第2章(1)模拟量输入通道讲解
第2章 模拟量输入通道 ppt课件
314Ω 256
16K
16K
A2
V IN +
外接地
2020/12/27
(b ) 可 变 增 益 放 大 器
19
图 2 -6 前 置 放 大 器
图中RG是外接电阻,专用来调整放大器增益的。因此, 放大器的增益G与这个外
接电阻RG有着密切的关系。增益公式为
G VOUT RS(2R1) (2-2) VIN VIN R2 RG
农定理指出:为了使采样信号y*(t)能完全复 现原信号y(t),采样频率f 至少要为原信号最 高有效频率fmax的2倍,即f 2fmax。
采样定理给出了y*(t)唯一地复现y(t)所必需
的最低采样频率。实际应用中,常取f (5
~ 10)fmax。
2020/12/27
26
2.4.2采样保持器
采样保持器是在两次采样的间隔时间内,一直
此类集成电路芯片有AD612/614等。
2020/12/27
22
2.4 采样保持器
当某一通道进行A/D转换时,由于A/D 转 换需要一定的时间,如果输入信号变化 较快,就会引起较大的转换误差。为了 保证A/D转换的精度,需要应用采样保持 器。
2020/12/27
23
2.4.1 数据采样定理
把连续变化的量变成离散量后再进行处理的微机控制系
2020/12/27
14
Sm
S0 S1 S2
译 码
A
电 平
B
S3 S4
驱
转
C
动
换
IN H
S5
S6
S7
Sm
S8
A
S9 S 10 S 11
译
电
AI通道
为满足A/D转换精度要求,希望在 t 时间内,信号变化
最大幅度应小于A/D转换器的量化误差 E 。对于12位A/D转
换器,转换时间为100μs,基准电压为10.24V,其量化误差为 :
1 1 10.24 E LSB 12 1.25m V 2 2 2
四、前置放大器
前置放大器的任务是将模拟输入小信号放大到转换的量
程范围之内。当多路输入的信号源电平相差较悬殊时,用同
一增益的放大器去放大高电平和低电平的信号,就有可能使 低电平信号测量精度降低,而高电平则有可能超出模/数转
换器的输入范围。可设计可变增益放大器,
由于现在的变送器大都送出标准模拟信号,所以前置 放大器不常用!
路开关,如 CD4051。
(3)按输入信号的连接方式分单端输入和双端差动输入。
河南机电高等专科学校
Henan Mechanical and Electrical Engineering College
第2章 输入输出过程通道
2.常用芯片: CD4051 单端 双向 8路 CD4052 双端 单向 4路 AD7506 单端 单向 16路
第2章 输入输出过程通道
2.量化
定义:就是将采样时刻的信号用一组数来逼近离散模拟信 号的幅值,将其转换成数字信号。通常为整量化。整量化:将 采样时刻的幅值按最小量化单位取整。
3.编码
定义:将整量化后的数值变换为二进制数码形式,即用 数字量表示。 对双极性信息通常有三种表示方法: (1)符号-数值码 (2)偏移二进制码 (3)补码
河南机电高等专科学校
Henan Mechanical and Electrical Engineering College
第2章 输入输出过程通道
模拟量输入输出通道dq
▲量化将使信号产生误差并影响系统的特性。但当 量化单位足够小时,在系统初步分析与设计时可 不予考虑。
36
★ 计算机控制系统的简化结构图
采样
计算机
ZOH
被控对象
检测
37
2.1.2 多路开关
在微型计算机测量及控制系统中,往往需对 多路或多种参数进行采集和控制。一台微型计 算机可供多回路使用,但是,微型计算机在某 一时刻只能接收一个通道的信号,因此必须通 过多路模拟开关进行切换,使各路参数分时进 入微型计算机。
1 计算机控制系统信号变换结构图
E
A
B 采样
C 量化
编码
D 计算机
F 解码 G
保持
H
检测
I 被控对象
2 系统中信号形式的分类
连续信号(或模拟信号) 时间及幅值上均连续
的信号,如图中的 A、I 处的信号
数字信号
时间上离散、幅值上采用二进制编
码的信号,如图中的D、F 处的信号 33
▲采样信号 时间上离散而幅值上连续的信号,如
(0000)
(1000)
-1
-1/8
+1/8
1001
1111
0111
-2
1110
0110
-3
-3/8
+3/8
1011
1101
0101
-4
-4/8
+4/8
1100
1100
0100
-5
-5/8
+5/8
1101
1011
0011
-6
模拟量输入、输出通道
医疗设备
在医疗设备中,模拟量输入/输出通道用于监测患者 的生理参数和实现设备的控制,如监护仪、呼吸机 等。
模拟量输入/输出通道的重要性
80%
提高设备的控制精度
模拟量输入/输出通道能够实时、 准确地反映输入信号的变化,从 而提高设备的控制精度和稳定性 。
模拟量输入通道的参数与性能指标
01
02
03
04
分辨率
分辨率是指模拟量输入通道能 够识别的最小电压或电流值, 通常以位数或比特数表示。高 分辨率的模拟量输入通道能够 提供更精确的测量结果。
线性度
线性度是指模拟量输入通道的 输入与输出之间的线性关系。 理想的线性度应该是100%,但 实际中的线性度可能会受到多 种因素的影响而有所偏差。
根据接口类型,正确连接信号线,避免信号干扰或数据传输不稳定。
接地处理
为了减少电磁干扰和保护设备,应确保良好的接地措施。
接口保护
在接口电路中加入适当的保护元件,如瞬态抑制二极管、滤波电容等, 以防止过压、过流等异常情况对接口造成损坏。
05
模拟量输入/输出通道的调试与校准
调试步骤与注意事项
检查硬件连接
采样速率
精度
采样速率是指模拟量输入通道 每秒钟能够采样的次数,通常 以赫兹(Hz)或千赫兹(kHz) 表示。高采样速率的模拟量输 入通道能够提供更准确的实时 响应。
精度是指模拟量输入通道的实 际输出值与理论输出值之间的 最大偏差。精度越高,表示模 拟量输入通道的误差越小,测 量结果越准确。
03
模拟量输出通道
精度
测控总线与仪器通信技术课后答案第二章
测控总线与仪器通信技术课后答案第二章1、模拟输入通道有哪几种类型?各有何特点?答案:多路模拟输入通道分为集中采集式(简称集中式)和分散采集式(简称分布式)两大类型。
集中式的特点是多路信号共同使用一个S/H和A/D电路,模拟多路切换器MUX对多路信号分时切换、轮流选通到S/H和A/D进行数据采集。
分布式的特点是每一路信号都有一个S/H和A/D,因而也不再需要模拟多路切换器MUX。
每一个S/H和A/D只对本路模拟信号进行数字转换即数据采集,采集的数据按一定顺序或随机地输入计算机。
2、什么情况下需要设置低噪声前置放大器?为什么?答案:没有信号输入时,输出端仍输出一定幅度的波动电压,这就是电路的输出噪声。
把电路输出端测得的噪声有效值除以该电路的增益K,得到该电路的等效输入噪声。
如果电路输入端的信号幅度小到比该电路的等效输入噪声还要低,这个信号就会被噪声所“淹没”,就必须在该电路前面加一级放大器——“前置放大器”。
只要前置放大器的等效输入噪声比其后级电路的等效输入噪声低,加入前置放大器后,整个电路的等效输入噪声就会降低,因而,输入信号就不会再被电路噪声所淹没。
3、图2-1-14(a)所示采集电路结构只适合于什么情况?为什么?答案:采集电路仅由A/D转换器和前面的模拟多路切换器MUX构成,只适合于测量恒定的各点基本相同的信号。
恒定信号不随时间变化,无须设置S/H,各点基本相同的信号无需设置PGA。
4、多路测试系统什么情况下会出现串音干扰?怎样减少和消除?答案:多路测试系统由于模拟开关的断开电阻Roff不是无穷大和多路模拟开关中存在寄生电容的缘故,当某一道开关接通时,其它被关断的各路信号也出现在负载上,对本来是唯一被接通的信号形成干扰,这种干扰称为道间串音干扰,简称串音。
为减小串音干扰,应采取如下措施:①减小Ri,为此模拟多路切换器MUX前级应采用电压跟随器;②MUX选用Ron极小、Roff极大的开关管;③选用寄生电容小的MUX。
第二章过程通道设计方法解读
17
信息与电气工程学院
山东科技大学
计算机控制系统
1. 小功率开关输出电路
+VCC R1 R2 +V O
0
OC门 光耦
0
VI
1 1
2019/1/30
18
信息与电气工程学院
山东科技大学
计算机控制系统
2. 中功率晶体管驱动电路
续流二极管
D 数字量输入 1 74LS06 R限流 b K Vcc +24V
CPU
并 行 接 口
数字脉冲信号 输入调理
5V
10KΩ×4 系统 设置 开关
数 字 量 输 入 的 三 种 形 态
译码电路 定时器/ 计数器
S0 S1 S2 S3
I/O接口逻辑
数字量输入通道结构框图
2019/1/30 7
信息与电气工程学院
山东科技大学
计算机控制系统
三态门缓冲器74LS244
三态门缓冲器74LS244可 用来隔离输入和输出线路, 在两者之间起缓冲、加强 作用。 可用如下指令来完成取数 MOV DX,PROT IN AL,DX
2019/1/30
2
信息与电气工程学院
山东科技大学
计算机控制系统
2.1 数字量过程通道的设计方法
2.2 模拟量输入通道设计方法
2.3 模拟量输出通道设计方法
2.4 小 结
2019/1/30
3
信息与电气工程学院
山东科技大学
计算机控制系统
2.1 数字量过程通道的设计方法
数字量(开关量):用“0”和“1” 两个量进行描述,
如电动机的启动和停止,继电器的吸合与释放,指示灯
的亮和灭等。 数字量过程通道分为数字量输入通道(DI)和数字量 输出通道(DO)。
《模拟量输入通道》课件
模拟信号
1 什么是模拟信号?
模拟信号是连续变化的信号,可以取无限个值。
2 模拟信号的特点和应用场景
模拟信号具有连续性和实时性,常用于声音、光学、气象等领域的信号传输。
数字信号
1 什么是数字信号?
2 数字信号的特点和应用场景
数字信号是离散变化的信号,只能取有 限个值。
数字信号可以进行精确的数值计算和存 储,常用于计算机、通信等领域。
电流型输入通道
适用于测量电流信号,常用于电化学、电 能检测等领域。
光学输入通道
适用于测量光强信号,常用于光纤通信、 光电检测等领域。
模拟量输入通道的应用举例
1 工业自动化
模拟量输入通道在工 业自动化系统中广泛 应用,用于监测和控 制生产过程中的各种 物理量。
2 传感器信号采集
模拟量输入通道可以 采集传感器的模拟信 号,用于分析和处理 传感器数据。
模拟量输入通道的工作原理
1
模拟量输入通道的基本原理源自模拟量输入通道通过模拟信号转
模拟量输入通道的信号转换
2
换器将连续的模拟信号转换为离 散的数字信号。
信号转换过程包括采样、量化和
编码,将模拟信号转换为数字信
号的离散数值。
3
模拟量输入通道的信号处理
数字信号经过滤波、放大和校准 等处理后,用于数据分析、控制 和监测。
模拟量输入通道的分类
按应用领域划分
根据应用领域的不同,模拟量输入通道可分 为工业自动化、仪器仪表等多个分类。
按信号类型划分
模拟量输入通道可以分为电压型、电流型、 电阻型和光学型等多种类型。
常见的模拟量输入通道
电压型输入通道
适用于测量电压信号,广泛应用于电子测 量、电力系统等领域。
第二章模拟量输入输出通道的接口技术
tk r tk 是周期性的重复,即tk r tk 常量,r 1
随机采样:
根据需要选择采样时刻
采样前后波形的变化图
通常,连续函数的频带宽度是有限的,为一孤立的连
续频谱,设其包括的最高频率为fmax ,采样频率为fs。
香农定理:若fs≥2fmax,则可以由采样信号完全恢复出原始 信号。 在实际应用中, fs至少取4fmax 。
IN:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15) OUT:(1、17) 反多路转换开关(一到多的转换): IN: (1、17) OUT:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15)
VREF I out1 I 3 I 2 I1 I 0 2 2 2 2 4 2R
3 2
1
0
由于S3~S0的状态是受b3~b0控制的,并不一定 全是“1”。若它们中有些位为“0”,S3~S0中相应 开关会因和“0”端相连而无电流流过,所以Iout1还 与b3~b0的状态有关。 则 I out1 b3 I3 b2 I 2 b1 I1 b0 I 0
返回
2.1.2 多路转换开关
多 路 转 换 开 关 反 多 路 转 换 开 关
A/D
微机
D/A
完成多到一的转换
完成一到多的转换
2.1.2 多路转换开关
多路开关的分类:
从用途上分 双向:既能实现多到一的转换,也能实现一到多的 转换 单向:只能实现多到一的转换 从输入信号的连接方式上分 单端输入 双端输入(或差动输入)
第2章 IO通道基本知识
查询方式、中断控制方式和直接存储器存取(DMA)
方式。
河南机电高等专科学校
Henan Mechanical and Electrical Engineering College
第2章 输入输出过程通道
(1)程序查询方式
是
CPU向过程通道发启动命令
过程通道准备就绪?
过程通道服务程序
继续原来程序的运行
河南机电高等专科学校
Henan Mechanical and Electrical Engineering College
第2章 输入输出过程通道
一、I/O接口电路
I/O接口电路也简称接口电路。它是主机和外围设备之间交换
信息的连接部件。它在主机和外围设备之间的信息交换中起着桥梁和 纽带作用。为什么要设置接口电路?其必要性可归纳成如下几点。
5. 数字量输入输出通道(DI、DO)
河南机电高等专科学校
Henan Mechanical and Electrical Engineering College
第2章 输入输出过程通道
2.1
几个常见概念:
I/O通道简介
1. 模拟信号的常用规格: 1~5v电压信号:易受干扰,常用于仪表中 4~20mA电流信号:抗干扰性好,常用于信号传输 2. 阻抗匹配: 信号源输出最大功率的条件:输出阻抗=输入阻抗,即阻抗匹配 高阻抗匹配:电压信号 低阻抗匹配:电流信号 3. 理想的压流源的特点: 理想电压源:内阻为0 理想电流源:内阻无穷大
第2章输入输出过程通道河南机电高等专科学校henanmechanicalandelectricalengineeringcollege信息种类输入信息来源或输出信息的用途模拟量输入数字量输入脉冲计数器模拟量输出数字量输出温度压力物位转速成分等接点的通断状态电平高低状态数字装置的输出数码等流量积算电功率计算转速及脉冲形式的输入信号等控制执行装置显示记录等对执行器进行控制报警显示等表1生产过程输入输出信息来源与用途
计算机控制系统:第2章 输入输出通道
3.并行接口的ADC0809
CLOCK ADDA--ADDC
START ALE
EOC OE
D0--D7
转换时间
ADC0809工作时序图
2.2.3模拟转换器
3.并行接口的ADC0809
ADC0809工作时序图 ADC0809与51单片机的接口电 路
2.2.3模拟转换器
4.应用举例
ADC0809模拟输入原理图
DI7
DI0
Rfb Iout1
-
WR1
Iout2
+
Vx
WR2
CS
XFER
DAC0832
DI7 DI0 Rfb
Iout1
-
WR1
Iout2
+
Vy
WR2
DAC0832和51单片机双缓冲连接
P2.0 P2.1 P2.2 P0口 WR
80C51
CS DAC0832
XFER
DI7
DI0
Rfb IouΒιβλιοθήκη 1-WR1❖ 30℃:Rt=5.6K VAD=5×500/(5600+500)=0.410(V) 对应AD值:14H
❖ 40℃:Rt=3.8K VAD=5×500/(3800+500)=0.581(V) 对应AD值:1DH
第2章(1)模拟量输入通道
2.2 模拟量输入通道
模拟量输入通道的任务: 转换:模拟量到数字量的转换
组成核心:A/D转换器
2.2.1 模拟量输入通道的结构
模拟量输入通道一般由I/V变换,多路转换器、采样保持 器、A/D转换器、接口及控制逻辑等组成。
过程参数由传感元件和变送器测量并转换为电流(或电压) 形式后,再送至多路开关;在微机的控制下,由多路开关将各 个过程参数依次地切换到后级,进行采样和A/D转换,实现过 程参数的巡回检测。
为了避免低电平模拟信号传输带来的麻烦,经常要 将测量元件的输出信号经变送器变送,如温度变送器、 压力变送器、流量变送器等,将温度、压力、流量的 电信号变成0~10mA或4~20mA的统一信号,然后经过 模拟量输入通道来处理。
2.4.2 信号调理和I/V变换
1.信号调理电路 信号调理电路主要通过非电量的转换、信号的变换、 放大、滤波、线性化、共模抑制及隔离等方法,将非电 量和非标准的电信号转换成标准的电信号。 (1)非电信号的检测-不平衡电桥
y*(t)是y(t)在采样开关闭合时的瞬时值;
2、香农定理(采样定理)指出:为了使采样信号
y*(t)能完全复现原信号y(t),采样频率f 至少要为原信号最高 有效 频率fmax的2倍,即f 2fmax。
采样定理给出了y*(t)唯一地复现y(t)所必需的最低采样频 率。实际应用中,常取f (5~10)fmax。
过程输入输出通道技术
数字量输入通道 数字量输出通道 模拟量输入通道 模拟量输出通道
明确概念
数字量(开关量)信号 开关的闭合与断开,指示灯的亮与灭,
继电器或接触器的吸合与释放,马达的启动 与停止,阀门的打开与关闭等。
共同特征:这些信号是以二进制的逻辑 “1”和“0”出现的,代表生产过程的一个 状态。
计算机控制技术第二章
第二章输入输出接口与过程通道在计算机控制系统中,为了实现对生产过程的控制,要将对象的被控参数及运行状态,按要求的方式送人计算机处理,再将结果以数字量的形式输出,并将数字量变换为适合生产过程控制的量,因此在计算机接口和生产过程之间,必须设置信息的传递和变换装置,这个装置就称之为过程输入输出通道,也叫I/O通道。
2.1 过程输入输出通道概述2.1.1 过程输入输出通道的类型及功能根据过程信息的性质及传递方向,过程输入输出通道可分为模拟量输人通道、模拟量输出通道、数字量(开关量)输入通道、数字量(开关量)输出通道等几种类型。
生产过程的被调参数(如温度、压力、流量、速度、位移等),一般是随时间连续变化的模拟量,通过检测元件和变送器转换为对应的模拟电压和电流。
由于计算机只识别数字量,故模拟电信号必须通过模拟量输入通道转化为数字量后,才能送人计算机。
对于生产现场的状态量(如开关、电平高低、脉冲量等)也不能为计算机直接接受,因此数字量(开关量)输入通道将状态信号转变为数字量送入计算机。
计算机控制生产现场的控制通道也有两种,即模拟量输出通道和数字量输出通道。
计算机输出的控制信号以数字形式给出,若执行元件要求提供模拟电压或电流,则采用模拟量输出通道将数字量转换为模拟电压或电流,若执行元件要求数字量(开关量),则应采用数字量输出通道,将计算机输出的数字量经处理和放大后输出。
由此可见,过程输人输出通道是计算机和工业生产过程相互交换信息的桥梁。
2.1.2 过程输入输出通道与CPU交换的信息类型过程输入输出通道与CPU交换的信息类型有三种:(1)数据信息反映生产现场的参数及状态的信息,它包括数字量、开关量和模拟量。
(2)状态信息又叫应答信息、握手信息,它反映过程通道的状态,如准备就绪信号等。
(3)控制信号用来控制过程通道的启动和停止等信息,如三态门的打开和关闭、触发器的启动等。
接口电路含这三类信息交换的端口。
2.1.3 过程通道的编址方式由于计算机控制系统一般都有多个过程输人输出通道,因此需对每一个过程输入输出通道安排地址。
模拟量输入输出通道dq
DQ通道与AO通道的比较
信号类型
AO通道通常用于输出模拟信号,如控制阀门、电机等,而 DQ通道则主要用于数字信号的输入输出。
数据处理
AO通道输出的模拟信号需要经过数模转换器(DAC)从数字信 号转换为模拟信号后输出,而DQ通道则直接处理数字信号。
应用场景
AO通道广泛应用于过程控制、执行器驱动等领域,而DQ 通道则多用于数据通讯、逻辑控制等领域。
表示输出模拟信号的精度,通常以位数(bit) 表示。
表示输出模拟信号与输入数字信号之间的 线性关系,越接近1表示线性度越高。
输出范围
输出阻抗
表示输出模拟信号的最大值和最小值,根 据不同设备需求而定。
表示输出模拟信号的电阻值,影响驱动能 力和负载匹配。
05
DQ通道与其他通道的比 较
DQ通道与AI通道的比较
高精度化趋势
随着工业自动化水平的提高,对模拟量输入输出 通道的精度要求也越来越高。高精度通道能够提 供更准确的测量结果,更好地满足生产需求。
智能化趋势
随着物联网和人工智能技术的发展,模拟量输入 输出通道正逐渐向智能化方向发展。智能化的通 道能够自主完成数据采集、处理、分析和决策, 为工业自动化提供更强大的支持。
噪声抑制
通过滤波器或数字信号处理技 术减小噪声干扰。
模拟量输入通道的参数
分辨率
表示A/D转换器能够分辨的最小电压或电流 变化量。
采样速率
表示A/D转换器每秒能够完成的采样次数。
线性度
表示A/D转换器输出与输入之间的线性关系。
精度
表示A/D转换器的误差范围,通常以百分比 表示。
04
模拟量输出通道
模拟量输出通道的种类
模拟量输出通道的原理
潘新民-微型计算机控制技术(第二版)课件-第2章.
微机控制技术
2.1.1 多路开关
3.半导体多路开关 (1)采用标准的双列直插式结构,尺寸小,便于安排
(2)直接与 TTL(或 CMOS)电平相兼容;
(3)内部带有通道选择译码器,使用方便;
(4)可采用正或负双极性输入; (5)转换速度快,
·结构
由双极型绝缘栅场效应管组成
(低偏差电压和宽频带)
使用一个单独的端子实现输人偏置电压的调整,
·特点
采样速度快,保持下降速度慢,精度高等特点。
允许带宽 1MHz,输入电阻为 1010Ω。
作为单一的放大器时,其电流增益精度为 0.002%,
采样时间小于 6μs时,
精度可达 0.01%。
微机控制技术
3.常用采样/保持器
② 二进制 3:8译码器
对选择输入端 C、B、A的状态进行译码,
以控制所选电路 TG 的开/关,使某一路开关接通,
将输入和输出通道接口。
③ 电子开关 TG
用来接通或断开输入/输出通道。
微机控制技术
1. CD4051
(2)控制原理
INH 接高电平 所有通道全部断开
① 禁止输入端 INH
② 3个通道选择输入端 C、B、A
第二章 模拟量输入/输出通道的接口技术
• 前言 • 2.1 多路开关及采样-保持器 • 2.2 模拟量输出通道的接口技术 • 2.3 模拟量输入通道接口技术
第二章 模拟量输入/输出通道的接口技术
• 在微型机控制系统与智能化仪器中 被测物理量多为模拟量, 而计算机只能接收数字量。
• 在检测/控制系统中 必须先把传感器输出的模拟量转换成数字量, 才能送到计算机进行数据处理,实现控制或显示。
精品文档-计算机控制技术(第二版)(温希东)-第2章
(4)数字量输出通道。有的执行部件只要求提供数字量,例 如步进电机的控制电机启停和报警信号等,这时应采用数字量输 出通道。
应该注意,过程通道是以经过通道的信号形式来划分的,并 不以连续的对象来划分,如模拟对象的模拟量可以转换为频率信 号(V—F变换),连接于数字输入通道,而数字输出通道完全可以 接直流电动机,组成脉冲调宽控制(PWM)。
拾取、转换、滤波、保护、隔离以及输出信号的驱动等问题。 对于开关量输入信号的转换、滤波、保护、隔离以及开关量
输出信号的驱动等,前面已有详细讨论,这里主要讨论一下开关 量输入信号的拾取方式。
39
(1)开关状态型开关量输入信号的拾取。这是最常见的一种 开关量输入形式,如生产设备或过程中某个开关或继电器的断开 与闭合等。这种类型的开关量可通过前面已介绍的转换电路将开 关的状态转换为电平的高低。
11
3.输入/输出电气接口 典型的开关量输入/输出电气接口的功能主要是滤波、电平 转换、隔离和功率驱动等,关于这些内容,将在后面详细介绍。
12
2.2.2 开关量输入信号的调理 开关量输入通道的基本功能就是接收外部的状态信号,这些
状态信号是以逻辑“1”或逻辑“0”形式出现的,其信号可能是 电压、电流或开关的触点。在有些情况下,外部输入的信号可能 会引起瞬时的高电压、过电压、接触抖动以及噪声等干扰。为了 将外部的开关量信号输入到计算机,必须将现场输入的状态信号 经转换、保护、滤波、隔离等措施转换成计算机能接收的逻辑信 号,这就是开关量输入信号调理的任务。
8
2.2.1 开关量输入/输出通道的一般结构形式 开关量输入/输出通道一般由三部分组成:CPU接口逻辑、输
入缓冲器和输出锁存器、输入/输出电气接口(亦即开关量输入信 号调理和输出信号驱动电路)。一般情况下,各种开关量输入/输 出通道的前两部分往往大同小异,不同之处主要在于输入/输出 (I/O)电气接口。典型的开关量输入/输出通道结构如图2-2所示 。
计算机控制技术及工程应用期末考点重点大全
第一章,计算机控制概述1,计算机控制系统的硬件由主机,常规外部设备,过程输入/输出(I/O)通道,操作台,通信设备组成。
2,DAS,数据采集系统3,OGC操作指导控制系统4,DDC,直接数字控制系统5,SCC,监督计算机控制系统6,DCS,分散控制系统7,FCS,现场总线控制系统8,CIMS,计算机集成制造系统第二章,模拟量输出通道1,模拟量输出通道的任务,把计算机处理后的数字量信号转换成模拟量电压或电流信号,去驱动相应的执行器,从而达到控制的目的。
主要由接口电路,数/模转换器,电压/电流变换器等构成。
2,D/A转换器的性能指标,分辨率,转换精度,偏移量误差,线性误差,稳定时间。
3,由于电流信号1,易于远距离传输,且不易受干扰,。
2,在过程控制系统中,自动化仪表接收的是电流信号。
故输出通道常用电流信号传递信息。
4,D/A转换模板具有通用性,体现在,符合总线标准,接口地址可选,输出方式可选。
5,十三,十四页,图。
第三章,模拟量输入通道1,模拟量输,入通道的任务,把控制对象的过程参数如温度电压等模拟量信号转换成计算机可以接收的数字量信号。
2,把连续变化的量变成离散后在进行处理的计算机控制系统称为离散系统或采样数据系统。
采样形式,周期,多阶,随机采样。
3,A/D转换器从原理上可分为,逐位逼近式,双积分式,电压/频率式。
4,A/D转换器的性能指标,分辨率,转换精典型的度,线性误差,转换时间。
5,A/D转换器的接口电路主要解决主机如何分时采集多路模拟量输入信号。
典型的两种接口电路,查询方式读入A/D转换数,定时方式读入A/D转换数。
第四章数字量输入输出通道。
1,光电耦合隔离器按其输出级不同分为,三极管型,单向晶闸管型,双向晶闸管型。
2,数字量输入通道把生产过程中的数字信号转换成计算机易于接受的形式。
以开关和脉冲输入形式居多。
3,数字量输出通道把计算机输出的微弱数字信号转换成能对生产过程进行控制的数字驱动信号。
ch02输入通道接口技术解读
326.48
332.79 339.06 345.28
32.648
33.279 33.906 34.528
0℃
20℃ 40℃ 60℃ 80℃ 100℃ 120℃ 140℃
100.00
107.79 115.54 123.24 130.90 138.51 146.07 153.58
10.000
10.779 11.554 12.324 13.090 13.851 14.607 15.358
80℃
60℃ 40℃ 20℃
68.33
76.33 84.27 92.16
6.833
7.633 8.427 9.216
280℃
300℃ 320℃ 340℃
204.90
212.05 219.15 226.21
20.490
21.205 21.915 22.621
640℃
660℃ 680℃ 700℃
图2-3 多路模拟信号检测框图
按用途分: 单向多路开关:只能完成多到一的切换,如 AD7501(8路)、AD8506(16路); 双向多路开关:该芯片既可以实现多到一的 切换,也可以完成一到多的切换。如CD4051。 从输入信号的连接方式来分: 单端输入 双端输入(或差动输入)。双端是指芯片 内的一对开关同时动作,从而完成差动输入信 号的切换,以满足抑制共模干扰的需要。
第2章 输入通道接口技术
输入通道接口技术
• • • • 2.1 2.2 2.3 2.4 信号测量与传感器技术 模拟信号输入通道接口 键盘接口技术 开关量信号输入接口
2.1 信号测量与传感器技术
2.1.1 温度测量传感器
温度测量原理:通过温度敏感元件与被测对 象的热交换,测量相关的物理量,即可确定 被测对象的温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在计算机控制系统中,为了实现对生产过程的
控制,要将生产现场的各种被测参数转换成数字
计算机能够接受的形式,计算机经过计算、处理 后的结果还需要变换成合适的控制信号输出至被 控对象。以控制执行机构的动作。因此,在计算 机和被控对象之间,必须设置进行信息传递和转
换的连接通道,即过程通道。
3、集成采样保持器
集成采样保持器将采样电路、保持器制作在 一个芯片上,保持电容外接,由用户选用。电容 的大小与采样频率及要求的采样精度有关。 集成采样保持器分三类:
1、用于通用目的的芯片, 如AD583K,AD582,LF398; 2、高速芯片,如THS-0025,THC-0300等; 3、高分辨率芯片,如SHA1144等。
现以4位A/D转换器把模拟量7转换为二进制数0111为例,说 明逐位逼近式A/D转换器的工作原理。
电压 第一次 预测 模拟 电压 第四次 第三次 预测 第二次 预测 预测
(1000) (0100) (0110) (0111)
D3
0
D2
D1
D0
时间
逐次逼近式ADC 逐次逼近式A/D原理概述
N 位的逐次逼近式 A/D 转换器 , 由 N 位寄存器、 N位D/A转换器、比较器、逻辑控制电路、输出 缓冲器等五部分组成。 工作原理:启动信号作用后,时钟信号先 通过逻辑控制电路使N位寄存器的最高位DN-1为 1 ,以下各位为 0 ,这个二进制代码经 D/A 转换 器转换成电压U0(此时为全量程电压的一半) 送到比较器与输入模拟电压UX比较。若UX>U0, 则保留这一位;若UX<U0,则DN-1 位置0。
注:1、在实际系统中,《T ,即近似地认为采样信号
y*(t)是y(t)在采样开关闭合时的瞬时值;
y*(t)能完全复现原信号y(t),采样频率f 至少要为原信号最高 有效 频率fmax的2倍,即f 2fmax。 采样定理给出了y*(t)唯一地复现y(t)所必需的最低采样频 率。实际应用中,常取f (5~10)fmax。
(1)无源I/V变换
I/V变换的基本思想:电流 变换电路中各部分的作用:
?
电压
R1:限流电阻 VD:输出限幅,将电压限制在5V+0.3V以内 R2:电压采样电阻,其压降即为输出电压,精密 电阻,精度为0.1%。 C和R1:组成阻容低通滤波电路
取值: 输入0-10 mA,输出为0-5V,R1=100Ω, R2=500Ω 输入4-20 mA,输出为1-5V, R1=100Ω,R2=250Ω
在选择电容时,容量大小要适宜,以保证 其时间常数适中,并选用泄漏小的电容。
综上所述:保持电容器电容量的大小它不是一个定 值,它可以在一定范围内取值。其电容量的大小确 定可以根据实践经验通过实验来确定。 一般选 100pF-1000pF之间。电容选聚四氟乙烯电容或 聚苯乙烯电容,绝缘阻抗高,漏电流小。
路4051并联起来,组成1个单端的16路开关。
例题3-1 试用两个CD4051扩展成一个1×16路的模拟开关。 例题分析:通道选择信号-数据总线D2-D0; 当D3=0时,选中上面的多路开关 禁止端--D3用来控制两个多路开关的。当D3=1时,选中下面的多路开关
图 多路模拟开关的扩展电路
2.4.2 采样、量化及采样保持器
R3 R1 R2 R2
R1 R3
热电阻
2.4.2 信号调理和I/V变换
R3 R1 R2 R2 R3 R1 R2 R2
R3 R1
R3 R1
热电阻
热电阻
2、I/V变换
变送器输出的信号为 0 ~ 10mA 或 4 ~ 20mA 的统
一信号,需要经过 I/V变换变成电压信号后才 能处理。对于电动单元组合仪表,DDZ-Ⅱ型的 输出信号标准为0~10mA,而DDZ—Ⅲ型和DDZ—S 系列的输出信号标准为 4 ~20mA,因此,针对 以上情况我们来讨论I/V变换的实现方法。 1.无源I/V变换 2.有源I/V变换
反馈型采样保持器电路原理图
2、分析保持电容CH 的大小
由于采样保持电路可以做成集成芯片,而电容器是外接元 件,所以选择电容器的大小很重要。 电容CH对采样/保持的精度有很大的影响,如果电容值过 大,则其时间常数大,当模拟信号频率高时,由于电容充 放电时间长,将会影响电容对输入信号的跟踪特性,而且 在跟踪的瞬间,电容两端的电压会与输入信号电压有一定 的误差。而当处于保持状态时,如果电容的漏电流太大, 负载的内阻太小,都会引起保持信号电平的变化。
模拟量输入通道的任务是把从系统中检测到的模拟 信号,变成二进制数字信号,经接口送往计算机。 传感器:它是一种检测装置,能感受到被测量的信 息,并能将检测感受到的信息,按一定规律变换成为 电信号或其他所需形式的输出。是将生产过程工艺参 数转换为电参数的装置,大多数传感器的输出是直流 电压(或电流)信号。
2.2 模拟量输入通道
模拟量输入通道的任务: 转换:模拟量到数字量的转换 组成核心:A/D转换器
2.2.1 模拟量输入通道的结构
模拟量输入通道一般由I/V变换,多路转换器、采样保持 器、A/D转换器、接口及控制逻辑等组成。 过程参数由传感元件和变送器测量并转换为电流(或电压) 形式后,再送至多路开关;在微机的控制下,由多路开关将各 个过程参数依次地切换到后级,进行采样和A/D转换,实现过 程参数的巡回检测。
2、香农定理(采样定理)指出:为了使采样信号
采样保持器
零阶采样保持器--是在两次采样的间隔时间内,一直保持采样值不变直到下一 个采样时刻。
VIN A1 S
+
-
VIN A2 VOUT t VOUT t
采样 (a ) 原理电路 保持
CH
构成--输入输出缓冲放大器A1、A2和采样开关S、保持电容CH。
图 2-8 采样保持器
现以常用8路模拟开关CD4051为例: 构成-电平转换、译码驱动及开关电路三部分组成。 工作过程 -当禁止端INH=1时,断开,即S0~S7端与Sm端不可能接通; 当INH=0时,前后级通道接通,即Sm=SABC
CD4051原理图 及通道选择表
扩展电路
当采样通道多至16路时,可直接选用16路模拟开关的芯片,也可以将2个8
(1)信号的采样
采样过程:按一定的时间间隔T,把时间上连续和幅值 上也连续的模拟信号,转变成在时刻O、T、2T、…KT的一 连串脉冲输出信号的过程。
y( t ) y( t ) y *( t ) y* (t)
采样器
0 t 0 T T 2T 3T t
采样器或采样开关--执行采样动作的装置 图2-7 信号的采样过程 采样周期:采样开关K每一个通断的时间间隔T。 采样宽度:采样开关闭合的时间(τ )。 采样信号y*(t):幅值连续但是时间上离散的模拟信号。
逐次逼近式A/D原理概述
DN-1 位比较完毕后,再对下一位即 DN-2 位进 行比较,控制电路使寄存器 DN-2 为 1 ,其以下各 位仍为0,然后再与上一次DN-1结果一起经过D/A 转换后再次送到比较器与 UX 相比较。如此一位 一位地比较下去,直至最后一位 D0 比较完毕为 止。 最后,发出EOC信号表示转换结束。这样经 过 N 次比较后, N 位寄存器保留的状态就是转换 后的数字量数据。
( b ) 工作波性
工作过程-采样期间,开关S闭合,输入电压VIN通过A1对CH快速
充电,输出电压VOUT跟随VIN变化;保持期间,开关S断开,由于 A2的输入阻抗很高,理想情况下电容CH将保持电压VC不变,因而 输出电压VOUT=VC也保持恒定。
1、采样保持器的两种结构
串联型采样保持器电路原理图
8位A/D转换器ADC0809
引脚功能 ADC0809共有28 IN0~IN7:8 A,B,C:模拟输入通道的地址选择线。当CBA=000时,选中 IN0;CBA=001时,选中IN1……依此类推,当CBA=111时,选中 IN7 ALE:地址锁存允许信号输入端。该端接高电平时有效,仅当 该信号有效时,才能将地址信号锁存,经译码后选中一个通道。 START:启动转换脉冲输入端。该端所加信号的上升沿将所有 内部寄存器清0 CLK:时钟脉冲输入端。频率为500MHz D7~D0:数据输出端,D7为高位。 EOC 转换结束信号,高电平有效。启动转换后,若EOC为0, 表示A/D OE:输出允许端,高电平有效。该端为高电平时,打开三态 输出缓冲器,输出转换结果。 UREF(+)和UREF(-):参考电压端,提供A/D转换的基准电压。
为了避免低电平模拟信号传输带来的麻烦,经常要 将测量元件的输出信号经变送器变送,如温度变送器、 压力变送器、流量变送器等,将温度、压力、流量的 电信号变成 0 ~ 10mA 或 4 ~ 20mA 的统一信号,然后经过 模拟量输入通道来处理。
2.4.2 信号调理和I/V变换
1.信号调理电路 信号调理电路主要通过非电量的转换、信号的变换、 放大、滤波、线性化、共模抑制及隔离等方法,将非电 量和非标准的电信号转换成标准的电信号。 (1)非电信号的检测-不平衡电桥
积分型:电路简单、但转换精度依赖于积分时间, 因此转换速率低,初期的A/D转换器大多采用积 分型,现逐次比较型已逐步成为主流 逐次比较型:电路规模中等,优点速度较高,功 耗低。 并行比较型:采用多个比较器,仅作一次比较而 实行转换,转换速率极高,n位的转换需要2n-1 个比较器,因此电路规模也极大,价格也高。
结论 -保持器在采样期间,不启动A/D转换器, 保持期间,立即启动A/D转换器,从而保证 A/D 转换时的模拟输入电压恒定,以确保 A/D转换精度
2.4.5、A/D转换器
模拟量输入通道的任务就是将模拟量转 换成数字量,能够完成这一任务的器件就 是模/数转换器,即A/D转换器,或简称 ADC。
A/D转换器种类