第二章水和冰(1)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水具有一定的黏度是因为水分子在大多数情况下 是缔合的,而水具有流动性是因为水分子之间的 缔合是动态的。当水分子在ns或ps这样短的时间 内改变它们与临近水分子之间的氢键键合关系时, 会改变水的淌度和流动性。
水分子不仅相互之间可以通过氢键缔合,而且可 以和其它带有极性基团的有机分子通过氢键相互 结合,所以糖类、氨基酸类、蛋白质类、黄酮类、 多酚类化合物在水中均有一定的溶解度。另外, 水还可以作为两亲分子的分散介质,通过这种途 径使得疏水物质也可在水中均匀分散。
在冰的晶体结构中,每个水和另外4个水分子相互 缔合,O-O之间的最小距离为0.276nm,O-O- O之间的夹角为109°。
第二章 水和冰
目的和要求:
1.掌握水在食品中的重要作用、存在的状态,水 分活度和水分等温吸湿线的概念及其意义,水分 活度与食品稳定性的关系。
2.了解水和冰的结构及其性质,分子流动性与食品 稳定性的关系。
水和冰
生物体系的基本成分:蛋白质、碳水化合物、脂 肪、核酸、矿物质和水。其中水是最普遍存在的, 它往往占植物、动物质量或食品质量的50%~90%。
氨NH3(三个供体和一个受体部位形成四面体排列 )和氟化氢HF(一个供体和三个受体部位形成四 面体排列)分子由于没有相等数量的供体和受体 部位,都无法形成和水一样的三维氢键网络,而 是形成二维氢键网络,每个分子参与的氢键数目 小于水分子。
水分子的结构特征
水是呈四面体的网状结构 水分子之间的氢键网络是动态的 水分子氢键键合程度取决于温度
冰的热导率是同样温度下水的4倍——说明冰对热 的传导速率要比生物材料中非流动水的导热率快 得多。
冰的热扩散系数约为水的9倍——说明在一定的环 境条件下,冰的温度变化速率比水大得多。
正是由于水的以上物理特性,导致含水食品在加 工贮藏过程中的许多方法及工艺条件必须以水为 重点进行考虑和设计;特别是在利用食品低温加 工技术是要充分重视水的热传导和热扩散的特点。
HO
H
H
由于每个水分子上有四个形成氢键的位点,因此 每个水分子的可以通过氢键结合4个水分子。
水分子之间还可以以静电力相互结合,因此缔合
态的水在空间有不同的存在形式,如:
H
H
H HH O OO
OH HO
H
O
H
H HH
O
H
O
HH
OH H
H
不同的缔合形式,可导致水分子之间的缔合数大于4。
在通常情况下,水有三种存在状态,即气态、液 态和固态。水分子之间的缔合程度与水的存在状 态有关。在气态下,水分子之间的缔合程度很小, 可看作以自由的形式存在;在液态,水分子之间 有一定程度的缔合,几乎没有游离的水分子,由 此可理解为什么水具有高的沸点;而在固态也就 是结冰的状态下,水分子之间的缔合数是4,每个 水分子都固定在相应的晶格里,这也是水的熔点 高的原因。
食品中的含水量
水是食品的主要组成成分,食品中的水分含量、 分布和状态对食品的结构、外观、质地、风味、 新鲜程度产生极大的影响;食品中的水分也是引 起食品变质的重要原因;影响食品的品质和加工 工艺。
食品名称
番茄 莴苣 卷心菜 啤酒 柑橘 苹果汁
表2.1 某些代表性食品的含水量
水分%
食品名称
水分%
食品名称
水的缔合程度及水分子之间的距离也与温度有密 切的关系;在0℃ 时,水分子的配位数是4,相互 缔合的水分子之间的距离是0.276nm;当冰开始熔 化时,水分子之间的刚性结构遭到破坏,此时水 分子之间的距离增加,如1.5℃ 时为0.29nm,但由 0℃ ~3.8℃ 时,水分子的缔合数增大,如1.5℃ 时 缔合数是4.4,因此冰熔化的开始阶段,密度有一 个提高的过程;随着温度的继续提高,水分子之 间的距离继续增大,缔合数逐步降低,因此密度 逐渐降低。
而且水分的分布不均,动物体内以血液、脑等器 官最多,其次是皮肤,而骨骼中较少;植物中一 般以叶、茎、根等部位含水量高,种子中含量少。
2.1 概述
2.1.1 水在食品中的作用 食品的溶剂 食品中的反应物或反应介质 除去食品加工过程中的有害物质(单宁、秋水仙
碱) 食品的浸胀剂 食品的传热介质 生物大分子化合物构象的稳定剂
水分子两个O—H键的夹角即(H—O—H)的键角 为104.5°,O—H核间距为0.096 nm,氢和氧的 范德华半径分别为0.12和0.14 nm。
SP3
O
H H 104.50
1.84D
1. H2O分子的四面体结构有对称性 2. H-O共价键有离子性和电负性
3. 氧的另外两对孤对电子有静电力
水分子氢键键合程度取决于温度
配位数(coordination number)是中心离子的重 要特征。直接同中心离子(或原子)配位的原子 数目叫中心离子(或原子)的配位数。
水分子的缔合与水的三态
由于水分子的极性及两种组成原子的电负性
差别,导致水分子之间可以通过形成氢键而呈现
缔合状态:
O
H
H
O
H
解释水和冰的异常物理性质,最好先从研究单个 水分子的性质开始,进而拓展到水分子束的特性 ,最终考察整体相水的特征。
2.2 水、冰的结构和性质
一、单个水分子的结构
接近完美四面体结构的强极性分子。 水分子由两个氢原子与一个氧原子的两个SP3杂 化轨道结合成两个σ共价键,形成近似四面体结 构,氧原于位于四面体中心,四面体的四个顶点 中有两个被氢原子占据,其余两个为氧原子的非 共用电子对所占有。
Βιβλιοθήκη Baidu
95
牛奶
87
95
马铃薯
78
果酱 蜂蜜
92
香蕉
75
奶油
90
鸡
70
稻米面粉
87
肉
65
奶粉
87
面包
35
酥油
水分%
28 20 16 12 4 0
2.1.2 水、冰的物理特性
水是一种特殊的溶剂,其物理性质和热行为有与 其它溶剂显著不同的方面:
水的熔点、沸点、介电常数、表面张力、热容和 相变热均比质量和组成相近的分子高得多。
水的结构
3种结构模型 混合型
水分子间以氢键形式瞬时聚体成庞大的水分子簇
连续结构
水分子间的氢键均匀地分布在整个水体系中,连续网状
填隙式模型
水保留了一种似冰或是笼型的结构,单个水分子填充在整 个笼型结构的间隙空间中
冰的结构
冰的结构和性质
冰是水分子通过氢键相互结合、有序排列形成的 低密度、具有一定刚性的六方形晶体结构。普通 冰的晶胞和基础平面可如下图所示: