(结果保留π)41.将一个正方体的表面沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?42.如图,OB 为AOC ∠的平分线,OD 是COE ∠的平分线.(1)如果40AOB ∠=︒,30DOE ∠=︒,那么BOD ∠为多少度?(2)如果140AOE ∠=︒,30COD ∠=︒,那么AOB ∠为多少度?(3)如果AOC α∠=︒,COE β∠=︒,则BOD ∠=______°,如果AOE θ∠=︒,则BOD ∠=______︒.43.如图,点C 是线段AB 上的一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果12,5AB cm AM cm ==,求BC 的长;(2)如果8MN cm =,求AB 的长.44.如图,一只蚂蚁沿长方体的表面从顶点A 爬到另一顶点M ,已知AB =3,AD = 4,BF = 5.求这只蚂蚁爬行的最短距离.45.已知AB CD ∥,点M 、N 分别在直线AB 、CD 上,AME ∠与CNE ∠的平分线所在的直线相交于点F .(1)如图1,点E 、F 都在直线AB 、CD 之间且70MEN ∠=︒时,MFN ∠的度数为___________;(2)如图2,当点E在直线AB、CD之间,F在直线CD下方时,写出MEN∠与MFN∠之间的数量关系,并证明;∠与(3)如图3,当点E在直线AB上方,F在直线AB与CD之间时,直接写出MEN∠之间的数量关系.MFN46.O为直线AB上的一点,OC∠OD,射线OE平分∠AOD.(1)如图∠,判断∠COE和∠BOD之间的数量关系,并说明理由;(2)若将∠COD绕点O旋转至图∠的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;(3)若将∠COD绕点O旋转至图∠的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.47.已知,P是线段AB的中点,点C是线段AB的三等分点,线段CP的长为4 cm.(1)求线段AB的长;(2)若点D是线段AC的中点,求线段DP的长.48.【提出问题】如图1,在直角ABC中,∠BAC=90°,点A正好落在直线l上,则∠1、∠2的关系为【探究问题】如图2,在直角ABC中,∠BAC=90°,AB=AC,点A正好落在直线l 上,分别作BD∠l于点D,CE∠l于点E,试探究线段BD、CE、DE之间的数量关系,并说明理由.【解决问题】如图3,在ABC中,∠CAB、∠CBA均为锐角,点A、B正好落在直线l 上,分别以A、B为直角顶点,向ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分别过点E、F作直线l的垂线,垂足为M、N.∠试探究线段EM、AB、FN之间的数量关系,并说明理由;∠若AC=3,BC=4,五边形EMNFC面积的最大值为49.如图,两个形状、大小完全相同的含有3060︒︒、的三角板如图∠放置,PA PB 、与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.(1)求DPC ∠;(2)如图∠,若三角板PBD 保持不动,三角板PAC 的边PA 从PN 绕点P 逆时针旋转一定角度,PF 平分,APD PE ∠平分CPD ∠,求EPF ∠.(3)如图∠,在图∠基础上,若三角板PAC 的边PA 从PN 开始绕点P 逆时针旋转,转速为3︒/秒,同时三角板PBD 的边PB 从PM 绕点P 逆时针旋转,转速为2︒/秒,(当PC 转到与PM 重合时,两三角板都停止转动),求CPD BPN∠∠的值. (4)如图∠,在图∠基础上,若三角板PAC 开始绕点P 逆时针旋转,转速为5︒/秒,同时三角板PBD 绕点P 逆时针旋转,转速为1︒/秒,(当PA 转到与PM 重合时,两三角板都停止转动),在旋转过程中,PC PB PD 、、三条射线中,当其中一条射线平分另两条射线的夹角时,直接写出旋转的时间.参考答案:1.A【详解】试题分析:根据∠AOC=∠BOD=90º,∠AOD=150º,可得∠COD的度数,从而求得结果.∠∠AOC=∠BOD=90º,∠AOD=150º∠∠COD=∠AOD-∠AOC=60°∠∠BOC=∠BOD-∠COD=30°故选A.考点:本题考查的是角的计算点评:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.2.C【分析】依据立体图形的定义回答即可.【详解】解:正方形、三角形、梯形是平面图形,球是立体图形.故选:C.【点睛】本题主要考查的是立体图形的认识,掌握相关概念是解题的关键.3.B【分析】讨论:当OC在∠AOB的内部,如图1,则∠BOC=∠AOB-∠AOC;OC在∠AOB的外部,如图2,则∠BOC=∠AOB+∠AOC.【详解】解:当OC在∠AOB的内部,如图1,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB-∠AOC=75°-48°=27°;当OC在∠AOB的外部,如图2,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB+∠AOC=75°+48°=123°,综上所述,∠BOC的度数为27°或123°.【点睛】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.4.A【分析】根据线段中点和线段之间的关系计算即可.【详解】解:点C是线段AB的中点,∴2==,BC AC cm∴2 1.50.5=-=-=.BD BC CD cm故选:A.【点睛】本题考查线段中点和线段的长度关系,掌握线段中点的性质是解答关键.5.B【分析】根据题意画出示意图,即可得答案.【详解】解:如图所示,有四个点,且每三点都不在同一直线上,每两点连一条线段,则可以连6条线段,故选:B.【点睛】本题主要考查了直线、线段、射线数量问题,能正确根据题意画出图形是解决问题的关键.6.D【分析】利用平行线的性质和平角的性质可以求得结果得出答案.【详解】解:如图示∠=︒,将一块含有30︒的直角三角板的顶点放在直尺的一边上,2110∠32110∠=∠=︒,∠11802301801103040∠=︒-∠-︒=︒-︒-︒=︒【点睛】本题主要考查了平行线的性质,正确得出3∠的度数是解题关键.7.B【分析】【详解】∠∠ACB= 90°,即∠1+∠2= 90°又∠在Rt∠ACD 中,∠A+∠1=90°∠∠A=∠2故选:B.8.D【详解】析:根据图形估计∠AOB 的大致度数,然后根据互为补角的和等于180°进行解答即可.解答:解:根据图形可得∠AOB 大约为135°,∠与∠AOB 互补的角大约为45°,综合各选项D 符合.故选D .9.C【分析】根据线段、射线、直线的定义即可解题.【详解】解:A. 连接两点的线段长度,叫做两点间的距离B. 射线OA 与射线AO 表示的是同一条射线,错误,射线具有方向性,C. 经过两点有一条直线,并且只有一条直线,正确,D. 错误,应该是从一点引出的两条射线所形成的图形叫做角,故选C.【点睛】本题考查了线段、射线、直线的性质,属于简单题,熟悉定义是解题关键. 10.D【分析】根据方向角的定义以及角的和差关系进行计算即可.【详解】解:由方向角的定义可知,65NOA ∠=︒,20SOB ∠=︒,∠906525AOE ∠=︒-︒=︒,∠AOB AOE EOS SOB ∠=∠+∠+∠,259020=︒+︒+︒故选:D .【点睛】本题考查方向角,理解方向角的定义是解决问题的前提.11.B【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】如图:∠小明从A 处沿北偏东40︒方向行走至点B 处,又从点B 处沿东偏南23︒方向行走至点C 处,∠40DAB ∠=︒,23CBF ∠=︒,∠向北方向线是平行的,即AD BE ∥,∠40ABE DAB ∠=∠=︒,∠90EBF ∠=︒,∠902367EBC ∠=︒-︒=︒,∠4067107ABC ABE EBC ∠=∠+∠=︒+︒=︒,故选B .【点睛】本题考查方位角,解题的关键是画图正确表示出方位角.12.C 【分析】先根据角平分线的定义求出1502ECD ACD ∠=∠=︒,再由三角形外角的性质求解【详解】解:∠CE平分∠ACD,∠ACD=100°,∠1502ECD ACD∠=∠=︒,∠∠B=30°,∠∠E=∠ECD-∠B=20°,故选C.【点睛】本题主要考查了角平分线的定义,三角形外角的性质,熟知角平分线的定义和三角形外角的性质是解题的关键.13.A【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.【点睛】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.14.B【分析】根据题意作图得到运动的轨迹,根据矩形的周长特点即可求解.【详解】如图,这个人所走的路程是图中的矩形,周长为2(3+4)=14故选B.【点睛】此题主要考查网格的作图,解题的关键是根据题意作出图形求解.15.C【分析】连接BE,交AD于点M,过点E作EF∠BC交于点F,此时EM+CM的值最小,求出BE即可.【详解】解:连接BE,交AD于点M,过点E作EF∠BC交于点F,∠∠ABC是等边三角形,AD是BC边上的中线,∠B点与C点关于AD对称,∠BM=CM,∠EM+CM=EM+BM=BE,此时EM+CM的值最小,∠AC=6,AE=2,∠EC=4,在Rt∠EFC中,∠ECF=60°,∠FC=2,EF=在Rt∠BEF中,BF=4,∠BE=故选:C.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题的关键.16.C【分析】根据题意画出图形,再根据图形求解即可.【详解】解:(1)当C在线段AB延长线上时,如图1,∠M、N分别为AB、BC的中点,∠BM=12AB=30,BN=12BC=20;∠MN=50.(2)当C在AB上时,如图2,同理可知BM =30,BN =20,∠MN =10;所以MN =50或10,故选C .【点睛】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.17.B【分析】4点时,分针与时针相差四大格,即120°,根据分针每分钟转6°,时针每分钟转0.5°,则40分钟后它们的夹角为40×6°﹣4×30°﹣40×0.5°.【详解】4点40分钟时,钟表的时针与分针形成的夹角的度数=40×6°﹣4×30°﹣40×0.5°=100°.故选B .【点睛】本题考查了钟面角:钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°.18.D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.19.A【分析】先根据∠CED =50°,DE ∠AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∠DE ∠AF ,∠CED =50°,∠∠CAF =∠CED =50°,∠∠BAC =60°,∠∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.20.D【分析】先求出∠ABC,再延长CE,交AB于点G,结合平行线的性质表示出∠BCE,然后根据三角形内角和定理表示∠CED,再根据角平分线得定义表示出∠CEB,最后根据三角形内角和定理得出答案.【详解】在∠ABC中,∠CAB=40°,∠ACB=90°,∠∠ABC=50°.延长CE,交AB于点G,∠MN BA∥,∠EGBα∠=,∠ACM=∠BAC=40°,∠∠ACE=α-40°,∠∠BCE=90°-(α-40°)=130°-α.∠∠CEA=180°-∠CAE-∠ACE,∠∠CED=180°-∠CEA=∠CAE+∠ACE=20°+(α-40°)=α-20°.∠EF平分∠CED,∠∠CEF=111022CEDα∠=-︒,∠∠CEB=1110706022αα-︒+︒=+︒,∠∠EBC=11180(60)(130)10 22ααα︒-+︒-︒-=-︒.故选:D.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,平行线的性质,将待求角转化到适合的三角形是解题的关键.21.55°##55度【分析】根据将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD ,可得∠BOD = 40° 即可得∠AOD =∠BOD +∠AOB = 55°.【详解】∠将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD .∠∠BOD = 40°,∠∠AOB = 15°∠∠AOD =∠BOD +∠AOB = 40°+ 15°= 55°,故答案为:55°.【点睛】本题考查三角形的旋转变换,解题的关键是掌握旋转的性质.22. 90°##90度 180°##180度【分析】根据互余,互补的定义即可得到结果.【详解】若∠A 与∠B 互余,则∠A +∠B =90°;若∠A 与∠B 互补,则∠A +∠B =180°.故答案为:90°,180°【点睛】解答本题的关键是熟记和为90°的两个角互余,和为180°的两个角互补. 23.110【分析】根据角平分线可得270AOC AOD ∠=∠=︒,再利用补角的性质求解即可得.【详解】解:∵OD 平分AOC ∠,35AOD ∠=︒,∴223570AOC AOD ∠=∠=⨯︒=︒,∵AOC ∠与BOC ∠是邻补角,∴180AOC BOC ∠+∠=︒,∴18070110BOC ∠=︒-︒=︒.故答案为:110.【点睛】题目主要考查角平分线的计算及补角的性质,理解题意,结合图形求角度是解题关键.24.50【分析】先求出∠BOD ,根据平角的性质即可求出∠AOC .【详解】∠OE 是∠DOB 的角平分线,当∠DOE =20°∠∠BOD =2∠DOE =40°∠OC ∠OD ,∠∠AOC =180°-90°-∠BOD =50°故答案为:50.【点睛】此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质. 25.四【详解】试题解析:设该棱柱为n 棱柱,根据题意得:3n =12.解得:n =4.所以该棱柱为四棱柱,故答案是:四.26.2【分析】根据中位线的性质可得EF BC ∥,EF =12BC =5,则有∠CBD =∠BDE ,AE =BE =12AB =3,再根据BD 平分∠ABC ,有∠ABD =∠CBD ,即有∠ABD =∠BDE ,则可得DE =BE =3,问题得解.【详解】∠EF 是∠ABC 的中位线,∠EF BC ∥,EF =12BC =5,E 点为AB 中点, ∠∠CBD =∠BDE ,AE =BE =12AB =3. ∠BD 平分∠ABC ,∠∠ABD =∠CBD ,∠∠ABD =∠BDE ,∠DE =BE =3.∠DF =EF −DE =EF −BE =5−3=2.故答案为:2.【点睛】本题考了三角形中位线的性质、角平分线的性质以及等角对等边的知识,求出DE =BE 是解答本题的关键.27.3434'︒【分析】直接利用互余两角的关系,结合度分秒的换算得出答案.【详解】解:∠5526α∠=︒',∠α∠的余角为:9055263434'=︒'︒-︒.故答案为:3434'︒.【点睛】此题主要考查了余角的定义和度分秒的转换,正确把握相关定义是解题关键. 28.两点确定一条直线【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线. 故答案为两点确定一条直线.【点睛】当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定在直线上,才能射中目标等等;它们都是运用了“两点确定一条直线”的直线的性质.29. 棱, 侧棱;【分析】由棱柱的组成部分的定义直接填空即可.【详解】在棱柱中,任何相邻的两个面的交线都叫做棱,相邻的两个侧面的交线叫做侧棱. 故答案为棱;侧棱.【点睛】熟记面与面相交成线,在棱柱中,任何相邻的两个面的交线都叫做棱. 30.31°【分析】要求AEC ∠的度数,根据平行线的性质,只需求得2∠的度数.显然结合平行线的性质以及角平分线的定义就可解决.【详解】解://AB CD ,CE 平分ACD ∠交AB 于E ,118A ∠=︒,1112(180)(180118)3122A ∴∠=∠=︒-∠=︒-︒=︒, 231AEC ∴∠=∠=︒,故答案为:31°.【点睛】本题考查的是角平分线的性质及平行线的性质,比较简单,需同学们熟练掌握.31.70︒##70度【分析】根据三角形外角的定义和性质可知ADC A ABD ∠=∠+∠,利用轴对称的性质求出A ∠与ABD ∠的大小并进行计算即可. 【详解】解:AOB 与COB △关于边OB 所在的直线成轴对称∴20A C ∠=∠=︒,2ABD ABO ∠=∠,根据三角形外角的性质可知:在AOB 中,452025ABO BOD A ∠=∠-∠=︒-︒=︒222550ABD ABO ∴∠=∠=⨯︒=︒∴ 在ABD △中,205070ADC A ABD ∠=∠+∠=︒+︒=︒.故答案为:70︒.【点睛】本题考查轴对称的性质和三角形外角的性质,熟练运用三角形的外角性质进行计算是本题的解题关键.32.∠∠∠【分析】根据平行线的判定与性质即可逐一进行证明.【详解】解:∠∠230∠=︒,∠190260∠=︒-∠=︒,∠60AED ∠=︒,∠1AED ∠=∠,∠AC DE ∥;所以∠正确;∠∠BC AD ∥,∠345B ∠=∠=︒,∠290345∠=︒-∠=︒;所以∠正确;∠如图,∠445,60EGF GEF ∠=∠=︒∠=︒,∠4560105GFA ∠=︒+︒=︒,∠1GFA C ∠=∠+∠,∠45C ∠=︒,∠160∠=︒.所以∠正确.∠∠123290∠+∠=∠+∠=︒,∠21239090180BAE CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒,∠BAE CAD ∠+∠随着2∠的变化不会发生变化;所以∠错误;所以其中正确的是∠∠∠.故答案为:∠∠∠.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.33.2或8【分析】由已知C 是线段AB 中点,AB=10,求得BC'= 5,进一步分类探讨:E 在BC 内;E 在BC 的延长线上;由此画图得出答案即可.【详解】C 是线段AB 的中点, AB= 10,BC= AB= 5,如图,当E 在BC 内,CE= BC- BE= 5- 3=2;∠如图,E 在BC 的延长线上,CE= BC+ BE= 5+3=8 ;所以CE= 2或8;故本题答案为:2或8.【点睛】解决本题的关键突破口是分类讨论,本题考查了学生综合分析的能力,要求学生掌握线段中点的意义,线段的和与差.34.153cm 【分析】根据线段的比例,可得线段的长度,根据线段的和差,可得答案.【详解】∠AC :CD :DB=1:2:3,设AC=a ,CD=2a ,DB=3a ,∠AB=AC+CD+DB=a+2a+3a=6a=8,解得:a=43, ∠AC=43,DB=3×43=4, ∠M 、N 分别为AC 、DB 的中点, ∠AM=12AC=23,BN=12DB=2, ∠MN=AB-AM-BN=8-23-2=513(cm ). 故答案为:153cm 【点睛】本题考查了与线段中点有关的计算,根据比例关系列出方程求出各线段的长是关键.35. 30° 30° 角平分线定义 ∠CON 12BOC ∠ α 【分析】对于(1),根据角平分线定义得12COM AOC ∠=∠,12CON BOC ∠=∠,再结合12MON COM CON AOB ∠=∠+∠=∠,可得答案; 对于(2),仿照(1),根据12MON COM CON AOB ∠=∠-∠=∠求解; 对于(3),仿照(2)解答即可.(1)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠+∠=∠=⨯︒=︒. 故答案为:30°.(2) 因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠-∠=∠=⨯︒=︒. 故答案为:30°.(3)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠(依据的角平分线定义), 所以111222MON COM CON AOC BOC α∠=∠-∠=∠-∠=. 故答案为:角平分线定义,∠CON ,12BOC ∠,α. 【点睛】本题主要考查了角的和差的计算,角平分线定义,掌握角平分线定义是解题的关键.36.10+【分析】根据含30°角的直角三角形的性质求出DE 、根据勾股定理求出AE ,根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:∠60BAC ∠=︒,AD 是角平分线,∠30DAE ∠=︒,在Rt DAE 中,20,30AD DAE =∠=︒, ∠1102DE AD ==,由勾股定理得:AE =∠AD 的垂直平分线交AC 于点F ,∠FA FD =,∠DEF 的垂直10DE EF FD DE EF FA DE AE =++=++=+=+故答案为:10+【点睛】本题考查的是直角三角形的性质、勾股定理、线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.37.35︒或55︒【分析】分OC 在AOB ∠的内部和外部进行讨论,运用角平分线性质及角的和差进行运算即可.【详解】解:∠AOB 90∠=,OE 平分,AOB ∠ ∠∠BOE=12∠AOB=45°∠20,BOC ∠=OF 平分BOC ∠ ∠∠FOC=∠FOB =12∠BOC=10°当OC 在AOB ∠的内部时,如图∠∠EOF=∠BOE-∠BOF=45-10=35︒︒︒当OC 在AOB ∠的外部时,如图∠∠EOF=∠BOE+∠BOF=45+10=55︒︒︒故答案为:35︒或55︒【点睛】本题考查了角平分线的定义,先求出∠BOC 的度数,再求出∠FOC 的度数,最后求出答案,有两种情况,以防漏掉.38.L M N >>【分析】根据连接两点的所有线中,线段最短的性质解答.【详解】∠AB+AE >BE ,CD+DE >CE ,∠AB+AE+CD+DE >BE+CE ,即l >m ,又BE+CE >BC ,即m >n ,∠L M N >>.【点睛】本题考查了知识点两点之间线段最短,解题的关键是熟记性质.39. (1)4 (2)116或1742. 【分析】(1)画出符合题意的图形,由18,2AB AC BC ==,求解BC ,再利用线段的和差关系求解EC 即可得到答案;(2)根据AC=2BC ,AB=2DE ,线段DE 在直线AB 上移动,满足关系式32AD EC BE +=,再分六种情况讨论,∠当DE 在点A 左侧时,∠当A 在DE 之间时,∠当DE 在线段AC 上时,∠当C 在DE 之间时,∠当D 在CB 之间时,∠当D 在B 的右边时,可以设CE=x ,DC=y ,用含x 和y 的式子表示,,AD EC BE 的长,从而得出x 与y 的等量关系,即可求出 CD AB的值. 【详解】解:(1)如图,18AB DB ==,2,AC BC = 163BC AB ∴==, 8DE =,1886 4.EC AB DE BC ∴=--=--=(2)∠AC=2BC ,AB=2DE ,满足关系式32AD EC BE +=, ∠当DE 在点A 左侧时,如图,设CE=x ,DC=y , 则DE y x =-,∠()()242,33AB y x AC AB y x =-==-,()12222,333BC y x y x =-=-∠41,33AD DC AC x y =-=- ∠2133BE BC CE y x =+=+ ∠7133AD EC x y +=- ∠32AD EC BE +=, ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 解得,811x y =, ∠ ()11.826211CD y y AB y x y y ===-⎛⎫- ⎪⎝⎭ ∠当A 在DE 之间时,如图,设,,CE x CD y == 则DE y x =-, 同理可得:11.6CD AB = ∠当DE 在线段AC 上时,设,,CE x CD y == 则DE y x =-,,222,DE y x AB DE y x ∴=-==-24422,,33333AC AB y x BC y x ∴==-=- 1411,,3333AD AC CD y x AD CE y x ∴=-=-+=- 21+,33BE BC CE y x ==+ AD CE ∴+<,BE32AD EC BE +=, AD CE ∴+>,BE∴ 不合题意舍去;∠当C 在DE 之间时,如图,设CE=x ,DC=y , 则DE=x+y ,∠()()242,,33AB x y AC AB x y =+==+ ()()112333BC AB x y x y ==+=+, ∠41,33AD AC DC x y =-=+ ∠7133AD EC x y +=+ ∠21,33BE BC CE y x =-=- ∠32AD EC BE += ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, 解得,417x y =, ∠ ()174242217CD y y AB x y y y ===+⎛⎫+ ⎪⎝⎭. ∠当D 在CB 之间时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==- 4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y = 与图形条件x >y 不符舍去, ∠当D 在B 的右边时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==-4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y =与图形条件x >y 不符,舍去, 综上:CD AB 的值为:116或1742. 故答案为116或1742. 【点睛】本题考查的是线段的和差关系,二元一次方程思想,与线段相关的动态问题,分类讨论的思想,掌握以上知识是解题的关键.40.(1)圆柱(2)长方形、圆形或梯形(3)168π平方厘米或224π平方厘米【分析】(1)由图形旋转性质可知旋转后得到的几何体是圆柱;(2)用一个平面截圆柱,从不同角度截取的形状不同;(3)分情况讨论,找出圆柱的底面半径和高,即可求解.【详解】(1)解:由图形旋转性质可知,绕长方形的一边所在直线旋转一周后所得立方体为柱体、底面为圆,因此得到的几何体是圆柱.故答案为圆柱.(2)解:用一个平面截圆柱,截面形状可能为长方形、圆形或梯形.(3)解:分情况讨论,若绕BC 边旋转,则所得圆柱的表面积为:228286=224S S S 侧底平方厘米;若绕CD 边旋转,则所得圆柱的表面积为:226268=168S S S 侧底平方厘米.故旋转得到的几何体的表面积为168π平方厘米或224π平方厘米.【点睛】本题考查了点、线、面、体,截几何体,圆柱的表面积计算等知识点,解题关键是理解点动成线、线动成面、面动成体.41.【解析】略42.(1)70BOD ∠=︒(2)40AOB ∠=︒ (3)()12αβ+;12θ【分析】(1)根据角平分线的定义得出40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,再根据角度之间的关系求出BOD ∠的度数即可;(2)先根据角平分线的定义,30COD ∠=︒,得出260COE COD ∠=∠=︒,根据140AOE ∠=︒,求出80AOC ∠=︒,根据角平分线的定义即可得出答案; (3)根据角平分线的定义得出1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒,根据角度之间的关系得出()12BOD ∠=+︒;根据角平分线的定义得出12BOD AOE ∠=∠. 【详解】(1)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,∠403070BOD BOC DOC ∠=∠+∠=︒+︒=︒.(2)解:∠OD 是COE ∠的平分线,30COD ∠=︒,∠260COE COD ∠=∠=︒,∠140AOE ∠=︒,∠80AOC AOE COE ∠=∠-∠=︒,∠OB 为AOC ∠的平分线,∠4120AOB AOC ∠=∠=︒. (3)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,AOC α∠=︒,COE β∠=︒,∠1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒, ∠()111222BOD BOC COD ∠=∠+∠=︒+︒=+︒; ∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠1BOC AOB 2∠=∠,12COD COE ∠=∠, ∠BOD BOC COD ∠=∠+∠1122AOC COE =∠+∠ ()12AOC COE =∠+∠ 12AOE =∠ 12=. 故答案为:()12αβ+;12θ. 【点睛】本题主要考查了角平分线的定义,几何图形中的角度计算,解题的关键是熟练掌握角平分线的定义,数形结合.43.(1)2BC cm =;(2)16AB cm =【分析】(1)先求出AC ,根据BC=AB-AC ,即可求出BC ;(2)求出BC=2CN, AC=2CM,把MN=CN+MC=8cm 代入求出即可.【详解】解: (1) ∠点M 是线段AC 的中点,∠AC=2AM,∠AM=5cm,∠AC=10cm,∠AB=12cm ,∠BC=AB-AC=12-10=2cm,(2)∠点M 是线段AC 的中点,点N 是线段BC 的中点.∠BC=2NC ,AC=2MC,∠MN=NC+MC=8cm ,∠AB=BC+AC=2NC+2MC==2(NC+MC)=2MN=28⨯cm=16cm .【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力.44【分析】由AB=3,AD=4,BF=5长宽高三种长度不同,蚂蚁走的折面不同,距离也不同,要按不同的棱展开两个面,(1)长方形沿着棱ND展开,(2)长方形沿着棱DC展开,(3)长方形沿着棱BC展开,用勾股定理求出对角线的长度,再比较取最短者.【详解】∠AB=3,AD=4,BF=5∠MC =BF=AE=5,BC=AD=MF=4,MN= CD=AB=3(1)长方形沿着棱ND展开如图∠所示时,在Rt∆AEM中AM2=AE2+EM2= AE2+(NE+MN)2=52+(3+4)2=25+49=74,(2)长方形沿着棱DC展开如图∠所示时,AM2=AB2+( BC+CM)2=32+(4+5)2=9+81=90,(3)长方形沿着棱BC展开如图∠所示时,AM2=MF2+( AB+BF)2=42+(3+5)2=16+64=80,∠ AM=∠【点睛】本题考查蚂蚁所走最短路径问题,涉及长方体的侧面展开问题,要会分析最短路径涉及几个面展开,展开后走的哪条路径为最短,分别求出经比较才能解决问题.45.(1)145°(2)∠MEN=2∠MFN,证明见解析(3)1∠MEN+∠MFN=180°,证明见解析2【分析】分析:(1)过E作EH∠AB,FG∠AB,根据平行线的性质得到结论;(2)根据三角形的外角的性质得,平行线的性质,角平分线的定义即可得到结论;(3)根据平行线的性质得到∠MGE∠∠ENC,根据角平分线的定义得到∠MGE∠∠ENC∠2∠FNG∠∠AME∠2∠1∠∠E∠∠MGE∠∠E∠2∠FNG,根据三角形的外角的性质和四边形的内角和即可得到结论.(1)解:如图1,过E作EH∠AB,FG∠AB。
中考数学图形与几何专题知识易错题50题含参考答案
中考数学图形与几何专题知识易错题50题含答案一、单选题1.两个圆的半径相差1cm,则周长相差().A.1cm B.2cm C.3.14cm D.6.28cm 2.周长相等的图形,图形面积最大的是()A.长方形B.正方形C.圆形3.在长方体中,与一个面平行的棱有()A.2条B.3条C.4条D.6条4.如图1所示,一只封闭的圆柱形水桶内盛了半桶水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1≥S25.小圆半径是4cm,大圆半径是8cm,小圆面积是大圆面积的()A.12B.14C.16D.186.如图,蒙古包可以近似地看作是由圆锥和圆柱组成,若用毛毡搭建一个底面半径为5米,圆柱高3米,圆锥高2米的蒙古包,则需要毛毡的面积为()A.(30π+米2B.40π米2C.(30π+米2D.55π米27.一条弧所对的圆心角是72︒,则这条弧长与这条弧所在圆的周长之比为()A.13B.14C.15D.1683A .3B .6C .99.甲、乙两个圆柱的体积相等,如果甲圆柱的底面直径扩大2倍,乙圆柱的高扩大3倍;那么这时甲、乙两个圆柱体积的大小关系是( ) A .V 甲>V 乙B .V 甲=V 乙C .V 甲<V 乙D .不能确定10.圆的周长总是它直径的( )倍. A .3.14B .2πC .πD .311.若圆环的外圆直径是10厘米,内圆直径是8厘米,这个圆环的面积是( ) A .29cm πB .2cm πC .210cm πD .22cm π12.在一个长4cm ,宽2cm 的长方形中,画一个最大的圆,这个圆的面积是( )2cmA .9.42B .50.24C .3.14D .12.5613.在一个直径为16米的圆形花坛周围有一条宽为1米的小路(黑色),则这条小路的面积是多少平方米?( )A .πB .17πC .33πD .64π14.把一个圆剪成10个面积相等的扇形,每个扇形的圆心角的度数为( ) A .18°B .36°C .45°D .60°15.现有一圆心角为90︒ ,半径为12cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为( )AB .C .D .16.一个雷达圆形屏幕的直径是20厘米,则它的面积是( )平方米. A .100πB .0.1πC .0.01π17.一个圆柱的底面半径是4厘米,它的侧面展开正好是一个正方形,这个圆柱的高是( )厘米. A .4B .8C .12.56D .25.1218.下列说法中,正确的是( ) A .过圆心的线段叫直径 B .长度相等的两条弧是等弧C .与半径垂直的直线是圆的切线D .圆既是中心对称图形,又是轴对称图19.一根长3米的圆柱形木料,横着截4分米,和原来相比,剩下的圆柱形木料的表面积减少12.56平方分米,原来这根圆柱形木料截面周长为()分米A.0.314B.31.4C.3.14D.6.2820.圆柱的高不变,底面半径扩大3倍.则圆柱的体积扩大()倍.A.9B.3C.27D.6二、填空题21.①25m³=( )L;①7.2L=( )cm³;①56cm³=( )mL22.在如图的长方体中,既与平面ABCD垂直,又与平面11ABB A平行的平面是面______.23.在比例尺为10:1的零件图纸上,一个圆形部件在图纸上的直径为40厘米,则该部件的实际半径是______厘米,实际周长是______厘米.24.在同一个圆中,100°的圆心角所对的弧的弧长与20°的圆心角所对的弧的弧长之比是________.25.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.26.用圆规画圆时,若圆规两脚之间的距离为2厘米,则所画圆的周长是__________.27.三角形ABC是直角三角形,阴影部分①的面积比阴影部分①的面积小28平方厘米,AB长40cm,BC 长为___________厘米?( 3.14π=)28.如图所示,有一块边长为3米的正方形草地,在点B处用一根木桩牵住了一头小羊.已知牵羊的绳子长2米,那么草地上不会被羊吃掉草的部分是________平方米.(π取3.14)29.若圆规的两脚分开后,两脚间的距离为3厘米,那么所画出的圆的面积为___________平方厘米.(π取3.14)30.检验平面与平面平行的方法:(1)____________:(2)____________31.圆的周长是62.8米,这个圆的面积是_________平方米.32.等底等高的圆柱和圆锥,若圆柱的体积比圆锥多8立方分米,则圆锥的体积是______立方分米.=,则高等于_______cm.33.长方体的总棱长是64cm,长:宽:高5:1:234.两个圆的半径的比是2①1,则这两个圆的周长之比是( ),这两个圆的面积之比是( ).35.用一根长12.56米的绳子围成一个圆,这个圆的半径是( )米,它的面积是( )平方米.(π取3.14)36.在同一个圆中,有两个扇形A、B,已知扇形A的圆心角等于12°,扇形B的圆心角等于90°,则面积较大的是__________,扇形B的面积占整个圆面积的__________.37.扇形的圆心角为210︒,弧长是28π,则扇形的面积为_______.38.长方体中,最少可以看到____________条棱,最多可以看到____________个面.39.某长方体中,有一个公共顶点的三条棱的长的比是5:8:10,最小的一个面的面积为360平方厘米,则这个长方体的__________条棱长总和是__________厘米.三、解答题40.面积为296cm,形状不同,长和宽都为整厘米的长方形有多少种?41.有一个圆环形装饰纸片,内圆周长是31.4厘米,外圆周长是37.68厘米,圆环的面积是多少平方厘米?42.动物园打算新挖一个直径是4米,深0.3米的圆形水池.(1)如果用水泥把池底和侧壁粉刷,粉刷的面积有多大?(2)这个水池能蓄多少立方米水?43.如图,把一个半径为4的圆分成A、B两部分,其中较小部分为A,且较小部分的面积与较大部分的面积比为5:11.(1)求A、B两部分的面积;(2)若将较大部分分出一部分给较小的部分,且使此时两部分面积的比为9:7,则应从较大部分分出去多大面积?44.长方体相邻的三个面的面积分别是6平方厘米、8平方厘米、12平方厘米,求长方体的体积?45.如图是直角梯形ABCD,如果以AB边为轴旋转一周,得到一个立体图形,这个立体图形的体积是多少立方厘米?(π取3.14).46.求下面阴影部分的周长和面积,(单位:厘米)47.如图所示,一个呼啦圈的截面是圆环形.已知大圆的周长 3.14C=米,小圆的直径0.92d=米,求该圆环的面积(结果保留两位小数).48.顺迈学校准备新建一个花坛,花坛的示意图,如图1所示,它是由5个大小相等的正方形和4个大小相等的扇形组成,每一个小正方形的边长是4米.(π取3)(1)这个花坛的周长是多少米?(2)这个花坛的面积是多少平方米?(3)如图2所示,学校准备在花坛里种植花草,其中阴影内种植红色花草,空白部分内种植黄色花草,已知每平方米红色花草的价格为20元,每平方米黄色花草价格的34比每平方米红色花草的价格多12,求学校购买花草的总费用为多少元?49.如图长方形的长BC为8,宽AB为4.以BC为直径画半圆,以点D为圆心,CD 为半径画弧.求阴影部分的周长和面积.参考答案:1.D【分析】大圆半径为R ,小圆半径为r ,根据题意得到1R r -=,再表示出周长差,从而得到结果.【详解】解:设大圆半径为R ,小圆半径为r , 则1R r -=,①()2222 6.28R r R r ππππ-=-==, 即周长相差6.28cm , 故选D .【点睛】本题考查了圆的周长,解题的关键是熟练掌握圆的周长公式. 2.C【分析】在所有几何图形中,周长相等的情况下,圆形的面积最大. 【详解】在周长相等的情况下,面积:圆>正方形>长方形. 故选:C .【点睛】在周长相等的情况下,在所有几何图形中,圆的面积最大,应当做常识记住. 3.C【分析】根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与平面ABCD 平行的棱有:棱EF 、棱HG 、棱EH 、棱FG 四条; 故答案选C .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键. 4.B【分析】分别求出图1和图2的表面积,比较即可.【详解】设圆柱的底面半径为r ,图1水的表面积为:S 1=2πr 2+2πr •r =4πr 2. 对于图2,上面的矩形的长是2r ,宽是2r .则面积是4r 2. 曲面展开后的矩形长是πr ,宽是2r .则面积是2πr 2.上下底面的面积的和是:π×r 2. 图2水的表面积S 2=(4+3π)r 2. 显然S 1<S 2. 故选:B .【点睛】此题主要考查了圆柱的有关计算,解决此题的关键是掌握化曲为平的思想. 5.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=, ①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键. 6.A【分析】由底面圆的半径=5米,根据勾股定理求出母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和. 【详解】解:①底面半径=5米,圆锥高为2米,圆柱高为3米,①圆锥的母线长①圆锥的侧面积=π5⨯, 圆柱的侧面积=底面圆周长×圆柱高, 即2π5330π⨯⨯=,故需要的毛毡:(30π+米2, 故选:A .【点睛】此题主要考查勾股定理,圆周长公式,圆锥侧面积,圆柱侧面积等,分别得出圆锥与圆柱侧面积是解题关键. 7.C【分析】利用这条弧所对的圆心角的度数除以360°即可求出结论.【详解】解:72÷360=15即这条弧长与这条弧所在圆的周长之比为15故选C .【点睛】此题考查的是弧长与圆的周长,掌握弧长与这条弧所在圆的周长之比等于这条弧所对的圆心角与360°的比是解题关键. 8.C【分析】根据圆的面积公式:S =πr ²计算即可.【详解】解:一个圆的半径扩大为原来的3倍,面积就扩大为原来的3×3=9倍. 故选:C .【点睛】本题考查了认识平面图形,解题的关键是掌握圆的面积公式:S =πr ². 9.A【分析】利用圆柱体积公式v =sh 进行计算,比较结果即可.【详解】解:设两圆柱的体积相等为V ,底面直径为2r ,高为h ,掌握V =()2224r h r h ππ= 若甲圆柱的底面直径扩大2倍,则体积为()224r 16h r h ππ= ,; 若乙圆柱的高扩大3倍,则此时乙圆柱的体积就是()222r 312h r h ππ=; 221612r h r h ππ> ,故选:A .【点睛】本题考查圆柱的计算,牢记体积公式是解决问题的关键. 10.C【分析】根据圆周率的定义即可得出答案.【详解】解:设圆周长为C ,直径为d ,由C πd ,可得Cdπ=, 故选:C .【点睛】本题考查认识平面图形,掌握圆周长的计算公式是正确解答的关键. 11.A【分析】此题是求圆环面积,要根据“直径÷2=半径”先求出半径,然后根据圆环面积公式:S =π(R 2-r 2),代入数字,进行解答即可. 【详解】解:10÷2=5(厘米),8÷2=4(厘米), π×(2254-) =9π(平方厘米)答:它的面积是9π平方厘米. 故选:A .【点睛】此题考查圆的面积公式,圆环面积公式:S =π(R 2-r 2),代入数字,进行解答即可得出结论. 12.C【分析】先确定这个圆的位置情况,再利用圆的面积公式求解.【详解】如图,当画的圆的圆心与长方形的三条边距离相等时,这个圆最大,半径为1, 面积=21 3.14ππ⨯=≈, 故选:C .【点睛】本题考查了长方形中的最大圆及其面积的问题,解题关键是能画出这个最大圆,并利用圆的面积公式进行求解. 13.B【分析】阴影部分面积可以看作是一个圆环的面积,只需要利用外圆面积减去内圆面积即可得到答案【详解】解:①圆形花坛的直径为16米, ①圆形花坛的半径为8米, ①圆形小路的宽度为1米,①这个圆环的外圆半径为8+1=9米,①229817S πππ=⨯-⨯=阴影,故选B .【点睛】本题主要考查了求圆环的面积,熟知圆面积公式是解题的关键. 14.B【分析】由于扇形面积相等,则扇形的圆心角相等,然后求360°的十分之一即可. 【详解】每个扇形的圆心角=110×360°=36°. 故选:B .【点睛】本题考查了圆的认识:熟练掌握圆心角与扇形的概念.15.C【分析】利用底面周长=展开图的弧长可得. 【详解】解:90122180R ππ⨯=, 解得3cm R =,再利用勾股定理可知,高==.故选:C .【点睛】本题考查了圆锥的展开图,弧长公式以及勾股定理,解答本题的关键是确定底面周长=展开图的弧长这个等量关系,然后再利用勾股定理可求得值.16.C【分析】利用圆的面积公式计算即可.【详解】解:一个雷达圆形屏幕的直径是20厘米,则它的面积是:220()1002ππ=(平方厘米),100π平方厘米=0.01π平方米;故选:C .【点睛】本题考查了圆的面积的计算和单位转换,解题关键是熟记圆面积公式. 17.D【分析】根据圆柱侧面展开图的形状解答.【详解】解:侧面展开后长方形的长(底面周长)=2πr =2×3.14×4=25.12(厘米); 又因为侧面展开后是正方形所以:宽=长=25.12厘米;侧面展开后长方形的宽又是圆柱的高,即高=25.12厘米;这个圆柱的高是25.12厘米.故答案为:D .【点睛】根据圆柱的侧面展开是一个长方形,其长为底面周长,宽为高来计算后解答即可.18.D【分析】根据直径的定义对A 进行判断;根据等弧的定义对B 进行判断;根据切线的判定定理对C 进行判断;根据圆的性质对D 进行判断.【详解】解:A 、过圆心的弦叫直径,所以此项错误;B 、在同圆或等圆中,长度相等的两条弧是等弧,所以此项错误;C 、过半径的外端,与半径垂直的直线是圆的切线,所以此项错误;D 、圆既是中心对称图形,又是轴对称图形,所以此项正确.故选:D .【点睛】本次考查了圆中直径、等弧、切线的定义以及圆的对称性,准确把握定义和圆的对称性是解答此题的关键.19.C【分析】剩下的圆柱体木料的表面积相比之前减少的面积为截下的圆柱体的侧面积,据此即可作答.【详解】如图,剩下的圆柱体木料的表面积减少12.56平方分米,就是图中虚线部分圆柱体的侧面积, 设虚线部分圆柱体的底面周长为a ,则其侧面积为:12.56=4×a ,即:a =3.14分米,故选:C .【点睛】本题考查了圆柱体的计算,几何体的表面积等知识,理解“剩下的圆柱体木料的表面积相比之前减少的面积为截下的圆柱体的侧面积”是解答本题的关键.20.A【分析】圆柱的底面半径扩大3倍,则它的底面积就扩大9倍,在高不变的情况下,体积就扩大9倍,所以应选A ,也可用假设法通过计算选出正确答案.【详解】因为2V r h π=当r 扩大3倍时,22(3)9V r h r h ππ=⨯=⨯所以体积扩大9倍;或:假设底面半径是1,高也是121 3.1411 3.14V =⨯⨯=当半径扩大3倍时,r =322 3.1431 3.149V =⨯⨯=⨯所以体积扩大9倍故选:A【点睛】本题考查了圆柱的体积公式,解答具有灵活性,可灵活选择作答方法. 21. 400 7200 56【详解】解:①25m³=400dm 3=400L ; ①7.2L=7200cm 3; ①56cm³=56mL . 故答案为:400;7200;56. 【点睛】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.22.11CC D D【分析】根据平面与平面垂直和平面和平面平行的定义即可求解.【详解】既与平面ABCD 垂直,又与平面11ABB A 平行的平面是面11CC D D .故答案为:11CC D D .【点睛】本题考查长方体中平面与平面的的位置关系的认识.理解平面与平面的垂直和平行的位置关系是本题解题的关键.23. 2 4π【分析】设该部件的实际半径是r 厘米,根据比例的性质可求出该部件的实际半径,再由圆的周长公式计算,即可求解.【详解】解:设该部件的实际半径是r 厘米,根据题意得:4010:1:2r =, 解得:2r =,即该部件的实际半径是2厘米,①实际周长是224ππ⨯=厘米.故答案为:2;4π【点睛】本题主要考查了比例尺的应用,求圆的周长,熟练掌握比例的基本性质,圆的周长公式是解题的关键.24.5:1【分析】根据弧长公式进行计算再求比即可.【详解】100°的圆心角所对的弧的弧长:10051809r r ππ=, 20°的圆心角所对的弧的弧长:201809r r ππ=, ①59r π:9r π=5:1. 故答案为:5:1.【点睛】本题考查了弧长,熟练掌握弧长公式是解题的关键.25.16π【分析】长方形绕长边旋转一周以后,得到高为4cm ,半径为2cm 的圆柱,根据圆柱的体积公式:V Sh =,即可求解.【详解】①长方形绕它的长边所在的直线旋转一周,①旋转后的图形为高为4cm ,半径为2cm 的圆柱,①圆柱的体积公式:V Sh =,①22416V sh π==⨯=π3cm .故答案为:16π.【点睛】本题考查图形的旋转,解题的关键是掌握旋转后得到的图形,根据体积公式,进行计算.26.12.56厘米【分析】依据圆的周长计算公式解答即可.【详解】所画圆的周长=23.14212.56⨯=(厘米),故答案为:12.56厘米.【点睛】本题考查了圆的周长计算公式,理解圆规两脚之间的距离为半径是解题的关键. 27.32.8【分析】设半圆中空白部分用①表示,先求出半圆的面积,①与①的面积和为628,①-①=28,求出①、①部分的面积和62828656+=是直角三角形面积.利用面积公式求即可.【详解】设半圆中空白部分用①表示,图中半圆的直径为AB ,AB =40cm , 所以半圆面积为:2120200 3.146282π⨯⨯≈⨯=. 由空白部分①与①的面积和为628,又①-①=28,所以①、①部分的面积和62828656+=.由直角三角形ABC的面积为:1140656 22AB BC BC⨯⨯=⨯⨯=.所以32.8BC=(厘米).故答案为:32.8.【点睛】本题考查圆有关的面积问题,掌握圆的面积公式,会用半圆面积表示三角形面积是解题关键.28.5.86【分析】根据题意可得能够被羊吃到的部分是以B为圆心,2米为半径的14圆,利用扇形的面积公式求解即可.【详解】2133 3.142 5.864⨯-⨯⨯=(平方米),故答案为:5.86.【点睛】本题考查扇形面积的实际应用,掌握求扇形的面积公式是解题的关键.29.28.26【分析】首先根据题意得出圆的半径,再根据圆的面积公式,计算即可得出结果.【详解】解:①圆规的两脚分开后,两脚间的距离为3厘米,①圆的半径为3厘米,①圆的面积为223.14328.26rπ=⨯=平方厘米.故答案为:28.26【点睛】本题考查了圆的认识、圆的面积,解本题的关键在熟练掌握圆的面积公式.30.铅垂线法长方形纸片法【分析】在平面的三个不同点(不共线)放下铅垂线,使铅垂线的下端刚好接触到地面,如果从这三个不同点到铅垂线的下端的线段的长度相等,那么平面与水平面平行;或长方形纸片放在两个平面之间,按交叉的方向检验两次,两遍都与被检验的面紧贴,那么被检验的两个平面平行.【详解】解:检验平面与平面互相平行的方法有铅垂线法,长方形纸片法,铅垂线法:在平面的三个不同点(不共线)放下铅垂线,使铅垂线的下端刚好接触到地面, 如果从这三个不同点到铅垂线的下端的线段的长度相等,那么平面与水平面平行; 长方形纸片法:长方形纸片放在两个平面之间,按交叉的方向检验两次,两遍都与被检验的面紧贴,那么被检验的两个平面平行.故答案为:铅垂线法,长方形纸片法.【点睛】本题主要考查了长方体中平面与平面的位置关系,掌握检验平面与平面互相平行的方法是解题的关键.31.314【分析】先根据圆的周长求出圆的半径,再根据圆的面积公式求解.【详解】解:设该圆的半径为r ,则62.82πr =,62.8102 3.14r ∴==⨯(米), 2π 3.14100314S r ∴==⨯=(平方米). 故答案为:314.【点睛】本题考查圆的周长与面积,掌握圆的周长公式与面积公式是解题的关键. 32.4【分析】等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱的体积比圆锥的体积多2倍,由此即可求出圆锥的体积.【详解】解:8÷(3−1),=8÷2=4(立方分米)即圆锥的体积是4立方分米.故答案为:4.【点睛】本题主要考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用.等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱的体积比圆锥的体积多2倍,由此即可求出圆锥的体积.33.4【分析】长方体的棱长总和=(长+宽+高)×4,用棱长总和÷4=长、宽、高的和,长、宽、高的比是5:1:2,根据按比例分配的方法,求出高.【详解】解:长、宽、高的和=()64416cm ÷=,()()165122cm ÷++=.则高为:()224cm ⨯=.故答案为:4【点睛】此题考查了长方体的棱,解答关键是利用按比例分配的方法求出高34. 2①1 4①1【分析】设小圆的半径为r ,则大圆的半径为2r ,再分别求解两个圆的周长与面积,再列比例式进行计算即可.【详解】解:设小圆的半径为r ,则大圆的半径为2r ,小圆的周长=2r π, 大圆的周长=224r r , 周长比:4r π:2r π=2:1;小圆的面积=2r π, 大圆的面积=2224r r , 面积比:24r π:2r π=4:1;故答案为:2:1;4:1.【点睛】本题主要考查圆的周长和面积的计算方法的灵活应用,比值的计算,列出正确的比例式进行计算是解本题的关键.35. 2 12.56【分析】利用周长公式求出半径,再利用面积公式计算.【详解】解:这个圆的半径为:12.5622π÷÷=米,面积为:2212.56π=平方米,故答案为:2,12.56.【点睛】本题考查了圆的周长和面积与半径的关系,熟记公式是解题的关键.36. 扇形B 14【分析】根据扇形的面积公式2360n r S π=,半径相等的条件下,圆心角大的面积更大;一个圆的圆心角是360°,圆的半径和扇形的半径相等,只要求出扇形的圆心角是360°的几分之几,则扇形的面积就是所在圆面积的几分之几.【详解】根据扇形的面积公式2360n r S π=,半径相等的条件下,圆心角大的面积更大, 因为扇形A 的圆心角等于12°,扇形B 的圆心角等于90°,所以面积较大的是B ;因为扇形B 的圆心角等于90°,9013604=, 所以扇形B 的面积占整个圆面积的14, 故答案为:B ;14. 【点睛】本题考查了扇形面积的知识,理解扇形的圆心角的度数比等于扇形的面积比是解答本题的关键.37.1055.04 【分析】根据弧长公式180n r l π=求出扇形的半径,再根据扇形的面积公式12S lr =即可求解.【详解】解:因为扇形的圆心角为210︒,弧长是28π, 所以扇形的半径1802824210r ππ⨯==, 所以扇形的面积为1128241055.0422S lr π==⨯⨯≈,故答案为:1055.04. 【点睛】本题考查弧长公式、扇形的面积公式,掌握弧长180n r l π=和扇形的面积12S lr =是解题的关键.38. 4 3【分析】由长方体的特征可知,长方体最多可以看到3个面,最少可以可以看到4条棱;我们可以把一个长方体放在桌子上进行观察,从而得到最多能看到几个面.【详解】解:一个长方体最多可以看到3个面,最少可以可以看到4条棱.故答案为:4,3.【点睛】本题考查了长方体的特征以及从不同方向观察物体和几何体.39. 12 276【分析】先根据三条棱长的比例关系以及最小的一个面的面积求出较小的两条棱的长度,再用比例关系求出最长的棱,最后求棱长总和.【详解】根据三条棱长比是5:8:10,且最小面的面积是360平方厘米,设较短的两条棱分别是5k 和8k ,列式58360k k ⋅=,解得3k =,则较短的两条棱分别长15厘米和24厘米,最长的棱为31030⨯=(厘米),长方体的12条棱长和=()1524304276++⨯=(厘米).故答案是:12;276.【点睛】本题考查比例和长方体的棱长和,解题的关键是先根据比例求出三条棱长,再去根据长方体的性质求棱长和.40.共6种【分析】根据长方形的面积S=ab ,即ab=72,由此分别求出a 与b 的整数情况即可.【详解】①96196=⨯,①96248=⨯,①96332=⨯,①96424=⨯,①96616=⨯,①96812=⨯,共计有6种.【点睛】考查了长方形面积的计算,解题关键利用长方形的面积公式解决问题. 41.圆环的面积为34.54平方厘米【分析】根据圆的周长公式C =2πr ,知道r =C ÷π÷2,分别求出内、外圆的半径,再用外圆的半径减去内圆的半径即得圆环的宽是多少;根据圆环的面积公式S =π(R 2﹣r 2)可求得圆环的面积;把内圆和外圆的周长相加即得此圆环的周长.【详解】解:31.4 3.1425÷÷=(厘米),37.68 3.1426÷÷=(厘米),()22223.146 3.145 3.1465⨯-⨯=⨯-3.141134.54=⨯=(平方厘米).答:圆环的面积为34.54平方厘米.【点睛】本题主要考查了圆的周长公式C =2πr 和圆环的面积公式S =π(R 2﹣r 2)的灵活应用.42.(1)用水泥把池底和侧壁粉刷,粉刷的面积是16.328平方米;(2)这个水池能蓄3.768立方米水.【分析】(1)根据题意,涂水泥的面积即是这个圆柱形水池的表面积,圆柱形水池的表面积=底面积+侧面积;代入S 侧=πdh ,S 圆=πr 2,即可求出;(2)水池里边存水的体积,可利用圆柱的体积公式=底面积×高进行计算即可得到答案. (1)解:圆柱侧面积:3.14×4×0.3=3.768(平方米),4÷2=2(米),3.14×2×2=12.56(平方米),3.768+12.56=16.328(平方米),答:用水泥把池底和侧壁粉刷,粉刷的面积是16.328平方米;(2)解:3.14×22×0.3=12.56×0.3=3.768(立方米),答:这个水池能蓄3.768立方米水.【点睛】此题主要考查的是圆柱的表面积公式和圆柱的体积公式的灵活应用. 43.(1)A 、B 两部分的面积分别是5π、11π.(2)应从较大部分分出去的面积为4π或2π.【分析】(1)用圆的面积分别乘以各自的比率即可;(2)根据B 变化前后占整个圆的面积的分率分两种情况进行解答即可.【详解】(1)解:2545511ππ⨯⨯=+,211411511ππ⨯⨯=+. 答:A 、B 两部分的面积分别是5π、11π.(2)解:1174151197164-==++, 21444ππ⨯⨯=. 或1192151197168-==++, 21428ππ⨯⨯=.答:应从较大部分分出去的面积为4π或2π.【点睛】本题考查了圆的面积,解题的关键是掌握圆的面积公式.44.长方体的体积是24cm².【分析】设长宽高分别为a ,b ,h 则:ab=6,ah=8,bh=12;根据“长方体的体积=长×宽×高”进行解答即可.【详解】设长宽高分别为a 、b 、h ,则ab=6,ah=8,bh=12.a²b²h²=6×8×12abh=24答:长方体的体积是24cm².【点睛】本题考查了长方形面积公式和长方体体积公式.45.141.3立方厘米【分析】如果以AB 边为轴旋转一周,得到的立体图形是由1个圆柱和1个圆锥组成的,上面得到一个圆锥,(7﹣4)是圆锥的高,BC 的长度是圆锥的底面圆的半径,下面是一个圆柱,高是4厘米,底面圆的半径是3厘米,根据圆锥的体积=213r πh 1+πr 2h 2代入数据计算即可.【详解】解:以AB 边为轴旋转一周,得到一个圆锥和一个圆柱, 该几何体的体积为:13πr 2h 1+πr 2h 2 =13×3.14×32×(7﹣4)+3.14×32×4, =28.26+113.04,=141.3(立方厘米).答:这个立体图形的体积是141.3立方厘米.【点睛】此题主要考查圆柱、圆锥体积公式的灵活运用,关键是弄清楚计算所需要的数据.46.周长:()64cm π+;面积:26cm π.【分析】观察图形可知,阴影部分的周长分为三个部分,大圆周长的一半,加上大圆的半径,加上小圆周长的一半,根据圆的周长公式:C d π=,进行计算;根据圆的面积公式:2S r π=,面积用大圆的面积减去空白处小圆的面积,即为阴影部分的面积.【详解】阴影部分的周长:。
中考数学图形与几何专题知识易错题50题-含参考答案
中考数学图形与几何专题知识易错题50题含答案一、单选题1.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,只考虑路径、时间、路程等因素,下列结论正确的为()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定哪只蚂蚁先到2.一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,下面关于这个圆柱描述正确的是()A.底面直径6厘米,高10厘米B.底面直径10厘米,高6厘米C.底面半径6厘米,高10厘米D.底面半径10厘米,高6厘米3.下列说法正确的是()A.213的倒数是52B.计算弧长的公式是2180πnl r=⨯C.1是最小的自然数D.1的因数只有14.在长方体中,与一条棱异面的棱有()A.2条B.3条C.4条D.5条5.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π6.将下图沿着虚线折起来,可折成一个正方体,这时正方体的5号面所对的面是()A.1B.2C.3D.47.如图,线段AB是图中最大的半圆的直径,而AA1、A1A2、A2A3、A3A4、A4B分别是另外五个小的半圆的直径,有两只小虫以相同的速度同时从点A出发到点B,甲虫沿着用实线表示的大的半圆爬行,乙虫沿用虚线表示的五个小的半圆爬行,则下列结论正确的是()A.甲先到点B B.乙先到点BC.甲、乙同时到点B D.无法确定8.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,则圆锥的体积是圆柱体积的()A.12B.13C.16D.2倍9.比较下图长方形内阴影部分面积的大小,甲()乙A.>B.<C.=D.无法确定10.下列语句中正确的是()A.线段AB就是A、B两点间的距离B.如果AB=BC,那么B是线段AC的中点C.比较两个角的大小的方法只有度量法D.长方形纸片能检测平面与平面平行11.如图,一圆柱形油桶中恰好装有半桶油,现将油桶由直立状态放倒成水平放置状态,在整个过程中,桶中油面的形状不可能是()A.B.C.D.12.已知小圆半径是2cm,大圆半径是4cm,小圆周长是大圆周长的()A.12B.14C.16D.1813.与长方体中任意一条棱既不平行也不相交的棱有()A.2条B.4条C.6条D.8条14.小圆的半径是2,大圆的半径是4,小圆的面积是大圆面积的()A.18B.14C.12D.215.用同样长的铁丝分别围成长方形、圆形和正方形,围成()的面积最大.A.长方形B.正方形C.圆D.无法确定16.圆的半径由3厘米增加了6厘米,圆的面积增加了()平方厘米A.72πB.27πC.36πD.82π17.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算瓶子的容积是()立方厘米.A.24πB.28πC.32πD.40π18.如果一个扇形的半径扩大到原来的3倍,圆心角缩小到原来的13,那么这个扇形的面积()A.扩大到原来的3倍B.不变C.缩小为原来的13D.扩大到原来的9倍19.一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转的圈数是().A.270B.135C.100D.12020.一个圆形花坛周围围上了一圈栅栏,栅栏长18.84米,又沿栅栏一周砌有一条宽1米的鹅卵石小路.若每平方米约需鹅卵石100颗,则共需鹅卵石()A.1570颗B.1884颗C.2198颗D.2512颗二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.如图,是将一个长方体沿它的底面切去一刀后剩下的部分.(1)与棱HD 平行的棱有______________________________________. (2)与棱EF 异面的棱有______________________________________. (3)与棱NQ 相交的棱有______________________________________.23.数学老师的教具里有一个圆柱和一个圆锥,老师告诉大家,圆柱和圆锥的体积相等,底面积也相等,已知圆锥的高是2厘米.请你算一算,这个圆柱的高是_______厘米.24.如图所示,在长方体1111ABCD A B C D 中与棱BC 垂直的平面是_________.25.在一个边长为6cm 的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.26.将一个正方体放在桌面上,且已知正方体的边长为4厘米,那么与桌面垂直的平面面积之和为________.27.一个圆柱的侧面展开图是正方形,这个圆柱底面周长与高的比是__________. 28.将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形中最大的圆心角的度数为_________.29.半径为r ,圆心角为n°的扇形面积S 扇=______.30.一扇形面积是所在圆面积的23,扇形的圆心角是=_________.31.将一个长为4厘米,宽为3厘米的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是___________.32.一个圆锥的高不变,底面半径扩大到原来的2倍,底面积扩大到原来的( )倍,体积扩大到原来的( )倍.33.一个圆环,外圆的半径是内圆半径的3倍,这个圆环的面积和内圆面积的比是( ).34.一个正方体的棱长是12cm,把它削成一个最大的圆柱体,圆柱体的体积是_____ 3cm,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积是_____3cm.35.时钟的分针长3厘米,从9点到9点40分;分针扫过区域的面积是_______平方厘米,分针的针尖走的路程长_______厘米.36.如果一个扇形的圆心角扩大为原来的3倍,半径长缩小为原来的13,那么所得的扇形的面积与原来扇形的面积的比为____.37.如右下图所示,长方体按如图方式截去一个角之后,余下的几何体有_________个面,_________个顶点,_________条棱.38.如图,在长方体ABCD-EFGH中(1)长方体中棱AB与___________个面平行,分别是____________长方体中棱BC与___________个面平行,分别是____________长方体中棱AE与___________个面平行,分别是____________通过观察思考可以得到:长方体中每条棱都与__________个面平行.(2)长方体中面ABCD与___________条棱平行,分别是____________长方体中面ADHE与___________条棱平行,分别是____________长方体中面ABFE与___________条棱平行,分别是____________通过观察思考可以得到:长方体中每个面都与____________条棱平行(3)长方体中一共可以写出多少对棱与面的平行关系?39.如图,已知在矩形ABCD 中,AB =1,BC P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,连接C 1C .当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段C 1C 扫过的区域的面积是_______.三、解答题40.如图,在长方体ABCD EFGH 中,分别写出与棱EH 相交、平行、异面的所有的棱.41.补画长方体(被遮住的线段用虚线表示).42.小磊房间窗户的装饰物如图阴影部分所示,它们由两个半径相同的四分之一圆组成(单位:米).(1)请用字母表示装饰物的面积(结果保留π):_.(2)请用字母表示窗户能射进阳光的部分面积(结果保留π):_.(3)若23a=,2b=时,请求出窗户能射进阳光的面积(π取3).43.如图,准备在一个广场中心建一个直径为24m的圆形花坛,并将圆形花坛分割成面积相等的四个部分.(1)请你求出花坛中小圆部分的周长;(2)如果在花坛中小圆以外的三个区域内种上不同品种的花卉,已知A品种与B品种的费用之比为25:0.5,B品种和C品种的费用之比为2:3,如果购买C品种花卉比购买A品种花卉多花了7000元,那么购买三种花卉总费用多少元?44.求出如图图形的体积.45.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米.这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?46.如图是用两个正方形(边长如图所示)和一个直角三角形拼成的五边形,(1)用含a的代数式表示阴影部分的面积.(结果要化简)(2)求当a=2时,阴影部分的面积.47.如图,是一个长为x米,宽为y米的长方形休闲广场,在它的四角各修建一块半径均为r米的四分之一圆形的花坛(阴影部分),其余部分作为空地.(1)用代数式表示空地的面积;(2)若长方形休闲广场的长为50米,宽为20米,四分之一圆形花坛的半径为8米,求长方形广场空地的面积.( 取3)48.用斜二测画法画长方体直观图:(1)补全长方体ABCD﹣A1B1C1D1;(2)量得B1C1的长度是cm,所表示的实际长度是cm.(3)与平面A1ABB1,平行的平面是.49.(1)如图1,ABC是等边三角形,曲线CDEFGH……叫做“等边三角形的渐开线”,曲线的各部分均为圆弧.设ABC的边长为3厘米,求前5段弧长的和(即曲线CDEFGH的长)是多少厘米?(2)如图2,有一只狗被拴在一建筑物的墙角上,这个建筑物是边长为400厘米的正方形,拴狗的绳子长18米.现狗从点A出发,将绳子拉紧按顺时针方向跑,可跑多少米?参考答案:1.C【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】根据平移可得出两蚂蚁行程相同,∵甲乙两只蚂蚁的行程相同,且两只蚂蚁的爬行速度也相同,∵两只蚂蚁同时到达点B.故选C.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.2.D【分析】根据题意可知,以长方形的宽边为周旋转一周得到一个圆柱,这个圆柱的底面半径是10厘米,高是6厘米.据此解答.【详解】解:一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,关于这个圆柱描述正确的是底面半径是10厘米,高是6厘米.故选:D.【点睛】此题主要考查了圆柱的特征及应用.3.D【分析】依次对各选项进行分析.【详解】A选项:213的倒数是35,故错误;B选项:计算弧长的公式是180πnl r=⨯,故错误;C选项:0是最小的自然数,故错误;D选项:1的因数只有1,故正确.故选:D.【点睛】考查了倒数、弧长的公式、自然数和因数,解题关键是熟记相关概念、计算公式.答案第1页,共21页【分析】直接根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与棱AB 异面的棱有:111111A D B C DD CC 棱、棱、棱、棱;所以棱在长方体中,与一条棱异面的棱有4条,故选C .【点睛】本题主要考查长方体的棱与棱之间的位置关系,熟记概念是解题的关键. 5.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米,∵横截面半径是3分米即0.3米,∵横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D .【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.6.B【分析】如图,属于正方体展开图的“1-3-2”型,折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.【详解】折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.故选:B .【点睛】正方体展开图分四种类型,11种情况,每种情况折成正方体后哪些面相对是有规律的,可自己动手操作一下并记住,能快速解答此类题.【详解】解:1123243411()22AA A A A A A A A B AB ππ++++=⨯,因此乙虫走的四段半圆的弧长正好和甲虫走的大半圆的弧长相等,因此甲、乙同时到点B .故选:C . 【点睛】本题考查的是弧长的计算,解题的关键是掌握弧长公式:180n R l π=(弧长为l ,圆心角度数为n ,圆的半径为R)是解题的关键.8.C【分析】由一个圆柱和一个圆锥的底面积相等,可设圆柱和圆锥的底面积为S ,由圆柱的高是圆锥高的2倍,可设圆锥的高为h ,圆柱的高为2h ,根据圆柱与圆锥的体积公式,分别求出它们的体积,利用比的意义,即可求解.【详解】解:设圆柱和圆锥的底面积为S ,设圆锥的高为h ,圆柱的高为2h , 圆柱的体积=S ×2h = 2Sh ,圆锥的体积=13Sh , 则圆锥的体积是圆柱体积的比是:11:2:61:636Sh Sh Sh Sh , 答:圆锥的体积是圆柱体积的16. 故选C .【点睛】本题考查了圆柱与圆锥的体积计算以及比的意义的应用,灵活应用圆柱与圆锥的体积计算公式是解题的关键.9.C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积.【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积.故选:C.【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键.10.D【分析】根据线段的性质,中点的性质,面与棱之间的关系,角的比较方法逐项分析判断即可.【详解】A选项:线段AB的长度就是A、B两点间的距离,则此选项语句错误,不符合题意,故A错误;B选项:如果AB=BC,且点B在线段AB上,那么B是线段AC的中点,则此选项语句错误,不符合题意,故B错误;C选项:比较两个角的大小的方法常用的有叠合法和度量法,则此选项语句错误,不符合题意,故C错误;D选项:长方形纸片有直角,则可以使用长方形纸片检测平面与平面是否平行,则此选项语句正确,符合题意,故D正确;故选D.【点睛】本题考查了线段的性质,中点的性质,面与棱之间的关系,角的比较方法,掌握以上知识是解题的关键.11.C【分析】根据油桶由直立状态放倒成水平放置状态的整个过程,从不同方向观察油桶中的油的形状,即可.【详解】A、油桶处于水平放置状态时,从油桶的上方向下看,得到,不符合题意;B、油桶处于倾斜状态,从油桶的开口观察,可以得到,不符合题意;C、油桶由直立状态放倒成水平放置状态,在整个过程中无法得到,符合题意;D、油桶处于直立状态时,可以得到,不合题意.故选:C.【点睛】本题考查圆柱的截面的认识,解题的关键是从油桶的不同状态,观察油桶中油面的形状.12.A【分析】根据圆的面积公式计算即可.【详解】∵小圆半径是2cm ,大圆半径是4cm ,∵小圆的周长是2×2π=4π(cm ),大圆周长的周长是2×4π=8π(cm ),∵小圆周长是大圆周长的4π÷8π=12, 故选:A .【点睛】本题考查了圆的面积的计算,熟练掌握圆的面积公式是解题的关键.13.B【分析】根据题意,画出图形即可得出结论.【详解】解:看图以AB 为例,与它既不平行也不相交的棱有HD 、GC 、HE 和GF ,共有4条,故选B .【点睛】此题考查的是长方体的特征,根据题意画出图形是解决此题的关键.14.B【分析】根据圆的面积公式分别计算出小圆和大圆的面积,从而得出答案.【详解】解:根据题意知,小圆的面积为22=4ππ⨯,大圆的面积为2416ππ⨯=, 所以小圆的面积是大圆的面积的41=164,故B 正确. 故选:B .【点睛】本题主要考查圆的面积公式的应用,比值的计算,解题的关键是掌握圆的面积公式2S r π=.15.C【分析】要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.【详解】解:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:()8162ππ÷=, 面积为:2864π20.38ππ⎛⎫⨯=≈ ⎪⎝⎭; 正方形的边长为:1644÷=,面积为:4416⨯=;长方形的长、宽越接近面积越大,就取长为5宽为3,面积为:5315⨯=,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形,圆面积最大.故选:C .【点睛】此题主要考查长方形、正方形、圆形的周长、面积公式,根据周长求出面积是解题的关键.16.A【分析】根据题意可得半径增加后圆增加的面积等于半径增加后圆的面积减去原来圆的面积,即可求解.【详解】解:根据题意得:圆的面积增加了22363 2293819 72.故选∵A【点睛】本题主要考查求圆环的面积,熟练掌握圆的面积公式是解题的关键.17.C【分析】由图可知瓶子底部的半径是2厘米,然后求出水的体积和空余部分的体积即可得出答案.【详解】解:由图得:瓶子底部的半径是2厘米,∵水的体积是:22624ππ⋅⨯=(立方厘米),空余部分的体积是:()221088ππ⋅⨯-=(立方厘米),∵瓶子的容积是24π+8π=32π(立方厘米),故选:C .【点睛】本题考查了圆柱的体积计算,有理数的混合运算,正确计算是解题的关键.18.A【分析】πR 2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角缩小到原来的13,面积缩小到原来的13,(圆心角缩小的基础上)半径扩大3倍面积扩大9倍,总的算起来面积扩大到原来3倍.【详解】原扇形面积=圆心角÷360°×π×R 2,新扇形面积=(圆心角×13)÷360°×π×(3R )2=圆心角÷360×13×π×9R 2 =圆心角÷360°×π×R 2×3,所以新扇形面积:原扇形面积=3:1=3.故选:A【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.19.B【分析】已知一个铁环直径是60厘米,可计算的其周长,再结合滚动的圈数即可计算得操场东端滚到西端长度,再根据另一个铁环的直径,即可求出其周长和它从东端滚到西端要转的圈数.【详解】∵一个铁环直径是60厘米∵铁环周长=π⨯直径=60π∵铁环从操场东端滚到西端转了90圈∵操场东端滚到西端长度=6090=5400ππ⨯∵另一个铁环的直径是40厘米∵另一个铁环周长=π⨯直径=40π∵另一个铁环从东端滚到西端要转的圈数=操场东端滚到西长度÷铁环周长∵另一个铁环从东端滚到西端要转的圈数=540040135ππ÷=故选:B .【点睛】本题考查了圆的周长的知识;求解的关键是熟练掌握圆的周长计算方法,从而完成求解.20.C【分析】由题意知,要求这条小路的面积就是求圆环的面积,已知内圆的周长是18.84米,利用C=2πr 可求得内圆半径,用内圆半径加上环宽1米就是外圆半径,再利用S 圆环=π(R 2-r 2)求得环形的面积,最后再乘以100即可.【详解】内圆半径:18.84÷3.14÷2=3(米),外圆半径:3+1=4(米);小路的面积:3.14×(42-32)=3.14×(25-9)=3.14×7=21.98(平方米);⨯=(颗) .则共需鹅卵石:10021.982198答:共需鹅卵石2198颗.故选:C.【点睛】本题考查了圆环的面积公式的灵活应用,解答关键是把实际问题转化成数学问题中,再把对应的数据代入圆环公式计算即可.解答此题要注意:求圆环的面积要先知道内、外圆的半径,再用外圆面积减去内圆面积.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.故答案为:2【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22.(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ【分析】(1)根据长方体的棱与棱之间的位置关系解答即可;(2)根据长方体棱与面之间的位置关系直接解答即可;(3)根据长方体棱与棱之间的位置关系解答即可.【详解】由题意及图形可得:(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ.故答案为(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ 、棱PQ ;(3)棱MN 、棱NF 、棱BQ 、棱PQ .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键.23.4【分析】根据圆锥的体积公式、圆柱的体积公式计算即可.【详解】解:设圆锥和圆柱的底面积都是s ,圆柱的高为h ,则圆锥的体积=13sh =13s ×12=4s ,圆柱的体积=sh , 由题意得,sh =4s ,解得,h =4,即圆柱的高是4厘米,故答案为:4.【点睛】本题考查的是圆锥、圆柱的计算,解题的关键是掌握圆锥的体积公式、圆柱的体积公式.24.面11ABB A 、面11CDD C【分析】根据长方体的认识,即可求解.【详解】解:由图可知,与棱BC 垂直的平面为面11ABB A 、面11CDD C .故答案为:面11ABB A ,面11CDD C【点睛】本题主要考查了长方体的认识,熟练掌握长方体的特征是解题的关键. 25.4π 【分析】在一个边长为6cm 的正方形纸片上剪下一个最大的圆,则这个最大的圆的直径就是这个正方形的边长即6厘米,由此利用圆的面积=πr 2和正方形的面积=a 2代入数据即可解决问题.【详解】解:π(6÷2)2÷(6×6)=9π÷364π=, 故答案为:4π 【点睛】本题考查了圆的面积与正方形的面积,掌握圆的面积公式与正方形的面积公式是解题的关键.26.64平方厘米【分析】根据正方体的边长为4厘米,可得到正方形的每个面的面积,而与桌面垂直的平面有4个,即可求解.【详解】解:∵正方体的边长为4厘米∵该正方形的每个面:S4416=⨯=(平方厘米)∵与桌面垂直的平面面积之和为:16464⨯=(平方厘米)故答案为:64平方厘米.【点睛】此题主要考查正方形的面积,正确理解与桌面垂直的平面有4个是解题关键.27.1:1【分析】根据圆柱的侧面展开图是正方形,即可知道圆柱底面周长与高相等,即可得出答案.【详解】解:设圆柱底面周长为a,高为h,∵圆柱的侧面展开图是正方形,∵a h=,∵:1:1a h=,故答案为:1:1.【点睛】本题考查了圆柱的展开图,求比值,数形结合得出圆柱的侧面展开图是本题的关键.28.160°【分析】根据面积之比即为圆心角度数之比进行求解即可.【详解】解:由题意可知,三个圆心角的和为360°,∵三个扇形的面积比为2:3:4,∵三个扇形的圆心角度数之比为2:3:4,∵最大的圆心角度数为:4360160234︒⨯=︒++.故答案为:160°.【点睛】本题考查了扇形圆心角的度数问题,掌握周角的度数即三个扇形圆心角的和是360°是解题关键.29.2 360 n rπ【分析】根据扇形的面积公式即可填写本题.【详解】解:半径为r ,圆心角为n°的扇形面积2360n r S π=扇. 故答案为:2360n r π. 【点睛】本题考查了扇形的面积公式的字母表示形式,熟记和掌握公式是解题的关键. 30.240° 【分析】扇形的面积是它所在圆面积的23,那么扇形的圆心角就是它所在圆的圆心角的23,圆的圆心角为360°,那么可用圆心角乘扇形的圆心角占它所在圆的圆心角的分率即可得到答案.【详解】解:360°×23=240°, 故答案为:240°.【点睛】此题主要考查的是:扇形面积与它所在圆的面积的比等于扇形的圆心角与它所在圆的圆心角的比,掌握知识点是解题关键.31.36π或48π立方厘米【分析】根据圆柱体的体积=底面积×高,由于没有说清楚是绕长方形的哪条边旋转,所以分两种情况讨论.【详解】解:绕长所在的直线旋转一周得到圆柱体积为:23436ππ⨯⨯=(立方厘米); 绕宽所在的直线旋转一周得到圆柱体积:24348ππ⨯⨯=(立方厘米).故得到的几何体的体积是36π或48π立方厘米,故答案为:36π或48π立方厘米.【点睛】本题考查圆柱体的体积的求法及面动成体的知识,注意分两种情况讨论,不要漏解.32. 4 4【分析】根据圆锥的体积公式:213V r h π=,圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,体积扩大到原来的4倍,据此解答即可.【详解】解:∵圆的面积公式为2S r π=,∵圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,∵圆锥的体积公式:213V r h π=,∵圆锥的体积扩大到原来的4倍. 故答案为:4;4.【点睛】本题主要考查圆锥体积公式和圆的面积公式的灵活运用,解题的关键关键是熟记圆的面积公式2S r π=和圆锥的体积公式213V r h π=.33.8∵1【分析】设内圆的半径为a ,则外圆的半径为3a ,圆环的面积等于外圆的面积减去内圆的面积,则问题得解.【详解】设内圆的半径为a ,则外圆的半径为3a , 则外圆的面积为:()2239S a a ππ==外圆,内圆的面积为:22S a a ππ==内圆,则圆环的面积为:22298S S S a a a πππ=-=-=圆环外圆内圆, ∵()22881S S a a ππ==圆环内圆:::, 故答案为:8:1.【点睛】本题考查了比的知识、圆的面积以及圆环面积的计算,掌握圆面积的计算公式是解答本题的关键. 34. 1356.48 452.16【分析】由题意知,削成的最大圆柱体的底面直径是12cm ,高也是12cm ,可利用V =sh 求出它的体积,再把圆柱削成最大的圆锥体,则圆锥是与圆柱等底等高的,圆锥的体积就是圆柱体积的13,其要求圆锥的体积可用圆柱的体积乘13即可.【详解】()233.1412212 3.1436121356.48cm ⨯÷⨯=⨯⨯= 311356.48452.16cm 3⨯=故答案为:1356.48;452.16.【点睛】本题考查圆柱、圆锥的体积计算,正确理解题意并熟练掌握体积公式是解题的关键.35. 18.84 12.56【分析】分析:因为从上午9点到9点40分,经过了40分钟,则分针的针尖扫过区域为。
2023年中考数学二轮专题复习训练——几何图形初步与相交线、平行线(含答案)
2023年中考数学二轮专题复习——几何图形初步与相交线、平行线(测试时间:60分钟分数:100分)一、选择题(本题共8小题,共40分)1.(2021·四川巴中)某立体图形的表面展开图如图所示,这个立体图形是( )A.B.C.D.2.(2022·浙江金华)如图,圆柱的底面直径为,高为,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A.B.C.D.3.(2022·广西柳州)如图,直线a,b被直线c所截,若,∠1=70°,则∠2的度数是( )A.50°B.60°C.70°D.110°4.如图,直线相交于点射线平分若,则等于()A.B.C.D.5.(2022·辽宁营口)如图,直线的顶点B,C分别在上,若,则的大小为( )A.B.C.D.6.两个直角三角板如图摆放,其中,,,AB 与DF交于点M.若,则的大小为()A.B.C.D.7.如图,点D、E分别在线段、上,连接、.若,,,则的大小为()A.60°B.70°C.75°D.85°8.(2021·四川德阳)如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=( )A.30°B.60°C.120°D.150°二、填空题(本题共5小题,每空3分,共15分)9.(2022·广西玉林)已知∠α=60°,则∠α的余角等于____度.10.如图,两直线交于点O,若∠1+∠2=76°,则∠1= 度.11.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A = .12.(2021·湖南益阳)如图,与相交于点O,是的平分线,且恰好平分,则_______度.13.(2021·辽宁阜新)如图,直线,一块含有30°角的直角三角尺顶点E位于直线CD 上,EG平分,则的度数为_________°.三、解答题(本题共3小题,共45分)14.(2021·湖北武汉)如图,,,直线与,的延长线分别交于点,.求证:.15.如图,,AD是内部一条射线,若,于点E,于点F.求证:.16.(2020·江苏镇江)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.参考答案:1.A2.C3.C4.A5.C6.C7.B8.D9.3010.3811.20°12.6013.6014.证明:∵,∴.∵,∴.∴.∴.15.证明:∵,∴∠BAE+∠CAF=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF,∴.16.证明:(1)在△BEF和△CD A中,,∴△BEF≌△CDA(SAS),∴∠D=∠2;(2)∵∠D=∠2,∠D=78°,∴∠D=∠2=78°,∵EF∥AC,∴∠2=∠BAC=78°.。
中考数学图形与几何专题知识易错题50题(含答案)
中考数学图形与几何专题知识易错题50题含答案一、单选题1.圆的半径扩大到原来的3倍,它的周长扩大到原来的3倍,它的面积扩大到原来的()倍.A.3倍B.6倍C.9倍D.12倍2.小圆的半径是4cm,大圆的半径是8cm,小圆面积是大圆面积的()A.12B.14C.34D.183.如果大圆的半径长是小圆半径长的2倍,那么大圆周长是小圆周长的多少倍?()A.2B.4C.2πD.4π4.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π5.矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是().A.56πB.32πC.24πD.60π6.圆的半径扩大为原来的3倍()A.面积扩大为原来的9倍B.面积扩大为原来的6倍C.面积扩大为原来的3倍D.面积不变7.如图,直径为2个单位长度的圆从原点开始沿数轴向右无滑动地滚动一周到达点A,则点A表示的数是()A.1B.2C.πD.2π8.圆的面积扩大到原来的16倍,半径扩大到原来的()A.4倍B.8倍C.16倍D.32倍9.两个圆的直径比是1:2,其周长比是()A.1:2B.1:4C.1:πD.2:110.小明在计算一道求圆的面积的题时,错把半径当成直径的长度计算,这时只要把计算的结果乘()就能求出正确答案.A .4B .2C .圆周率11.一个圆柱体和一个圆锥体的底面周长之比是1:3,它们的体积比也是1:3,圆柱和圆锥的高的比是( ) A .1:1B .3:1C .1:9D .1:312.小圆半径是4cm ,大圆半径是8cm ,小圆面积是大圆面积的( ) A .12B .14C .16D .1813.在长方体中,下列说法错误的是( ) A .长方体中互相垂直的面共有12对 B .长方体中互相平行的面共有3对 C .长方体中相交的棱共有12对 D .长方体中异面的棱共有24对14.下列说法正确的是( ) A .半圆面积是圆面积的一半 B .半径为2的圆的面积和周长相等 C .周长相等的两个圆的面积也相等 D .两个圆的面积不相等是因为圆心位置不同15.如图,长方形的长是4厘米,宽是2厘米.分别以长边和宽边所在的直线为轴,旋转一周可以得到两个不同的圆柱.这两个圆柱的体积( )A .甲大B .乙大C .同样大D .无法判断谁大16.下列说法中不正确的是( ).A .用“长方形纸片”可以检查直线与平面平行B .用“三角尺”可以检查直线与平面垂直C .用“合页型折纸”可以检查平面与平面垂直D .空间两条直线有四种位置关系:平行、相交,垂直、异面17.如图,在矩形ABCD 中放入正方形AEFG ,正方形MNRH ,正方形CPQN ,点E 在AB 上,点M 、N 在BC 上,若4AE =,3MN =,2CN =,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为( )A.5B.6C.7D.8BC=,则O的面积为()18.如图,O为正方形ABCD的外接圆,若2A.2πB.3πC.4πD.8π19.下列说法:①一个圆的周长总是直径的π倍;①甲数除以乙数(不等于0)等于甲数乘乙数的倒数;①圆心角越大,扇形就越大;①一个非零自然数除以一个假分数,商一定小于被除数;①圆的对称轴是直径;错误的个数为()A.1个B.2个C.3个D.4个二、填空题20.门的转轴和地面的位置关系_______________.21.周长是720毫米的圆上,有一条长为360毫米的弧,这条弧所对的圆心角的度数为________.22.如图所示,在长方体ABCD EFGH-中:棱AD与平面ABFE的位置关系是__________;与棱CD平行的平面是_______________.23.长方体中棱与面的位置关系有________________________________.24.圆的半径为4厘米,它的周长是________厘米.25.如图,与棱AB平行的棱有__________________________;与棱FG相交的棱有__________________________;与棱AE异面的棱有__________________________;与棱HG相交的棱有__________________________.26.在一个边长为6cm的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.27.如图,在长方体ABCD-EFGH中,1)与棱DH垂直的面是_________________________,2)与棱BC垂直的面是_________________________,3)与棱AB垂直的面是_________________________,4)与面ABCD垂直的棱有_________________________________,5)与面ABFE垂直的棱有_________________________________,6)与面BCGF垂直的棱有__________________________________,7)在长方体中的每一条棱有_________个面和它垂直,每一个面有________条棱和它垂直.28.半圆形的周长等于它所在圆的周长的一半,______(判断对错)29.用______________可以检验教室里黑板的边沿是否平行于地面.30.如图所示,平面BDHF垂直于平面_______.31.把一个底面直径4分米的圆柱体,截去一个高2分米的小圆柱体,原来的圆柱体表面积减少_____平方分米.(结果保留π)32.如图,在长方体ABCD EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是______.33.若把一个圆分割成3个扇形,且各个扇形面积的比为3:2:1,则最小的扇形的圆心角的度数是___.34.如图,圆柱形容器的底面半径为0.5m,高为1.5m.其里面盛有1m深的水,将底面半径为0.3m,高为0.5m的圆柱形铁块沉入水中,此时容器内的水面高度上升了______m.35.扇形的圆心角是72°,则扇形的面积是其所在圆面积的________(填分数).36.如图1中的瓶子盛满了水,如果将这个瓶子中的水全部倒入图2的杯子中,那么一共需要________个这样的杯子(瓶子和杯子的厚度忽略不计).37.如图,阴影部分面积是小圆面积的23,是大圆面积的38,则大圆面积与小圆面积的比是________.38.一根圆柱形木料长200厘米,把它截成三段圆柱形,表面积增加了12平方厘米,原来木料的体积是__________立方厘米.39.如果两个扇形A 、B 的面积相等,A 的圆心角占B 的圆心角的14,则A 的半径与B 的半径的比为________.三、解答题40.直径为18cm 的圆中,圆心角40°的扇形面积是多少?41.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是20π米,高2米,圆锥的高是1.2米.221ππ3V r h V r h 圆柱圆锥,⎛⎫== ⎪⎝⎭(1)这个粮囤能装稻谷多少立方米?(结果保留π)(2)如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?(结果保留π) 42.如图所示,将一个横截面是正方形(面BCGF )的长方体木料,沿平面AEGC (长方形)分割成大小相同的两块,表面积增加了230cm ,已知EG 长5cm ,分割后每块木料的体积是318cm ,问原来这块长方体木料的表面积是多少?43.一块正方形的草皮,边长为4米,在两个相对的角上各有一棵树,树上各拴一只羊,绳长4米,问两只羊都能吃到的草的草皮有多少?44.如图所示:正方形的边长为2,以各边为直径在正方形内画半圆,求所围成的图形(阴影部分)的面积.45.如图,一个半圆和一条直径组成的图形的周长为20.56厘米,它的面积是多少平方厘米?46.如图,,AB BC ⊥4cm,BC =45C ∠=︒,O 为圆心,求阴影部分的面积.47.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.48.求图中AB 的长度.49.王明用长40cm ,宽20cm 的两张长方形纸围成了甲、乙两个圆柱(如图,粘接处重叠部分不计),再给每个圆柱配上一个底面,做成了两个圆柱形容器.(1)甲、乙两个圆柱谁的体积大?先提出你的猜想;(2)如何验证你的猜想?请你设计一个验证方案.(只需设计方案,写出主要步骤,不需要列式计算.)参考答案:1.C【分析】设圆的半径为r ,则圆的面积为2r π,半径扩大到原来的3倍后为3r ,然后得到面积为()2239r r ππ⨯=,相除即可得到答案. 【详解】解:设圆的半径为r ,则圆的面积为2r π, ①半径扩大到原来的3倍后为3r ,面积为()2239r r ππ⨯=, ①2299r r ππ÷=.①它的面积扩大到原来的9倍. 故选:C .【点睛】此题考查了圆的面积公式,除法运算,解题的关键是熟练掌握圆的面积公式. 2.B【分析】用小圆面积除以大圆面积,即可求解.【详解】解:根据题意得:小圆面积是大圆面积的()()2214816644ππππ⨯÷⨯=÷=.故选:B【点睛】本题主要考查了求圆的面积,熟练掌握圆的面积公式是解题的关键. 3.A【分析】设小圆的半径长为r ,则大圆的半径长为2r ,即可分别求得大圆、小圆的周长,据此即可解答.【详解】解:设小圆的半径长为r ,则大圆的半径长为2r , 故大圆的周长为:224r r ,小圆的周长为:2r π,422r r ππ÷=,∴大圆周长是小圆周长的2倍,故选:A .【点睛】本题考查了求圆的周长公式,根据题意,列出代数式是解决本题的关键. 4.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米, ①横截面半径是3分米即0.3米,①横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D.【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.5.A【详解】①以直线AB为轴旋转一周得到的圆柱体,得出底面半径为4cm,母线长为3cm,①圆柱侧面积=2π•AB•BC=2π•3×4=24π(cm2),①底面积=π•BC2=π•42=16π(cm2),①圆柱的表面积=24π+2×16π=56π(cm2).故选A【点睛】此题主要考查了圆柱的表面积的计算公式,根据旋转得到圆柱体,利用圆柱体的侧面积等于底面圆的周长乘以母线长是解决问题的关键.6.A【分析】根据圆的面积公式判断即可.【详解】S=πr2,圆的半径扩大为原来的3,所以面积扩大为原来的9倍.故答案为:A.【点睛】本题主要考查了圆的面积问题,熟练掌握圆的面积公式是解题的关键.7.D【分析】根据圆的周长πd作答即可.【详解】解:圆旋转一周,周长为2π,①点A所表示的数为0+2π=2π.故选:D.【点睛】考查圆的周长及数轴上点的意义,解题关键是通过图形求得圆的周长.8.A【分析】设圆的半径为r,面积=πr2,由此可得:圆的面积与半径的平方成正比例,所以圆的面积扩大到原来的16倍,则圆的半径则扩大到原来的4倍,由此即可解答.【详解】解:设圆的半径为r,面积=πr2,π是一个定值,则:圆的面积与r2成正比例:即半径r扩大到原来的4倍,则r2就扩大4×4=16倍,所以圆的面积就扩大16倍,反之圆的面积扩大到原来的16倍,因为16=4×4,所以圆的半径就扩大到原来的4倍. 答:一个圆的面积扩大到原来的16倍,则这个圆的半径就扩大到原来的4倍. 故选:A .【点睛】本题考查了比例,关键是掌握圆的面积与半径的平方成正比例的灵活应用. 9.A【分析】设小圆直径为d ,则根据“两个圆的直径之比是1:2,”得出大圆直径为2d ,再根据圆的周长公式C =πd ,分别表示出它们的周长,写出相应的比,再化简即可. 【详解】解:设小圆直径为d ,则大圆直径为2d , 小圆的周长:C d π=,大圆的周长:22C d d ππ'⨯==, 周长的比:πd :2πd =1:2,故A 正确. 故选:A .【点睛】本题主要考查比的意义和圆的周长公式,解题的关键是熟练掌握圆的周长公式C =πd . 10.A【分析】根据直径是半径的2倍即可得出答案. 【详解】解:①直径是半径的2倍,①只要把计算的结果乘4就能求出正确答案,故A 正确. 故选:A .【点睛】本题主要考查了圆的面积的有关计算,解题的关键是熟练掌握圆的面积公式,以及圆的直径与半径的关系. 11.A【分析】根据圆的周长公式知道底面周长的比就是半径的比,设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,再根据圆柱的体积公式2V sh r h π==与圆锥的体积公式21133V sh r h π==得出圆柱的高与圆锥的高,进而根据题意,进行比即可.【详解】解:设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,则:221[1(1)]:[3(3)]3ππ÷⨯÷÷⨯,11:ππ= 1:1=故选:A .【点睛】此题主要考查了圆柱的体积公式与圆锥的体积公式,关键在于熟悉圆柱的体积公式与圆锥的体积公式,利用公式推导出圆柱与圆锥的高的关系.12.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=,①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键.13.C【分析】直接根据长方体中棱、面之间的位置关系进行排除即可.【详解】A 、长方体中互相垂直的面共有12对,故正确;B 、长方体中互相平行的面共有3对,故正确;C 、长方体中相交的棱共有24对,故错误;D 、长方体中异面的棱共有24对,故正确.故选C .【点睛】本题主要考查长方体中棱、面之间的位置关系,熟练掌握概念是解题的关键. 14.C【分析】根据圆的面积及周长计算公式直接进行判断即可.【详解】A 、“半圆面积是圆面积的一半”缺少半径相等这个前提,所以错误;B 、半径为2的圆的面积和周长不相等,因为单位不一样,故错误;C 、周长相等的两个圆的面积也相等,故正确;D 、两个圆的面积不相等是由半径来决定的,圆心只决定圆的位置关系,故错误; 故选C .【点睛】本题主要考查圆的面积与周长,正确理解圆的面积及周长是解题的关键. 15.B【分析】根据题意可知,以长方形的长边为轴旋转一周得到的圆柱的底面半径是2厘米,高是4厘米;以长方形的宽边为轴旋转一周得到的圆柱的底面半径是4厘米,高是2厘米;根据圆柱的体积公式:2V r h π=,把数据分别代入公式求出它们的体积进行比较即可.【详解】解:甲:23.1424⨯⨯=3.14×4×4=50.24(立方厘米)乙:23.1442⨯⨯=3.14×16×2=100.48(立方厘米)100.48>50.24答:乙的体积大.故选:B 。
中考数学几何图形专题训练50题(含答案)
中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列四个图形中,不是正方体展开图的()A.B.C.D.2.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C 地,此时小军离A地().A.B.10m C.15m D.3.如图,在直线l上有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条4.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.下列四个立体图形中,是棱锥的是()A.B.C .D .6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是( )A .3cmB .5cmC .3cm 或7cmD .5cm 或7cm7.下列说法正确的是( )A .一个平角就是一条直线B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线8.如图,OC 平分∠AOB ,若∠AOC =27°32′,则∠AOB =( )A .55°4′B .55°24′C .54°14′D .54°4′ 9.图,有一块含有30︒角的直角三角板的两个顶点放在直尺的对边上.如果242∠=︒,那么1∠的度数是( )A .18︒B .17︒C .16︒D .15︒ 10.下列各图都是由6个正方形组成的平面图形,其中不能看做是正方体表面展开图的是( )A.B.C.D.11.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国12.如图所示,以O为顶点且小于180 的角有()A.6个B.7个C.8个D.9个13.下列说法中,正确的是().A.平角是一条直线B.周角是一条射线C.两条射线组成的图形是角D.一条射线绕它的端点旋转而成的图形叫做角14.如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A.2B.4C.5D.615.如图是一个小正方形的展开图,把展开图折叠成小正方形后,有“祝”字一面的相对面上的字是()A.考B.试C.成D.功16.如图,点C,D在线段AB上,AC=13AB,CD=12CB,若AB=3,则图中所有线段长的和是()A.6B.8C.10D.1217.下列几何体中,由曲面和平面围成的是()A.三棱柱B.圆锥C.球体D.正方体18.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm19.下列说法中正确的是()A.两条射线组成的图形叫做角;B.各边相等的多边形叫做正多边形;C.一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是60°;D.小于平角的角可分为锐角和钝角两类.20.A、B两辆汽车沿着笔直的公路行驶,A车从甲地出发,B车从乙地出发,行驶到途中两车相遇,各自仍朝前进的方向行驶,到了目的地后立即返回,过了某一时刻,两车又在原地点相遇,则两车必定是()A.沿着同一条公路行驶B.沿着两条不同的公路行驶C.以上两种情况都有可能D.以上都不对二、填空题21.已知36a∠=︒,则a∠的补角的度数是__________.22.已知∠α=65°30′,则∠α的余角大小是_______.23.图中以A 为端点的线段共有______条.24.计算:34°25′20″×3=_______________25.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 26.如图,从A 处观测C 处仰角30CAD ∠=︒,从B 处观测C 处的仰角45CBD ∠=︒,从C 处观测A 、B 两处的视角ACB =∠______度.27.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F ,把∠DEF 绕点D 旋转到一定位置,使得DE=DF ,则∠BDN 的度数是_________ .28.数轴上的点P 对应的数是1-,将点P 向右移动8个长度单位得到点Q ,则线段PQ 的中点在数轴上对应的数是____________.29.在∠ABC 中,∠ABC 和∠ACB 的平分线交于点O ,且∠BOC =110°,则∠A 的度数是____________.30.若∠α=20°40′,则∠α的补角的大小为_____.31.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向,从A 岛看B ,C 两岛的视角∠BAC 是______ 度.32.点A 和点B 在同一平面上,如果从A 观察B ,B 在A 的北偏东14°方向,那么从B 观察A ,A 在B 的_____方向.33.已知线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,则线段BM 的长是_cm .34.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.∠O 的半径长为_________.∠P 是CD 上的动点,则PA PB +的最小值是_________.35.如图,将一副直角三角尺按图∠放置,使三角尺∠的长直角边与三角尺∠的某直角边在同一条直线上,则图∠中的∠1=______°.36.如图,已知∠ABC 的内角∠A=α°,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2014,则∠A 2014的度数是_______.37.一副直角三角板叠放如图,90C E ∠=∠=︒.现将含45°角的三角板ADE 固定不动,把含30°角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角α(0180α︒<<︒).当旋转角在30°~180°的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=________.38.已知∠AOB =80°,OC 为从O 点引出的任意一条射线,若OM 平分∠AOC ,ON 平分∠BOC ,则∠MON 的度数是_____.39.如图所示,若图中共有m 条线段,n 条射线,则m n +=__________________.40.如图,请你在有序号的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的展开图,你选择的两个正方形是____________ (填序号,任填一组即可).三、解答题41.如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.42.图中哪些图形是立体图形,哪些是平面图形?平面图形:_______________;立体图形:_______________.43.如图,已知长方形ABCD 的长AB x =米,宽BC y =米,x ,y 满足()2540x y -+-=,一动点P 从A 出发以每秒1米的速度沿着A D C B →→→运动,另一动点Q 从B 出发以每秒2米的速度沿B C D A →→→运动,P ,Q 同时出发,运动时间为t .(1)x =______________,y =______________.(2)当 4.5t =时,求APQ △的面积;(3)当P ,Q 都在DC 上,且PQ 距离为1时,求t 的值44.如图1,已知A 、O 、B 三点在同一直线上,射线OD 、OE 分别平分∠AOC 、∠BOC .(1)求∠DOE 的度数;(2)如图2,在∠AOD 内引一条射线OF OC ⊥,其他不变,设()090DOF αα∠=︒︒<<︒.∠求∠AOF 的度数(用含α的代数式表示);∠若∠BOD 是∠AOF 的2倍,求∠DOF 的度数.45.如图,在77⨯的正方形网格中有一个格点ABC .(1)在图中作出ABC 关于直线l 对称的111A B C △(2)在直线l 上找到一点D ,使得AD CD +的值最小(在图中标出D 点位置,保留作图痕迹)46.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.47.如图,点C 是线段AB 的中点,点D 在线段AB 上,且13AD AB =.(1)若4cm AD =,求线段CD 的长.(2)若3cm CD =,求线段AB 的长.48.(1)如图1,将两个正方形的一个顶点重合放置,若40AOD ∠=︒,则COB ∠=______度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个正方形的一个顶点重合放置,若OF 平分DOB ∠,那么OE 平分AOC ∠吗?为什么?49.如图,90,60AOB COD AOC ∠=∠=︒∠=︒,射线ON 以10度/秒的速度从OD 出发绕点O 顺时针转动到OA 时停止,同时射线OM 以25度/秒的速度从OA 出发绕点O 逆时针转动到OD 时停止,设转动时间为t 秒.(1)当OM ON 、重合时,求t 的值;(2)当ON 平分BOD ∠时,试通过计算说明OM 平分AOD ∠;(3)当t 为何值时,MON ∠与AOD ∠互补?参考答案:1.D【分析】由正方体展开图的特征即可判定出正方体的展开图.【详解】解:由正方体展开图的特征即可判定D不是正方体的展开图,故选:D.【点睛】本题主要考查了几何体的展开图,解题的关键是熟记正方体展开图的特征.2.D【详解】试题分析:根据题意可得:A、B、C三点构成直角三角形,BC为斜边,则根据直角三角形的性质可得:,故选D.3.B【详解】线段有:AB、AC、BC.故选:B.4.D【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.【点睛】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.5.B【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A是棱柱,不符合题意;B是棱锥,符合题意,C是球体,不符合题意;D是圆柱,不符合题意;故选B.【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.6.C=-;点C在点B右侧时,【分析】根据题意知,点C在点B左侧时,MN BM BN+MN BM BN =,因为点M 是线段AB 的中点,点N 是线段BC 的中点,分别算出,BM BN 长度,代入计算即可.【详解】解:因为点C 是直线AB 上一点,所以需要分类讨论:(1)点C 在点B 左侧时,作图如下:∠10cm AB =,4cm BC =, ∠152BM AB cm ==,122BN BC cm ==, 又∠MN BM BN =-,∠=523MN cm -=.(2)当点C 在点B 右侧时,作图如下:由(1)知,152BM AB cm ==,122BN BC cm ==, ∠+MN BM BN =,∠+=5+2=7cm MN BM BN =,综上所述,MN 的长度是3cm 或7cm .故选:C【点睛】本题考查线段长度的计算,根据题意分类讨论是解题关键.7.D【分析】根据平角、两点间的距离、角的定义和直线公理逐项进行解答即可得.【详解】A 、平角的两条边在一条直线上,故本选项错误;B 、连接两点的线段的长度叫做两点间的距离,故此选项错误;C 、有公共端点是两条射线组成的图形叫做角,故此选项错误;D 、经过两点有一条直线,并且只有一条直线,正确,故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.8.A【分析】由OC 平分∠AOB 可得到∠AOB=2∠AOC ,代入计算可得解.【详解】解:OC 平分∠AOB ,则227322?554AOB AOC ∠=∠=︒'⨯=︒', 故选:A【点睛】本题考查了角平分线和角的计算,比较基础.9.A【分析】如解图所示,依据60ABC ∠=︒,242∠=︒,即可得到18EBC ∠=︒,再根据BE CD ,即可得出118EBC ∠=∠=︒.【详解】:如图,∠60ABC ∠=︒,242∠=︒,∠18EBC ∠=︒,∠BE CD ,∠118EBC ∠=∠=︒,故选:A .【点睛】此题考查了平行线的性质,掌握两直线平行,内错角相等是解决此题的关键. 10.D【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:正方体共有11种表面展开图,A 、B 、C 项都是正方体的展开图,D 出现了“田”字格,故不是正方体的展开图;故选择:D.【点睛】本题考查的是正方体的展开图,以及学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.C【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:C.12.D【分析】根据图形,找出以O为顶点的所有小于180°的角即可.【详解】解:以O为顶点且小于180°的角有:∠AOC,∠COD,∠DOE,∠EOB,∠AOD,∠AOE,∠COE,∠COB,∠DOB.一共有9个;故选择:D.【点睛】本题考查了角的表示,解题的关键是要找到图中两两相交直线的交点,作为角的顶点,且找出的角要小于180°.13.D【分析】根据角的定义即可判断.【详解】如果一个角的终边继续旋转,旋转到与始边成一条直线时,所成的角叫做平角,故A错误;当终边旋转到与始边重合时,所成的角叫做周角,故B错误;有公共端点的两条不重合的射线组成的图形叫做角,故C错误;一条射线绕它的端点旋转而成的图形叫做角,故D正确.故选D.【点睛】此题考查了角的定义,掌握角的两种定义和周角、平角的定义是解题的关键. 14.A【分析】利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面.【详解】这是一个正方体的表面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,可知5点在后面,2点在前面;故选A.【点睛】此题考查学生的空间想象能力,先找到每个面的对面,进而确定它们的位置. 15.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∠“祝”与“功”是相对面.故选:D.【点睛】本题主要考查了展开与折叠,注意正方体的空间图形,从相对面入手,分析及解答问题.16.C【详解】解:∠AB=3,∠AC=13AB=13×3=1,∠BC=3-1=2,∠CD=12CB=12×2=1,∠AD=1+1=2,CB=1+1=2,DB=2-1=1,即图中所有线段长的和是AC+AD+AB+CD+CB+DB=1+2+3+1+2+1=10.故选C.17.B【分析】三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成,结合各图形的特点可得出答案.【详解】解:三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成;故选:B【点睛】此题考查了认识立体图形的知识,熟练掌握是解题的关键.18.A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∠点C是线段AB的中点,AB=20cm,∠BC=12AB=12×20cm=10cm,∠点D是线段BC的中点,∠BD=12BC=12×10cm=5cm,∠AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.19.C【详解】A. 由公共端点的两条射线组成的图形叫做角,故不正确;B. 各边相等,且各角也相等的多边形叫做正多边形,故不正确;C. 一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是1360123⨯++=60°,正确; D. 小于平角的角可分为锐角,直角和钝角三类,故不正确.故选C .【点睛】本题考查了角、正多边形、圆心角的定义,以及角的分类,熟练掌握各知识点是解答本题的关键.20.A【详解】解:根据题意,两车必定沿着同一条公路行驶.故选A .21.144°【分析】根据补角的定义即可求出a ∠的补角的度数.【详解】解: a ∠的补角的度数是180°-a ∠=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角,掌握补角的定义是解决此题的关键.22.24°30′##24.5°【分析】如果两个角的和为90°,则这个两个角互为余角,根据互为余角的两个角的和为90°作答.【详解】解:根据定义∠α的余角度数是90°﹣65°30′=24°30′.故答案为:24°30′.【点睛】本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单. 23.3【分析】根据线段的定义分别写出各条线段即可【详解】解:图中以A 为端点的线段有线段AB ,线段AC ,线段AD ,共3条故答案为:3【点睛】本题考查了线段的定义,属于基础题,较简单24.10316'︒【分析】直接根据角的运算计算即可.【详解】160',1'60''︒==3425'20''310316'∴︒⨯=︒故答案为:10316'︒.【点睛】本题主要考查角的运算,掌握度分秒之间的关系是解题的关键.25.76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-()190180124x x ∴-=-- 19045124x x -=-- 3574x = 4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.26.15【分析】根据三角形外角的性质求解即可.【详解】解:∠CBD ∠是ABC 的外角,∠CBD CAD ACB ∠=∠+∠,∠453015ACB CBD CAD ∠=∠-∠=︒-︒=︒.故答案为:15【点睛】本题考查了仰角的概念和三角形外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题关键.27.120°【分析】根据等腰三角形的性质和特殊直角三角形的角度求得∠DFC ,进一步利用三角形外角的性质即可得到结果.【详解】解:如图,∠DE=DF ,∠EDF=30°, ∠∠DFC=12(180°-∠EDF )=75°,∠∠C=45°,∠∠BDN=∠DFC+∠C=75°+45°=120°.故答案为:120°.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰三角形的性质,掌握三角形的内角和与外角的性质是解题的关键.28.3【分析】利用数轴得到点Q表示的数,再根据线段中点定义可得答案.【详解】解:∠点P对应的数是-1,将点P向右移动8个长度单位得到点Q,∠点Q表示的数为:-1+8=7,∠线段PQ的中点对应的数是1713 2-+-=故答案为:3.【点睛】本题考查了数轴,掌握数轴上两点间的距离是解决此题的关键.29.40°【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】解:如图,在∠BOC中,∠BOC = 110°,∴∠OBC + ∠OCB = 180°- 110°= 70°,OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC = 2∠OBC,∠ACB=2∠OCB,∴∠ABC +∠ACB = 2×70°= 140°,∴在∠ABC中,∠A = 180°-(∠ABC+∠ACB)= 180°- 140°= 40°,故答案为:40°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.30.159°20′【详解】试题分析:根据∠α的补角=180°﹣∠α,代入求出即可.解:∠∠α=20°40′,∠∠α的补角=180°﹣20°40′=159°20′,故答案为159°20′.考点:余角和补角;度分秒的换算.31.70°【详解】由题意可知∠DBC=80°,∠DBA=30°,∠∠ABC=50°,又∠DB∠EC,∠ECA=40°,∠∠ECB=100°,∠∠ACB=60°,∠∠BAC=180°-60°-50°=70°32.南偏西14°.【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】由题意可知,∠1=14°,∠AC∠BD,∠∠1=∠2=14°,根据方向角的概念可知,由点B测点A的方向为南偏西14°方向.故答案为:南偏西14°.【点睛】此题考查的知识点是方向角,解答此类题需要从运动的角度,正确画出方位角,即可解答.33.3或7【分析】根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当点C在线段AB上时,AC=AB−BC=10−4=6,点M是线段AC的中点,AC=3,MA=12BM=AB−AM=10−3=7;当点C在线段的反向延长线上时,AC=AB+BC=10+4=14,点M是线段AC的中点,AM=1AC=7,2BM=AB−AM=10−7=3,故答案为:3或7.【点睛】本题考查了两点间的距离,利用线段的和差、线段中点的性质是解题关键,要分类讨论,以防遗漏.34. 2 【分析】∠连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;∠先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:∠连接,OA OB ,∠30,ADB ∠=︒ ∠60AOB ∠=︒, ∠OA OB =,∠AOB 是等边三角形, ∠弦AB 长为2, ∠2OA OB ==, 即O 的半径长为2, 故答案为:2 ∠∠15ADC ∠=︒, ∠230AOC ADC ︒∠=∠=, ∠90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,∠60BAO ∠=︒,∠2OA OE ==, ∠30OAE AEB ︒∠=∠=, ∠90BAE BAO OAE ∠=∠+∠=︒,∠AE ==即PA PB +的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键. 35.105【分析】利用三角形外角性质求解. 【详解】如图,∠∠2=30︒,∠3=45︒, ∠∠4=∠2+∠3=75︒, ∠∠1=1804105︒-∠=︒, 故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键. 36.201420141A 2α∠=【分析】由三角形的外角性质知:∠A=∠ACD-∠ABC ,而∠A 1=12(∠ACD-∠ABC ),即∠A 1=12∠A ,同理可得,∠A 2=12∠A 1,依此类推即可. 【详解】∠∠ACD 是∠ABC 的外角, ∠∠ACD =∠A +∠ABC ,∠1B A 平分∠ABC ,1CA 平分∠ACD ,∠112A BC ABC ∠=∠,112ACD ACD ∠=∠, ∠1A CD ∠是1A CB 的外角, ∠111ACD A BC A ∠=∠+∠, ∠11122ACD ABC A ∠=∠+∠, ∠()11122A ACD ABC A ∠=∠-∠=∠, 同理可得:1212A A ∠=∠, 根据规律可得:201420141A 2α∠=【点睛】本题考查的是三角形内角和定理及三角形外角的性质,找出规律是解答此题的关键.37.60°或105°或135°【分析】分类讨论:当//BC AD 时,当//AC DE 时,当//AB DE 时,利用角度之间的关系计算即可;【详解】解:如图当//BC AD 时,,90C CAD ︒∠=∠=∠903060a DAB ︒=-︒=∠=︒, 如图,当//AC DE 时,90E CAE ︒∠=∠=,则459030105DAB α︒=∠=︒+︒-︒=, 如图,当//AB DE 时,90A E B E ∠=∠=︒,∠4590135BAD α=∠=︒+︒=︒;综上:符合条件的α为60°或105°或135°, 故答案为:60°或105°或135°.【点睛】本题考查角度之间的计算,平行的性质,解题的关键是对平行的边进行分情况讨论.38.40°或140°【分析】根据角平分线的定义求得∠MOC =12∠AOC ,∠CON =12∠BOC ;然后根据图形中的角与角间的和差关系来求∠MON 的度数. 【详解】解:∠OM 平分∠AOC ,ON 平分∠BOC .∠∠MOC=12∠AOC,∠CON=∠BON=12∠BOC.如图1,∠MON=∠MOC-∠CON=12(∠AOC-∠BOC)=12∠AOB=12×80°=40°;如图2,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×280°=140°.如图3,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12∠AOB=12×80°=40°;故答案为:40°或140°.【点睛】此题主要考查了角平分线的定义.注意“数形结合”数学思想在解题过程中的应用.39.26【分析】根据射线、线段的定义进而判断得出m,n的值再代入计算即可.【详解】解:图中共有10条线段,共有16条射线,则m=10,n=16,所以m n+=10+16=26.故答案为26.【点睛】此题主要考查了射线、线段的定义,熟练掌握它们的定义是解题关键.40.∠∠或∠∠或∠∠或∠∠【分析】观察所给图形结合正方体的平面展开图的特点进行填涂即可.【详解】根据正方体的展开图的特点,按如下方式进行填涂后可以构成正方体表面的展开图:故答案为:∠∠或∠∠或∠∠或∠∠.【点睛】本题主要考查正方体展开图的2-3-1型和2-2-2-型,掌握正方体的展开图是解题关键.41.110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC 的度数,然后根据角平分线的定义求出∠COE 的度数,最后根据∠OCE 与∠EOD 互为邻补角即可得出答案. 【详解】35BOD ∠=︒,35AOC ∴∠=︒OA 平分EOC ∠,223570COE AOC ∴∠=∠=⨯︒=︒ 180110EOD COE ∴∠=︒-∠=︒.【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是 解决此题的关键.42. ②③⑧ ①④⑤⑥⑦【分析】根据立体图形和平面图形定义分别进行判断. 【详解】解:∠∠∠是平面图形;∠∠∠∠∠是立体图形.【点睛】本题考查认识立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. 43.(1)5,4(2)1APQ S =△平方米 (3)4t =【分析】(1)根据绝对值和乘方的非负性,即可求解;(2)根据题意得:当t =4.5时,点P 在CD 上,DP =0.5米,点Q 刚好到达点D 处,可得12PQ =米,再由12APQ S PQ AD =⋅⋅△,即可求解; (3)当P ,Q 都在DC 上,可得4 4.5t ≤≤,然后分两种情况讨论:当P 左Q 右时,当Q 左P 右时,即可求解.【详解】(1)解∠∠()2540x y -+-=, ∠50,40x y -=-=, ∠x =5,y =4, 故答案为:5,4;(2)解:当t =4.5时,P 走过的路程为4.5米,此时点P 在CD 上,DP =0.5米,Q 走过的路程为9米,刚好到达点D 处, ∠12PQ =米, ∠11141222APQ S PQ AD =⋅⋅=⨯⨯=△平方米;(3)解:点P 在DC 上,49t ≤≤,点Q 在DC 上,2 4.5t ≤≤, ∠4 4.5t ≤≤,当P 左Q 右时,4DP t =-,24CQ t =-,∠()()5424133PQ CD DP CQ t t t =--=----=-, ∠1331t -=, 解得:4t =当Q 左P 右时,4DP t =-,24CQ t =-,∠()()4245313PQ DP CQ CD t t t =+-=-+--=-, ∠3131t -=, 解得144.53t =>,不符题意,舍去. 综上,满足题意的4t =.【点睛】本题主要考查了动点问题,涉及绝对值和平方式的非负性,三角形面积的求解,解题的关键是关键题意用时间t表示出线段长度,列式求出t的值.44.(1)90°;(2)∠90°-2α°∠18°【分析】(1)根据角平分线的定义和平角的定义,即可求解;(2)∠根据余角的性质得:∠COE=∠DOF=α°,根据角平分线的定义,可得∠BOC=2α°,进而即可求解;∠用α分别表示出∠BOD和∠AOF的度数,结合∠BOD是∠AOF的2倍,列出关于α的方程,即可求解.【详解】(1)∠点A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC,∠∠COD=12∠AOC,∠COE=12∠BOC,∠∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°,∠∠DOE=∠COD+∠COE=90°;(2)∠∠OE平分∠BOC,∠∠BOC=2∠COE,∠OF∠OC,∠∠COF=∠COD+∠DOF=90°,∠∠COE+∠COD=90°,∠∠COE=∠DOF=α°,∠∠BOC=2α°,∠∠AOF+∠BOC=90°,∠∠AOF=90°-2α°;∠∠∠BOE=∠COE=α°,∠∠BOD=∠BOE+∠DOE=90°+α°,∠∠BOD=2∠AOF=2(90°-2α°)=180°-4α°,∠90°+α°=180°-4α°,∠α=18,即:∠DOF=18°.【点睛】本题主要考查角的和差倍分,涉及余角的定义和性质,平角的定义,角平分线的定义,根据题意,列出一元一次方程,是解题的关键.45.(1)图见解析(2)图见解析【分析】(1)分别作出A ,B ,C 的对应点111A B C ,,即可; (2)连接1AA ,1CA 交l 于点D ,点D 即为所求. 【详解】(1)如图所示; (2)如图所示:【点睛】本题考查了作图—轴对称变换,最短问题,解决本题的关键是熟练掌握基本知识.46.(1)20°;(2)60°【分析】(1)先求出∠AOF =140°,然后根据角平分线的定义求出∠AOC =70°,再由垂线的定义得到∠AOB =90°,则∠BOD =180°-∠AOB -∠AOC =20°;(2)先求出∠AOE =60°,从而得到∠AOF =120°,根据角平分线的性质得到∠AOC =60°,则∠COE =∠AOE +∠AOC =120°,∠DOE =180°-∠COE =60°. 【详解】解:(1)∠∠AOE =40°, ∠∠AOF =180°-∠AOE =140°, ∠OC 平分∠AOF , ∠∠AOC =12∠AOF =70°, ∠OA ∠OB , ∠∠AOB =90°,∠∠BOD =180°-∠AOB -∠AOC =20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC平分∠AOF,∠∠AOC=12∠AOF=60°,∠∠COE=∠AOE+∠AOC=60°+60°=120°,∠∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.47.(1)2 cm;(2)18cm【分析】(1)先求出AB的长,再结合线段中点的定义求出AC的长,进而即可求解;(2)设AB=x cm,则13AD x=cm,根据线段的中点的定义,列出方程,进而即可求解.【详解】(1)∠13AD AB=,AD=4 cm,∠AB=3×4=12 cm,∠点C是线段AB的中点,∠AC=12AB=11262⨯=cm,∠CD=AC-AD=6-4=2 cm;(2)设AB=x cm,则13AD x=cm,∠点C是线段AB的中点,∠AB=2(AD+CD),即x=2(13x+3),解得:x=18,∠AB=18cm.【点睛】本题主要考查线段的和差倍分以及一元一次方程的应用,利用一元一次方程解决问题,是解题的关键.48.(1)140;(2)20°;(3)OE平分∠AOC,见解析【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB-∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3-(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【详解】解:(1)∠两个图形是正方形,∠∠COD=90°,∠AOB=90°,∠∠COD+∠AOB=180°,∠∠AOD=40°,∠∠COB=∠COD+∠AOB-∠AOD=140°故答案为:140;(2)如图,由题意知,∠1+∠2=50°∠,∠1+∠3=60°∠,又∠1+∠2+∠3=90°∠,所以:∠+∠-∠得:∠1=20°;(3)OE平分∠AOC,理由如下:∠∠COD=∠AOB,∠∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∠OF平分∠DOB,∠12DOF FOB DOB∠=∠=∠,∠1122EOA DOB COA ∠=∠=∠,∠OE平分∠AOC.【点睛】本题考查了角的和差运算,与余角和补角的有关的计算,根据所给出的图形,找到角与角的关系是本题的关键.49.(1)307t =;(2)见解析;(3)247t =或367t = 【分析】(1)根据题意10,25150DON t AOM t AOD ∠=∠=∠=︒, ,当OM ON 、重合时,+DON AOM AOD ∠∠=∠,计算即可;(2)根据题意可得=60BOD AOC ∠∠=︒,由ON 平分BOD ∠可计算出3t =,故25375AOM ∠=⨯=︒,即可说明OM 平分AOD ∠;(3)根据题意可得30MON ∠=︒分两种情况说明,当OM ON 、重合之前和OM ON 、重合之后分别计算即可.【详解】由题意:10,25DON t AOM t ∠=∠=()190,60COD AOC ∠=∠=150AOD COD AOC ∴∠=∠+∠=当,ON OM 重合时,DON AOM AOD ∠+∠=∠1025150t t ∴+= 解得:307t = ()290AOB COD ∠=∠=90AOC BOC BOD BOC ∴∠+∠=∠+∠=60BOD AOC ∴∠=∠= ON 平分BOD ∠1302DON BOD ∴∠=∠= ∠30103t =÷= ∠1253752AOM AOD ∠=⨯==∠ OM ∴平分AOD ∠()3150,180AOD AOD MON ∠=∠+∠=30MON ∴∠=当OM 与ON 重合前150DON MON AOM ∠+∠+∠=103025150 t t++=解得:247 t=当OM与ON重合后150 DON AOM MON∠+∠-∠= 102530150t t+-=解得:367 t=∴当247t=或367t=时,MON∠与AOD∠互补【点睛】本题考查的是角的综合题,一元一次方程的解法,旋转的性质,有一定的难度,分情况讨论是难点.。
2023年中考数学 几何专题:圆(含答案)
2023中考数学 几何专题:圆(含答案)1.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段OB 上运动.设∠ACP =x ,则x 的取值范围是________.2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,F 是CG 的中点,延长AF 交⊙O 于E ,CF =2,AF =3,则EF 的长为________.3.如图,AB ,CD 是⊙O 的两条弦,它们相交于点P .连接AD ,BD ,已知AD =BD =4,PC =6,那么CD 的长为________.4.如图,圆内接四边形ABCD 中的两条对角线相交于点P ,已知AB =BC ,CD =12BD =1.设AD =x ,用x 的代数式表示P A 与PC 的积:P A ·PC =__________.5.如图,ADBC 是⊙O 的内接四边形,AB 为直径,BC =8,AC =6,CD 平分∠ACB ,则AD =( )A .50B .32C .5 2D .4 2第4题图 第5题图 第6题图6.如图,在△ABC 中,AD 是高,△ABC 的外接圆直径AE 交BC 边于点G ,有下列四个结论:①AD 2=BD ·CD ;②BE 2=EG ·AE ;③AE ·AD =AB ·AC ;④AG ·EG =BG ·CG .其中正确结论的个数是( )A .1个B .2个C .3个D .4个7.如图,正△ABC 内接于⊙O ,P 是劣弧BC 上任意一点,P A 与BC 交于点E ,有如下结论:①P A =PB +PC ;②111AP PB PC=+;③P A ·PE =PB ·PC .其中正确结论的个数是( ) A .3个 B .2个 C .1个 D .0个8. 如图,四边形ABCD 内接于⊙O ,延长AD ,BC 交于点M ,延长AB ,DC 交于点N ,∠M =20°,∠N =40°,则∠A 的大小为( )第3题图第2题图第1题图AACDABAA .35°B .60°C .65°D .70°第7题图 第8题图 第9题图9. 如图,已知⊙O 的内接四边形ABCD 中,AD =CD ,AC 交BD 于点E .求证:(1)AD DEBD AD; (2) AD ·CD -AE ·EC =DE 2;10. 如图,已知四边形ABCD 外接圆⊙O 的半径为5,对角线AC 与BD 交于点E ,且AB 2=AE •AC ,BD =8,求△ABD 的面积.11. 如图,已知⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC 于D ,AD =3. 设⊙O 的半径为y ,AB 的长为x .(1) 求y 与x 之间的函数关系式;(2) 当AB 的长等于多少时,⊙O 的面积最大?并求出⊙O 的最大面积.ACBBC12. 如图,已知半圆⊙O 的直径AB =4,将一个三角板的直角顶点固定在圆心O 上.当三角板绕着O 点转动时,三角板的两条直角边与半圆周分别交于C ,D 两点,连接AD ,BC 交于点E .(1) 求证:△ACE ∽△BDE ; (2) 求证:BD =DE ; (3) 设BD =x ,求△AEC 的面积y 与x 的函数关系式,并写出自变量x 的取值范围.(广东省中考试题)13.如图1,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中,∠DCE 是直角,点D 在线段AC 上. (1) 证明:B ,C ,E 三点共线;(2) 若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN =2OM ;(3) 将△DCE 绕点C 逆时针旋转α(0°<α<90°)后,记为△D 1CE 1(如图2).若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若是,请证明;若不是,说明理由.14.如图所示,ABCD 为⊙O 的内接四边形,E 是BD 上的一点,∠BAE =∠DAC .求证:(1)△ABE ∽△ACD ;(2) AB ·DC +AD ·BC =AC ·BD .E DABCCOO E DM 1E 1D 1A BN MABC N 1图1图215.如图1,已知⊙M 与x 轴交于点A ,D ,与y 轴正半轴交于点B ,C 是⊙M 上一点,且A (-2,0),B (0,4),AB =BC .(1) 求圆心M 的坐标;(2) 求四边形ABCD 的面积;(3) 如图2,过C 点作弦CF 交BD 于点E ,当BC =BE 时,求CF 的长.16.如图,AB ,AC ,AD 是⊙O 中的三条弦,点E 在AD 上,且AB =AC =AE .求证:(1) ∠CAD =2∠DBE ;(2) AD 2-AB 2=BD ·DC .17. 如图,已知以直角梯形ABCD 中,以AB 为直径的圆与CD 相切,求证:以CD 为直径的圆与AB 相切.18. 已知:如图,在ABC ∆中,AB AC =,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE AC ⊥,垂足为点E .求证:(1)ABC ∆是等边三角形;(2)13AE CE =.19. 如图,点P 在O 的直径BA 的延长线上,2AB PA =,PC 切O 于点C ,连结BC .(1)求P ∠的正弦值;(2)若O 的半径2cm r =,求BC 的长度.20. 如图,O 的半径10cm OC =,直线l CO ⊥,垂足为H ,交⊙O 于A B ,两点,16cm AB =,直线l 平移多少厘米时能与⊙O 相切?参考答案PCC1.30°≤x≤90°2.43.84.-14x 2+x 5.C 6.B 7.B 提示:其中①③正确.9.提示:(1)连结BM ,证明Rt △CEN ≌Rt △BMN .(2)连结BD 、BE 、AC ,证明△BED ∽△FEB .(3)结论仍成立.10.连结AM ,过M 作MD ⊥AC ,交直线AC 于点D ,则Rt △AMH ≌Rt △AMD ,Rt △MHB ≌Rt △MDC .11.(1)连结OA ,OC ,则Rt △OFC ≌RtOGC ≌Rt △OGA .∴123OFC OAC ABC OFCG S S S S ∆∆∆===四边形. (2)连结OA ,OB ,OC ,由△AOC ≌△COB ≌△BOA ,得∠OCB =∠OAC ,∵∠AOC =∠AOE +∠EOC =120°,∠DOE =∠COF +∠COE =120°,∴∠AOE =∠COF ,∵∠OAC =∠OCB ,OA =OC ,∠AOE =∠COF ,∴△OAG ≌△OCF ,故13AOC ABC OFCG S S S ∆∆==四边形.12.如图,过点O 作直线OP ⊥BC ,分别交BC ,KL ,AD 于点P ,H ,N ,则ON ⊥AD ,OH ⊥KL ,连结DO ,LO ,在Rt △NDO 中,ON 4==,OP =PN -ON =2,设HL =x ,则PH =KL =2x ,OH =OP +PH =2+2x . 在Rt △HOL 中,x 2+ (2x +2)2=52,解8、B13 ⑴略.⑵如图,连结ON ,AE ,BD ,并延长BD 交AE 于点F ,可证明△BCD ≌△ACE ,BF ⊥AE ,∴ON ∥= 12BD ,OM ∥= 12AE ,∴OM =ON ,OM ⊥ON ,故MN =2OM. ⑶结论成立,证明略.14 提示:由△ABE ∽△ACD ,△ADE ∽△ACB 分别得AB·DC =AC·BE ,AD·BC =AC·DE ,两式作加法得AB·DC +AD·BC =AC·BD.15⑴连结BM ,OA =2,OB =4,在Rt △BOM 中,(r -2)2+42=r 2,∴r =5,即AM =5,OM =3,∴M(3,0). ⑵连结AC 交BM 于G ,则BM ⊥AC 且AG =CG ,可证△AMG ≌△BMO.∴AG =OB =4,AC =8,OM =MG =3,BG =BM -GM =2,AD =10,CD =6.∴S四边形ABCD =S △ACD +S △ABC =12 A C·CD +12 A C·BG =12 8886+128882=32. ⑶∵BC =BE ,∴∠BCE =∠BEC.又∠BCE =∠BCA +∠ACF ,∠BEC =∠BDC +∠DCF ,且∠BCA =∠BDC ,∴∠ACF =∠DCF =12∠ACD =45°,∴△ADF 为等腰直角三角形.AF =DF =5 2.作DT ⊥CF于T ,CT =DT =32,TF =DF 2-DT 2=42,∴CF =CT +TF =7 2.16. ⑴连结BC ,∵AB =AC ,∴∠2=∠5,∵AB =AE ,∴∠ABE =∠AEB ,即∠2+∠3=∠4+∠5,∴∠3=∠4,∴∠DAC =∠DBC =∠4+∠3=2∠4,即∠DAC =2∠DBE.⑵延长DA 至点G ,使AG =AE =AC ,则∠DAC =2∠G ,而由⑴知∠DAC =2∠DBE.∴∠DBE =∠G.又∠BDE =∠GDC ,∴△BDE ∽△GDC ,得BD DG =DEDC,即DG·DE =BD·DC.∴(AD +AG)(AD -AE)=BD·DC.∵AB =AE =AG ,∴(AD +AB)(AD -AB)=BD·DC ,故AD 2-AB 2=BD·DC.17. 【答案】如图,设'O 切CD 于O ,由切线的性质及平行线等分线段定理可知O 为CD 中点,过O 作OE AB ⊥于E ,由弦切角定理可知12∠=∠,同时在Rt AOB ∆中,OE AB ⊥,易证得23∠=∠ ∴13∠=∠于是可证得AOD AOE ∆∆≌, ∴OE OD =,∴以CD 为直径的圆与AB 相切.18. 【答案】(1)连结OD 得OD AC ∥ ∴BDO A ∠=∠又由OB OD =得OBD ODB ∠=∠∴OBD A ∠=∠ ∴BC AC =又∵AB AC = ∴ABC ∆是等边三角形 (2)连结CD ,则CD AB ⊥ ∴D 是AB 中点∵1124AE AD AB == ∴3EC AE = ∴13AE CE =19. 【答案】(1)连结OC ,因为PC 切O 于点C ,∴PC OC ⊥又直径2AB AP =∴12OC AO AP PO ===,∴30P ∠=︒,∴1sin 2P ∠=(或:在1sin 22OC OC Rt POC P PO PO ∆∠===,)(2)连结AC ,由AB 是直径.∴90ACB ∠=︒,∵903060COA ∠=︒-︒=︒ 又OC OA =,∴CAO △是正三角形∴2CA r ==,∴CB ==20.【答案】解法1:如图,连结OA ,延长CO 交⊙O 于D ,∵l OC ⊥∴OC 平分AB .∴8AH =.在Rt △AHO 中,6OH = ∴416CH cm DH cm ==,答:直线AB 向左移4cm ,或向右平移16cm 时与圆相切. 解法2:设直线AB 平移时能与圆相切,()22210810x -+=解得12164x x ==, ∴4cm 16cm CH DH ==,.cm x。
中考数学经典几何证明题60例附试题分析和参考答案
中考数学经典几何证明题60例一、解答题(共60小题)1.(遵义)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.2.(珠海)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.3.(镇江)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=°时,四边形BFDE是正方形.4.(漳州)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.5.(玉林)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O 的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.6.(永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.7.(营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.8.(徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.9.(宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.10.(湘西州)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.11.(咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.12.(咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.13.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.14.(威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.15.(铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.16.(通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.17.(铁岭)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.18.(天水)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.19.(泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.20.(随州)如图,射线PA切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.21.(绥化)如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.(1)求证:BD+2DE=BM.(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=.22.(苏州)如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求DE、DF的长度之和(结果保留π).23.(上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.24.(厦门)如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.求证:四边形ABCD是矩形.25.(庆阳)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.(1)当AB=2时,求△GEC的面积;(2)求证:AE=EF.26.(青海)如图,梯形ABCD中,AB∥DC,AC平分∠BAD,CE∥DA交AB于点E.求证:四边形ADCE是菱形.27.(钦州)如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=,AD=3,求直径AB的长.28.(黔东南州)如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点.(1)求证:PN与⊙O相切;(2)如果∠MPC=30°,PE=2,求劣弧的长.29.(潜江)如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,PA=6时,求MB,MC的长.30.(盘锦)如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.(1)若CD=2,BP=4,求⊙O的半径;(2)求证:直线BF是⊙O的切线;(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.31.(内江)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC 于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.32.(南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.33.(南平)如图,AB是半圆O的直径,C是AB延长线上的一点,CD与半圆O相切于点D,连接AD,BD.(1)求证:∠BAD=∠BDC;(2)若∠BDC=28°,BD=2,求⊙O的半径.(精确到0.01)34.(南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.35.(南充)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.36.(南昌)(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D 的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.37.(梅州)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.38.(龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.39.(柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.40.(辽阳)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.41.(连云港)如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F 处,DF交AB于点E.(1)求证;∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.42.(莱芜)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD 交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.43.(酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)44.(荆门)已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O 于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.45.(吉林)如图①,半径为R,圆心角为n°的扇形面积是S扇形=,由弧长l=,得S扇形==••R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.(1)设扇环的面积为S扇环,的长为l1,的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含l1,l2,h的代数式表示S扇环,并证明;(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?46.(黄石)在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.47.(黄冈)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN(2)求证:=.48.(湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.49.(葫芦岛)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?50.(呼伦贝尔)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.51.(呼伦贝尔)如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;(2)若PC=2,求⊙O的半径.52.(贺州)如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=cm,AC=2cm,求DC的长(结果保留根号).53.(贺州)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.54.(河南)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.55.(桂林)如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.56.(贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E 是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.57.(甘南州)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.58.(东莞)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.59.(大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.60.(赤峰)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO 交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是的切线.(2)若PB=6,DB=8,求⊙O的半径.中考数学经典几何证明题60例参考答案与试题解析一、解答题(共60小题)1.(遵义)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.考点:菱形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线;三角形中位线定理.专题:证明题.分析:(1)根据AAS证△AFE≌△DBE;(2)利用①中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形,由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论;(3)由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.解答:(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.点评:本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,菱形的面积计算,主要考查学生的推理能力.2.(珠海)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD=AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.考点:全等三角形的判定与性质;等腰三角形的性质;平移的性质.专题:证明题.分析:(1)根据等腰三角形的性质,可得∠ABC与∠ACB的关系,根据平移的性质,可得AC与DF的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案.解答:(1)解:由AB=AC,得∠ABC=ACB.由△ABC沿BC方向平移得到△DEF,得DF=AC,∠DFE=∠ACB.在△ABF和△DFB中,,△ABF≌△DFB(SAS),BD=AF,故答案为:BD=AF;(2)证明:如图:MN∥BF,△AMG∽△ABC,△DHN∽△DEF,=,=,∴MG=HN,MB=NF.在△BMH和△FNG中,,△BMH≌△FNG(SAS),∴BH=FG.点评:本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质.3.(镇江)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=20°时,四边形BFDE是正方形.考点:菱形的性质;全等三角形的判定与性质;正方形的判定.专题:证明题.分析:(1)由题意易证∠BAE=∠BCF,又因为BA=BC,AE=CF,于是可证△BAE≌△BCF;(2)由已知可得四边形BFDE对角线互相垂直平分,只要∠EBF=90°即得四边形BFDE 是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=20°.解答:(1)证明:∵菱形ABCD的对角线AC,BD相交于点O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE与△BCF中,∴△BAE≌△BCF(SAS);(2)∵四边形BFDE对角线互相垂直平分,∴只要∠EBF=90°即得四边形BFDE是正方形,∵△BAE≌△BCF,∴∠EBA=∠FBC,又∵∠ABC=50°,∴∠EBA+∠FBC=40°,∴∠EBA=×40°=20°.故答案为:20.点评:本题考查了菱形的性质,全等三角形的判定与性质以及正方形的判定.本题关键是根据SAS证明△BAE≌△BCF.4.(漳州)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.考点:翻折变换(折叠问题);勾股定理;菱形的判定与性质;矩形的性质.专题:证明题.分析:(1)根据折叠的性质,易知DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,易证FG=FE,故由四边相等证明四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.解答:(1)证明:由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)解:设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,FC2+EC2=EF2,即42+(8﹣x)2=x2,解得:x=5,CE=8﹣x=3,∴=.点评:本题主要考查了折叠的性质、菱形的判定以及勾股定理,熟知折叠的性质和菱形的判定方法是解答此题的关键.5.(玉林)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O 的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.考点:切线的性质;平行四边形的判定;扇形面积的计算.专题:证明题.分析:(1)由∠BOD=60°E为的中点,得到,于是得到DE∥BC,根据CD 是⊙O的切线,得到OD⊥CD,于是得到BE∥CD,即可证得四边形BCDE是平行四边形;(2)连接OE,由(1)知,,得到∠BOE=120°,根据扇形的面积公式列方程即可得到结论.解答:解:(1)∵∠BOD=60°,∴∠AOD=120°,∴=,∵E为的中点,∴,∴DE∥AB,OD⊥BE,即DE∥BC,∵CD是⊙O的切线,∴OD⊥CD,∴BE∥CD,∴四边形BCDE是平行四边形;(2)连接OE,由(1)知,,∴∠BOE=120°,∵阴影部分面积为6π,∴=6π,∴r=6.点评:本题考查了切线的性质,平行四边形的判定,扇形的面积公式,垂径定理,证明是解题的关键.6.(永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.解答:(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.7.(营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.考点:切线的判定;扇形面积的计算.专题:证明题.分析:(1)连接OC,证明△PAO≌△PCO,得到∠PCO=∠PAO=90°,证明结论;(2)证明△ADP∽△PDA,得到成比例线段求出BC的长,根据S阴=S⊙O﹣S△ABC 求出答案;(3)连接AE、BE,作BM⊥CE于M,分别求出CM和EM的长,求和得到答案.解答:(1)证明:如图1,连接OC,∵PA切⊙O于点A,∴∠PAO=90°,∵BC∥OP,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△PAO和△PCO中,,∴△PAO≌△PCO,∴∠PCO=∠PAO=90°,∴PC是⊙O的切线;(2)解:由(1)得PA,PC都为圆的切线,∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,∴∠PAD+∠DAO=∠DAO+∠AOD,∴∠PAD=∠AOD,∴△ADP∽△ODA,∴,∴AD2=PD•DO,∵AC=8,PD=,∴AD=AC=4,OD=3,AO=5,由题意知OD为△的中位线,∴BC=6,OD=6,AB=10.∴S阴=S⊙O﹣S△ABC=﹣24;(3)解:如图2,连接AE、BE,作BM⊥CE于M,∴∠CMB=∠EMB=∠AEB=90°,∵点E是的中点,∴∠ECB=∠CBM=∠ABE=45°,CM=MB=3,BE=AB•cos45°=5,∴EM==4,则CE=CM+EM=7.点评:本题考查的是切线的判定和性质、扇形面积的计算和相似三角形的判定和性质,灵活运用切线的性质:圆的切线垂直于过切点的半径和切线的判定是解题的关键.8.(徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=4时,四边形BFCE是菱形.考点:平行四边形的判定;菱形的判定.专题:证明题.分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.解答:(1)证明:∵AB=DC,∴AC=DF,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4 时,四边形BFCE是菱形,故答案为:4.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.9.(宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.考点:平行四边形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB 是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.解答:(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.点评:本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.10.(湘西州)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.解答:证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.点评:此题考查了矩形的判定,全等三角形的判定与性质,以及平行四边形的性质,熟练掌握矩形的判定方法是解本题的关键.11.(咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法.专题:证明题.分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.解答:(1)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.12.(咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.专题:证明题.分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即10r=6(10﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.13.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.考点:正方形的性质;全等三角形的判定与性质;勾股定理.专题:证明题.分析:(1)先根据EQ⊥BO,EH⊥AB得出∠EQN=∠BHM=90°.根据∠EMQ=∠BMH得出△EMQ∽△BMH,故∠QEM=∠HBM.由ASA定理得出△APB≌△HFE,故可得出结论;(2)由勾股定理求出BP的长,根据EF是BP的垂直平分线可知BQ=BP,再根据锐角三角函数的定义得出QF=BQ的长,由(1)知,△APB≌△HFE,故EF=BP=4,再根据EQ=EF﹣QF即可得出结论.解答:(1)证明:∵EQ⊥BO,EH⊥AB,∴∠EQN=∠BHM=90°.∵∠EMQ=∠BMH,∴△EMQ∽△BMH,∴∠QEM=∠HBM.在Rt△APB与Rt△HFE中,,∴△APB≌△HFE,∴HF=AP;(2)解:由勾股定理得,BP===4.∵EF是BP的垂直平分线,∴BQ=BP=2,∴QF=BQ•tan∠FBQ=BQ•tan∠ABP=2×=.由(1)知,△APB≌△HFE,∴EF=BP=4,∴EQ=EF﹣QF=4﹣=.点评:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.14.(威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.考点:相似三角形的判定与性质;等腰三角形的性质;圆周角定理.专题:证明题.分析:(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.解答:(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.点评:本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.15.(铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.考点:全等三角形的判定与性质;等边三角形的判定与性质.专题:证明题.分析:作DG∥BC交AC于G,先证明△DFG≌△EFC,得出GD=CE,再证明△ADG是等边三角形,得出AD=GD,即可得出结论.解答:证明:作DG∥BC交AC于G,如图所示:则∠DGF=∠ECF,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS),∴GD=CE,。
初中数学四边形专题训练50题含答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.平行四边形不一定具有的性质是( )A .对角线互相垂直B .对边平行且相等C .对角线互相平分D .对角相等 2.如图,在MON ∠的两边.上分别截取,OA OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接,,,AC BC AB OC .若2AB =,四边形OACB 的面积为4.则OC 的长为( )A .2B .3C .4D .5 3.在ABCD 中,下列结论错误的是( )A .//AB CD B .B D ∠=∠C .AC BD =D .180C D ∠+∠=︒ 4.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若∠A=60°,则∠1的度数为( )A .120°B .60°C .45°D .30° 5.若平行四边形中两个内角的度数比为1∠2,则其中较大的内角是( ) A .100° B .60° C .120° D .90° 6.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限.若点A 的坐标为()1,0,则点E 的坐标是( )A .0)B .33,22⎛⎫ ⎪⎝⎭C .D .(2,2) 7.四边形ABCD 中,对角线AC ,BD 交于点O ,AD//BC ,为了判定四边形是平行四边形,还需一个条件,其中错误..的是( ) A .AB//CD B .∠A=∠C C .AB=CD D .AO=CO 8.一个多边形的内角和等于外角和,则这个多边形的边数为( )A .10B .8C .6D .49.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 10.已知平行四边形ABCD 的周长为32,AB =4,则BC 的长为( )A .4B .12C .24D .48 11.如图,四边形ABCD 是矩形,,把矩形沿直线AC 折叠,点B 落在点E处,连结DE,则的值是( )A .B .C .8D .7:25 12.如图,在平行四边形ABCD 中,AB=4,CE 平分∠BCD 交AD 边于点E ,且AE=3,则BC 的长为( )A .4B .6C .7D .813.如图,在矩形ABCD ,对角线AC 与BD 相交于点O ,EO AC ⊥于点O ,交BC 于点E ,若ABE ∆的周长为8,3AB =,则AD 的长为 ( )A .2B .5.5C .5D .414.如图,矩形ABCD 中,4AB =,2BC =.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则BE 的长是( )A .B C .2.5 D .1.5 15.如图,在平行四边形ABCD 中,过点P 作直线EF 、GH 分别平行于AB 、BC ,那么图中共有( )平行四边形.A .4个B .5个C .8个D .9个 16.如图,已知直线PQ CD ⊥于点P ,B 是CPQ ∠内部一点,过点B 作BA PQ ⊥于点A ,BC CD ⊥于点C ,四边形PABC 是边长为8cm 的正方形,N 是AB 的中点,动点M 从点P 出发,以2cm/s 的速度,沿P A B C →→→方向运动,到达点C 停止运动,设运动时间为()s t ,当CM PN =时,t 等于( )A .2B .4C .2或4D .2或617.如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为A .B .C .D . 18.如图,点EF 、分别是菱形ABCD 的边AD 、DC 的中点,如果阴影部分的面积和是10,则菱形对角线AC 与BD 的乘积AC BD ⋅等于( )A .10B .32C .20D .1619.如图,在正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ⋯,依次规律,则线段20212022A A =( )A .20192⨯⎝⎭B .20202⨯⎝⎭C .20212⨯⎝⎭D .20222⨯⎝⎭20.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,添加一个条件使平行四边形ABCD 为矩形的是( )A .AD AB = B .AB AD ⊥C .AB AC =D .CA BD ⊥二、填空题21.如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.22.如图,点E 在矩形ABCD 的对角线BD 上,EF BC ⊥于点F ,连接AF ,若5BC =,2EF =,则ABF △的面积为_________.23.已知菱形的两条对角线长分别为3和4,则菱形的面积为______.24.有一个边长为50cm 的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为_____.25.如图,Rt ABC 中,90C BC AC ∠=︒>,,以AB BC AC ,,三边为边长的三个正方形面积分别为1S ,2S ,3S .若ABC 的面积为7,140S =,则32S S -的值等于______.26.如图,将长方形ABCD沿AE折叠,已知50∠=︒,则BADCED'∠'的大小是_____27.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为__.28.用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是______.29.如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.30.如图,将四边形ABCD沿BD、AC剪开,得到四个全等的直角三角形,已知,OA =4,OB=3,AB=5将这四个直角三角形拼为一个没有重叠和缝隙的四边形,则重新拼成的四边形的周长为_____.31.在长方形ABCD中,10AB=,将长方形ABCD折叠,折痕为EF.AD=,8(1)如图1,当A'与B重合时,EF=_______;(2)如图1,当直线EF过点D时,点A的对应点A'落在线段BC上,则线段EF的长为______.32.如图,P 是▱ABCD 内的任意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:∠S 1+S 3=S 2+S 4,∠若S 3=2S 1,则S 2=2S 4,∠若S 1+S 3=5,则ABCD 的面积为10;∠S 1+S 2=S 3+S 4.其中正确的结论的序号是____________(把所有正确结论的序号都填在横线上).33.如图, 直线l 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:∠AB BC ⊥;∠AC BD ⊥;∠//AB CD ;∠AO OC =.其中正确的结论有__.34.如图1是三国时期的数学家赵爽创制的一幅“勾股圆方图”.将图2的矩形分割成四个全等三角形和一个正方形,恰好能拼成这样一个“勾股圆方图”,则该矩形与拼成的正方形的周长之比为________.35.如图,平行四边形ABCD 中,45B ∠=︒,7BC =,CD =E ,F 分别是边AB ,BC 的中点,连接CE ,DF ,取CE ,DF 的中点G ,H ,连接GH ,则GH 的长度为__________.36.如图,正方形ABCD的边长为1,AC,BD是对角线,将∠DCB绕着点D顺时针旋转45°得到∠DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:∠DE平分∠ADB;∠BE∠四边形AEGF是菱形;∠BC+FG=1.5.其中结论正确的序号是_______.37.如图,点E、F是平行四边形ABCD的边AB、DC上的点,F与DE相交于点P,BF与CE相交于点Q若S△APD=14cm2,S△BCQ=16cm2,四边形PEQF的面积为______.38.如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为_____.39.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题40.□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?41.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE CD =,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若60ABC ∠=︒,且8AD DE ==,求OE 的长.42.如图,点E 、F 分别在ABCD 的边AB 、CD 的延长线上,且BE =DF ,连接AC 、EF 、AF 、CE ,AC 与EF 交于点O .(1)求证:AC 、EF 互相平分;(2)若EF 平分∠AEC ,判断四边形AECF 的形状并证明.43.正方形ABCD 的对角线交点为O ,连AE 交BC 于E ,交OB 于F ,2EC FO =,求证:AE 平分BAC ∠.44.如图,在三角形ABC 中,90C ∠=︒,四边形DEFC 是边长为4的正方形,且D 、E 、F 分别在边AC AB BC 、、上.把三角形ADE 绕点E 逆时针旋转一定的角度.(1)当点D 与点F 重合时,点A 的对应点G 落在边BC 上,此时四边形ACGE 的面积为___________;(2)当点D 的对应点1D 落在线段BE 上时,点A 的对应点为点1A ,在旋转过程中点A 经过的路程为1l ,点D 经过的路程为2l ,且12:3:2l l =,求线段1AD 的长. 45.如图所示,已知四边形ABCD 是平行四边形,在AB 的延长线上截取BE=AB ,BF=BD ,连接CE ,DF ,相交于点M .求证:CD=CM .46.如图,在直角梯形ABCD 中,AD ∠BC ,AD ∠CD ,M 为腰AB 上一动点,联结MC 、MD ,AD =10,BC =15,cot B 512=.(1)求线段CD 的长.(2)设线段BM 的长为x ,∠CDM 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.47.在Rt ABC 与Rt BDE 中,90ABC DBE ∠=∠=︒,AB BC =,BD BE =.(1)如图1,若点D ,B ,C 在同一直线上,连接AD ,CE ,则AD 与CE 的关系为_________;(2)如果将图1中的BDE △绕点B 在平面内顺时针旋转到如图2的位置,那么请你判断AD 与CE 的关系,并说明理由;(3)如图3,若6AB =,2BD =,连接AE ,分别取DE ,AE ,AC 的中点M ,P ,N ,连接MP ,NP ,MN ,将BDE △绕点B 在平面内顺时针旋转一周,请直接写出旋转过程中MPN△面积的最小值和最大值.48.如图,在矩形ABCD中,AD=4,CD=3,点E为AD的中点.连接CE,将∠CDE 沿CE折叠得∠CFE,CE交BD于点G,交BA的延长线于点M,延长CF交AB于点N.(1)求DG的长;(2)求MN的长.49.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.参考答案:1.A【分析】结合平行四边形的性质即可判定.【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键.2.C【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,∠OA=OB,∠OA=OB=BC=AC,∠四边形OACB是菱形,∠AB=2,四边形OACB的面积为4,∠12AB•OC=12×2×OC=4,解得OC=4.故选:C.【点睛】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.3.C【分析】根据平行四边形的性质逐项判断即可.【详解】解:A、由平行四边形行两组对边分别平行可得//AB CD,故A正确;B、由平行四边形对角相等可得B D∠=∠,故B正确;C、AC、BD为平行四边形对角线,平行四边形对角线互相平分,但不一定相等,故C错误;D、由平行四边形行两组对边分别平行可得//AD BC,两直线平行同旁内角互补,可得180C D∠+∠=︒,故D正确.故选:C.【点睛】本题主要考查平行四边形的性质及其推论,熟练掌握平行四边形的性质是解题关键.4.B【详解】解:∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠1=∠A=60°.故选B .5.C【分析】据平行四边形的性质得出AB //CD ,推出∠B +∠C =180°,根据∠B :∠C =1:2,求出∠C 即可.【详解】解:∠四边形ABCD 是平行四边形∠AB //CD ,∠∠B +∠C =180°,∠∠B :∠C =1:2,∠∠C =23×180°=120°,故选:C .【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.B【分析】由题意可得:2:3OA OD =,又由点A 的坐标为()1,0,即可求得OD 的长,又由正方形的性质,即可求得E 点的坐标.【详解】解:∠正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为2:3, ∠:2:3OA OD =,∠点A 的坐标为()1,0,即1OA =, ∠32OD =, ∠四边形ODEF 是正方形,∠32 DE OD==.∠E点的坐标为:33,22⎛⎫ ⎪⎝⎭.故选:B.【点睛】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.7.C【分析】根据平行四边形的判定定理逐项判断即可.【详解】解:A.根据两组对边分别平行可判定是平行四边形,不符合题意;B.根据平行线性质可得另一对内角相等,根据两组对角分别相等可判定是平行四边形,不符合题意;C.不能判定是平行四边形,可能是等腰梯形,符合题意;D.可通过全等证对角线互相平分,能判定是平行四边形,不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,解题关键是熟知平行四边形的判定定理,准确进行判断.8.D【分析】设这个多边形的边数为n,根据内角和等于外角和列方程解答即可.【详解】解:设这个多边形的边数为n,则()2180360n-⨯︒=︒,解得4n=,故选:D.【点睛】此题考查了多边形内角和与外角和的计算,熟练掌握多边形内角和公式及外角和是解题的关键.9.C【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出EF,HG,FG,EH是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】解:如图所示,因为E、F、G、H分别为AB、BC、CD、DA的中点,连接AC、BD,因为E、F分别是AB、BC的中点,所以EF=12AC ,且EF∠AC同理可得HG=12AC ,且HG∠AC , FG=12BD ,且FG∠BD , EH=12BD ,且EH∠BD , ∠EF∠HG ,HE ∠FG ,∠四边形EFGH 是平行四边形,又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE ,所以连接等腰梯形各中点所得四边形为菱形.故选:C【点睛】此题考查三角形中位线的性质,解题的关键是掌握三角形的中位线定理及菱形的判定.10.B【详解】由题意得:2()32,4,12AB BC AB BC +===得: .故选B.11.D【详解】试题分析:从D,E 处向AC 作高DF,EH .设AB=4k,AD=3k,则AC=5k .由∠AEC的面积=4k×3k=5k×EH,得EH=95k k;根据勾股定理得CH=,∠四边形ACED是等腰梯形,∠CH=AF=95 k,所以DE=5k﹣95k×2=75k.所以DE:AC=75k:5k=7:25.故选D.考点:翻折变换.12.C【分析】由平行四边形的性质可得AD∠BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【详解】解:∠四边形ABCD为平行四边形,∠AB=CD=4,AD∠BC,AD=BC,∠∠DEC=∠BCE.∠CE平分∠BCD,∠∠DCE=∠BCE,∠∠DEC=∠DCE,∠DE=DC=4.∠AE=3,∠AD=BC=3+4=7.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.13.C【分析】由矩形的性质可得AO=CO,由线段垂直平分线的性质可得AE=EC,即可求解.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BC=AD,∵EO⊥AC,∴AE=EC,∵△ABE的周长为8,∴AB+AE+BE=8,∴3+BC=8,∴AD =BC =5,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,掌握矩形的性质是本题的关键.14.D【分析】由矩形ABCD 中,四边形EGFH 是菱形,易证得()COF AOE AAS ≌,即可得OA OC =,然后由勾股定理求得AC 的长,继而求得OA 的长,又由AOE ABC ∽△△,利用相似三角形的对应边成比例,即可求得答案.【详解】解:如图,连接EF ,交AC 于O ,∠四边形EHFG 是菱形,EF AC OE OF ∴⊥=,,∠四边形ABCD 是矩形,90B D ∴∠=∠=︒,AB CD ∥,ACD CAB ∴∠=∠,在COF 与AOE △中,FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()COF AOE AAS ∴≌,AO CO ∴=,AC AB ==12AO AC ∴==, 90CAB CAB AOE B ∠=∠∠=∠=︒,,AOE ABC ∴∽,∠AO AE AB AC=,=, 2.5AE ∴=,1.5BE ∴=,故选:D .【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质,准确作出辅助线是解此题的关键.15.D【详解】∠AD∠BC 、AB∠CD ,EF∠AB ,GH∠BC ,∠AB∠EF∠DC ,AD∠GH∠BC ,∠共有9个平行四边形,如平行四边形AGPE ,平行四边形BGPF ,平行四边形PEDH ,平行四边形PFCH ,平行四边形ABFE ,平行四边形EFCD ,平行四边形AGHD ,平行四边形BGHC ,平行四边形ABCD ,故选D.16.D【分析】分点M 是AP 的中点和点M 与点N 重合两种情况讨论,由全等三角形的性质和正方形的性质即可求解.【详解】解:当点M 是AP 的中点时,∵四边形P ABC 是正方形,∴PC =P A =AB ,∠CP A =∠P AN =90°,∵N 是AB 的中点,点M 是AP 的中点,∴PM =AN =4,在△CPM 和△P AN 中,PA CP CPA PAN PM AN =⎧⎪∠=∠⎨⎪=⎩∴△CPM ≌△P AN (SAS ),∴PN =CM ,∴t 42==2, 当点M 与点N 重合时,由正方形的对称性可得PN =CM ,∴t842+==6,故选:D【点睛】本题考查了正方形的性质,全等三角形的性质,利用分类讨论思想解决问题是解题的关键.17.A【详解】试题分析:作在菱形中,,,是的中点是的中点,故答案选A.考点:平行四边形的面积,三角函数.18.B【分析】设EF交BD于G,AC交BD于O,由三角形中位线的性质可得EF=12AC,EF//AC,可得EG为∠AOD的中位线,可得DG=12OD,根据菱形的性质可得BG=34BD,根据菱形的面积公式列方程即可得答案.【详解】设EF交BD于G,AC交BD于O,∠点E F 、分别是菱形ABCD 的边AD 、DC 的中点, ∠EF=12AC ,EF//AC ,∠EG 为∠AOD 的中位线, ∠OG=12OD ,∠四边形ABCD 是菱形, ∠OD=OB=12BD ,BD∠AC , ∠BG=34BD ,BG∠EF , ∠S 菱形ABCD =S 阴影+S △BEF ,阴影部分的面积和是10, ∠12AC·BD=10+12EF·BG=10+12·12AC·34BD , 解得:AC·BD=32.故选:B【点睛】本题考查菱形的性质、三角形中位线的性质及菱形的面积公式,菱形的对角线互相垂直且平分;菱形的面积等于两条对角线乘积的一半;三角形的中位线平行于第三边且等于第三边的一半;熟练掌握相关性质及公式是解题关键.19.C【分析】利用特殊角的三角函数值分别求出11A B 、22A B 、33A B ,以此类推找到规律求出20222022A B ,最后根据202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,即可求解.【详解】解:∠AB 与直线l 所夹锐角为60︒,且1BAB ∠是正方形1ABCB 的一个顶角, ∠11180609030B AA ∠=︒-︒-︒=︒,又∠1190AB A ∠=︒,∠在11Rt AB A △中,11111tan A B AB A AB =⨯∠,∠正方形1ABCB 的边长AB∠11111tan A B AB A AB =⨯∠同理可求得: 222A B =⎝⎭,333A B =⎝⎭,以此类推可知: 20222021202120222022A B ===⎝⎭⎝⎭⎝⎭,∠202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,∠2021202120222022202222A A A B ==⨯⎝⎭,故C 正确.故选:C . 【点睛】本题主要考查了正方形的性质、含特殊角的锐角三角函数等知识,含30°的直角三角形的性质.利用从特殊到一般寻找规律是解题的关键.20.B【分析】根据矩形的判定和平行四边形的性质分别对各个选项进行判断即可.【详解】解: A 、AD AB =时,平行四边形ABCD 是菱形,故选项A 不符合题意; B 、AB AD ⊥时,∠BAD =90°,则平行四边形ABCD 是矩形,故选项B 符合题意; C 、AB AC =时,平行四边形ABCD 不一定是矩形,故选项C 不符合题意;D 、CA BD ⊥时,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:B .【点睛】此题考查的是平行四边形的性质、矩形的判定以及等腰三角形的判定等知识;熟练掌握矩形的判定和平行四边形的性质是解答此题的关键.21.60°【分析】根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.【详解】由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,∠等腰梯形的较大内角为360°÷3=120°,∠等腰梯形的两底平行,∠等腰梯形的底角(指锐角)是:180°-120°=60°.故答案是:60°.【点睛】本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.22.5【分析】证明∠BEF∠∠BCD,由相似三角形的性质求得BF•CD,即求得BF•AB,进而由三角形的面积公式求得结果.【详解】解:∠四边形ABCD是矩形,∠AB=CD,∠ABC=∠BCD=90°,∠EF∠BC,∠EF∠CD,∠∠BEF∠∠BDC,∠BF EF BC CD=,∠BC=5,EF=2,∠BF•CD=BC•EF=5×2=10,∠BF•AB=10,∠∠ABF的面积=12BF•AB=5,故答案为:5.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,三角形的面积计算,关键是由相似三角形求得BF•AB的值.23.6【分析】根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∠菱形的两条对角线长分别为3和4,∠菱形的面积为134=6 2⨯⨯故答案为:6【点睛】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.24.【分析】根据圆与其内切正方形的关系,易得圆盖的直径至少应为正方形的对角线的长,已知正方形边长为50cm,进而由勾股定理可得答案.【详解】解:根据题意,知圆盖的直径至少应为正方形的对角线的长;再根据勾股定理,50故答案为:.【点睛】题主要考查正多边形和圆的相关知识;注意:熟记等腰直角三角形的斜边是直角边的 倍,可以给解决此题带来方便.25.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知()()2223S S BC AC BC AC BC AC -=-=+-,2240BC AC +=,14BC AC ⋅=,然后运用完全平方公式()2222a b a b ab ±=+±求解即可.【详解】解:根据题意,2140S AB ==,22S BC =,23S AC = ∠()()2223S S BC AC BC AC BC AC -=-=+-在Rt ABC 中,根据勾股定理,222BC AC AB +=∠2240BC AC +=∠7Rt ABC S = ∠172BC AC ⋅⋅= ∠14BC AC ⋅=∠BC AC +==BC AC -====∠()()BC AC BC AC +-==即23S S -=故答案为:【点睛】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.26.40【详解】试题分析:先根据折叠的性质求得、的度数,即可求得、的度数,再根据长方形的性质求解即可.∠50CED ∠='︒,AE 为折痕∠∠∠BAD ∠'. 考点:折叠的性质点评:折叠的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.27.342π+【分析】根据菱形的性质以及旋转角为30°,连接CD ′和BC ',可得A 、D′、C 及A 、B 、C′分别共线,求出扇形的面积,再根据AAS 证得两个小三角形全等,求得面积,最后根据扇形ACC '的面积-两个小的三角形的面积即可.【详解】解:连接CD ′和BC '∠∠DAB =60°∠30DAC CAB ∠=∠=︒∠30C AB ∠''=︒∠A 、D′、C 及A 、B 、C′分别共线∠AC =∠扇形ACC′的面积为:2303604ππ⨯=∠AC =AC ′,AD′=AB在OCD OC B ''和中CD BC ACD AC D COD C OB '='⎧⎪∠=∠''⎨⎪∠'=∠'⎩∠()OCD OC B AAS ''≌∠OB =OD′,CO =C′O又∠60,30CBC BC O ︒∠'∠=='︒∠90BOC ∠'=︒在Rt BOC '中,())22211BO BO +-=解得13,22BO C O ='=∠S △OCB=12BO C O '⨯⨯=,∠322442C B AC OC S S Sππ''=-=-=+阴影扇形 故答案为:342π+ 【点睛】本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.28.18或16【分析】首先由直角边分别为3和4,求得其斜边,然后分别从以边长为3,4,5的边为对角线拼成一个平行四边形(非矩形),去分析求解即可求得答案. 【详解】解:直角边分别为3和4,∴5=,若以边长为3的边为对角线,则所得的平行四边形的周长是:2(54)18⨯+=; 若以边长为4的边为对角线,则所得的平行四边形的周长是:2(53)16⨯+=;若以边长为5的边为对角线,则所得的平行四边形的周长是:2(34)14⨯+=(此时是矩形,舍去);综上可得:所得的平行四边形的周长是:16或18.故答案为:16或18.【点睛】此题考查了平行四边形的性质以及勾股定理.注意掌握分类讨论思想的应用是解此题的关键.29【分析】如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC∠BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【详解】如图,连接BD交AC于E.∠四边形ABCD是菱形,∠AC∠BD,AE=EC,∠OA=2OC,AC=3,∠CO=DO=2EO=1,AE=32,∠EO=12,DE=EB==,∠AD=【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.30.20,22,26,28【分析】以直角三角形边长相等的边为公共边,拼接四边形,再计算周长;【详解】解:∠如图周长=20;∠如图周长=22;∠如图周长=26;∠如图周长=28;∠如图周长=22;∠四边形的周长为:20,22,26,28;故答案为:20,22,26,28.【点睛】本题考查了图形的拼接,四边形的周长;作出拼接图形是解题关键.31.10【分析】(1)根据题意结合图形直接写出答案即可解决问题;(2)根据勾股定理首先求出A C'的长度;再次利用勾股定理求出AE的长度,即可解决问题.【详解】解:(1)如图1,当A'与B重合时,EF=10;(2)如图2,设AE=x,则BE=8-x;∠四边形ABCD为矩形,∠BC=AD=10,DC=AB=8;∠B=∠C=90°;由题意得:=A D AD '=10;由勾股定理得:222A C A D DC 1006436''=-=-=∠A C 6BA 1064''==-=, ,在Rt∠A BE '中,由勾股定理得:222(8)4x x =-+解得:x=5,由勾股定理得:222EF =10+5=125∠EF =【点睛】该命题主要考查了翻折变换及其应用问题;能根据翻折变换的性质准确找出命题图形中隐含的等量关系是解题的关键.32.∠∠【分析】根据平行四边形的的性质可以得到AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,然后利用三角形的面积公式列式整理判断即可得到答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,hAB 、hBC 分别为平行四边形的AB 边和BC 边的高则S 1=12AB •h 1,S 2=12BC •h 2,S 3=12CD •h 3,S 4=12AD •h 4,hAB = h 1+h 3,hBC =h 2+h 4 ∠12AB •h 1+12CD •h 3=12AB •hAB ,12BC •h 2+12AD •h 4=12BC •hBC ,又∠S 平行四边形ABCD =AB •hAB =BC •hBC ,∠S 2+S 4=S 1+S 3,故∠正确;根据S 3=2S 1只能判断h 3=2h 1,不能判断h 2=2h 4,即不能得出S 2=2S 4,故∠错误; 根据S 1+S 3=S 2+S 4,S 1+S 3=5,能得出ABCD 的面积为5×2=10,故∠正确;由题意只能得到S 2+S 4=S 1+S 3无法得到S 1+S 2=S 3+S 4,故∠错误;故答案为:∠∠.【点睛】本题主要考查了平行四边形的性质,三角形的面积,用平行四边形的面积表示出相对的两个三角形的面积是解题的关键.33.∠∠∠【分析】根据轴对称的性质得到直线l 垂直平分BD ,则根据线段垂直平分线的性质得AB AD =,CD CB =,由于AB=CD ,则AB BC CD BC ===,于是可判断四边形ABCD 为菱形,然后根据菱形的性质对4个结论进行判断.【详解】证明:∠直线l 是四边形ABCD 的对称轴,∴直线l 垂直平分BD ,AB AD ∴=,CD CB =,AB CD =,AB BC CD BC ∴===,∴四边形ABCD 为菱形,AC BD ∴⊥,//AB CD ,OA OC =,所以∠∠∠正确 .故答案为∠∠∠.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.也考查了菱形的判定与性质.34.35)【分析】设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),由图1与图2的两个小正方形相同,得出a 与b 的关系,再求出矩形的边长和大正方形的边长,应用周长公式求得其周长,最后便可求得其比值.【详解】解:设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),小正方形的边长为a-b ,矩形的长为2a+a-b=3a-b ,宽为b ,∠矩形的周长为:2(3a-b+b )=6a ,由图2知,中间小正方形的边长为b ,∠a-b=b ,∠a=2b ,∠大正方形的周长为,==∠该矩形与拼成的正方形的周长之比:=故答案为:3:5).【点睛】本题主要考查了勾股定理,矩形的性质,正方形的性质,关键是根据图形求得全等直角三角形的两直角边与矩形和大正方形的边长的关系.35.134【分析】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,首先根据平行四边形的性质证明(),CGD EGM AAS ≅得出,DG GM =即可得出1,2HG FM =再利用勾股定理求出FM ,即可求得答案. 【详解】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,如图,∠四边形ABCD 为平行四边形,∠CD ∠AB,AB CD ==∠CDG EMG ∠=∠又∠G 为CE 中点,∠,CG GE =在CGD △和EGM 中∠CDG EMG DGC MGE CG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(),CGD EGM AAS ≅∠,DG GM = ,CD EM = ∠1,2HG FM = AB EM =, ∠,AE BM =∠点E 为AB 的中点,∠1,2AE EB AB ==∠12EB BM AB ===, 又∠45,B ∠=︒∠45,MBN ∠=︒∠,BN MN =设,BN MN x ==在Rt BMN 中,∠222,BN MN BM +=∠222x x +=, 解得,5,2x = 即5,2BN MN == ∠点F 为BC 的中点, ∠17,22BF BC == ∠75622FN BF BN =+=+=, 在Rt MNF △中,∠222,NF MN MF +=∠13,2MF = ∠113,24HG FM == 故填:134. 【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,三角形中位线定理,勾股定理,解题关键是熟练掌握平行四边形的性质和三角形中位线定理.36.∠∠∠【分析】根据旋转的性质可知,∠DGH ∠∠DCB ,进而得知DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,之后可证∠ADF ∠∠GDF ,四边形AEGF 是菱形,再根据勾股定理可知AE 的长度,进而可以一一判断选出答案.【详解】解:根据旋转的性质可知,∠DGH ∠∠DCB ,∠DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,在Rt ∠AED 与Rt ∠GED 中,AD =DG ,ED =ED∠Rt ∠AED ∠Rt ∠GED (HL )∠∠ADE =∠GDE ,即DE 平分∠ADB ,故∠正确;在∠ADF 和∠GDF 中,AD =DG ,∠ADF =∠GDF ,DF =DF ,∠∠ADF ∠∠GDF (SAS )∠AF =GF ,∠DAF =∠DGF =45°又∠∠ABD =45°∠FG ∠AE∠∠DAC =45°,∠∠DAC =∠H ,∠AF ∠EG∠四边形AEGF 是平行四边形,又∠AF =GF∠平行四边形AEGF 是菱形,故∠正确;∠∠H =45°,∠HAE =90°∠AE =AH∠AE =AF =HD -AD =BD -AD∠正方形ABCD 的边长为1,根据勾股定理可知BD ==即HD∠AE 1∠BE =)11=2-∠正确; ∠四边形AEGF 是菱形∠FG =AE 1∠BC +FG =1∠错误;综上答案为:∠∠∠.【点睛】本题考查的是正方形的性质,菱形的判定与性质,勾股定理和直角三角形的性质,是一道综合性较强的题,能够充分调动所学知识是解题的关键.37.30cm 2。
中考数学四边形专题训练50题(含答案)
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若正多边形的一个外角是24°,则这个正多边形( )A .正十二边形B .正十五边形C .正十八边形D .正二十边形 2.若平行四边形中两个相邻内角的度数比为1:2,则其中较小的内角是( ) A .120︒ B .90︒ C .60︒ D .45︒ 3.如图,四边形ABCD ∽四边形EFGH ,80E ∠=︒,90G ∠=︒,120D ∠=︒,则B ∠等于( )A .50︒B .60︒C .70︒D .80︒ 4.已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( )A .13cmB .26cmC .24cmD .65cm 5.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于G ,若34AE ED =,DF CF =,则AG GF 的值是( )A .59B .611C .713D .1115 6.在平行四边形ABCD 中,∠B =60°,那么下列各式中,不能成立的是( ) A .∠D =60° B .∠A =120° C .∠C +∠D =180° D .∠C +∠A =180°7.下列说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形8.对角线互相平分且相等的四边形是()A.菱形B.矩形C.正方形D.等腰梯形9.如图,过O外一点P作O的两条切线PD、PB,切点分别为D、B,作直径∠的度数为()AB,连接AD、BD,若80P∠=︒,则AA.50°B.60°C.70°D.80°10.如图,在∠ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE∠AB于E,PF∠AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5∠=︒,11.如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B'处,若148∠=︒,则B232∠的度数为().A.124°B.114°C.104°D.56°12.下列说法正确的是()A.矩形的对角线相互垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等13.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:∠△EAG=45°:∠CE=3DE;∠AG∠CF;∠S△FGC=725,其中正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8B.10C.12D.1415.如图,在四边形ABCD中,∠A=90°,AB=AD=3,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为D M,MN的中点,则EF长度的最大值为() .A.4B.3C.D.16.下列说法错误的是()A.菱形的面积等于两条对角线乘积的一半B.矩形的对角线相等C.对角线互相垂直的平行四边形是矩形D.对角线相等的菱形是正方形17.如图所示,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠COF的度数是()A.86°B.84°C.76°D.74°18.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF,AB=,26DF=,则BE的长是()DE=,3D.A.12B.15C.19.如图,在一张矩形纸片ABCD中4BC=,点E,F分别在AD,BC上,AB=,8将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:∠四边形CFHE是菱形;∠CE平分∠DCH;∠线段BF的EF=.以上结论中,其中正确结取值范围为34BF≤≤;∠当点H与点A重合时,5论的个数有()A.1个B.2个C.3个D.4个二、填空题=,连接AE交CD于F,那么20.四边形ABCD是正方形,延长BC至E,使CE AC∠的度数为________.AFC21.M为矩形ABCD中AD的中点,P为BC上一点,PE∠MC,PF∠MB,当AB、BC 满足_________时,四边形PEMF为矩形.22.如图,在矩形ABCD中,E,F分别是边AB,BC上的点.将∠A,∠B,∠C按如图所示的方式向内翻折,EQ ,EF ,DF 为折痕.若A ,B ,C 恰好都落在同一点P 上,AE =1,则ED =___.23.如图,△ABC 内接于∠O ,∠BAC =120°,AB =AC ,BD 为∠O 的直径,CD =8,OA 交 BC 于点 E ,则 AE 的长度是________.24.如图,在正五边形ABCDE 中,AC 为对角线,以点A 为圆心,AE 为半径画圆弧交AC 于点F ,连结EF ,则∠1的度数为__.25.如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形∠的边GD 在边AD 上,若图1正方形中MN=1,则CD=____.26.如图,在正方形ABCD 中,点E ,F 分别是BC ,CD 上的点,连接AE ,EF ,AF ,若DF BE EF +=,则EAF ∠=______︒.27.如图,已知抛物线24=-+的顶点为D,与y轴交于点C,过点C作x轴的y x x c平行线AC交抛物线于点A,过点A作y轴的平行线AB交射线OD于点B,若OA OB=,则c的值为_____________.28.如图,点E、F、G、H分别是矩形ABCD边AB、BC、CD、DA上的点,且HG 与EF交于点I,连接HE、FG,若AB=7,BC=6,EF//AD,HG//AB,则HE+FG的最小值是______.29.在□ABCD中,∠A:∠B=2:3,则∠B=____,∠C=_____,∠D=____.30.如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则∠DFC的度数是_____.'沿对角线AC折叠,得到如图所示的图形.若∠BAO=34°,则31.把长方形AB CD∠BAC的大小为_______.32.如图,M 是▭ABCD 的AB 的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比为_____.33.如图,矩形ABCD 中,AD=6,P 为边AD 上一点,且AP=2,在对角线BD 上寻找一点M ,使AM+PM 最小,则AM+PM 的最小值为_____.34.如图,在▱ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD ,E 在AD 上,BE=12cm ,CE=5cm .则▱ABCD 的周长为_____,面积为_____.35.在平面直角坐标系中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,Q y x ⎛⎫ ⎪⎝⎭称为点P 的“逆倒数点”.如图,在矩形OABC 中,点B 的坐标为(48),,反比例函数()0k y x x =>的图象经过矩形对角线交点M .点D 是该反比例函数图象上的点,点E 是对角线上的一点,且点E 是点D 的“逆倒数点”,点E 的坐标为______.36.如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ∠OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为 _____.37.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若40CDE ∠=,则∠DCF 的度数为_______.38.如图,在矩形ABCD 中,5,3AB BC ==,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 _____ .39.如图,点E 、F 分别为正方形ABCD 的边AB 、BC 上的点,满足∠EDF =45°.连接DE 、DF 分别交正方形对角线AC 于点H 、G ,再连接EG ,有如下结论:∠AE CF EF +>;∠ED 始终平分∠AEF ;∠∠AEH ∠∠DGH ;∠DE ;∠14DGH DEF S S =△△.在上述结论中,正确的有______.(请填正确的序号)三、解答题40.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段的端点均在小正方形的顶点上.(利用格点和没有刻度的直尺作图,保留作图痕迹)(1)在方格纸1中画出ADC △,使ADC △与ABC 关于直线AC 对称;(2)在方格纸2中画出以EF 线段为一边的平行四边形(点G ,点H 均在小正方形的顶点上),且平行四边形面积为4;(3)在方格纸3中,连接FM ,在FM 上确定一点P ,使得点P 为FM 中点. 41.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,连接BE 并延长交AD 延长线于点F ,若AB =AF .(1)求证:点D 是AF 的中点;(2)若∠F =60︒,CD =6,求∠ABF 的面积.42.如图1,在等腰ABO 中,AB AO =,分别延长AO 、BO 至点C 、点D ,使得CO AO =、DO BO =,连接AD 、BC .()1如图1,求证:AD BC =;()2如图2,分别取边AD 、CO 、BO 的中点E 、F 、H ,猜想EFH 的形状,并说明理由.43.如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点,若AB=8,AD=12,则四边形ENFM 的周长是多少?44.如图∠,在矩形OACB 中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)直接写出点C 的坐标:________;(2)如图∠,点G 在BC 边上,连接AG ,将ACG 沿AG 折叠,点C 恰好与线段AB 上一点C '重合,求线段CG 的长度;(3)如图∠,P 是直线26y x =-上一点,PD PB ⊥交线段AC 于D .若P 在第一象限,且PB PD =,试求符合条件的所有点P 的坐标.45.直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线y =x +m 经过点C ,交x 轴于点E .(1)请直接写出点C ,点D 的坐标,并求出m 的值;(2)点P (0,t )是线段OB 上的一个动点(点P 不与O 、B 重合),经过点P 且平行于x 轴的直线交AB 于M ,交CE 于N .当四边形NEDM 是平行四边形时,求点P 的坐标;(3)点P (0,t )是y 轴正半轴上的一个动点,Q 是平面内任意一点,t 为何值时,以点C 、D 、P 、Q 为顶点的四边形是菱形?46.如图,在Rt ∠ABC 中,∠C =90°,AC =8,BC =6.动点P 从点A 出发,沿AB 以每秒5个单位长度的速度向终点B 运动.当点P 不与点A 重合时,过点P 作PD ∠AC 于点D ,以AP ,AD 为边作▱APED .设点P 的运动时间为t 秒.(1)线段AD的长为(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)连结BE,当tan∠CBE=13时,求t的值.(4)若线段PE的中点为Q,当点Q落在∠ABC一边垂直平分线上时,直接写出t的值.47.如图,BC为∠O的直径,BD平分∠ABC交∠O于点D,DA∠AB于点A.(1)求证:AD是∠O的切线;(2)∠O交AB于点E,若AD=2AE,求sin ABC∠的值.48.如图1,已知在四边形ABCD中,AB//CD,90ABC∠=︒,8BC=,6CD=,1tan2A=.动点P从点D DA方向运动,到A点结束;点Q同时从点A出发,以3个单位的速度沿射线AB运动,点P停止运动后,点Q 也随之停止.以AP,AQ为边作平行四边形AQGP.设运动时间为t.(1)求AB的长;(2)连接GC 、GB ,当CGB △为等腰三角形时,求t 的值;(3)如图2,以PQ 为直径作圆与AD 、PG 分别交于点M 、N ,连接MQ 交PG 于点F ,连接NQ 、DG ,∠当点N 为弧MQ 的中点时,求PMQPNQ S S △△的值;∠当PQM CDG ∠=∠时,求PQ =______(请直接写出答案).49.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD∠AB 交AP 的延长线于点D ,此时测得CD =100米,那么A ,B 间的距离是_____米.思维探索:(2)在∠ABC 和∠ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将∠ADE 绕点A 逆时针方向旋转,把点E 在AC 边上时∠ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点M 是线段BD 的中点,连接MC ,ME .∠如图2,当∠ADE 在起始位置时,猜想:MC 与ME 的数量关系和位置关系分别是______;∠如图3,当α=90°时,点D 落在AB 边上,请判断MC 与ME 的数量关系和位置关系,并证明你的结论;参考答案:1.B【详解】分析:利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.详解:∠多边形的每个外角相等,且其和为360°,∠这个正多边形的边形为3602415o o ÷=,∠这个正多边形是正十五边形.故选B.点睛:考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,用360除以一个外角的度数,结果即为正多边形的边形.2.C【分析】根据平行四边形的性质来解答即可.【详解】解:∠平行四边形,∠两个相邻内角互补,又∠两个相邻内角的度数比为1:2,∠两个相邻的内角为60°、120°,∠较小的内角为60°.故选:C .【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的相关性质是解题的关键. 3.C【分析】根据相似多边形的对应角相等以及四边形的内角和为360︒解答即可.【详解】解:∠四边形ABCD ∽四边形EFGH∠120H D ∠=∠=︒∠360()70B F E G H ∠=∠=︒-∠+∠+∠=︒故选:C .【点睛】本题考查了相似多边形的性质、多边形的内角和;理解相似多边形的对应角相等是解题的关键.4.B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出三角形的三边,再求解即可.【详解】解:∠三角形的三条中位线分别为3cm、4cm、6cm,∠三角形的三边分别为6cm,8cm,12cm,∠这个三角形的周长=6+8+12=26cm.故选:B.【点睛】本题考查了三角形中位线的性质,解题的关键是熟记三角形中位线的性质定理.5.B【分析】延长AF交BC的延长线于点H,证明∠ADF∠∠HCF,得到CH=AD,设AE=3x,则DE=4x,AD=7x,证得∠AEG∠∠HBG,得到AE AGBH HG==314,即可求出AGGF【详解】解:延长AF交BC的延长线于点H,∠四边形ABCD是正方形,∠∠D=∠DCH=90°,AD∥BC,∠∠DAF=∠H,∠DF CF=,∠∠ADF∠∠HCF(AAS),∠CH=AD,设AE=3x,则DE=4x,AD=7x,∠CH=AD=BC=7x,∠AD∥BC,∠∠AEG∠∠HBG,∠AE AGBH HG==314,∠AGGF =6 11,故选:B.【点睛】此题考查了正方形的性质,相似三角形的性质,全等三角形的判定及性质,熟记各定理是解题的关键.6.D【详解】解:∠四边形ABCD是平行四边形,∠∠D=∠B=60°.故A成立;∠AD△BC,∠∠A+∠B=180°,∠∠A=180°-∠B=120°,故B成立;∠AD△BC,∠∠C+∠D=180°,故C成立;∠四边形ABCD是平行四边形,∠∠C=∠A=120°,故D不成立,故选D.7.B【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【详解】解:A、对角线互相平分的四边形是平行四边形,正确;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、对角线互相垂直的矩形是正方形,正确;D、对角线互相垂直的平行四边形是菱形,正确.故选:B.【点睛】本题主要考查了正方形、平行四边形、菱形的判定方法.解决此题的关键是熟练掌握运用这些判定.8.B【分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∠对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∠对角线相等且互相平分的四边形一定是矩形.故选B.【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.9.A【分析】如图,连接OD ,可得90ODP OBP ∠=∠=︒,再利用四边形的内角和定理求解BOD ∠,从而可得答案.【详解】解:如图,连接OD ,∠过O 外一点P 作O 的两条切线PD 、PB ,∠90ODP OBP ∠=∠=︒,∠80P ∠=︒,∠360909080100DOB ∠=︒-︒-︒-︒=︒, ∠1502A DOB ∠=∠=︒, 故选A .【点睛】本题考查的是切线的性质,四边形的内角和定理的应用,圆周角定理的应用,作出过切点的半径是解本题的关键.10.C【分析】首先证明四边形AEPF 为矩形,可得AM =12AP ,最后利用垂线段最短确定AP 的位置,利用面积相等求出AP 的长,即可得AM .【详解】在△ABC 中,因为AB 2+AC 2=BC 2,所以△ABC 为直角三角形,∠A =90°,又因为PE ∠AB ,PF ∠AC ,故四边形AEPF 为矩形,因为M 为 EF 中点,所以M 也是 AP 中点,即AM =12AP ,故当AP ∠BC 时,AP 有最小值,此时AM 最小, 由1122ABC S AB AC BC AP ∆=⨯⨯=⨯⨯,可得AP =125,AM =12AP =6 1.25= 故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP ∠BC 时AM 最小是解题关键.11.A【分析】根据折叠、平行四边形的性质,三角形的内角和定理,即可求出答案.【详解】解:由折叠得,45∠=∠,∠四边形ABCD 是平行四边形,∠AB CD ,∠53∠=∠,∠3=4∠∠,又∠13448∠=∠+∠=︒, ∠154348242∠=∠=∠=⨯︒=︒, 在ABC 中,180521802432124B ∠=︒-∠-∠=︒-︒-︒=︒,故选:A .【点睛】本题考查折叠的性质、平行四边形的性质,三角形的内角和定理等知识,由图形直观得出各个角之间的关系是正确解答的关键.12.D【分析】根据矩形、菱形、平行四边形、等腰梯形的性质进行逐一分析解答即可.【详解】A 、错误,矩形的对角线相等;B 、错误,菱形的对角线相互垂直;C 、错误,平行四边形是中心对称图形;D 、正确,等腰梯形的对角线相等.故选D . 【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉其性质定理.13.C【分析】∠由正方形的性质和翻折的性质可证明Rt△ABG∠Rt△AFG(HL),推出∠BAG=∠F AG,根据∠DAE=∠F AE,可得∠EAG=12∠BAD=45°;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt△ECG中,(12-x)2+36=(x+6)2,求出x,则可得到CE=2DE;∠由CG=BG,BG=GF,可得CG=GF,则∠GFC=∠GCF,因为∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,可推出∠AGB=∠GCF,则AG∠CF;∠由S△GCE=12×GC×CE,又因为△GFC和△FCE等高,可得S△GFC:S△FEC=3:2,S△GFC=3 5×24=725.【详解】解:∠∠正方形ABCD,∠AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质可得,AF=AD,∠AFE=∠D=90°,∠∠AFG=90°=∠B,AB=AF,又∠AG=AG,∠Rt△ABG∠Rt△AFG(HL),∠∠BAG=∠F AG,∠∠DAE=∠F AE,∠∠EAG=12∠BAD=45°,故∠正确;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt∠ECG中,(12-x)2+62=(x+6)2,∠x=4,∠DE=4,CE=8,∠CE=2DE,故∠错误;∠∠CG=BG,BG=GF,∠CG=GF,∠∠GFC=∠GCF,∠Rt∠ABG∠Rt∠AFG,∠∠AGB=∠AGF,∠∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∠∠AGB=∠GCF,∠AG∠CF,故∠正确;∠∠S△GCE=12×GC×CE=12×6×8=24,又∠GF=6,EF=4,∠GFC和∠FCE等高,∠S△GFC:S△FEC=3:2,∠S△GFC=35×24=725,故∠正确;综上,正确的是∠∠∠,共3个.故选:C.【点睛】本题考查翻折变换的性质、正方形的性质,本题综合性很强,熟练掌握全等三角形的判定和性质,勾股定理,三角形面积的计算方法是解题的关键.14.B【详解】试题分析:根据平行四边形的性质可知AB=CD,AD∠BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.15.B【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【详解】解:∠ED=EM,MF=FN,∠EF=12DN,∠DN最大时,EF最大,∠N与B重合时DN最大,此时DN=DB=6,∠EF的最大值为3.故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.16.C【分析】根据有关的定理和定义找到错误的命题即可得到答案;【详解】A、菱形的面积等于对角线乘积的一半,故正确,不符合题意;B、矩形的对角线相等,正确,不符合题意;C、对角线平分且相等的平行四边形是矩形,错误,符合题意;D、对角线相等的菱形是正方形,正确,不符合题意;故选C.【点睛】考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.17.B【分析】利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.【详解】解:由题意:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∠∠BOE=180°﹣72°﹣60°=48°,∠∠COF=360°﹣108°﹣48°﹣120°=84°,故选:B.【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于常考题型.18.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.【详解】解:∠ABE DEF,∠AB AE DE DF,∠623AE =,∠9AE=,∠矩形ABCD中,90A∠=︒,∠BE故选:C.【点睛】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE的长后利用勾股定理求解.19.B【分析】先根据翻折的性质可得CF=FH,∠HFE=∠CFE,可证∠FEH是等腰三角形,可得HE=HF=FC,判断出四边形CFHE是平行四边形,然后根据邻边相等的平行四边形是菱形证明,判断出∠正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时CE平分∠DCH,判断出∠错误;过点F作FM∠AD于M,点H与点A 重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=FM=MD=CD,求出BF=4,然后写出BF的取值范围,判断出∠正确;求出ME,再利用勾股定理列式求解得到EF,判断出∠正确.【详解】解:∠将纸片ABCD沿直线EF折叠,∠FC=FH,∠HFE=∠CFE,∠AD△BC,∠∠HEF=∠EFC=∠HFE,HE△FC,∠∠HFE为等腰三角形,∠HE=HF=FC,∠EH与CF都是矩形ABCD的对边AD、BC的一部分,∠EH△CF,且HE=FC,∠四边形CFHE是平行四边形,∠FC=FH,∠四边形CFHE是菱形,故∠正确;∠HC为菱形的对角线,∠∠BCH=∠ECH,∠BCD=90°,∠只有∠DCE=30°时CE平分∠DCH,故∠错误;过点F作FM∠AD于M,点H与点A重合时,BF最小,设BF=x,则AF=FC=8﹣x,在Rt∠ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得:x=3,点G与点D重合时,点H与点M重合,BF最大,CF=FM=DM=CD=4,∠BF=4,∠线段BF的取值范围为3≤BF≤4,故∠正确;当点H与点A重合时,由∠中BF=3,∠AF=AE=CF=EC=8-3=5,则ME=5﹣3=2,由勾股定理得,EF=∠错误;综上所述,结论正确的有∠∠共2个,故B正确.故选:B.【点睛】本题考查矩形折叠性质,等腰三角形的判定,菱形的判定与性质,勾股定理,掌握矩形折叠性质,菱形的判定与性质,勾股定理是解题关键.20.112.5【分析】根据正方形的性质有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=22.5°,在△AFC中由三角形的内角和就可以得出∠AFC的度数.【详解】解:∠四边形ABCD是正方形,∠∠ACD=∠ACB=45°.∠∠ACB═∠CAE+∠AEC,∠∠CAE+∠AEC=45°.∠CE=AC,∠∠CAE=∠AEC,∠∠CAE=22.5°.∠∠CAE+∠ACD+∠AFC=180°,∠∠AFC=180°-22.5°-45°=112.5°.故答案为112.5°.【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.21.12AB BC =##2BC AB =【详解】∠在矩形ABCD 中,M 为AD 边的中点,AB=12BC ,∠AB =DC =AM =MD ,∠A =∠D =90°,∠∠ABM =∠MCD =45°,∠∠BMC =90°,又∠PE ∠MC ,PF ∠MB ,∠∠PFM =△PEM =90°,∠四边形PEMF 是矩形.故答案为:AB =12BC .22.3【分析】连接,EP DP ,根据折叠的性质得出三角形全等,根据三角形全等的性质得出对应边相等,由ED EP PD =+,利用等量代换分别求出,EP PD .【详解】解:连接,EP DP 如下图所示:根据A ,B ,C 恰好都落在同一点P 上及折叠的性质,有,,AQE PQE EBF EPF FPD FCD ≌≌≌,1,1,AE PE EB EP CD PD ∴=====,2AB AE EB =+=,根据正方形的性质得:2AB DC ==,2PD ∴=,ED EP PD =+,123ED ∴=+=,故答案是:3.【点睛】本题考查了翻折的性质,三角形全等的性质,解题的关键是添加辅助线,通过等量代换的思想进行解答.23.4【分析】证明△OAB 是等边三角形,OA ∠BC 即可推出OE =AE ,再利用三角形中位线定理即可解决问题.【详解】解:∠AB =AC ,∠AB AC =,∠OA ∠BC ,BE =EC ,AB =AC∠∠ABC 是等腰三角形∠∠BAE =∠CAE =12∠BAC =60°,∠OA =OB ,∠∠OAB 是等边三角形,∠BE ∠OA ,∠OE =AE ,∠OB =OD ,BE =EC ,∠ OE是△BCD的中位线∠OE=AE=12CD=4.故答案为:4.【点睛】本题考查三角形的外接圆与外心,圆周角定理,垂径定理,三角形的中位线定理,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.54°【分析】根据五边形的内角和公式求出∠ABC,根据等腰三角形的性质,三角形内角和的定理计算∠BAC,再求∠EAF,利用圆的性质得AE=AF,最后求出∠1即可.【详解】解:∠五边形ABCDE是正五边形,∠∠EAB=∠ABC=()5-21805⨯︒=108°,∠BA=BC,∠∠BAC=∠BCA=180-1082︒︒=36°,∠∠EAF=108°﹣36°=72°,∠以点A为圆心,AE为半径画圆弧交AC于点F,∠AE=AF,∠∠1=180-722︒︒=54°.故答案为:54°.【点睛】本题考查了正多边形的内角与圆,熟练掌握正多边形的内角的计算公式、和圆的性质,等腰三角形的性质是解题的关键.25122【分析】根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.【详解】解:如图:∠四边形MNQK是正方形,且MN=1,∠∠MNK=45°,在Rt△MNO中,OM=ON∠NL=PL=OL∠PN=12,∠PQ=12,∠∠PQH是等腰直角三角形,∠PH=FF'BE,过G作GG'∠EF',∠GG'=AE=12MN=12,∠CD=AB=AE+BE=12122.故答案为122.【点睛】本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.26.45【分析】延长CB到G,使BG=DF,根据正方形的性质得到AD=AB,∠D=∠ABE=90°,求得∠ABG=∠D=90°,根据全等三角形的性质得到AG=AF,∠GAB=∠DAF,求得GE=EF,推出∠AGE∠∠AFE(SSS),根据全等三角形的性质得到∠GAE=∠EAF,根据全等三角形的性质即可得到结论.【详解】解:延长CB到G,使BG=DF,∠四边形ABCD是正方形,∠AD=AB,∠D=∠ABE=90°,∠∠ABG =∠D =90°,在∠ADF 与∠ABG 中,AB AD ABG D BG DF =⎧⎪∠=∠⎨⎪=⎩,∠∠ADF ∠∠ABG (SAS ),∠AG =AF ,∠GAB =∠DAF ,∠DF +BE =EF ,EG =BG +BE =DF +BE ,∠GE =EF ,在∠AGE 与∠AFE 中,AG AF AE AE GE EF =⎧⎪=⎨⎪=⎩,∠∠AGE ∠∠AFE (SSS ),∠∠GAE =∠EAF ,∠∠GAE =∠GAB +∠BAE =∠DAF +∠BAE =∠EAF ,∠∠BAD =90°,∠∠EAF =45°,故答案为:45.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.27.83【分析】根据抛物线的解析式求得4DH c =-,BF AF OC c ===,然后根据三角形中位线定理得到142c c -=,解得即可. 【详解】解:作抛物线的对称轴,交OA 于E ,交x 轴于H ,∠224()42y x x c x c =-+=-+-,∠顶点为(2)4c -,,∠4DH c =-,∠AC x ∥轴,∠AF OC c AB x ==⊥,轴,∠OA OB =,∠AF BF c ==,∠OH FH =, ∠12DH BF =, ∠142c c -= ∠83c =, 故答案为:83. 【点睛】本题考查了二次函数与几何的综合运用,熟练掌握三角形的中位线定理是解决本题的关键.28【分析】由EF ∠AD ,HG ∠AB ,结合矩形的性质可得四边形AHIE 和四边形IFCG 为矩形,然后根据矩形的性质可的HE +FG 的长度即为AI +CI 的长度,最后利用两点之间,线段最短,求出AC 的长即可.【详解】解:如图所示,连接AI ,CI ,AC ,在矩形ABCD 中,∠BAD =∠BCD =∠B =90°,AB ∠CD ,AD ∠BC ,又∠EF ∠AD ,HG ∠AB ,∠四边形AHIE和四边形IFCG为矩形,∠HE=AI,FG=CI,∠HE+FG的长度即为AI+CI的长度,又∠AI+CI≥AC,∠当A,I,C三点共线时,AI+CI最小值等于AC的长度,在Rt∠ABC中,AC∠HE+FG【点睛】本题考查矩形的判定和性质以及两点之间,线段最短的运用,正确判定四边形AHIE和四边形IFCG为矩形,运用矩形的对角线相等是解题的关键.29.108º,72º,108º【详解】解:∠平行四边形ABCD中,∠A+∠B=180°,又∠∠A:∠B=2:3,∠∠A=72°,∠B=108°,∠∠D=∠B=108°,∠C=∠A=72°.故答案为108º,72º,108º.30.130°【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题.【详解】∠四边形ABCD是菱形,∠BCD=25°,∠∠ACD=∠ACB=12∠EF垂直平分线段BC,∠FB=FC,∠∠FBC=∠FCB=25°,∠∠CFB=180°﹣25°﹣25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故答案为130°.【点睛】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.62°【分析】先利用AAS 证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得∠B′CA∠∠BCA ,∠AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∠长方形AB′CD 中,AB′=CD ,∠AB=CD .在∠AOB 与∠COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∠∠AOB∠∠COD (AAS ),∠∠BAO=∠DCO=34°,∠∠B′CO=90°-∠DCO=56°,∠∠B′CA=∠BCA=28°,∠∠B′AC=90°-∠B′CA=62°,∠∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°是解题的关键.32.1:3【详解】试题解析:设平行四边形的面积为1,∠四边形ABCD 是平行四边形, ∠12DAB ABCD S S =,又∠M 是ABCD 的AB 的中点, 则1124DAM DAB ABCD S S S ==,1,2BE MB DE CD == ∠EMB △上的高线与DAB 上的高线比为1.3BE BD ==∠1113212 EMB DABS S=⨯=,∠143 DEC MEBS S,==S阴影面积1111141233 =---=,则阴影部分的面积与▱ABCD的面积比为13.故填空答案:13.33.【详解】分析:作DH平分∠BDC交BC于H.连接AH交BD于M.首先证明P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH.详解:作DH平分∠BDC交BC于H.连接AH交BD于M.∠四边形ABCD是矩形,∠∠C=∠BAD=∠ADC=90°,∠tan∠ADB=ABAD∠∠ADB=30°,∠∠BDC=60°,∠∠CDH=30°,∠CD∠CH2,△DH=2CH=4,∠DP=DH,∠∠MDP=∠MDH,∠P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH=点睛:本题考查了矩形的性质,解直角三角形,勾股定理,含30º角的直角三角形的性质,轴对称的性质,作DH平分∠BDC交BC于H.连接AH交BD于M.说明P和H关于BD成轴对称是解答本题的关键.34.39cm60cm2【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=12AD=12CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【详解】∠BE、CE分别平分∠ABC、∠BCD,∠∠1=∠3=12∠ABC,∠DCE=∠BCE=12∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∠BC,AB∠CD,∠AD∠BC,AB∠CD,∠∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∠∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∠AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∠平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF∠BC于F,根据直角三角形的面积公式得:EF=·6013BE CEBC=cm,∠平行四边形ABCD的面积=BC·EF=601313⨯=60cm2,故答案为39cm,60cm2.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.。
2020年中考数学复习:几何 专项练习题(含答案)
2020年中考数学复习:几何 专项练习题一、选择题1.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6cmB.4cmC.cmD.cm2.如图,△ABC 和△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B 与点D 重合,点A ,B (D ),E 在同一条直线上,将△ABC 沿DE 方向平移,至点A 与点E 重合时停止.设点B ,D 之间的距离为x ,△ABC 与△DEF 重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )A B C D 二、填空题3.如图,将两块直角三角板的斜边重合,E 是两直角三角形公共斜边AC 的中点.D 、B 分别为直角顶点,连接DE 、BE 、DB ,∠DAC=60°,∠BAC=45°.则∠EDB 的度数为_______.(6-()64.如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动cm.三、解答题5.如图,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)EF+AC =AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图,AF1平分∠B A1C1,交BD于F1,过F1作F1E1⊥A1C1,垂足为E1,试猜想F1E1,A1C1与AB之间的数量关系,并证明你的猜想.(3)在(2)的条件下,当A1 E1=3,C1 E1=2时,求BD的长.21216.如图,等腰Rt△ABC 中,∠C=90°,AC=6,动点P 、Q 分别从A 、B 两点同时以每秒1个单位长的速度按顺时针方向沿△ABC 的边运动,当Q 运动到A 点时,P 、Q 停止运动.设Q 点运动时间为t 秒,点P 运动的轨迹与PQ 、AQ 围成图形的面积为S.求S 关于t 的函数解析式.7.正方形ABCD中,点F为正方形ABCD 内的点,△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合. (1)如图1,若正方形ABCD 的边长为2,BE=1,FC=,求证:AE ∥BF ;(2)如图2,若点F 为正方形ABCD 对角线AC 上的点,且AF :FC=3:1,BC=2,求BF 的长.8.将正方形ABCD 和正方形BEFG 如图1摆放,连DF .∠DMC=_____;∠DMC 的值,并证明你的结论;3∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.10.将正方形ABCD和正方形CGEF如图1摆放,使D点在CF边上,M为AE中点,(1)连接MD、MF,则容易发现MD、MF间的关系是______________(2)操作:把正方形CGEF绕C点旋转,使对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M,探究线段MD、MF的关系,并加以说明;(3)将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.DMDC交射线ON 于点B ,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB ;(2)如图2,若点C 是AB 与OP 的交点,当S △POB =3S △PCB 时,求PB 与PC 的比值;(3)若∠MON=60°,OB=2,射线AP 交ON 于点D ,且满足且∠PBD=∠ABO ,请借助图3补全图形,并求OP 的长.12、在中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在①的条件下,设CP 1=,S =,求与之间的函数关系式,并写出自变量的取值范围.图1 备用图13、已知:如图,N 、M 是以O 为圆心,1为半径的圆上的两点,B 是上一动点(B 不与点M 、N 重合),ABCD Y 90o90o 90o43x 11P FC V y y xx ¼MN∠MON=90°,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)四边形EPGQ (填“是”或者“不是”)平行四边形; (2)若四边形EPGQ 是矩形,求OA 的值.14、已知如图,在梯形中,点是的中点,是等边三角形.(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变.设 求与的函数关系式;(3)在(2)中,当取最小值时,判断的形状,并说明理由.15、已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处. (1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值; (3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).ABCD 24AD BC AD BC ==∥,,,M AD MBC △ABCD P Q BC MC 60MPQ =︒∠PC x MQ y ==,,y x y PQC△CEBECEBECEBE16、在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)17、已知:如图(1),射线射线,是它们的公垂线,点、分别在、 上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合), 在运动过程中始终保持,且. (1)求证:∽;(2)如图(2),当点为边的中点时,求证:;(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.3=BC xx //AM BN AB D C AM BN D A C B E AB E A B EC DE ⊥a AB DE AD ==+ADE ∆BEC ∆E AB CD BC AD =+m AE =BEC ∆m m BEC∆18、已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接. (1)直接写出线段与的数量关系;(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)参考答案 一、选择题 1.【答案】C. 2.【答案】B. 二、填空题 3.【答案】15°.4.三、解答题5.【答案与解析】(1)证明:如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中,AC ⊥BD 于点E . ∵AF 平分∠BAC , ∴EF=MF , 又∵AF=AF ,ABCD E BD E EF BD ⊥BC F DF G DF EG CG ,EG CG BEF ∆B 45︒DF G EG CG ,BEF ∆B 图3图2图1FEABCDABC DEFGGFED C BA∴Rt △AMF ≌Rt △AEF , ∴AE=AM ,∵∠MFB=∠ABF=45°, ∴MF=MB,MB=EF , ∴EF+AC=MB+AE=MB+AM=AB .(2)E 1F 1,A 1C 1与AB 三者之间的数量关系:E 1F 1+A 1C 1=AB 证明:如图2,连接F 1C 1,过点F 1作F 1P ⊥A 1B 于点P ,F 1Q ⊥BC 于点Q , ∵A 1F 1平分∠BA 1C 1,∴E 1F 1=PF 1;同理QF 1=PF 1,∴E 1F 1=PF 1=QF 1, 又∵A 1F 1=A 1F 1,∴Rt △A 1E 1F 1≌Rt △A 1PF 1, ∴A 1E 1=A 1P ,同理Rt △QF 1C 1≌Rt △E 1F 1C 1, ∴C 1Q=C 1E 1, 由题意:A 1A=C 1C ,∴A 1B+BC 1=AB+A 1A+BC -C 1C=AB+BC=2AB , ∵PB=PF 1=QF 1=QB ,∴A 1B+BC 1=A 1P+PB+QB+C 1Q=A 1P+C 1Q+2E 1F 1, 即2AB=A 1E 1+C 1E 1+2E 1F 1=A 1C 1+2E 1F 1, ∴E 1F 1+A 1C 1=AB . (3)解:设PB=x ,则QB=x , ∵A 1E 1=3,QC 1=C 1E 1=2,Rt △A 1BC 1中,A 1B 2+BC 12=A 1C 12, 即(3+x )2+(2+x )2=52, ∴x 1=1,x 2=-6(舍去), ∴PB=1, ∴E 1F 1=1, 又∵A 1C 1=5,121212126.【答案与解析】当P运动到C点时:t=6当Q运动到A点:t=∴分两种情况讨论(1)当0≤t≤6时,如图:作PH⊥AB于H,则△APH为等腰直角三角形此时AP=t,BQ=t,则AQ=-tPH=APsin45°=t∴S△AQP=AQ·PH=·(-t)·t=t2+3t(2)当6<t≤时,如图:过P过PH⊥AB于H,此时△PBH为等腰直角三角形AC+CP=t,BQ=t∴BP=AC+CB-(AC+CP)=12-t∴PH=BPsin45°=(12-t)∴S四边形AQPC=S△ABC-S△BPQ=AC·BC-BQ·PH=·6·6-·t·(12-t)=18-t+t2=t2-t+18.综上,.7.【答案与解析】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC在△BFC中,BC2=22=4∴BF2+FC2=BC2∴∠BFC=90°…(3分)∴∠AEB+∠EBF=180°∴AE ∥BF …(4分)(2)解:∵Rt △ABC 中,AB=BC=2,由勾股定理,得∵AF :FC=3:1,∵△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合∵四边形ABCD 是正方形∴∠ABC=90°∴∠BAC+∠ACB=90° ∴∠EAB+∠BAC=90°即∠EAF=90° 在Rt △EBF 中,EF 2=BE 2+BF 2∵BE=BF8.【答案与解析】(1)如图2,连接BF ,∵四边形ABCD 、四边形BEFG 是正方形,∴∠FBC=∠CBD=45°,∴∠CBD=∠GBC=90°,而BF=BG ,BD=BC ,∴△BFD ∽△BGC ,22而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,(2)如图3,∵将图1中的正方形BEFG 绕B 点顺时针旋转45°,DF 的延长线交CG 于M ,∴B 、E 、D 三点在同一条直线上,而四边形ABCD 、四边形BEFG 是正方形,∴△BFD ∽△BGC ,而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,即∠DMC=45°;9.【答案与解析】(1)CE ⊥BD .(2)延长CE 交BD 于M ,设AB 与EM 交于点F .∵∠BAC=∠DAE=90°, ∴∠CAE=∠BAD .又∵△ABC ≌△ADE ,∴AC=AE ,AB=AD , ∴∠ACE=,∠ABD=,∴∠ACE=∠ABD .又∵∠AFC=∠BFM ,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE ⊥BD .(3)过C ′作C ′G ⊥AM 于G ,过D 作DH ⊥AM 交延长线于点H .∵∠∠E ′NA=∠AGC ′=90°,∴∠NE ′A+∠NAE ′=90°,∠NAE ′+∠C ′AG=90°,∴∠NE ′A=∠C ′AG ,∵AE ′=AC ′∴△ANE ′≌△C ′GA (AAS ),∴AN=C ′G .同理可证△BNA ≌△AHD ,AN=DH .∴C ′G=DH .在△C ′GM 与△DHM 中,∠C ′GM=∠DHM=90°,∠C ′MG=∠DMH ,C ′G=DH ,∴△C ′GM ≌△DHM ,∴C ′M=DM ,01802CAE -∠01802BAD -∠10.【答案与解析】如图1,延长DM交FE于N,图1∵正方形ABCD、CGEF,∴CF=EF,AD=DC,∠CFE=90°,AD∥FE,∴∠1=∠2,又∵MA=ME,∠3=∠4,∴△AMD≌△EMN,∴MD=MN,AD=EN.∵AD=DC,∴DC=NE.又∵FC=FE,∴FD=FN.又∵∠DFN=90°,∴FM⊥MD,MF=MD;(2)MD=MF,MD⊥MF.如图2,延长DM交CE于N,连接FD、FN.∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2.又∵AM=EM,∠3=∠4,∴△ADM≌△ENM,∴AD=EN,MD=MN.∵AD=DC,∴DC=NE.又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°.又∵正方形ABCD,∴∠BCD=90°,∴∠DCF=∠NEF=45°,∴△FDC≌△FNE,∴FD=FN,∠5=∠6,∠DFN=∠5+∠CFN=∠6+∠CFN=90°,∴△DFN为等腰直角三角形,且FM为斜边DN上的中线,∴MD=MF,MD⊥MF;(3)FM⊥MD,MF=MD.如图3,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,AD∥EH,∴∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN,∴DM=NM,AD=EN.∵正方形ABCD、CGEF,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°.∴∠H=90°,∠5=∠NEF,DC=NE.∴∠DCF+∠7=∠5+∠7=90°,∴∠DCF=∠5=∠NEF.∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°,∴∠DFN=90°.∴FM⊥MD,MF=MD.11、 【答案】(1)作PE ⊥OM ,PF ⊥ON ,垂足为E 、F ∵四边形OEPF 中,∠OEP=∠OFP=90°, ∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB ,即∠EPA+∠APF=∠APF+∠FPB ,∴∠EPA=∠FPB , 由角平分线的性质,得PE=PF ,∴△EPA ≌△FPB ,即PA=PB ;(2)∵S △POB =3S △PCB ,∴PO=3PC ,由(1)可知△PAB 为等腰三角形,则∠PBC=(180°-∠APB )=∠MON=∠BOP , 又∵∠BPC=∠OPB (公共角),∴△PBC ∽△POB ,∴, 即PB 2=PO •PC=3PC 2,∴ (3)作BH ⊥OT ,垂足为H ,当∠MON=60°时,∠APB=120°,由PA=PB ,得∠PBA=∠PAB=(180°-∠APB )=30°, 又∵∠PBD=∠ABO ,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°, 在△OBP 中,∵∠BOP=30°,∴∠BPO=45°,在Rt △OBH 中,BH=OB=1,OH=, 1212PB PC PO PB=3PB PC=1212123在Rt △PBH 中,PH=BH=1,∴OP=OH+PH=+1.12、【答案与解析】(1)①直线与直线的位置关系为互相垂直.证明:如图1,设直线与直线的交点为.∵线段分别绕点逆时针旋转90°依次得到线段,∴.∵,, ∴. ∴. ∴. ∵,∴, ∴.31FG CD 1FG CD H 1EC EP 、E 1EF EG 、111190PEG CEF EG EP EF EC ∠=∠===°,,1190G EF PEF ∠=-∠°1190PEC PEF ∠=-∠°11G EF PEC ∠=∠11G EF PEC △≌△11G FE PCE ∠=∠EC CD ⊥190PCE ∠=°190G FE ∠=°FDC BAE 图1 G 2 G 1P 1 H P 2∴.∴.∴.②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.(2)∵四边形是平行四边形,∴.∵, ∴. 可得. 由(1)可得四边形为正方形.∴. ①如图2,当点在线段的延长线上时,∵, ∴. 90EFH ∠=°90FHC ∠=°1FG CD ⊥12G G CD ABCD B ADC ∠=∠461tan 3AD AE B ===,,45tan tan 3DE EBC B =∠==,4CE =EFCH 4CH CE ==1P CH 1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯⨯=△D G 1P 1 H C BAE F∴. ②如图3,当点在线段上(不与两点重合)时, ∵, ∴. ∴. ③当点与点重合时,即时,不存在.综上所述,与之间的函数关系式及自变量的取值范围是或. 13、【答案】(1)是.证明:连接OB ,如图①,212(4)2y x x x =->1P CH C H 、1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯=△212(04)2y x x x =-+<<1P H 4x =11PFG △y x x 212(4)2y x x x =->212(04)2y x x x =-+<<FG 1 P 1 CAB E D H∵BA ⊥OM ,BC ⊥ON , ∴∠BAO=∠BCO=90°, ∵∠AOC=90°, ∴四边形OABC 是矩形.∴AB ∥OC ,AB=OC ,∵E 、G 分别是AB 、CO 的中点,∴AE ∥GC ,AE=GC ,∴四边形AECG 为平行四边形.∴CE ∥AG ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形;(2)解:如图②,∵口EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE .∴△AED ∽△BCE ,∴, AD AE BE BC得y 2=2x 2,又∵OA 2+AB2=OB 2, 即x 2+y 2=12.∴x 2+2x 2=1,14、【答案与解析】(1)证明:∵是等边三角形∴∵是中点∴∵∴∴∴∴梯形是等腰梯形.(2)解:在等边中, ∴ ∴ ∴∴ MBC △60MB MC MBC MCB ===︒,∠∠M AD AM MD =AD BC ∥60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠AMB DMC △≌△AB DC =ABCD MBC △4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠120BMP BPM BPM QPC +=+=︒∠∠∠∠BMP QPC =∠∠BMP CQP △∽△PC CQ BM BP=∵∴∴∴(3)解:为直角三角形,∵∴当取最小值时,∴是的中点,而∴∴∴为直角三角形.15、【答案与解析】(1)CF=6cm;(2)①如图1,当点E在BC上时,延长AB′交DC于点M,PC x MQ y==,44BP x QC y=-=-,444x yx-=-2144y x x=-+PQC△()21234y x=-+y2x PC==P BC MP BC⊥,60MPQ=︒∠,30CPQ=︒∠,90PQC=︒∠PQC△图1∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ . ∵ =2, ∴ CF=3. ∵ AB ∥CF,∴∠BAE=∠F .又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF .设MA=MF=k ,则MC=k -3,DM=9-k .在Rt △ADM 中,由勾股定理得:k 2=(9-k)2+62, 解得 k=MA=. ∴ DM=. ∴ sin ∠DAB ′=; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N ,同①可得NA=NE .设NA=NE=m ,则B ′ N=12-m .在Rt △AB ′ N 中,由勾股定理,得m 2=(12-m)2+62, 解得 m=AN=. ∴ B ′N=. ∴ sin ∠DAB ′=. (3)①当点E 在BC 上时,y=; FCAB CE BE =CEBE 13252135=AM DM 1529253='AN N B 18x x 1+图2②当点E 在BC 延长线上时,y=. 16、【答案与解析】(1)结论:CF ⊥BD ; 证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º,∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD .∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .(2)CF ⊥BD .(1)中结论仍成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴DQ=4-x ,易证△AQD ∽△DCP ,∴ ,∴, .18x 18x-ΘCP CD DQ AQ =44CP x x =-24x CP x ∴=-+②点D 在线段BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x .过A 作AQ ⊥BC , ∴∠Q=∠FQC=90°,∠ADQ=∠AFC ,则△AQD ∽△ACF .∴CF ⊥BD ,∴△AQD ∽△DCP ,∴, ∴, . 17、【答案】(1)证明:∵,∴.∴.又∵,∴.∴.∴∽.(2)证明:如图,过点作,交于点,∵是的中点,容易证明. CD DQ AQ 4+4x x =24x CP x ∴=+EC DE ⊥︒=∠90DEC ︒=∠+∠90BEC AED ︒=∠=∠90B A ︒=∠+∠90EDA AED EDA BEC ∠=∠ADE ∆BEC ∆E EF BC //CD F E AB )(21BC AD EF +=在中,∵ ,∴ . ∴ . ∴ .(3)解:的周长,. 设,则.∵ ,∴ .即.∴ . 由(1)知∽,∴ . ∴ 的周长的周长. ∴ 的周长与值无关.18、【答案与解析】(1)(2)(1)中结论没有发生变化,即.证明:连接,过点作于,与的延长线交于点. 在与中,∵,∴.∴.DEC Rt ∆CF DF =CD EF 21=)(21BC AD +CD 21=CD BC AD =+AED ∆DE AD AE ++=m a +=m a BE -=x AD =x a DE -=︒=∠90A 222AD AE DE +=22222x m x ax a +=+-am a x 222-=ADE ∆BEC ∆的周长的周长BEC ∆∆ADE BEAD =m a a m a --=222a m a 2+=BEC ∆⋅+=m a a 2ADE ∆a 2=BEC ∆m CG EG =CG EG =AG G MN AD ⊥M EF N DAG ∆DCG ∆AD CD ADG CDG DG DG =∠=∠=,,DAG DCG ∆∆≌AG CG =在与中,∵, ∴.∴在矩形中,在与中,∵,∴.∴.∴(3)(1)中的结论仍然成立.DMG ∆FNG ∆DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,DMG FNG ∆∆≌MG NG =AENM AM EN =Rt AMG ∆Rt ENG ∆AM EN MG NG ==,AMG ENG ∆∆≌AG EG =EG CG =M N图2A B CDE F GG图3FE A B CD。
中考数学几何图形专题训练50题-含答案
中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .球D .圆锥 2.如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°3.如图是每个面上都标有一个汉字的正方体的表面展开图,在此正方体上与“爱”字相对的面上的汉字是( )A .保B .定C .古D .城 4.如图,已知AC BC ⊥,190A ∠+∠=︒,则2∠与A ∠的关系是( )A.2∠大C.相等D.无法确定∠大B.A5.若一个锐角的余角比这个角大30°,则这个锐角的度数是()A.30︒B.150︒C.60︒D.155︒6.图中的立方体展开后,应是下图中的()A.B.C.D.7.如图,直线与相交于点,,则与()A.是对顶角B.相等C.互余D.互补8.如图由四个相同的小立方体组成的立体图像,它的主视图是().A .B .C .D . 9.如图,钟表上10点整时,时针与分针所成的角是( )A .30︒B .60︒C .90︒D .120︒ 10.如图,将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是( )A .B .C .D . 11.如图,在长方形ABCD 中,点E ,点F 分别为BC 和AB 上任意一点,点B 和点M 关于EF 对称,EN 是MEC ∠的平分线,若60BFE ∠=︒,则MEN ∠的度数是( )A .30︒B .60︒C .45︒D .50︒12.如图是正方形纸盒展开图,那么在原正方体中,与“沉”字所在面相对面的汉字是()A.冷B.静C.应D.考13.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体14.如图,用平面去截一个正方体,所得截面的形状应是()A.A B.B C.C D.D15.如图,点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD=()A.110°B.115°C.120°D.135°16.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmC.直线,AB CD相交于点P D.两点确定一条直线17.如图,一个底面直径为30cm,高为20cm的糖罐子,一只蚂蚁从A处沿着糖罐的表面爬行到B处,则蚂蚁爬行的最短距离是()A .24cmB .C .25cmD .30cm 18.如图,等边ABC 的边长为1,过点B 的直线l AB ⊥,且ABC 与A BC ''△关于直线l 对称,D 为线段BC '上的一个动点,则AD CD +的最小值为( )A .1B .2C .3D .419.如图,在ABC 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上 D .:1:3DAC ABD S S =△△20.如图,在Rt 直角△ABC 中,45B ∠=︒,AB =AC ,点D 为BC 中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△ AE =CF ;△△BDE △△ADF ;△ BE +CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题21.在_______内填上适当的分数:135等于________平角.22.如图,AB △CD ,CB 平分△ABD ,若△ABC =40°,则△D 的度数为_______.23.如果△α=26°,那么△α的余角等于__________.24.如图,点A在点O北偏东32︒方向上,点B在点O南偏东43︒方向上,则AOB∠= ______.25.如图,是一副三角板拼成的图案,则AED=∠____.26.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是___________.27.如图是一个长方体的表面展开图,每个面上都标注了字母和数据,请根据要求回答(1)如果A面在长方体的底部,那么_________面会在上面;(2)这个长方体的体积为_________米3.28.若α∠的补角是它的3倍,则α∠的度数为________________.29.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.30.已知,如图4090COD AOC BOD ∠∠∠=︒==︒,,则AOB ∠=_______度.31.若一个直棱柱共有10个面,所有侧棱长的和等于64,则每条侧棱的长为______.32.小红从O 点出发向北偏西32°17'方向走到A 点,小明从O 点出发向南偏西54°28'方向走到B 点,则∠AOB 的度数是_____.33.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是_____.34.5400秒化成度数是____________度35.如图,OA 的方向是北偏东20°,OC 的方向是北偏西40°,若AOC AOB ∠=∠,则OB 的方向是______.36.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.37.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.38.如图,在△O 中,AB 是△O 的直径,10,AB AC CD DB ===,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:△60BOE ︒∠=;△12CED DOB ∠=∠;△DM CE ⊥;△CM DM +的最小值是10.上述结论中正确的个数是_________.39.如图,在Rt ABC △中,90ABC ∠=︒,以AC 为边,作ACD ,满足AD AC =,点E 为BC 上一点,连接AE ,12BAE CAD ∠=∠,连接DE .下列结论中正确的是__________.(填序号)△AC DE ⊥;△ADE ACB ∠=∠;△若//CD AB ,则AE AD ⊥;△2DE CE BE =+.40.如图,在△ABC 中,AB = AC = 8,S △ABC = 16,点P 为角平分线AD 上任意一点,PE △AB ,连接PB ,则PB+PE 的最小值为_____.三、解答题41.线段4AB =cm ,延长线段AB 到C ,使BC =14AB ,再反向延长AB 到D ,使AD=3cm ,E 是AD 中点,F 是CD 的中点,求EF 的长度.42.已知图为一几何体从不同方向看的图形.(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积. 43.如图△,点O 为直线MN 上一点,过点O 作直线OC ,使60NOC ︒∠=.将一把直角三角尺的直角顶点放在点O 处,一边 OA 在射线OM 上,另一边OB 在直线AB 的下方,其中30OBA ︒∠=()1将图△中的三角尺沿直线OC 翻折至''A B O ∆, 求'A ON ∠的度数;()2将图△中的三角尺绕点O 按每秒10︒的速度沿顺时针方向旋转,旋转角为()0360αα︒︒<<, 在旋转的过程中,在第几秒时,直线OA 恰好平分锐角NOC ∠. ()3将图△中的三角尺绕点O 顺时针旋转;当点A 点B 均在直线MN 上方时(如图△所示),请探究MOB ∠与AOC ∠之间的数量关系,请直接写出结论,不必写出理由.44.如图,在直线AB 上,线段20AB =,动点P 从A 出发,以每秒2个单位长度的速度在直线AB 上运动,M 为AP 的中点,N 为BP 的中点,设点P 的运动吋间为t 秒.(1)若点P 在线段AB 上运动,当7MP =时,NP = ;(2)若点P 在射线AB 上运动,当2MP NP =时,求点P 的运动时间t 的值;(3)当点P 在线段AB 的反向延长线上运动时,线段AB 、MP 、NP 有怎样的数量关系?请写出你的结论,并说明你的理由.45.已知:点M ,N ,P 在同一条直线上,线段MN a =,线段()PN b a b =>,点A 是MP 的中点.求线段MP 与线段AN 的长.(用含a ,b 的代数式表示) 46.如图所示,l 为河岸,B 处为草地,牧马人要将A 处的马牵到河边喝水,再牵到B 地吃草,问怎样走路程最短?47.如图,在ABC 中,CD 、CE 分别是ABC 的高和角平分线,,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒,求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.48.某产品的形状是长方体,长为8cm ,它的展开图如图所示,求长方体的体积.49.如图,已知线段AB 上有两点C ,D ,且AC△CD△DB =2△3△4,E ,F 分别为AC ,DB 的中点,EF =2.4 cm ,求线段AB 的长.50.综合与探究已知△AOB 、△BOC ,△AOB =90°,(1)若△BOC 为锐角,OE 、OD 分别平分△AOB 和△BOC ,△如图1,当射线OC 在△AOB 外部,△BOC =40°时,求△EOD 的度数;△当△BOC =α(090α︒<<︒)时,则△EOD 的度数是_____;(2)若△AOC 和△BOC 均为小于平角的角,OE 、OD 分别平分△AOC 和△BOC ,△当△BOC =40°,OC 位置如图2所示时,求△EOD 的度数.△当△BOC =α时(0°<α<180°),则△EOD 的度数是_____.参考答案:1.A【分析】侧面为三个长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱,故A 正确.故选:A .【点睛】本题考查的是三棱柱的展开图,熟练掌握三棱柱的展开图,是解题的关键. 2.C【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解. 【详解】解:30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.3.A【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【详解】正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以在此正方体上与“爱”字相对的面上的汉字是“保”,故选A .【点睛】本题考查正方体的展开图,解题的关键是掌握正方体相对两个面上的文字的知识.4.C【分析】由190A ∠+∠=︒,1290∠+∠=︒,可知2A ∠=∠,进而可得答案.【详解】解:△190A ∠+∠=︒,1290∠+∠=︒△2A ∠=∠故选C .【点睛】本题考查了余角.解题的关键在于明确同角的余角相等.5.A【分析】根据余角的定义解决此题.【详解】解:设这个角的度数为x .由题意得,9030x x -=+︒︒.△30x =︒.△这个角的度数为30︒.故选:A .【点睛】本题主要考查余角,熟练掌握余角的定义是解决本题的关键.6.D【详解】由正方体的展开图可知,D 项符合题意,故选D .7.C【详解】试题分析:因为CD 是一条直线,又,所以△AOE=90°所以△1+△2=180°-90°=90°,所以他们的关系是互余考点:角的互余关系点评:难度小,理解角与角的各种的关系是关键.8.A【分析】从正面看作出相应图象即可得.【详解】解:从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选A.【点睛】题目主要考查小正方体的主视图的作法,理解题意,掌握视图的作法是解题关键. 9.B【分析】根据钟面分成12个大格,每格的度数为30°即可解答.【详解】解:△钟面分成12个大格,每格的度数为30°,△钟表上10点整时,时针与分针所成的角是60°故选B .【点睛】考核知识点:钟面角.了解钟面特点是关键.10.B【分析】根据直角三角形绕直角边旋转是圆锥,即可解得.【详解】将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是圆锥;故答案为:B.【点睛】本题考查了点、线、面、体,熟记各种平面图形旋转得到的立体图形是解题的关键.11.B∠的平分线,可算出△MEN 【分析】根据对称的性质可得△MEF的度数,再由EN是MEC的度数.【详解】解:由题意可得:△B=90°,△△BFE=60°,△△BEF=30°,△点B和点M关于EF对称,△△BEF=△MEF=30°,△△MEC=180-30°×2=120°,∠的平分线,又△EN是MEC△△MEN=120÷2=60°.故选B.【点睛】本题考查了轴对称的性质和角平分线的性质,根据已知角利用三角形内角和、角平分线的性质计算相关角度即可,难度不大.12.B【分析】根据正方体的展开图的特点,确定出相对的面即可.【详解】解:根据正方体表面展开图可知,与“沉”字所在面相对面的汉字是“静”.故答案为B.【点睛】本题考查正方体的表面展开图的特征,掌握正方体展开图的对面的判定方法是解答本题的关键.13.D【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.14.B【详解】试题解析:正方体的截面,经过正方体的四个侧面,正方体中,对边平行,故可确定为平行四边形,交点垂直于底边,故为矩形.故选B.点睛:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.B【分析】先根据△COE=90°,△COD=25°,由角的和差关系求得△DOE=90°﹣25°=65°,再根据OD平分△AOE,由角平分线的定义得出△AOD=△DOE=65°,最后根据邻补角的定义得出△BOD=180°﹣△AOD=115°.【详解】△△COE=90°,△COD=25°,△△DOE=90°﹣25°=65°.△OD平分△AOE,△△AOD=△DOE=65°,△△BOD=180°﹣△AOD=115°.故选B.【点睛】本题考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得△AOD的度数,再根据邻补角进行计算.16.D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.17.C【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:△有一圆柱,它的高等于20cm ,底面直径等于30πcm , △底面周长=3030ππ⋅=cm ,△BC =20cm ,AC =12×30=15(cm ),△AB 25=(cm ).答:它需要爬行的最短路程为25cm .故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.18.B【分析】连接CA '交BC '于点E ,C ,A '关于直线BC '对称,推出当点D 与B 重合时,AD CD +的值最小,最小值为线段AA '的长2=.【详解】解:连接CA '交BC '于点E ,直线l AB ⊥,且ABC ∆与△A BC ''关于直线l 对称,A ∴,B ,A '共线,60ABC A BC ∠=∠''=︒,60CBC ∴∠'=︒,C BA C BC ∴∠''=∠',BA BC '=,'BE CA ∴⊥,CD DA =',C ∴,A '关于直线BC '对称,∴当点D与B重合时,AD CD+的值最小,最小值为线段AA'的长2=,故选B.【点睛】本题考查轴对称-最短问题,等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.19.D【分析】根据作图的过程可以判定AD是△BAC的角平分线;利用角平分线的定义可以推知△CAD=30°,则由直角三角形的性质来求△ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A、根据作图方法可得AD是△BAC的平分线,正确;B、△△C=90°,△B=30°,△△CAB=60°,△AD是△BAC的平分线,△△DAC=△DAB=30°,△△ADC=60°,正确;C、△△B=30°,△DAB=30°,△AD=DB,△点D在AB的中垂线上,正确;D、△△CAD=30°,△CD=12AD,△AD=DB,△CD=12DB,△CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,△S△ACD:S△ACB=1:3,△S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.20.C【分析】根据等腰直角三角形的性质可得△CAD=△B=45°,根据同角的余角相等求出△ADF=△BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出△正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出△正确;再求出AE=CF,判断出△正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出△错误.【详解】△△B=45°,AB=AC,△△ABC是等腰直角三角形,△点D为BC中点,△AD=CD=BD,AD△BC,△CAD=45°,△△CAD=△B,△△MDN是直角,△△ADF+△ADE=90°,△△BDE+△ADE=△ADB=90°,△△ADF=△BDE,在△BDE和△ADF中,CAD BAD BDADF BDE∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDE△△ADF(ASA),故△正确;△DE=DF、BE=AF,又△△MDN是直角,△△DEF是等腰直角三角形,故△正确;△AE=AB-BE,CF=AC-AF,△AE=CF,故△正确;△BE+CF=AF+AE>EF,△BE+CF>EF,故△错误;综上所述,正确的结论有△△△;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质、三角形三边的关系;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.21.3 4【分析】根据一平角等于180°解答即可.【详解】△135÷180=34,△135等于34平角.故答案为3 4 .【点睛】本题考查了平角的定义,熟练掌握一平角等于180°是解答本题的关键. 22.100°【分析】根据角平分线定义和平行线的性质即可求出△D的度数.【详解】解:△CB平分△ABD,△ABC=40°,△△ABD=2△ABC=80°,△AB△CD,△△ABD+△D=180°,△△D=180°﹣80°=100°,则△D的度数为100°.故答案为:100°.【点睛】本题主要考查了角平分线的定义,平行线的性质,熟练掌握角平分线的定义,平行线的性质是解题的关键.23.64°【详解】△△α=26°,△△α的余角=90°-26°=64°.故答案为:64°【点睛】本题考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.24.105°【分析】直接利用方向角结合互补的性质得出答案.【详解】解:如图所示:由题意可得,△1=32°,△2=43°,则△AOB=180°-△1-△2=105°.故答案为:105°.【点睛】此题主要考查了方向角,正确把握方向角的定义是解题关键.25.135°【详解】本题主要考查了三角板的知识及平角的定义根据三角板的知识可知△DEC的度数,再根据平角的定义即可求得结果.由题意得△DEC=45°,则△AED=180°-△DEC=135°.思路拓展:解答本题的关键是掌握好三角板的知识及平角的定义.26.明【分析】这种展开图是属于“1,4,1”的类型,其中,上面的1和下面的1是相对的2个面.【详解】由正方体的展开图特点可得:“建”和“明”相对;“设”和“丽”相对;“美”和“三”相对;故答案为:明.【点睛】此题考查正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.27.F6【分析】(1)根据展开图,可得几何体,、、A B C 是邻面,D F E 、、是邻面,根据A 面在底面,F 会在上面,可得答案;(2)由体积计算公式解答.【详解】解:(1)如图所示,A 与F 是对面,所以如果A 面在长方体的底部,那么 F 面会在上面;故答案是:F ;(2)这个长方体的体积是:1236⨯⨯=(米3).故答案是:6【点睛】本题考查了几何体的展开图,利用了几何体展开图组成几何体时面与面之间的关系.28.45︒##45度【分析】设α∠为x ,根据互为补角的两个角的和等于180︒表示出这个角的补角,然后列出方程求解即可.【详解】解:设α∠为x ,则α∠的补角为180x ︒-,根据题意得1803x x ︒-=,解得45x =︒,故答案为:45︒.【点睛】本题考查了互为补角的定义,根据题意表示出这个角的补角,然后列出方程是解题的关键.29.1cm 或9cm##9cm 或1cm【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB =10cm ,较短的木条为BC =8cm ,△M 、N 分别为AB 、BC 的中点,△BM =5cm ,BN =4cm ,△如图1,BC 不在AB 上时,MN =BM +BN =5+4=9(cm),△如图2,BC 在AB 上时,MN =BM −BN =5−4=1(cm),综上所述,两根木条的中点间的距离是1cm 或9cm ,故答案为:1cm 或9cm .如图,【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.30.140【分析】利用角的和差关系先求出50COB ∠=︒,,再利用角的和差关系求出AOB ∠的度数.【详解】解:△4090COD AOC BOD ∠∠∠=︒==︒,,△ 50COB BOD COD ∠∠∠=-=︒,△ 140AOB AOC COB ∠∠∠=+=︒.故答案为:140.【点睛】本题主要考查了角的和差,关键是熟练掌握角的运算中的和差关系.31.8【分析】先根据这个棱柱有10个面,求出这个棱柱是8棱柱,有8条侧棱,再根据所有侧棱的和为64cm ,即可得出答案.【详解】解:△这个棱柱有10个面,△这个棱柱是8棱柱,有8条侧棱,△所有侧棱的和为64cm ,△每条侧棱长为64÷8=8(cm );故答案为:8【点睛】本题主要利用了棱柱面的个数比侧棱的条数多2的关系求解,是一道基础题. 32.93°15'【分析】利用平角的定义计算即可.【详解】△从O 点出发向北偏西32°17'方向走到A 点,小明从O 点出发向南偏西54°28'方向走到B 点,△∠AOB =180°-54°28'-32°17'=93°15'.【点睛】本题考查了方位角,平角,角的和与差,熟练掌握方位角和平角的定义是解题的关键.33.和.【分析】本题考查了正方体的展开图,一般从相对面入手进行分析与解答;【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“谐”是相对面,“社”与“和”是相对面,“会”与“构”是相对面,由此可知与“社”相对的面上的字是“和”.【点睛】本题主要考查学生对正方体展开图形的理解和掌握,解答本题的关键是根据相对的面相隔一个面得到相对的两个面.34.1.5【详解】试题解析:△5400÷60=90,90÷60=1.5,△5400″=1.5°.35.北偏东80°【分析】先根据角的和差得到△AOC 的度数,根据△AOC =△AOB 得到△AOB 的度数,再根据角的和差得到OB 的方向.【详解】解:△OA 的方向是北偏东20°,OC 的方向是北偏西40°,△△AOC =20°+40°=60°,△△AOC =△AOB ,△△AOB =60°,20°+60°=80°,故OB 的方向是北偏东80°.故答案为:北偏东80°.【点睛】考查了方位角,方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.利用角的和差得出OB 与正北方的夹角是解题关键.36. AOC ∠ COB ∠ 3∠和4∠ DOF ∠ 1∠和2∠ EOA ∠【分析】由角平分线的定义,补角、余角的定义,分别进行计算,即可得到答案.【详解】解:根据题意,(1)△12∠=∠△射线OD 是AOC ∠的角平分线;(2)△180AOC BOC ∠+∠=︒,△AOC ∠的补角是COB ∠;(3)△OF 平分AOB ∠,180AOB ∠=︒,△90AOF BOF ∠=∠=︒,△390AOC ∠+∠=︒,△3=4∠∠,△490AOC ∠+∠=︒;△AOC ∠的余角是3∠和4∠;(4)△12∠=∠,190DOF ∠+∠=︒,△290DOF ∠+∠=︒,△DOF ∠是2∠的余角;(5)△1180DOB ∠+∠=︒,12∠=∠△2180DOB ∠+∠=︒,△DOB ∠的补角是1∠和2∠;(6)△4180AOE ∠+∠=︒,4COF ∠=∠,△180COF EOA ∠+∠=︒,△EOA ∠是COF ∠的补角.故答案为:AOC ∠;COB ∠;3∠和4∠;DOF ∠;1∠和2∠;EOA ∠.【点睛】本题考查了角平分线的定义,补角、余角的定义,解题的关键是熟练掌握几何图形中角的运算.37.7.5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,△点C 在AB 上,且AC=13BC , △AC=14AB=3cm ,△BC=9cm ,又M 为BC 的中点, △CM=12BC=4.5cm ,△AM=AC+CM=7.5cm .故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.38.3【分析】△根据点E 是点D 关于AB 的对称点可知BD BE ,进而可得1180603DOB BOE COD ︒︒∠=∠=∠=⨯=; △根据一条弧所对的圆周角等于圆心角的一半即可得结论;△根据等弧对等角,可知只有当M 和A 重合时,60,30MDE CED ︒︒∠=∠=,DM CE ⊥; △作点C 关于AB 的对称点F ,连接CF ,DF ,此时CM DM +的值最短,等于DF 的长,然后证明DF 是O 的直径即可得到结论.【详解】解:AC CD DB ==,点E 是点D 关于AB 的对称点,BD BE ∴=, 1180603DOB BOE COD ︒︒∴∠=∠=∠=⨯=,△正确;1116030222CED COD DOB ︒︒∠=∠=⨯==∠,△△正确; BE 的度数是60°,AE ∴的度数是120°,△只有当M 和A 重合时,60,︒∠=MDE ,30︒∠=CED△只有M 和A 重合时,DM CE ⊥,△错误;作C 关于AB 的对称点F ,连接CF ,交AB 于点N ,连接DF 交AB 于点M ,此时CM DM +的值最短,等于DF 的长.连接,CD AC CD DB AF ===,并且弧的度数都是60°,1112060,6030,22︒︒︒︒∴∠=⨯=∠=⨯=D CFD 180603090,︒︒︒︒∴∠=--=FCDDF ∴是O 的直径,即10DF AB ==,△当点M 与点O 重合时,CM DM +的值最小,最小值是10,△△正确.故答案为:3.【点睛】本题考查了圆的综合知识,涉及圆周角、圆心角、弧、弦的关系、最短距离的确定等,掌握圆的基本性质并灵活运用是解题关键.39.△△△【分析】因为12BAE DAC ∠=∠,且90ABC ∠=︒,所以需要构造2倍的BAC ∠,故延长EB 至G ,使BE BG =,从而得到GAE CAD ∠=∠,进一步证明GAC EAD ∠=∠,且AE AG =,接着证明GAC EAD ≌,则ADE ACG ∠=∠,DE CG =,所以△是正确的,也可以通过线段的等量代换运算推导出△是正确的,设BAE x ∠=,则2DAC x ∠=,因为//CD AB ,所以90BAC ACD x ∠=∠=︒-,接着用x 表示出EAC ∠,再计算出=90DAE ∠︒,故△是正确的,当CAE BAE ∠=∠时,可以推导出AC DE ⊥,否则AC 不垂直于DE ,故△是错误的.【详解】解:如图,延长EB 至G ,使BE BG =,设AC 与DE 交于点M ,90ABC ∠=︒,AB GE ∴⊥,AB ∴垂直平分GE ,AG AE ∴=,12GAB BAE DAC ∠=∠=∠, 12BAE GAE ∠=∠, GAE CAD ∴∠=∠,GAE EAC CAD EAC ∴∠+∠=∠+∠,GAC EAD ∴∠=∠,在GAC 与EAD 中,AG AE GAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,GAC EAD ∴≌(SAS ),G AED ∴∠=∠,ACB ADE ∠=∠,故△是正确的;AG AE =,G AEG AED ∴∠=∠=∠,AE ∴平分BED ∠,当BAE EAC ∠=∠时,90AME ABE ∠=∠=︒,则AC DE ⊥,当BAE EAC ∠≠∠时,AME ABE ∠≠∠,则无法说明AC DE ⊥,故△是不正确的; 设BAE x ∠=,则2CAD x ∠=,1802902x ACD ADC x ︒-∴∠=∠==︒-, //AB CD ,90BAC ACD x ∴∠=∠=︒-,90902CAE BAC EAB x x x ∴∠=∠-∠=︒--=︒-,902290DAE CAE DAC x x ∴∠=∠+∠=︒-+=︒,AE AD ∴⊥,故△是正确的;GAC EAD ≌,CG DE ∴=,2CG CE GE CE BE =+=+,2DE CE BE ∴=+,DE BE BE CE ∴-=+,2DE CE BE ∴=+,故△是正确的.故答案为:△△△.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义,角度的计算,构造两倍的BAE ∠,是本题解题的关键.40.4【分析】利用角平分线定理确定当BF△AC 时,PB+PE 的值最小,再利用三角形面积公式,即可求得.【详解】如图,△AB = AC = 8,AD 平分CAB ∠△'''P E P F =△当BF△AC 时,PB+PE 的值最小=BF1162ABC S AC BF ∆== △BF=4 △PB+PE 的最小值为4.【点睛】本题考查了轴对称-最短路径问题,也可以用角平分线定理考虑,找到PE+PB 最小值的情况并画出图形,是解题的关键.41.2.5cm .【分析】结合图形和题意,利用线段的和差知CD =AD +AB +BC ,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF =DF−DE ,即可求得EF 的长度.【详解】△4AB =cm ,BC =14AB , △BC=1cm ,△CD =AD +AB +BC =3+4+1=8cm ;△E 是AD 中点,F 是CD 的中点,△DF =12CD =8×12=4cm ,DE =12AD =12×3=1.5cm .△EF =DF−DE =4−1.5=2.5cm .【点睛】本题主要考查了两点间的距离和中点的定义,解题的关键是运用数形结合思想. 42.(1)直三棱柱(2)见解析(3)这个几何体的侧面积为120cm 2【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为直三棱柱;(2)画出三个长方形,两个三角形;(3)侧面积为长方形,计算出3个长方形的面积求和即可.【详解】(1)解:由主视图和左视图都是长方形,且俯视图是三角形,故该立体图形是直三棱柱;(2)解:展开图如图所示:;(3)解:这个几何体的侧面积23104120cm ⨯⨯=.【点睛】本题主要考查了由三视图判断几何体、几何体的展开图、棱柱的侧面积等知识点,根据题意得到该几何体是直三棱柱是解答本题的关键.43.(1) '60A ON ︒∠=;(2)15秒或33秒;(3)30MOB AOC ︒∠-∠=或30MOB AOC ︒∠+∠=【分析】(1)如图△中,延长CO 到C′.利用翻折不变性求出△A′O′C′即可解决问题; (2)设t 秒时,直线OA 恰好平分锐角△NOC .构建方程即可解决问题;(3)分两种情形分别求解即可解决问题,△当OB ,OA 在OC 的两旁时,△当OB ,OA 在OC 的同侧时,求出MOB ∠与AOC ∠之间的数量关系即可.【详解】解:(1)如图△中,延长CO 到C′,△三角尺沿直线OC 翻折至△A′B′O ,△△A′OC′=△AOC′=△CON=60°,△△A′ON=180°-60°-60°=60°;(2)设t 秒时,直线OA 恰好平分锐角△NOC ,由题意10t=150或10t=330,解得t=15或33s ,则第15或33秒时,直线OA 恰好平分锐角△NOC ;(3)△当OB ,OA 在OC 的两旁时,△△AOB=90°,△120°-△MOB+△AOC=90°,△△MOB-△AOC=30°;△当OB ,OA 在OC 的同侧时,△MOB+△AOC=120°-90°=30°.综上,30MOB AOC ︒∠-∠=或30MOB AOC ︒∠+∠=.【点睛】本题考查翻折变换,旋转变换,三角形的内角和定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.44.(1)3; (2)203或20; (3)12NP MP AB -=,理由见解析. 【分析】(1)由中点的含义先求解7AM MP ==,证明12PN BN BP ==,再求解6PB AB AB =-=,从而可得答案;(2)△当点P 在线段AB 上,2MP NP =, △当点P 在线段AB 的延长线上,2MP NP =,再建立方程求解即可;(3)先证明12MP AP t ==,()1102NP AB AP t =+=+,可得()1010NP MP t t -=+-=,从而可得结论.【详解】(1)解:△M 为AP 的中点,N 为BP 的中点,7MP =,△7AM MP ==,12PN BN BP ==, △14AP =,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图是一正方体展开图,则有、志、者三面的对面分别是()A.事竟成B.事成竟C.成竟事D.竟成事2.下列四个图中,每个都是由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.3.如图,下列说法正确的是()A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.线段OM与线段ON是同一条线段D.射线NO与射线MO是同一条射线4.如图是某同学在数学实践课上设计的正方体纸盒的展开图,每个面上都有一个汉字,其中与“明”字相对的面上的字是()A.诚B.信C.友D.善5.图是一个正方体的表面展开图,将它折成正方体后,“法”字在上面,那么在下面的一定是()A .明B .诚C .信D .制 6.如图,在直线l 上的点是( )A .点AB .点BC .点CD .点D 7.如图,C 为线段AB 上一点,点D 为AC 的中点,且2AD =,10AB =.若点E 在直线AB 上,且1BE =,则DE 的长为( )A .7B .10C .7或9D .10或11 8.已知3725α∠=︒',则α∠的补角是( )A .14235︒'B .15235︒'C .14275︒'D .15275︒' 9.能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( ) A .垂线段最短B .两点确定一条直线C .两点之间线段最短D .同角的补角相等10.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .90°B .75°C .65°D .60° 11.用度、分、秒表示21.24为( )A .211424'''B .212024'''C .21144'''D .2114' 12.在下面的四个几何体中,它们各自的主视图、左视图与俯视图都一样的是( )A .正方体B .正四棱台C .有正方形孔的正方体D .底面是长方形的四棱锥 13.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A ,B ,C ,D 中的( )位置拼接正方形.A .AB .BC .CD .D14.下列立体图形中,俯视图与主视图不同的是( )A .B .C .D .15.下列图形中,不可以作为一个正方体的表面展开图的是A .B .C .D . 16.如图,将ABC 绕点C 顺时针旋转得到DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列四个结论:∠AC CD =;∠A BEC ∠=∠;∠AB EB ⊥;∠CD 平分ADE ∠;其中一定正确的是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠17.下列说法中,正确的是( )∠射线AB 和射线BA 是同一条射线;∠等角的余角相等;∠若AB BC =,则点B 为线段AC 的中点;∠点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点,若5MN =,则线段10AB =.A .∠∠B .∠∠C .∠∠D .∠∠ 18.已知射线OC 是∠AOB 的平分线,若∠AOC=30°,则∠AOB 的度数为( ) A .15 B .30 C .45 D .60 19.用两把常用三角板不可能拼成的角度为( )A .45B .105C .125D .150 20.如图,在∠ABC 中,BF 平分∠ABC ,过A 点作AF∠BF ,垂足为F 并延长交BC 于点G ,D 为AB 中点,连接DF 延长交AC 于点E .若AB=12,BC=20,则线段EF 的长为( )A .2B .3C .4D .5二、填空题21.已知2437α'∠=︒,那么α∠的补角等于______.22.已知∠α=60°,则∠α的余角等于____度.23.在空间搭4个大小一样的等边三角形,至少要_______根游戏棒.24.已知线段14cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是___________cm .25.下午12:20 分,钟表上时针与分针所夹角的度数为_____度(所求夹角小于180︒).26.和都是 的余角,则______.27.图,∠AOC =∠BOD =90°,OB 在∠AOC 的内部,OC 在∠BOD 的内部,OE 是∠AOB 的一条三等分线.请从A ,B 两题中任选一题作答.A.当∠BOC=30°时,∠EOD的度数为__________.B.当∠BOC=α°时,∠EOD的度数为__________(用含α的代数式表示).28.将一副三角尺如图所示叠放在一起,则∠AEC=______度.29.对几何体分类时,首先确定标准,即:(1)从形状方面,按柱体、________、球划分;(2)从面的方面,按组成的面有无__________划分;(3)从顶点方面,按有无________划分.30.几个同学在公园玩,发现一个漂亮的“古董”. 甲:它有10个面;乙:它有24条棱;丙:它有8个面是正方形,2个面是多边形;丁:如果把它的侧面展开,是一个长方形,这个长方形有八种颜色,挺好看. 通过这四个同学的对话,从几何体的名称来看,这个“古董“的形状是_____________.31.如图,一艘船由A港沿北偏东65︒方向航行30km至B港,然后再沿北偏西40︒方向航行至C港,C港在A港北偏东20︒方向,则A,C两港之间的距离为______km.32.如图是一个正方体的展开图,将它折叠成正方体后,字母B的对面是________.(用图中字母表示)33.甲、乙两艘客轮同时离开港口,航行的速度都是40m /min ,甲客轮沿北偏东30°的方向航行15min 到达点A ,乙客轮沿南偏东60°的方向航行20min 到达点B .则A 、B 两点的直线距离为______m .34.平行四边形ABCD 中,AE 平分∠BAD 交BC 与点E ,且将BC 分成4cm 和6cm 两部分,则平行四边形ABCD 的周长为_____________.35.如图,AB 是∠O 的直径,点C 、D 是AB 两侧∠O 上的点,若∠CAB =34°,则∠ADC =_____°.36.点C 在直线AB 上,若AB =3,BC =2,则AC 为_____.37.由O 点引出的7条射线如图,若OA OE ⊥,OC OG ⊥,BOC FOG ∠>∠,则图中以O 为顶角的锐角共有________个.38.一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个正方体,把大正方体中相对的两面打通,结果如图,则图中剩下的小正方有______个.39.如图,∠α=120°,∠β=90°,则∠γ的度数是________ °.40.Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为______.三、解答题41.如图,AD为△ABC的角平分线,点E在AC上,点F在BC上,连接BE交AD于点G,连接EF,∠1=∠2.(1)求证:∠BEF与∠AGB互补;(2)若∠C=75°,EF∠BC,求∠ABC的度数.42.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.求出∠D0E及其补角的度数.43.小明用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的∠和∠.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的∠重新粘贴到∠上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,请你帮助小明在∠上补全.(作图要求:先用尺和铅笔画图,再用黑色的签字笔描一遍)(3)小明说:已知这个长方形纸盒高为3cm ,底面是一个正方形,并且这个长方形纸盒所有棱长的和是92cm ,请计算,这个长方体纸盒的体积是___________cm 3.44.如图1,已知AB //CD ,点G 在AB 上,点H 在EF 上,连接CG 、CH ,CG CH ⊥,90CHE CGA ∠+∠=︒.(1)求证:AB //EF ;(2)如图2,若90BAE ∠=︒,延长HC 交BA 的延长线于点M ,请直接写出图2中所有与AGC ∠互余的角.45.如图,100AOB ∠=︒,射线OC 以2/s ︒的速度从OA 位置出发,射线OD 以10/s ︒的速度从OB 位置出发,设两条射线同时绕点O 逆时针旋转s t .(1)当10t =时,求COD ∠的度数;(2)若015t ≤≤.∠当三条射线OA 、OC 、OD 构成的三个度数大于0︒的角中,有两个角相等,求此时t 的值;∠在射线OD ,OC 转动过程中,射线OE 始终在BOD ∠内部,且OF 平分AOC ∠,当110EOF ∠=︒,求BOE AOD∠∠的值. 46.如图:点A ,B ,E 在同一条直线上,AD AC ⊥,且BD AD AE EC ⊥⊥,,垂足分别为A ,D ,E .(1)求证:ABD ∽CAE ;(2)若1356AB BD AC ===,,,求CE 的值.47.如图,AF BC ∥.72FAC ∠=︒,CD 平分ACB ∠,4CDE BCD ∠=∠.(1)求CDE ∠的度数.(2)求证:AED B ∠=∠.48.(1)如图1,已知点C ,D 在线段AB 上,P 是BD 的中点,线段AB ,CP 的长度m ,n 满足227(15)0m n -+-=,AD :BC =5:7,求线段CD 的长度;(2)已知∠AOB =140°,将射线OB 绕着点O 逆时针旋转一定的角度α(0°<α<140°)得到射线OD ,作∠BOD 的平分线OP ,将射线OP 绕着点O 逆时针旋转60°得到射线OC .∠AOD :∠BOC =1:t .∠如图2,若t <1,请直接用含有t 的式子表示出∠AOD 的度数;∠若∠COD =12∠AOC ,求t 的值. 49.问题提出(1)如图1,点A ,B 在直线l 的同侧,在直线l 上作一点P ,使得AP BP +的值最小.问题探究(2)如图2,正方形ABCD 的边长为6,点M 在DC 上,且2DM =,N 是AC 上的一动点,则DN MN +的最小值是_________.问题解决(3)现在各大景区都在流行“真人CS ”娱乐项目,其中有一个“快速抢点”游戏,游戏规则如图3,在用绳子围成的一个边长为12m 的正方形ABCD 场地中,游戏者从AB 边上的点E 处出发,分别先后赶往边,,BC CD DA 上插小旗子,最后回到点E .求游戏者所跑的最少路程.50.如图,已知,在Rt ABC 中,斜边10AB =,4sin 5A = ,点P 为边AB 上一动点(不与A ,B 重合),PQ 平分CPB ∠交边BC 于点Q ,QM AB ⊥于M QN CP ⊥,于N .(1)当AP=CP 时,求QP ;(2)若CP AB ⊥ ,求CQ ;(3)探究:AP 为何值时,四边形PMQN 与BPQ 的面积相等?参考答案:1.A【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“有”与面“事”相对,面“志”与面“竟”相对,“者”与面“成”相对.故选A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.C【详解】试题解析:A、折叠后,没有上下底面,故不能围成正方体;B、折叠后,缺少一个底面,故也不能围成正方体;C、折叠后能围成正方体;D、折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故选C.考点:展开图折叠成几何体.3.A【分析】根据直线、射线、线段的概念求解即可【详解】解:同一条直线可由这条直线上任意两点的大写字母表示,选项A正确;同一条射线必须满足端点相同,延伸方向相同,选项B,D错误;同一条线段的两个端点相同,选项C错误.故选:A.【点睛】本题考查的知识点是线段、射线以及直线的概念,熟记概念定义是解题的关键. 4.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,在正方体盒子上与“明”字相对的面上的字是“信”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.C【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∠与“法”字相对的面上的汉字是“信”.故应选:C .【点睛】本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键6.B【分析】根据图像点与线的关系可直接得出答案.【详解】解:由图像可知点A 、C 、D 在直线l 外,点B 在直线l 上故选B .【点睛】本题考查了点线关系,比较简单.7.C【分析】由题意根据线段中点的性质,可得AD 、DC 的长,进而根据线段的和差,可得DE 的长.【详解】解:∠点D 为AC 的中点,且2AD =,∠2AD DC ==,∠10AB =,∠6BC AB AD DC =--=,∠1BE =,当E 在B 左侧,2617DE DC BC BE =+-=+-=,当E 在B 右侧,2619DE DC BC BE =++=++=.∠DE 的长为7或9.故选:C.【点睛】本题考查两点间的距离,解题的关键是利用线段的和差以及线段中点的性质. 8.A【分析】根据互补两角之和180°计算即可.【详解】∠3725α∠=︒'∠α∠的补角=1803725︒-︒'=14235︒',故选A .【点睛】本题考查补角定义和角度计算,需要注意角度度分秒计算时进制时60. 9.B【分析】根据两点确定一条直线解答即可.【详解】解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,故选B .【点睛】本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键. 10.B【分析】根据平行线的性质可得∠FDC =∠F =30°,然后根据三角形外角的性质可得结果.【详解】解:如图,∠EF ∠BC ,∠∠FDC =∠F =30°,∠∠1=∠FDC +∠C =30°+45°=75°,故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.11.A【分析】根据度、分、秒之间的进制,先将度中的小数部分转化为分,再将分的小数部分转化为秒即得.【详解】解:21.24210.2460︒'︒=+⨯2114.4︒'=+21140.460'''=︒++⨯211424'''=︒++211424'''=︒.故选:A .【点评】本题考查了度、分、秒运算,熟练掌握度、分、秒之间的六十进制是解题关键,六十进制与十进制易混淆.12.A【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到三个图形一致的几何体即可.【详解】解:A、正方体的三视图是全等的正方形,符合题意;B、正四棱台的三视图分别为梯形,梯形,两个正方形的组合图形,不符合题意;C、有正方孔的正方体的左视图与主视图都是正方形里面有两条竖直的虚线,俯视图是两个正方形的组合图形,不符合题意;D、四棱锥的三视图分别是三角形,三角形,四边形及中心,不符合题意;故选A.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意看不到的棱用虚线表示.13.A【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【详解】解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.【点睛】此题主要考查了应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.14.C【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】A .俯视图与主视图都是正方形,故该选项不合题意;B .俯视图与主视图都是矩形,故该选项不合题意;C .俯视图是圆,左视图是三角形;故该选项符合题意;D .俯视图与主视图都是圆,故该选项不合题意;故选C .【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.15.B【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A .可以作为一个正方体的展开图,B .不可以作为一个正方体的展开图,C .可以作为一个正方体的展开图,D .可以作为一个正方体的展开图,故选B .【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.16.A【分析】根据旋转的性质得到AC CD =,BC CE =,A EDC ∠=∠,故∠正确;得到ACD BCE ∠=∠,CBE BEC ∠=∠,根据三角形的内角和得到1802ACD A ADC ︒-∠∠=∠=,1802BCE CBE BEC ︒-∠∠=∠=,求得A BEC ∠=∠,故∠正确;由于A ABC ∠+∠不一定等于90︒,于是得到ABC CBE ∠+∠不一定等于90︒,故∠错误,可求得ADC EDC ∠=∠,故可判定∠.【详解】解:∠ABC 绕点C 顺时针旋转得到DEC ,∠AC CD =,BC CE =,A EDC ∠=∠,ACB ECD ∠=∠,故①正确;∴A ADC EDC ∠=∠=∠,ACD DCB DCB BCE ∠+∠=∠+∠,∠CD 平分ADE ∠,ACD BCE ∠=∠,故∠正确;∠BC CE =,∠CBE BEC ∠=∠,∠根据三角形内角和定理可知1802ACDA ADC︒-∠∠=∠=,1802BCECBE BEC ︒-∠∠=∠=,∠A BEC∠=∠,故∠正确;∠A ABC∠+∠不一定等于90︒,ABC CBE∴∠+∠不一定等于90︒,故∠错误.综上,正确的由①②④,故选:A.【点睛】本题考查了旋转的性质,等腰三角形的性质、、三角形的内角和定理、角平分线的定义,正确的识别图形是解题的关键.17.C【分析】根据射线及线段的定义及特点可判断各项,从而得出答案.【详解】∠射线AB和射线BA不是同一条射线,错误;∠同角的余角相等,正确;∠若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;∠点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选:C.【点睛】本题考查射线及线段的知识,注意基本概念的掌握是解题的关键.18.D【分析】根据角平分线的定义即可求解.【详解】解:∠射线OC是∠AOB的平分线,∠AOC=30°,∠∠AOB=60°.故答案选:D.【点睛】此题考查了角的计算,以及角平分线的定义,关键是熟练掌握角平分线的定义.19.C【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∠三角板的度数为30°,60°,90°;45°,45°,90°∠可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.20.CAB,由角平分线的定义可证得【分析】由直角三角形的性质可求得DF=BD=12DE∠BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【详解】解:∠AF∠BF,D为AB的中点,∠DF=DB=1AB=6,2∠∠DBF=∠DFB,∠BF平分∠ABC,∠∠DBF=∠CBF,∠∠DFB=∠CBF,∠DE∠BC,∠DE为∠ABC的中位线,∠DE=1BC=10,2∠EF=DE−DF=10−6=4,故选C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得∠DBF 为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为∠ABC的中位线,从而计算出DE,继而求出EF.21.155°23′【分析】根据补角的概念,直接作答即可.【详解】解:根据题意,∠α=24°37′,则∠α的补角=180°-24°37′=155°23′.故答案为:155°23′.【点睛】此题考查补角的问题.解题的关键是掌握补角的定义,涉及角度问题时,需要特别注意题干中是否带有单位.22.30【详解】∠互余两角的和等于90°,∠α的余角为:90°-60°=30°.故答案为:3023.6【分析】根据题意可知在同一平面内用游戏棒搭4个大小一样的等边三角形(两个菱形),至少要9根游戏棒,在空间搭4个大小一样的等边三角形,如三棱锥,至少要6根游戏棒.【详解】由题可知:因为4个等边三角形需12根游戏棒,但可共用3根,所以至少要9根游戏棒;因为空间可以共棱,所以至少要6根游戏棒.【点睛】此题涉及到规律型:数字的变化类.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.24.7【分析】本题需要分两种情况讨论,∠当点C在线段AB上时,∠当点C在线段AB的延长线上时,根据线段中点的定义,计算即可.【详解】如图,当点C在线段AB上时,则14410AC=-=∠M是AC的中点,N是BC的中点,∠1152722MN MC CN AC BC=+=+=+=;如图,当点C在线段AB的延长线上时,则14418AC=+=,∠M是AC的中点,N是BC的中点,∠1192722MN MC CN AC BC=-=-=-=,综上所述,段MN的长度是7cm,故答案为:7【点睛】本题考查了两点间的距离,关键是利用了线段的中点的定义,分情况讨论.25.110【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:∠时针在钟面上每分钟转0.5°,分针每分钟转6°,∠钟表上12时20分钟时,时针与分针的夹角可以看成时针转过12时0.5°×20=10°,分针在数字4上.∠钟表12个数字,每相邻两个数字之间的夹角为30°,∠12时20分钟时分针与时针的夹角4×30°-10°=110°.故答案为:110.【点睛】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.26.=【详解】解:∠α=90°-∠AOB ,∠β=90°-∠AOB ,故∠α=∠β.故答案为=. 27. 110°或130° 1203α⎛⎫-︒ ⎪⎝⎭或21503α⎛⎫-︒ ⎪⎝⎭ 【分析】A 、根据角的和差得到∠AOB =90°-30°=60°,根据OE 是∠AOB 的一条三等分线,分类讨论,当∠AOE =13∠AOB =20°,∠当∠BOE ′=13∠AOB =20°,根据角的和差即可得到结论;B 、根据角的和差得到∠AOB ,根据OE 是∠AOB 的一条三等分线,分类讨论,当∠AOE =13∠AOB ,∠当∠BOE ′=13∠AOB ,根据角的和差即可得到结论. 【详解】解:A 、如图,∠∠AOC =90°,∠BOC =30°,∠∠AOB =90°-30°=60°,∠OE 是∠AOB 的一条三等分线,∠∠当∠AOE =13∠AOB =20°, ∠∠BOE =40°,∠∠BOD=90°,∠∠EOD=∠BOD+∠BOE=130°,∠当∠BOE′=13∠AOB=20°,∠∠DOE′=90°+20°=110°,综上所述,∠EOD的度数为130°或110°,故答案为:130°或110°;B、∠∠AOC=90°,∠BOC=α°,∠∠AOB=90°-α°,∠OE是∠AOB的一条三等分线,∠∠当∠AOE=13∠AOB=30°-13α°,∠∠BOE=90°-α-(30-13α)°=60°-23α°,∠∠BOD=90°,∠∠EOD=∠BOD+∠BOE=150°-23α°,∠当∠BOE′=13∠AOB=30°-13α°,∠∠DOE′=90°+30°-13α°=120°-13α°,综上所述,∠EOD的度数为150°-23α°或120°-13α°,故答案为:150°-23α°或120°-13α°;【点睛】本题考查了余角和补角的定义,角的倍分,熟练掌握余角和补角的性质是解题的关键.28.75【分析】由∠BAC=∠ACD=90°,可得AB∠CD,所以∠BAE=∠D=30°,利用三角形的外角关系即可求出∠AEC的度数.【详解】解:∠∠BAC=∠ACD=90°,∠AB∠CD,∠∠BAE=∠D=30°,∠∠AEC=∠B+∠BAE=75°,故答案为:75.【点睛】此题主要三角形的外角的性质,平行线的性质与判定,三角板中角度的计算,判断出AB ∠CD 是解本题的关键.29. 锥体 曲的面 顶点【分析】根据不同的分类标准的要求即可求解.【详解】解:(1)从形状方面,按柱体、__锥体______、球划分;(2)从面的方面,按组成的面有无____曲的面______划分;(3)从顶点方面,按有无____顶点____划分.故答案为(1)锥体,(2)曲的面,(3)顶点.【点睛】本题考查立体图形的不同分类方法,掌握各种分类标准及要求是解题关键. 30.八棱柱【分析】棱柱有两个面互相平行,其余各面都是多边形,并且每相邻两个四边形的公共边都互相平行;据此,再结合“这个‘古董’有8个面是正方形,2个面是多边形”,即可确定答案.【详解】根据甲:它有10个面;乙:它有24条棱;丙:它有8个面是正方形,2个面是多边形;丁:如果把它的侧面展开,是一个长方形.可知它符合棱柱的特征,可知是一个八棱柱.故答案为八棱柱.【点睛】本题考查了认识立体图形,解题的关键是熟练掌握棱柱的特征.31.【分析】根据题意得,6520CAB ∠=︒-︒,402060ACB ∠=︒+︒=︒,30AB =,过B 作BE AC ⊥于E ,解直角三角形即可得到结论.【详解】解:根据题意得,652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,30AB =, 过B 作BE AC ⊥于E ,90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒,30AB =,AE BE ∴== 在Rt CBE ∆中,60ACB ∠=︒,CE ∴=AC AE CE ∴=+=∴,C两港之间的距离为km,A故答案为:【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.32.D【分析】由平面图形的折叠及立体图形的表面展开图的特点解答即可.【详解】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以字母B的对面是D.故答案为D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.33.1000【分析】先画出草图,根据∠COA=30°,∠EOB=60°,∠EOC=180°,得到∠AOB=90°,根据路程=速度×时间,得到OA=40×15=600,OB=40×20=800,利用勾股定理计算AB即可.【详解】画出草图如下,∠∠COA=30°,∠EOB=60°,∠EOC=180°,∠∠AOB=90°,∠路程=速度×时间,∠OA =40×15=600,OB =40×20=800,∠AB =1000,故答案为:1000.【点睛】本题考查了方位角,勾股定理,正确理解方位角的意义,熟练掌握勾股定理是解题的关键.34.32cm 或28cm【分析】根据角平分线性质,得BAE DAE ∠=∠;根据平行四边形及平行线性质,得BEA DAE ∠=∠,从而得BAE BEA ∠=∠;根据等腰三角形性质,得BA BE =;根据题意,分两种情况分析,通过计算即可得到答案.【详解】根据题意,如图:∠AE 平分∠BAD 交BC 与点E ,∠BAE DAE ∠=∠∠平行四边形ABCD∠//AD BC∠BEA DAE ∠=∠∠BAE BEA ∠=∠∠BA BE =AE 将BC 分成4cm 和6cm 两部分,当6cm BE =时,得6cm BA BE ==∠10cm BC BE EC =+=∠平行四边形ABCD 的周长为2232cm BA BC +=当4cm BE =时,得4cm BA BE ==∠平行四边形ABCD 的周长为2228cm BA BC +=故答案为:32cm 或28cm .【点睛】本题考查了角平分线、平行四边形、平行线、等腰三角形的知识;解题的关键是熟练掌握角平分线、平行四边形、等腰三角形的性质,从而完成求解.35.56【分析】先由圆周角定理得∠ACB =90°,求得∠ABC 的度数,然后由圆周角定理,即可求得∠ADC 的度数.【详解】解:∠AB 为∠O 的直径,∠∠ACB =90°,∠∠CAB =34°,∠∠ABC =90°﹣∠CAB =56°,∠∠ADC =∠ABC =56°.故答案为:56.【点睛】本题考查了圆周角定理以及直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.36.1或5【分析】分为两种情况,画出图形,根据线段的和差即可得出答案.【详解】解:当C 在线段AB 上时,AC=AB-BC=3-2=1,当C 在线段AB 的延长线时,AC=AB+BC=3+2=5,即AC=1或5,故答案为:1或5.【点睛】本题考查了线段的和差,能求出符合的所有情况是解此题的关键,注意要进行分类讨论.37.15【分析】分别以OA 、OB 、OC 、OD 、OE 、OF 为一边,数出所有角,找出其中的非锐角,相减即可得答案.【详解】解:以OA 、OB 、OC 、OD 、OE 、OF 为始边,分别有角6个,5个,4个,3个,2个,1个,图中共有角21个,OA OE ⊥,所以以OA 为边的非锐角有3个,分别为,,AOG AOF AOE ,,OC OG ,BOC FOG∠∠COF +∠BOC >90°,∠∠FOB >90°.所以以OB 为边的非锐角有2个,分别为,BOG BOF ,以OC 为边的非锐角有1个,为COG ∠.于是图中共有锐角21-(3+2+1)=15个.故答案为15.【点睛】此题考查了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数,要注意去掉非锐角.38.73【分析】根据题意:我们把相对面打通需要去掉的小正方体分三种情况,按一定的顺序数去掉的小正方体数量,如前后面,上下面,左右面分别去数数,然后用总数125减掉数出来的三部分即可,注意:前面数过的后面的一定去掉,否则会重复的.【详解】解:前后面少(3+2)×5=25(个),上下面少的(去掉与前后面重复的)(5-3)+2×3+1×5=13(个),左右面少的(去掉与前后,上下重复的)(5-3)+(5-1)+(5-2)+(5-2-1)+(5-2)=14(个), 125-(25+13+14)=73(个),答:图中剩下的小正方体有73个.故答案为:73.【点睛】本题考查了正方体的对面上的数字,要注意不能重复和遗漏.39.150.【分析】根据周角的定义,利用360度减去∠α和∠β即可求解.【详解】由题意可得,∠γ=360°-∠α-∠β=360°-120°-90°=150°.故答案是:150.【点睛】本题考查了角度的计算,正确得到图中三个角之间的关系是解决问题的关键.40.16【分析】作点C关于AB的对称点C',过点C'作C'E∠AC,交AB于点D',即可确定C'E 就是CD+DE的最小值,然后运用勾股定理和相似三角形的知识求解即可.【详解】作点C关于AB的对称点C',过点C'作C'E∠AC,交AB于点D',则CD+DE的最小值为C'E的长;∠∠ACB=90°,AC=20,BC=10,,∠∠A=∠C',∠''C E AC CC AB,∠C'E=16;故答案为16;【点睛】本题考查了相似三角形、勾股定理和最短距离问题,其中运用作对称点确定最短距离是解答的关键.41.(1)证明见解析(2)∠ABC=75°【分析】(1)先利用角平分线的定义得到∠DAC=∠1,则∠DAC=∠2,于是可判断。