变电站模拟量输入输出原理 (17)

合集下载

模拟量采集原理

模拟量采集原理

模拟量采集原理
模拟量采集原理是指通过传感器将实际量转化为电压或电流信号,然后经过放大、滤波、调理等处理,最终将其转化为数字信号进行采样和储存的过程。

在模拟量采集中,传感器起着关键作用。

传感器是能够将实际量转化为电信号的装置,常见的传感器包括温度传感器、压力传感器、流量传感器等。

传感器将实际量转化为电信号后,需要经过放大处理。

放大器会增加电信号的幅度,以便信号能够被准确地测量和处理。

放大后的信号还需要经过滤波处理,去除混杂在信号中的杂波和干扰,使其更加稳定和可靠。

接下来,经过调理处理。

调理包括采样和保持、线性化、电平转换等操作,以便将信号适配到后续数字处理器可接受的范围。

采样和保持是指在一定的时间间隔内对信号进行采样并保持其数值,线性化是将非线性的信号转化为线性的形式,而电平转换则是将信号的电平调整为适合数字处理器的电平范围。

最后,经过模数转换器(ADC)进行模拟信号到数字信号的
转换。

ADC会根据一定的采样频率对模拟信号进行采样,并
将其转换为对应的数字信号。

转换后的数字信号可以被储存、处理和传输,实现对实际量的监测和控制。

总结起来,模拟量采集原理是将实际量转化为电信号,并经过放大、滤波、调理等处理,再通过ADC转换为数字信号的过
程。

这一过程可以实现对实际量的准确测量和控制,广泛应用于各种工业自动化、仪器仪表等领域。

变电站综合自动化系统概述

变电站综合自动化系统概述
• 从专用设备到标准的软件硬件平台; • 从集中控制向综合智能控制发展; • 从室内型向户外型演变; • 从单纯的屏幕数据监视到多媒体监视; • 设计将实现纵向和横向的综合。
变电站综合自动化系统的典型硬件结构
变电站综合自动化系统的典型硬件结构说明1
• 微处理器(中央处理器)CPU是指挥中枢,计算机 程序的运行依赖于CPU来实现;
• ②电气型防误系统:是建立在二次操作回路上的 防误功能,一般通过断路器和隔离开关的辅助触 点连锁来实现,主要包括电气回路闭锁、电磁回 路闭锁、电气报警和高压带电显示装置等。
• ③微机五防:采用计算机技术,用于高压开关设 备防止电气误操作的装置,由主机、电脑钥匙、 编码锁具等功能元件组成。主要用于断路器、隔 离开关、接地刀闸、遮拦网门等。
特点: ①工作稳定,线性好,电路简单; ②抗干扰能力强,不受脉冲和随机高频噪音干扰; ③与CPU接口简单,工作不需要CPU控制; ④可以方便地实现多CPU共享一套VFC变换。
模拟量输出电路的组成
• 作用是把微机系统输出的数字量转换成模 拟量输出,核心元件是模/数转换器,锁存 器是用来保持数字量的稳定的。
变电站综合自动化系统的典型硬件结构说明2
• 定时器/计数器有两个用途一是用来触发采样信号, 引起中断采样;二是在V/F变换式A/D中,定时器/ 计数器是把频率信号转换为数字信号的关键部件。
• Watchdog主要作用是当自动化装置受到干扰导致 微机系统运行程序出轨、程序无法正常运行时,能 自动复位微机系统,使微机系统重新开始执行程序, 进行入正常运行轨道。
综合自动化监控系统的基本要求
• 实时 • 可靠 • 可维护 • 信息处理和输出技术先进 • 人机交流方便 • 通信可靠 • 信息处理和控制算法先进

电力系统自动化_华北电力大学中国大学mooc课后章节答案期末考试题库2023年

电力系统自动化_华北电力大学中国大学mooc课后章节答案期末考试题库2023年

电力系统自动化_华北电力大学中国大学mooc课后章节答案期末考试题库2023年1.直流励磁机系统的励磁方式可以分为()型和他励型两种励磁方式参考答案:自励2.远程自动抄表计费系统的构成主要包括:智能电度表、抄表采集器、抄表集中器和中央服务器参考答案:正确3.在最大励磁限制器中,不同励磁电压时最大励磁的允许时间是相同的参考答案:错误4.有载调压变压器分接头调压时,本身并不产生无功功率,因此,当系统无功不足时,可以用有载调压来提高全系统的电压水平。

参考答案:错误5.智能电网特点主要有:()、自愈、兼容、经济、集成和优化参考答案:坚强6.()调式消弧线圈在正常运行时,计算出目标补偿电流,处于远离谐振的位置;当发生单相接地故障后,快速调整至谐振状态,产生补偿电流;当故障消失后,重新将消弧线圈恢复到远离谐振的位置参考答案:随7.自动低频减负荷装置分为两组:基本轮和特殊轮。

其中,()轮为快速动作,用以抑制频率下降参考答案:基本8.只要发电机励磁电流超过“过热限制值”,励磁调节器就会启动一个()积分器参考答案:过热9.为了保证发电机转子发热的安全,励磁系统过励时间()超过规定值参考答案:不10.在变电站采用补偿电容器进行调压时,可以改变无功分布,但是,不能弥补系统无功不足的问题参考答案:错误11.为了满足电力系统稳定性的要求,大容量发电机的励磁系统必须具有高起始响应的性能,高值励磁电压将会危及励磁机及发电机的安全,为此设置了最大励磁限制器。

参考答案:错误12.同步发电机可以在电压/频率比大于1.1的状态下长期稳定运行参考答案:错误13.在事故初期,延缓切除负荷功率对于延缓频率下降过程是有利的参考答案:错误14.IEC 61850-6定义了一种基于XML技术的ACSI,用于描述变电站自动化系统和一次开关之间的关系以及智能电子设备(IED)的配置情况参考答案:错误15.某配电网采用中性点不接地方式,当发生单相接地故障时,零序电压和零序电流具有一定的特征,故障线路的零序电流与正常线路的零序电流相位相同。

变电站模拟量输入输出原理 (10)

变电站模拟量输入输出原理 (10)

模拟量输出通道结构框图
由于D/A需要一定时间,在转换期间,输入待转换的数字量 应保持不变,而数据在总线上稳定的时间很短,因此必须 用锁存器来保持数据量的稳定。
比较器
/ 数 字 量 输 出
电压 第一次 预测 第三次 预测 第四次 预测
第二次 预测
1000 0100 0110 0101 终值 时序及控制逻辑 ( )原理框图 0 ( )逐次逼近过程
逐次逼近型A/D转换器的工作原理
模拟量输出通道
(一)模拟量输出电路组成
总线 工业生 产过程 放 大 驱 动 / 转 换 器 锁 存 器 输 出 接 口

2
总线 变 换 器 电压形成回路 低通滤波 采样保持 电压形成回路 低通滤波 采样保持 多 路 转 换 开 关
/
存储器
Hale Waihona Puke 模拟量输入通道结构图3
(一)电压形成回路 来自TA、TV的电流或电压量不适应模数变换 器的范围,故需要进行变换。
电压互感器隔离与电平转 换
4
电压形成电路作用: ⑴起电量变换 ⑵将一次设备的TA、TV的二次回路与微机A/D转 换系统完全隔离,提高抗干扰能力。
(二)、低通滤波
电力系统在故障的暂态期间,电压和电流含 有较高的频率,需在采用之前将最高频率分量限 制在一定的频带内,以降低采样频率fs,这样一 方面降低了对硬件的速度要求,另一方面对所需 要的最高频率信号的采样不至于发生失真。
(三)、采样保持电路


一个随时间连续变化的物理量f(t),经过 采样后,得到一系列的脉冲序列f*(t), 它是离散的信号,被称为采样信号,。 根据香农(Shannon)定理:如果随 时间变化的模拟信号(包括噪声干扰在内) 的最高频率为fmax,只要按照采样频率 f≥2fmax进行采样,那么所给出的样品 系列就足以代表(或恢复)f(t)了,实际 应用中常采用f≥(5-10)fmax。

第二章-变电站综合自动化系统的间隔层装置

第二章-变电站综合自动化系统的间隔层装置

第二章变电站综合自动化系统间隔层装置第一节间隔层装置简述一、间隔层装置配置间隔层装置在设计和配置方面,原则上与电气间隔之间存在密切关系。

根据间隔层装置按电气间隔配置的原则和站内一次设备规模,可以方便地确定变电站综合自动化系统所需间隔层装置的数量.电气间隔是一个强电即一次接线系统的概念,通常把断路器或电气元件(如主变压器、母线等)作为电气间隔划分的依据.一个典型高压变电站内主要包括线路间隔、母联(分段)间隔、主变压器间隔、电容(电抗)间隔、站用变压器间隔、母线间隔等.其中,主变压器按其绕组涉及的电压等级可分为高、中、低压间隔和本体间隔.一般认为,间隔层装置是指按变电站内电气间隔配置,实现对相应电气间隔的测量、监视、控制、保护及其他一些辅助功能的自动化装置.间隔层装置直接采集和处理现场的原始数据,通过网络传送给站控级计算机,同时接收站控层发出的控制操作命令,经过有效性判断、闭锁检测和同步检测后,实现对装置的操作控制.间隔层也可独立完成对断路器和隔离开关的控制操作。

间隔层装置通常安装在各继电器小室,测控装置按电气设备间隔配置,各测控装置相对独立,通过通信网互联.间隔层装置具有以下优点:按电气间隔配置的原则使得因间隔层装置故障产生的影响被限定在本间隔范围内,不会波及其他电气间隔;监控对象由整个变电站缩小为某个电气间隔,单个装置所需配备的I/O点数量较少,减小了装置体积的同时也使装置安装方式更加灵活;间隔层装置除具备传统的输入输出功能外,还集成了同期合闸、防误联锁等高级功能,保护测控综合装置更是把监控功能和微机保护功能合而为一,降低了装置成本.二、间隔层装置分类在分层分布式变电站综合自动化系统中,间隔层装置(或称为间隔层单元),即前面所说的IED,大致可分成以下几类:(1)保护测控综合装置。

也可简称为保护测控装置,一般用于中低压(110Kv以下)系统中,例如输电线路保护测控装置、变压器后备保护测控装置、站用变压器保护测控装置、电容器保护测控装置、电抗器保护测控装置等等,它们主要用于完成相应的电气间隔中设备的保护、测量及断路器、隔离开关等的控制以及其它与其对应的电气间隔相关的任务,降低了装置成本并减少了二次电缆使用数量.对于110kV及以上电压等级的高压和超高压间隔,为避免可能受到的干扰,保证保护功能的可靠性,目前仍采用保护和测控功能各自独立配置的模式。

继电保护保护装置上的“开关量”和“模拟量”的概述

继电保护保护装置上的“开关量”和“模拟量”的概述

继电保护保护装置上的“模拟量”和“开关量”概述在继电保护装置中有两个常见的术语,“模拟量”和“开关量”。

不论输入还是输出,一个参数要么是“模拟量”,要么是“开关量”。

下面详细讲述含义:开关量:开关量顾名思义就是只有开和关两种状态的工程量了,也叫变量,也就是说这种变量要么是0、要么是1,对应而言就是要么他就是开、要么他就是关,反映的是状态。

开关量分为输入开关量和输出开关量,在变电站、发电厂的设备中例如一个电动机或者是电动门,输入开关量就是这些设备的开关状态的反馈,输出开关量就是开关这些设备的指令;就像控制继电器的开关一样。

一般指开关量(如温度开关、压力开关、液位开关等)。

该物理量只有两种状态,如开关的导通和断开的状态,继电器的闭合和打开,电磁阀的通和断,等等。

数字量:数字量由多个开关量组成。

如三个开关量可以组成表示八个状态的数字量。

模拟量:模拟量简单的说就是一些变化的量,模拟量的有他的量程的上下限,就像水位、压力、流量等,他们叫做模拟量,模拟量也有输入和输出之分,一般输入的模拟量用作反馈监视或者控制计算,输出模拟量一般用于控制输出,例如水位的给定值、负荷的给定值等,他主要用于控制设备的开度。

模拟量是连续的量,数字量是不连续的。

反映的是电量测量数值(如电流、电压)。

控制系统量的大小是一个在一定范围内变化的连续数值。

比如温度,从0至100度,压力从0至10Mpa,液位从1至5米,电动阀门的开度从0至100%,等等,这些量都是模拟量。

常见的模拟量输入/输出信号有:4-20mA、0-10mA、1-5V、0-5V、0-10V、其它电压或者毫伏级信号等对控制系统来说,由于CPU是二进制的,数据的每位只有“0”和“1”两种状态,因此,“开关量”只要用CPU内部的一位即可表示,比如,用“0”表示开,用“1”表示关。

而模拟量则根据精度,通常需要8位到16为才能表示一个“模拟量”。

最常见的“模拟量”是12位的,即精度为2-12,最高精度约为万分之二点五。

变电站直流系统讲解ppt课件

变电站直流系统讲解ppt课件
放电时间计算:
例1:如梧州变电站110V蓄电池的额定容量是900Ah,如果以0.1C(C为 电池容量)即90Ah的电流(额定放电电流)给电池放电,请问可以持续多 长放电时间?
该电池可以持续工作时间:t=900Ah/90mA=10h(实际工作时间因电 池的实际容量的个别差异而有一些差别)
第二部分 直流系统组成及部件的作用
蓄电池的容量一般分为额定容量和实际容量两种;
第二部分 直流系统组成及部件的作用
第三小节 变电站直流系统的构成
➢ 蓄电池的容量及放电时间计算: 额定容量是指充足电的蓄电池在25℃时,以10h放电率放出的电能。
QN=IN·tN 式中 QN——蓄电池的额定容量,A·h; IN ——额定放电电流,即10小时率的放电电流,A; tN ——放电至终止电压的时间,一般为10h。
流母线。 ➢ 直流馈线:直流馈线屏至直流小母线和直流分电屏的直流电源电
缆。 ➢ 均衡充电:用于均衡单体电池容量的充电方式,一般充电电压较
高,常用作快速恢复电池容量。 ➢ 浮充电:保持电池容量的一种充电方法,一般电压较低,常用来
平衡电池自放电导致的容量损失,也可用来恢复电池容量。
第二部分 直流系统组成及部件的作用
第二部分 直流系统组成及部件的作用
第三小节 变电站直流系统的构成
➢ 蓄电池的容量及放电时间计算:
蓄电池的容量(Q))是蓄电池蓄电能力的重要标志。是指定的放电
条件(温度放电电流、终止电压)下所放出的电量称为蓄电池的容
量,单位用A•h(安培小时)表示; 蓄电池放电至终止电压的时间称放电率,单位为h(小时率)
为实现两路交流输入的自动切换; (3) 直流馈电:将直流输出电源分配到每一路输出; (4) 配电监控:将系统的交流、直流中的各种模拟量、开关量信

plc模拟量原理

plc模拟量原理

plc模拟量原理PLC(可编程逻辑控制器)是一种用于自动化控制系统的电子设备。

它通过接收和处理来自传感器的模拟量信号来监测和控制不同的生产过程。

模拟量是指可以连续变化的物理量,例如温度、压力、流量等。

PLC的模拟量输入模块被用于将模拟信号转换为数字信号,以便PLC可以处理它们。

它通常包括一个模拟到数字转换器(ADC),用于将连续的模拟信号转换为离散的数字信号。

ADC将模拟信号分为许多小的离散级别,然后将每个级别映射到一个数字值。

PLC的模拟量输出模块被用于将数字信号转换为模拟信号,以便控制外部设备。

它通常包括一个数字到模拟转换器(DAC),用于将数字信号转换为相应的模拟信号。

DAC通过将数字值映射到一系列离散电压或电流级别来完成这个转换。

PLC通过读取和写入模拟量信号来实现对控制系统的监测和控制。

当PLC读取模拟量输入信号时,它会根据预设的条件和参数来判断是否需要采取相应的控制行动。

然后,PLC将处理后的控制信号发送到模拟量输出模块,以控制外部设备的行为。

例如,在一个温控系统中,PLC可以通过读取温度传感器的模拟量输入信号来监测当前的温度。

如果温度超过了预设的上限,PLC可以发送一个控制信号给加热器来降低温度。

相反,如果温度低于预设的下限,PLC可以发送一个控制信号给冷却器来提高温度。

总而言之,PLC的模拟量原理涉及将模拟信号转换为离散的数字信号,并将数字信号转换为相应的模拟信号,以实现对自动化控制系统的监测和控制。

这种技术使得PLC能够处理和控制各种实际物理量,使得生产过程更加稳定和可靠。

模拟量输入输出系统原理完整版文档

模拟量输入输出系统原理完整版文档
模数转换的基本原理框图 模拟量输入/输出系统原理 模拟量输入/输出系统原理 模拟量输入/输出系统组成部分 EDCS-7000型(6U)模拟量输入板 模拟量输入/输出系统原理 模拟量输入/输出系统原理 模拟量输入/输出系统原理 采样保持(S/H)电路 模拟量输入/输出系统原理 是在一个极短的时间内测量模拟输入量在该时刻的瞬时值,并在模拟一数字转换器进行转换的期间内保持其输出不变。 采样保持(S/H)电路
模数转换的基本原理框图
模拟量输入/输出系统原理
是在一个极短的时间内测量模拟输入量在该时刻的瞬时值,并在模拟一数字转换器进行转换的期间内保持其输出不变。
模拟量输入/输出系统原理
重庆电力高等专科学校
变电站综合自动化
EDCS-7000型(6U)模拟量输入板
电压、电 流变换器
重庆电力高等专科学校
变电站综合自动化
重庆电力高等专科学校
变电站综合自动化
模拟量输入/输出系统原理 三位转换器的二分搜索法示意图
重庆电力高等专科学校
模拟量输入/输出系统原理 采样保持(S/H)电路
作用
•是在一个极短的时间内测量模拟输 入量在该时刻的瞬时值,并在模拟 一数字转换器进行转换的期间内保 持其输出不变。
重庆电力高等专科学校
变电站综合自动化
模拟量输入/输出系统原理 采样保持(S/H)电路
重庆电力高等专科学校
变电站综合自动化
模拟量输入/输出系统原理 模数转换的基本原理框图
模拟量输入/输出系统原理
变电站综合自动化
模拟量输入/输出系统原理
模拟量输入/输出系统组成部分
电 压 形 成 回 路
模 拟 滤 波 回 路




模拟运算电路的工作原理

模拟运算电路的工作原理

模拟运算电路的工作原理
模拟运算电路的工作原理主要基于模拟信号的处理。

模拟信号是指连续变化的电信号,而模拟运算电路则是对这些模拟信号进行传输、变换、放大、处理、测量和显示等工作的电路。

模拟运算电路主要包括放大电路、信号运算和处理电路、振荡电路、调制和解调电路及电源等。

以模拟乘法器为例,其工作原理是将两个模拟信号相乘,得到它们的积。

这个积可以用来实现多种运算,如比例、差分、积分等。

模拟乘法器通常由两个运放(运算放大器)组成,输入信号分别加到两个运放的反向输入端,而输出信号则为两个输入信号的乘积。

另外,模拟运算电路还包括模拟加减器、模拟比较器等。

模拟加减器可以实现两个模拟信号的相加或相减,而模拟比较器则可以将一个模拟信号与另一个参考值进行比较,输出比较结果。

在实际应用中,模拟运算电路可以用于多种场合,如音频处理、图像处理、控制系统等。

通过不同的组合和改进,模拟运算电路可以实现各种不同的功能和处理效果,满足各种实际需求。

变电站模拟量输入输出原理26页PPT

变电站模拟量输入输出原理26页PPT
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
变电站模拟量输入输出原理 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

模拟量输入输出通道dq

模拟量输入输出通道dq

DQ通道与AO通道的比较
信号类型
AO通道通常用于输出模拟信号,如控制阀门、电机等,而 DQ通道则主要用于数字信号的输入输出。
数据处理
AO通道输出的模拟信号需要经过数模转换器(DAC)从数字信 号转换为模拟信号后输出,而DQ通道则直接处理数字信号。
应用场景
AO通道广泛应用于过程控制、执行器驱动等领域,而DQ 通道则多用于数据通讯、逻辑控制等领域。
表示输出模拟信号的精度,通常以位数(bit) 表示。
表示输出模拟信号与输入数字信号之间的 线性关系,越接近1表示线性度越高。
输出范围
输出阻抗
表示输出模拟信号的最大值和最小值,根 据不同设备需求而定。
表示输出模拟信号的电阻值,影响驱动能 力和负载匹配。
05
DQ通道与其他通道的比 较
DQ通道与AI通道的比较
高精度化趋势
随着工业自动化水平的提高,对模拟量输入输出 通道的精度要求也越来越高。高精度通道能够提 供更准确的测量结果,更好地满足生产需求。
智能化趋势
随着物联网和人工智能技术的发展,模拟量输入 输出通道正逐渐向智能化方向发展。智能化的通 道能够自主完成数据采集、处理、分析和决策, 为工业自动化提供更强大的支持。
噪声抑制
通过滤波器或数字信号处理技 术减小噪声干扰。
模拟量输入通道的参数
分辨率
表示A/D转换器能够分辨的最小电压或电流 变化量。
采样速率
表示A/D转换器每秒能够完成的采样次数。
线性度
表示A/D转换器输出与输入之间的线性关系。
精度
表示A/D转换器的误差范围,通常以百分比 表示。
04
模拟量输出通道
模拟量输出通道的种类
模拟量输出通道的原理

变电站综合自动化技术

变电站综合自动化技术

变电站综合自动化技术摘要:计算机技术的发展,推动了电力系统计算机自动化技术的发展,变电站综合自化技术也日趋完善。

本论文根据目前电力系统变电站综合自动化技术现状,从其设计原理、结构模式、功能及其发展基础上对变电站综合自动化系统进行分析和描述。

并对今后的发展趋势做了总结,提出意见。

关键词:变电站综合自动化结构模式基本过程功能发展趋势变电站综合自动化系统是一种以计算机为主、将变电站的一、二次设备经过功能组合形成的标准化、模块化、网络化的计算机监控系统。

变电站综合自动化,是将变电站的二次设备经过功能的重新组合和优化设计,利用先进的计算机技术、自动化技术和通信技术,实现对全变电站的主要设备和输配电线路的自动监视、测量、控制和微机保护,以及与调度通信等综合性的自动化功能。

一、变电站综合自动化的结构模式变电站综合自动化系统的结构模式主要有集中式、集中分布式和分散分布式。

(一)集中式结构集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。

集中式结构也并非指只由一台计算机完成保护、监控等全部功能。

多数集中式结构的微机保护、微机监控和与调度等通信的功能也是由不同的微型计算机完成的,只是每台微型计算机承担的任务多些。

例如监控机要担负数据采集、数据处理、断路器操作、人机联系等多项任务;担负微机保护的计算,可能一台微机要负责多回低压线路的保护等。

(二)分布式结构该系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。

分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。

各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。

分布式结构方便系统扩展和维护,局部故障不影响其它模块正常运行。

模拟量模块工作原理

模拟量模块工作原理

模拟量模块工作原理
模拟量模块是一种电子器件,用于将模拟信号转换为数字信号。

它通常由模拟输入端口、模数转换器和数字输出端口组成。

模拟量模块首先接收模拟信号通过模拟输入端口。

模拟信号可以是电压、电流或其他连续变化的物理量。

该模块会将输入信号进行放大、滤波等处理,以确保输入信号的稳定性和准确性。

然后,模拟量模块会使用模数转换器将模拟信号转换为数字信号。

模数转换器使用采样和量化技术,以一定的时间间隔对模拟信号进行采样,并将采样值转换成相应的数字表示。

转换后的数字信号可以更方便地进行数字信号处理或传输。

最后,模拟量模块将转换后的数字信号通过数字输出端口输出。

这样,其他数字设备可以接收和处理这个数字信号,而不需要重新进行模拟信号的转换。

总体来说,模拟量模块的工作原理主要包括模拟输入信号的采集和处理、模拟信号到数字信号的转换、以及数字信号的输出。

通过这些过程,模拟量模块能够实现模拟信号的数字化和传输,以满足不同应用领域对信号处理和控制的需求。

变电站综合自动化第二章

变电站综合自动化第二章

Page 26
(一)、电压形成电路
模拟量输入电压变换原理图
作用:将电压降低到AD转换芯片所需电压,并 实现一次设备与微机的隔离。
Page 27
对模拟量进行采样,就是将一个连续的时间信号f(t) 变成离散的时间信号f'(t)。
采样周期与采样频率: 采样时间间隔由采样控制脉冲 f(t) 来控制,相邻两 个采样时刻的时间间隔称为采样周期,用Ts表示。 采样频率fs=1/Ts
Page 39
(5) 输出逻辑电平:多数为TTL电平,即0~ +5V (6)工作温度范围: 民用品为:0~ +70℃
工业级为:-20 ~ +85℃
军用品为:-55~ +125℃ (7)电源灵敏度:指AD转换芯片的供电电源的电压发 生变化 时产生的转换误差,一般用电源变化1%时模拟 量变化的百分数来表示。
Page 40
作业二(全做)
逐次逼近式模拟量输入电路主要包括哪些组成部分? 什么是“频率混叠”现象?画图说明
香农定理中的采样频率公式是什么?
画出采样保持电路LF398的原理图,说明其工作原理 画出多路转换开关AD7506的内部结构图,说明其引脚作 用 如果输入电压为380V,画出其用BCD码逐次逼近的过程 图
例:被采样信号是工频50Hz,若工频每个周期 采样12次,则采样频率fs=50*12=600Hz.
Page 28
(2) 采样定理。 采样是否成功,主要表现在采样信号能否真实的反映出原 始连续时间信号中所包含的重要信息,采样定理就是回答 这个问题。 采样频率过低,会引起频率混叠现象
Page 29
一、微处理器的基本工作原理
Page 4
Page 5
二、基于单片机的测控单元

模拟量输入输出通道的组成

模拟量输入输出通道的组成
2、采样周期5/3ms。每个工频周期采样12次,每隔30°采样一次。
3、采样周期5/6ms。每个工频周期采样24次,每隔15°采样一次。
随着计算机处理速度的不断加快,目前有些变电站综合自动化装置已达到每 个工频周期采样96次。
二、基于逐次逼近型A/D变换的模拟量输入电 路
(二)低通滤波器与采样定理
2、利用电压/频率变换(VFC)原理进行模/数变换的方式,将模拟量 电压先转换为频率脉冲量,通过脉冲计数变换为数字量。
二、基于逐次逼近型A/D变换的模拟量输入电路
一个模拟量从测控对象的主回路到微机系统的内存,中间要经过多个
转换环节和滤波环节。
二、基于逐次逼近型A/D变换的模拟量输入 电路
(一)电压形成回路
二、基于逐次逼近型A/D变换的模拟量输入 电路
(二)低通滤波器与采样定理
(1)连续时间信号的采样
微机处理的都是数字 信号,必须将随时间连续 变化的模拟信号变成数字 信号,为此,首先要对模 拟量进行采样。
采样是将一个连续的 时间信号x(t)变成离散的 时间信号x'(t)。
二、基于逐次逼近型A/D变换的模拟量输入电 路
间隔层IED装置安装 调试及运行维护
数据的采集与处理
数据的采集与处理
一ห้องสมุดไป่ตู้模拟量输入电路简述
作用:隔离、规范输入电压及完成模/数变换,以便与CPU接口,完成 数据采集任务。
根据模/数变换原理的不同,自动化装置中模拟量输入电路有两种
方式:
1、基于逐次逼近型A/D变换方式(ADC),是直接将模拟量转变为数字量 的变换方式。
量的采样是以等采样周期间隔来
表示的。
采样周期Ts的倒数就是采样
频率fs,即 f s

变电站模拟量输入输出原理 (30)

变电站模拟量输入输出原理 (30)

一台计算机系统可供几十个检测回路使用,但计算机在某一 时刻只能接收一个回路的信号。所以,必须通过多路模拟开 关实现多选1的操作,将多路输入信号依次地切换到后级。 目前,计算机控制系统使用的多路开关种类很多,并具 有不同的功能和用途。如集成电路芯片CD4051(双向、单端、 8路)、CD4052(单向、双端、4路)、AD7506(单向、单端、16 路)等。所谓双向,就是该芯片既可以实现多到一的切换, 也可以完成一到多的切换;而单向则只能完成多到一的切换。 双端是指芯片内的一对开关同时动作,从而完成差动输入信 号的切换,以满足抑制共模干扰的需要。
R4 V G 1 IR1 R3 (3-1)
若取R1=200Ω,R3=100kΩ,R4=150kΩ,则输 入电流 I 的0 ~ 10 mA就对应电压输出V的0 ~ 5 V; 若取R1=200Ω,R3=100kΩ,R4=25kΩ,则4 ~ 20 mA的输入电流对应于1 ~ 5 V的电压输出。
3.2.1结构原理
过 程 参 数
传 感 变 送 器
信 号 调 理
多 路 模 拟 开 关
前 置 放 大 器
采 样 保 持 器
A/D 转 换 器
接 口 逻 辑 电 路
PC 总 线
图 3-1 模拟量输入通道的结构组成
显然,该通道的核心是模/数转换器即A/D转换器,通常 把模拟量输入通道称为A/D通道或AI通道。
引言
由于计算机的工作速度远远快于被测参数的变化,因此
例题3-1 试用两个CD4051扩展成一个1×16路的模拟开关。 例题分析:图3-4给出了两个CD4051扩展为1×16路模拟开关的 电路。数据总线D3~D0作为通道选择信号,D3用来控制两个多
路开关的禁止端。当D3=0时,选中上面的多路开关,此时当D2、

电力系统自动监控技术交流数据采集与处理PPT课件

电力系统自动监控技术交流数据采集与处理PPT课件
Voltage will be 0 to 100V and current may as high as 25 times of the rated current, that is 125A or 25A.
.
13
The voltage and current are still too big for the AAF, S/H, MUX, ADC and other electronic circuit.
.
9
Typical hardware structure
❖ The following Figure shows the general hardware outline of a numeric protection relay.
❖ It consists of: Galvanic Isolation Transformer Anti-Alias Filter S/H Amplifier Multiplexer ADC Micro-Processor Timer
.
28
原理电路
.
29
工作过程
❖ Sample mode:
S/H is high and AS is closed.
Vout=Vin
❖ Hold mode:
S/H is low and AS is opened.
Vout=VC= Vin (just before AS
open)
.
30
波形
.
31
基本要求:
多路切换开关
❖ Function :
In general case, relays need multichannel inputs
(3phase voltage, 3phase current, zero sequence current etc.)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)D/A转换器 输出电压为:
uD I R f
D
URRf R
D
式中: 是按代码的权组合起 来表示的数字量 ,某位B为“0”时,相应 UR 的这项为0。 为基准电压。
B1 B1 B1 B1 2 4 8 16
数字脉冲波 Uin 电压 形成 二进制 数字量 CPU
总线
VFC
计数器
图2.15 VFC型A/D变换原理框图
(二)AD654的结构及 工作原理
AD654是单片VFC变换芯片, 中心频率为50Hz。在装置中 一般采用负端输入方式,如 图2-16,AD654只能转换单 极性,所以对交流电压的信 号输入,必须有个负的偏置 电压,它在3端输入。
输入+5V
t
0
250
500
图2.17 VFC变换关系图

当输入电压 uin 0 时,由于偏置电压-5V加在输 入端3上,输出信号是频率为250kHz的等幅等宽 的脉冲波,见图2-18(a),当输入信号是交流 信号时,经VFC变换后输出的信号是被交变信号 调制了的等幅脉冲调频波,见图2-18(b)。
图 2.14
逐次逼近型A/D转换器的工作原理
三、基于V/F转换的模拟量输入回路 (一)VFC型A/D变换 VFC的原理是将输入的电压模拟量ui线性地变换 为数字脉冲式的频率f,使产生的脉冲频率正比 于输入电压的大小,然后再固定的时间内用计 数器对脉冲数目进行计数,使CPU读入,其原理 如同2-15所示。

0 t0
t1 t2
t3 t4
t5 t6
图 2.11
采样保持示意图
采样 采样
(四)多路转换开关(MPX) 以AD7506为例说明多路转换开关的工作原理。
ui0

AD7506

通 道 数 选 择
图 2.13
多路转换开关
(五)模数(A/D)变换 A/D变换器主要有逐次逼近型、积分型、计数 型和并行比较型等几种类型。

二、逐次逼近型A/D变换的模拟量输入电路
总线 变 换 器 电压形成回路 低通滤波 采样保持 电压形成回路 低通滤波 采样保持 多 路 转 换 开 关
/
存储器
图2-7 逐次逼近型模拟量输入电路框图
(一)电压形成回路 来自TA、TV的电流或电压量不适应模数变换器的 范围,故需要进行变换。
图中的RC有什 么作用?
图 2.10
采样过程
(三)采样保持器 连续时间信号的采样及其保持是指在采样时刻上, 把输入模拟信号的瞬时值记录下来,并按所需的要 求准确地保持一段时间,供模数转换器A/D使用。 在t0时,s开关闭合, 采样阶段 保持阶段 电容被迅速充电, ui=uo。t0-t1是采样阶段。
在t1时,s断开,uo为此刻 的输入值,t1-t2 是保持 阶段,供A/D使用。
常用的滤波电 路的类型?
2、采样和采样定理 模拟量的采样可分为直流采样和交流采样两种类型。 (1)直流采样 直流采样是指将现场不断连续变化的模拟量先转换 成直流电压信号,再送至A/D转换器进行转换;即 A/D转换器采样的模拟量为直流信号。 (2)交流采样 指对交流电流和交流电压采集时,输入至A/D转换 器的是与电力系统的一次电流和一次电压同频率, 大小成比例的交流电压信号。如下页图所示。
(二)低通滤波器和采样定理 1、低通滤波
电力系统在故障的暂态期间,电压和电流含 有较高的频率,需在采用之前将最高频率分量限 制在一定的频带内,以降低采样频率fs,这样一 方面降低了对硬件的速度要求,另一方面对所需 要的最高频率信号的采样不至于发生失真。 模拟低通滤波器可以做成有源或无源的,最 常用的是RC低通滤波器,阶数根据具体的情况而 定。
-5
-15 Rp1 3 R1 Uin Rp2 +Us VFC 4 快速光隔 至各 插件
交流输入 R
R
零漂调整
C
R
VFC
fout 0~20MHz
光隔
至各
插件
图2-16 AD654工作电路图
此偏置电压为-5V,其压控震荡频率与网络电阻 的关系为
f out 1 10C T uin 5 ( R RP 1 ) ( R1 RP 2 )
变电所模拟量输入输出原理

——电气化3111班
卜朋朋
一、模拟量输入及输出电路简述 变电站综合自动化的微机系统所采集的变电 站测控对象的电流、电压、有功和无功功率、温 度等都属于模拟量。模拟量输入电路的主要作用 是隔离、规范输入电压及完成模数变换,以便与 CPU接口完成数据采集任务。
模拟量输入电路有两种方式: (1)逐次逼近型A/D转换方式——直接将模拟量转 换为数字量的变换方式; (2)利用电压/频率变化(VFC)原理进行模数变 换方式——将模拟量电压先转换为频率脉冲量, 通过脉冲计数变换为数字量的一种变换方式。
uin=0
uin tk-2Ts
2Ts
tk
u0
250kHz的等幅 等宽脉冲
u0
Rk Rk-2 Dk
(a)
(b)
-5V—500kHz—T小—稠 密
图2-28 VFC工作原理和计数采样 (a)uin=0 (b)uin为交变信号
t k NTS

tk
在 D k Rk 至 ( k N )的这一段时间内计数器计到的 R 脉冲数为 ,如果每个脉冲对应的 电压值为Kb系数,则输入电压可用下式表示
uin ( Dk D0 ) K b
D0
式中:
为250kHz中心频率对应的脉冲常数。
瞬时值
D0
四、模拟量输出电路 (一)模拟量输出电路组成
总线 工业生 产过程 放 大 驱 动 / 转 换 器 锁 存 器 输 出 接 口
图2.19 模拟量输出通道结构框图
由于D/A需要一定时间,在转换期间,输入待转 换的数字量应保持不变,而数据在总线上稳定的时 间很短,因此必须用锁存器来保持数据量的稳定。 锁存器:本质是一种触发器,具有记忆功能, 一经触发就将输入信号锁存输出端,输入端再发生 变化不影响输出端状态。
图2-9 交流电压电流输入通道结构框图 (a)电压输入通道(b)电流输入通道
采样定理
一个随时间连续变化的物理量f(t),如图2.10(a), 经过采样后,得到一系列的脉冲序列f*(t),它是离散 的信号,被称为采样信号,如图2.10(c) 。
根据香农(Shannon)定理:如果随时间变化的模 拟信号(包括噪声干扰在内)的最高频率为fmax,只要 按照采样频率f≥2fmax进行采样,那么所给出的样品系 列就足以代表(或恢复)f(t)了,实际应用中常采用 f≥(5-10)fmax。
可见输出频率与输入电压呈线性关系。 RP1用来调整偏置值,使外部输入电压为零时 输出频率为250kHz,从而使交流电压的测量范围 控制在±5V的峰值内,这也叫零漂调整。各通道 的平衡度及刻度比可用电位器RP2来调整。
VFC的变换特性与输入交流信号的变换关 系如图2-17。
输入-5V 输入0V
Uin -10 -5
100V
(a)
变换器 R1 R2 C2 V1 V2 U
5A/1A
TA二次侧i(t)
R

C1
(b)
图2-8 图1 模拟量输入电流变换原理图 模拟量输入电压变换原理图 (a)电压接口 (b) 电流接口
电压形成电路作用: ⑴起电量变换 ⑵将一次设备的TA、TV的二次回路与微机 A/D转换系统完全隔离,提高抗干扰能力。 电路中的稳压管V1和V2的作用? 稳压管V1和V2组成双向限幅,使后面环节 的采样保持器、A/D转换芯片的输入电压限 制在峰—峰值±10V(或±5V)以内。
逐次逼近型A/D转换的实质是:逐次把设定的 SAR 寄存器的数字量经D/A转换后得到的电压Uc与 待转换的模拟电压Ux进行比较。比较时,先从SAR 最高位开始,逐次的确定各位的数码是“1”还是 “0” 。
比较器
/ 数 字 量 输 出
电压 第一次 预测 第三次 预测 第四次 预测
第二次 预测
1000 0100 0110 0101 终值 时序及控制逻辑 ( )原理框图 0 ( )逐次逼近过程
相关文档
最新文档