271导学案.第2辑.七年级数学.配BS版
七年级数学上册2.1有理数教案+学案+练习北师大版
有理数学习目标:1.在具体情境中,进一步认识负数,理解有理数的意义。
2.会用正负数表示具有相反意义的量3.会判断一个数是正数还是负数,能对有理数进行分类4.体验数学发展是生活实际的需要,激发学习数学的兴趣学习重难点:1.用正负数区分相反意义的量2.能按一定标准对有理数分类教学过程一、学前准备:1.知识链接:小学里学过哪些数?这些数在生活中有哪些有用?2.预学教材:阅读课本P23和P24页(边阅读边思考)再回答上面的问题。
你有什么疑难问题:预学检测:(1)“加分与扣分”“上涨量与下跌量”等都是具有相反意义的量。
为了表示相反意义的量,我们把其中一个量规定用正数表示,而把与这个量 _______,用负数表示。
(2) _________和 __________统称为有理数。
(3) ___________既不是正数,也不是负数。
二、课堂导学:探究活动(一):正、负数表示具有相反意义的量1.检查预习情况①P23表格内容②对教材“议一议”,小组同学交流,小组代表班上交流:你的例子:③同组同学交流P24例1内容,小组代表班上交流。
教师做适当的指导。
2.变式训练:①如果收入30元记作+30元,那么支出20元记作,100表示。
②气温上升6C记作+6C,那么气温下降5C记作。
③若把比海平面高规定为正,则m表示,0m表示。
④前进3米的实际意义是。
3.完成教材P25随堂练习1探究活动(二):有理数的分类1.检查预学P24“做一做”情况,将自己的所得与同学交流,小组代表班上交流:有理数按定义可分为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧:::::如如如如如有理数按正负性分为⎪⎪⎩⎪⎪⎨⎧:::如如如2.变式训练:①把下列各数填入相应的集合内:5,2,13,0,1.5,722, 3.14正数集合:{ …}负数集合:{ …} 整数集合:{ …}分数集合:{ …} 正整数集合:{ …}负分数集合:{ …}3、完成教材P25随堂练习2三、学习评价:当堂检测:1.零上13C记为+13C,零下2C记作()A.2 B. 2 C.2 C D.2 C2.下列说法中正确的是()A.一个数不是正数就是负数B.0不是自然数C.0是整数D.整数又叫自然数3.2011符合①有理数;②整数;③正数;④负数中的()A.①③ B.①②③ C.①②④ D.①②③④4.如果某人向东走10米,又向西走10米,那么这个人共走了米,他的位置在自我评价:1.学习感受:你完成本课时学习的情况为:()A.很好B.较好C.一般D.较差2.学习小结:3.疑难问题:四、能力拓展:1.观察下列一列数,探索规律:12, +23,34, +45,…(1)填出第7,8,9三个数,它们分别为。
北师大版七年级数学上册导学案2.1有理数
2.1 有理数学习目标:1.在具体情境中,进一步认识负数,理解有理数的意义。
2.会用正负数表示具有相反意义的量3.会判断一个数是正数还是负数,能对有理数进行分类4.体验数学发展是生活实际的需要,激发学习数学的兴趣学习重难点:1.用正负数区分相反意义的量2.能按一定标准对有理数分类3.一、学前准备:1.知识链接:小学里学过哪些数?这些数在生活中有哪些有用?2.预学教材:阅读课本P23和P24页(边阅读边思考)再回答上面的问题。
你有什么疑难问题:预学检测:(1)“加分与扣分”“上涨量与下跌量”等都是具有相反意义的量。
为了表示相反意义的量,我们把其中一个量规定用正数表示,而把与这个量 ,用负数表示。
(2) 和 统称为有理数。
(3) 既不是正数,也不是负数。
二、课堂导学:探究活动(一):正、负数表示具有相反意义的量1.检查预习情况①P23表格内容②对教材“议一议”,小组同学交流,小组代表班上交流:你的例子: ③同组同学交流P24例1内容,小组代表班上交流。
教师做适当的指导。
2.变式训练:①如果收入30元记作+30元,那么支出20元记作 ,-100表示 。
②气温上升6︒C 记作+6︒C ,那么气温下降5︒C 记作 。
③若把比海平面高规定为正,则+25m 表示 ,0m 表示 。
④前进-3米的实际意义是 。
3.完成教材P25随堂练习1探究活动(二):有理数的分类1.检查预学P24“做一做”情况,将自己的所得与同学交流,小组代表班上交流: 有理数按定义可分为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧:::::如如如如如 有理数按正负性分为⎪⎪⎩⎪⎪⎨⎧:::如如如2.变式训练:①把下列各数填入相应的集合内:5,-2,13,0,1.5,722,-3.14正数集合:{ …}负数集合:{ …}整数集合:{ …}分数集合:{ …}正整数集合:{ …}负分数集合:{ …}3、完成教材P25随堂练习2三、学习评价:当堂检测:1.零上13︒C记为+13︒C,零下2︒C记作()A.2 B.-2 C.2︒C D.-2︒C2.下列说法中正确的是()A.一个数不是正数就是负数B.0不是自然数C.0是整数D.整数又叫自然数3.-2011符合①有理数;②整数;③正数;④负数中的()A.①③B.①②③C.①②④D.①②③④4.如果某人向东走10米,又向西走10米,那么这个人共走了米,他的位置在自我评价:1.学习感受:你完成本课时学习的情况为:()A.很好B.较好C.一般D.较差。
七年级数学上册 2.1 有理数导学案 (新版)北师大版
有理数【学习目标】1.掌握正、负数的概念和表示方法,理解具有相反意义的量的含义.2.理解有理数的意义,会对有理数进行分类.【学习重点】会用正负数表示具有相反意义的量,会对有理数进行分类.【学习难点】负数的引入及有理数的分类.行为提示:从学生已有的生活经验引入,使学生初步认识用正、负数表示具有相反意义的量.行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.提示:用正数和负数表示具有相反意义的量,关键要看规定哪种意义的量为正,与之相反意义的量为负,通常我们把上升、前进、收入、零上、买进等量用正数表示,与之相反意义的量用负数表示.情景导入生成问题在实际生活中,存在着诸如收入5000元,支出5000元等各种具体的数量,这些数量不仅与5000等数量有关,而且还含有收入与支出等实际的意义.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的,收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入一种新数——负数.自学互研生成能力知识模块一 用正、负数表示具有相反意义的量1.阅读教材第23页“议一议”上方的内容,并完成书中的填空.【说明】从学生熟悉的知识竞赛引入,使学生初步认识用正、负数表示具有相反意义的量.2.认真阅读教材第23页的“议一议”的内容,先独立完成之后再与同伴进行交流. 【说明】学生很容易找出生活中关于负数的例子,进一步认识用正、负数表示具有相反意义的量. 【归纳结论】负数的产生是生活、生产的需要.为了表示具有相反意义的量,我们可把其中一个量规定为正的,用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.师生合作共同完成第24页例题的学习.【说明】进一步感受生活中的正负数,领悟数学来源于生活,又应用于生活.【归纳结论】若正数表示某种意义的量,则负数就表示与其意义相反的量;同理,若负数表示某种意义的量,则正数就表示与其意义相反的量.知识模块二 有理数的分类问题:我们学过了哪些数? 怎样对它们进行分类呢?【说明】学生回忆学过的数,思考怎样进行分类,然后与同伴进行交流,教师再引导学生进行分类,形成良好的师生互动.【归纳结论】有理数有两种分类方法:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数 有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数 注意:0既不是正数,也不是负数.行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导其他组进行补充、纠错,最后进行总结评分.交流展示 生成新知1.小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行板书规划.知识模块一 用正、负数表示具有相反意义的量知识模块二 有理数的分类:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数 有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
七年级数学下册7.1.2导学案
(2 ( 1) (2 ) (3 ) CD、BE、 2.如图 2,△ABC 中,高 CD、BE、AF 相交于点 O,则△BOC 的三条高分别为线 ________. 段________. 上的中线, AB=5cm,AC=3cm, 3.如图 3,AD 是△ABC 的边 BC 上的中线,已知 AB=5cm,AC=3cm,求△ABD 与 △ACD 的周长之差。 的周长之差。
初一年 数学学科导学案 音德级: 审核: 姓名: 授课人: 授课时间: 小组:
课 题 : 7.1.2 三 角 形 的 高 线 、 中 线 、 角 平 分 线 课 型 : 新 课 教师 “复备” 课时: 课时:1 课时 栏或学生笔 学习目标】 【学习目标】 了解三角形的高、 中线与角平分线的概念; 1. 了解三角形的高、中线与角平分线的概念; 记栏 2. 并能用工具准确画出; 并能用工具准确画出 用工具准确画出; 3 从合作中感受集体力量。 从合作中感受集体力量 受集体力量。 重点难点预测】 【重点难点预测】 学习重点: 不同的三角形三条高的位置关系.; 学习难点: 掌握三种线的画法. 学习重点:不同的三角形三条高的位置关系 ; 学习难点:掌握三种线的画法. 知识链接】 【知识链接】 引课: 引课: 链接: 回忆如何计算三角形的面积 如何计算三角形的面积。 编题) 链接:1、回忆如何计算三角形的面积。 (编题) 回顾角的平分线的知识 请同学画一下。同学自由回答( 分钟) 角的平分线的知识, 2、回顾角的平分线的知识,请同学画一下。同学自由回答(3 分钟) 同学们:今天我们来学习新知识。 引课:7.1.2 三角形的高线、中线、 来学习新知识 ( (引课 同学们:今天我们来学习新知识。 引课:7.1.2 三角形的高线、中线、角平分 线) 【学法指导】作图得出规律。 注意时间) 学法指导】作图得出规律。 注意时间) 得出规律 ( 【学习过程】 学习过程】 (一) 预习交流 1、阅读课本 65 页“高线”部分,请回答并填充: 高线”部分,请回答并填充: 、 什么叫三角形的高? 什么叫三角形的高 答: 在下面画出三角形 并在这个三角形中画出它的三条高 画出三角形,并在这个三角形中画出它的三条高. 1)在下面画出三角形 并在这个三角形中画出它的三条高 观察这三条高所在的直线的位置有何关系?(三种三角形) 观察这三条高所在的直线的位置有何关系 (三种三角形)
推荐K12学习七年级数学上册2.7.2有理数的乘法教案新版北师大版
课题:2.7.2有理数的乘法教学目标:1.使学生进一步熟悉实验、观察、比较、猜想、验证等数学上常用的研究方法.理解乘法中的各种运算律,并能运用运算律进行有理数乘法中的简便运算.2.提高学生观察、比较、归纳的能力,灵活运用运算律去解决一些运算问题的能力.3.使学生感受从特殊到一般、由一般到特殊的认知规律.教学重点与难点:重点:掌握有理数乘法法则的运用,验证和探索有理数乘法当中运算律的产生过程,运用乘法的运算律进行有理数乘法的简便运算.难点:有理数乘法运算律的灵活运用.鼓励学生注意观察、勤于分析.教法与学法指导:鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养.课前准备:多媒体课件.教学过程:一、温故知新,导入新课活动内容1:1.有理数加法法则和乘法法则各是什么?2.如何进行有理数乘法运算?乘法运算符号如何规定?3. 在小学我们学过一些乘法的运算律,谁能给大家介绍一下?小学学习过的有关乘法的运算律,对所有的有理数都还适用吗?通过计算,比较验证同学们的猜想.处理方式:引导学生认识学习进行猜想并归纳,培养学生的数学交流水平和简单的抽象建模能力.乘法的交换律、乘法的结合律、乘法的分配律.设计意图:复习巩固有理数的乘法法则,训练学生的运算技能,自然过渡引入新课.二、探究学习,感悟新知活动内容2:(课件展示)1、根据有理数乘法法则,计算下列各题,并比较它们的结果.(1)(-7)×8与8×(-7);(2)[(-4)×(-6)]×5 与(-4)×[(-6)×5];(3)5×[3+(-7)]与5×3+5×(-7).通过计算积的比较,你发现了什么规律?猜想乘法运算律在有理数范围内是否适用?处理方式:认真思考并运用有理数的乘法法则计算上述各题.让3名学生板演计算过程,教师组织学生评价与纠错.通过比较结果,探究猜想乘法交换律、结合律、分配律在有理数范围内使用的结论.设计意图:得出:乘法运算律有三条,分别是乘法的交换律;乘法的结合律;乘法对加法的分配律.并在小组内讨论如何用字母来表示每条运算律.乘法的交换律;乘法的结合律;乘法对加法的分配律;用文字语言准确表达乘法运算律.乘法的交换律:两个数相乘,交换因数的位置,积不变;并且能用字母表示乘法的交换律:a b b a⨯=⨯.乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;乘法的结合律:乘法()()a b c a b c⨯⨯=⨯⨯.乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.乘法对加法的分配对加法的分配律:()a b c a b a c⨯+=⨯+⨯.三、例题讲解,应用新知活动内容4:(多媒体展示)课本第53页例3.例3 计算:⑴(5-6+38)×(-24);⑵(-7)×(4-3)×514.处理方式:师生解析:第(1)题运用有理数乘法的分配律进行计算,用(-24)分别乘以(56-)和38,然后再把它们的积相加;第(2)题运用有理数乘法的交换律和结合律进行计算,把(-7)和514结合,再用它们的积与(43-)相乘.教师鼓励学生独立计算出结果,并与同伴进行交流,通过比较不同算法,体会运算律对简化运算的作用.解:(1)原式= (56-) ×(-24) +38×(-24)=20+(-9) =11.(2)原式=54-7-143⨯⨯() =54--23⨯() =103. 另解:(2)原式=+(457314⨯⨯) =547143⨯⨯ =103. 设计意图:通过学生的动手实践,切实感受到利用运算律进行有理数的计算能够简化运算,另外利用对比的教学方法,学生接受起来很自然,并且印象很深刻.巩固练习:学以致用------乘法交换律,乘法结合律,乘法分配律1.计算(1)(-85)×(-25)×(-4)(2)(-8)×(-12)×(-0.125)×(-13)×(-0.1) 2.用两种方法计算 111()12462+-⨯ 比较两种解法,它们在运算顺序上有什么别?解法2运用了什么运算律?哪种解法运算简便?3.改一改1315(24)()34681315=--24+24-243468-⨯-+-⨯⨯⨯⨯解:原式24 = - 8 -18 +4- 15= - 41 +4= - 37这题有错吗?错在哪里?处理方式:教师鼓励学生独立计算出结果,学生完成以后,师生共同批阅,并与同伴进行交流,并对出现的问题及时纠正.通过比较不同算法,体会运算律对简化运算的作用.设计意图:通过几道习题的训练,及时巩固所学的知识,给学生提供充分展示自己的机会,最大限度的暴露学生掌握过程中的问题,便于及时纠正落实.体验运算律简化计算的作用.四、拓展提高,应用新知活动内容5:在应用有理数的运算律特别是乘法对加法的分配律时,给出如例题1的形式我们会根据运算律简便运算,那如果是下面的形式呢?应该如何简化运算呢?例4 计算: (-24) ×(1-5)十(-24) ×(4-5)处理方式:引导学生观察乘法分配律,让学生明白()a b c a b a c⨯+=⨯+⨯;a b a c⨯+⨯()a b c=⨯+,这是分配律的逆运用,师生共同分析完成(教师板书).解:原式= (-24) ×[(1-5)十(4-5)]= (-24) ×(-1) =24.例5 计算:42925×(-5).处理方式:本题先让学生独立解题后小组交流解法,在此基础上师生共同归纳总结出简便算法.用两种方法计算,并比较哪种方法较简便.同时让四名学生板演,其他学生在练习本上做.在学生完成后,让学生之间进行互评.解:原式=(50-125)×(-5)=50×(-5)-125×(-5)=-250 -(1-5)=-250 +1 5=4-2495.设计意图:对有理数乘法法则的巩固和提高运算技能,对运算律的运用使计算简便.巩固训练:计算:⑴(3-4)×(-8);⑵ 30×[(1-2)-13];⑶(0.25-23)×(-36);⑷ 8×(4-5)×116.设计意图:对有理数乘法法则的巩固和提高运算技能.五、回顾反思,提炼升华通过本节课的学习,你学到哪些知识?有何体会?处理方式:由学生进行课堂小结;⑴运算律的语言表述;⑵运算律的符号表示;⑶运算律的作用;学习了有理数的乘法运算律和运用符号来表达乘法运算律.还有运用乘法运算律可以简化运算过程.设计意图:小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.这样不仅培养了学生的口头表达能力,又提高了学生的课堂主人翁精神和积极参与意识.六、达标检测,应用反馈(A层)1.计算(-0.125)×15×(-8)×(-45)=[(-0.125)×(-8)]×[15×(-45)],这里运用了乘法的( )A.结合律B.交换律C.分配律D.交换律和结合律2.算式(-3 34)×4可以转化为( )A.-3×4- 34×4 B.-3×4+34×4C.-3×4- 34D.-3-34×43.运用分配律计算2120×(-98)时,你认为下列变形最简便的是( ) .A.(2+ 120)×(-98) B.(3-120)×(-98)C.2120×(-100+2) D.4120×(-90-8)4.计算:(1)(-3.7)×(-0.125)×(-8).(2)( 13-16-112)×12.(3)-17×(-3117).设计意图:本环节的目的就是为了检测学生的达标情况和巩固练习,同时为学有余力的学生设置了有创新思维的问题,以满足不同层次的学生在数学发展方面的需要.填空题的出发点在于帮助学生理解运算律,发展学生的符号感.七、布置作业必做题:习题2.11 第1题(2),(4),(6),(8)小题.选做题:习题2.11 第3题.设计意图:复习巩固本节知识,训练提高运算技能.学生自由选择完成作业,按不同的要求统计达标情况,让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.板书设计:乘法的交换律:。
北师大版数学七年级上册2.7.2有理数的乘法优秀教学案例
3.创设互动环节,让学生通过小组讨论、分享心得,培养学生的团队协作能力和表达能力。
(二)问题导向
1.引导学生提出问题,如“有理数乘法是什么?有哪些规律?”鼓励学生主动思考、探究。
2.设计一系列有针对性的练习题,让学生在解决问题的过程中巩固有理数乘法的知识。
3.自主探究,培养能力:本节课注重引导学生通过观察、思考、交流、归纳等数学活动自主探究有理数乘法法则。这样的教学策略既有利于学生掌握知识,又能培养学生的数学思维能力和自主学习能力。
4.小组合作,互动交流:在教学过程中,将学生分成若干小组,鼓励学生相互讨论、交流,共同解决问题。这种教学方式有助于培养学生的团队协作能力和沟通能力,提高课堂氛围。
2.生对有理数乘法的好奇心。
3.组织学生进行小组讨论,分享彼此对有理数乘法的理解和疑问,为讲授新知识做好铺垫。
(二)讲授新知
1.引导学生探究有理数乘法的基本规律,如正数乘正数、负数乘负数、正数乘负数等,让学生通过观察、思考、交流等数学活动自主得出结论。
北师大版数学七年级上册2.7.2有理数的乘法优秀教学案例
一、案例背景
北师大版数学七年级上册2.7.2有理数的乘法优秀教学案例,以我国著名的数学家陈景润的故事导入,激发学生的学习兴趣。本节课主要内容是有理数的乘法,包括正数、负数、零的乘法规律,以及乘方的概念。在教学过程中,注重让学生通过观察、思考、交流、归纳等数学活动,自主探究有理数乘法法则,培养学生的数学思维能力和团队协作能力。
五、案例亮点
1.故事导入,激发兴趣:以北师大版数学七年级上册2.7.2有理数的乘法为例,通过陈景润的故事导入新课,激发了学生的学习兴趣,使学生在轻松愉快的氛围中进入学习状态。这样的导入方式不仅与学科和课本内容紧密相关,而且能够调动学生的积极性,提高课堂效率。
1北师大版七年级数学上册全册导学案-教案 (2)
第一章丰富的图形世界导学案第一节生活中的立体图形【学习目标】1.经历从现实世界中抽象出形象的过程,感受图形世界的丰富多彩。
2.在具体情境中,认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。
3.通过丰富的实例,进一步认识点、线、面,初步感受点、线、面之间的关系。
4.在对图形进行观察、操作等活动中,积累处理图形的经验,发展空间观念。
【学习方法】自主探究与合作交流相结合【学习重难点】重点:认识常见的几何体的基本元素,了解棱柱的一些基本概念及其某些特性。
难点:用语言描述常见几何体的某些特征及对几何体的分类。
【学习过程】模块一预习反馈一、学习准备1.在小学学习了的立体图形有2.长方体有____个面,每一个面都是_______,正方体有____个面,每一个面都是__________ 长方体的表面积=_________________________,长方体的体积=_________________________ 正方体的表面积=_________________________,正方体的体积=_________________________3.阅读教材:p2—p6第1节《生活中的立体图形》,并完成随堂练习和习题二、教材精读4.写出下列几何体的名称____________________________________________________________________________ 5.棱柱的有关概念及其重要特点:(1)棱柱的有关概念:在棱柱中,相邻两个面的交线叫做;相邻两个侧面的交线叫做。
(2)棱柱的三个特征:一是棱柱的所有侧棱长都;二是棱柱的上下底面的形状,都是形;三是侧面都是形。
(3)棱柱的分类:根据底面多边形的将棱柱分为、、、……;它们的底面分别是、、……。
(4)棱柱中的元素之间的关系:底面多边形的边数n,可确定该棱柱是棱柱,它有个顶点,条棱,其中有条侧棱,有个面,个侧面实践练习:请你按适当的标准对下列几何体进行分类。
七年级初一数学导学案(全书共80页)全书
例 3.计算 (1) -a 3 ·(-a) 5
(2) (-a)3·(-a)2·(-a)
(3) (-a)a)2·(-a)3·(-a2)
例 4.计算
(1)(- 22)3
(3) - x3 2 - x2 3
目录
第一讲 幂的运算(一) .........................................................................................................................................1 第二讲 幂的运算(二) .........................................................................................................................................6 第三讲 整式乘法(一) .......................................................................................................................................10 第四讲 整式乘法(二) .......................................................................................................................................15 第五讲 整式除法 ...................................................................................................................................................19 第六讲 代数式求值的方法总结 .......................................................................................................................... 22 第七讲 期中测试 ...................................................................................................................................................25 第八讲 相交线与平行线 .......................................................................................................................................28 第九讲 三角形的相关概念 ...................................................................................................................................33 第十讲 全等三角形的概念与性质 ...................................................................................................................... 39 第十一讲 全等三角形的判定(一) .................................................................................................................. 45 第十二讲 全等三角形的判定(二) .................................................................................................................. 48 第十三讲 有理数的混合运算 ...............................................................................................................................51 第十四讲 一元一次方程的应用 .......................................................................................................................... 56 寒假测试卷 ...............................................................................................................................................................60
北师大版数学七年级上第二章2.1有理数导学案
靖边二中导学案一、学习目标1、借助生活中的实例,从扩充运算的角度引进负数,理解有理数的意义,会将有理数正确分类。
2、会判断一个数是正数还是负数,会使用正负数表示现实生活中具有相反意义的量。
3、体验数学发展是生活实际的需要。
二、学习重难点1、会用正数、负数区分相反意义的量。
2、理解正数、负数及有理数的意义,能按一定标准对有理数分类。
三、学法指导阅读课本P 23和P 24页的内容,经历从生活中发现数学问题,体会数学与现实生活的联系,并与同伴进行交流。
四、预习案 1、知识链接在小学,你学过哪些数?这些数在生活中有哪些作用?2、正、负数表示具有相反意义的量3、议一议生活中你见过其他用负数表示的量吗?你有哪些的生活实例?请你与同伴进行交流。
4、想一想(1)“加分与扣分”、“上涨量与下跌量” 、“零上温度与零下温度”等都是具有相反意义的量。
为了表示具有相反意义的量,我们可把其中一个量规定为正的,用正数来表示,而把与这个量______规定为负的,用负数来表示。
(2)____和____统称为有理数。
(3)__既不是正数,也不是负数。
五、探究案活动(一) 例题讲解 1、例题讲解请同学们阅读课本P 24的例题及解答过程,你学到了什么?并与同伴进行交流,教师做适当的指导。
2、变式训练(1)如果收入30元记作+30元,那么支出20元记作_____。
(2)如果气温上升6℃记作+6℃,那么-5℃表示_______。
(3)若把比海平面高规定为正,则+25m 表示_________,0m 表示________。
(4)前进-3米的实际意义是________。
3、随堂练习(课本P 25 1)活动(二)有理数的分类 1、有理数的分类将所有学过的数进行分类,并与同伴进行交流。
有理数按照定义可以分为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧:::::如如如如如有理数按照正负性可以分为⎪⎪⎩⎪⎪⎨⎧:::如如如2、变式训练把下列各数填入相应的集合内:5,2,13,0,1.5,722,3.14。
七年级数学上册 2.7有理数的乘法 精品导学案2 北师大版
有理数的乘法学法指导类比小学学过的运算律,归纳有理数的运算律并熟练用运算律进行运算 一.预学质疑(设疑猜想.主动探究) 1.如果ab =0,那么一定有( )A .a =b =0B .a =0C .a ,b 至少有一个为0D .a ,b 最多有一个为0 2.下列算式中,积为正数的是( ) A .(-2)×(+21) B .(-6)×(-2) C .0×(-1) D .(+5)×(-2) 3.下面计算正确的是( )A .-5×(-4)×(-2)×(-2)=5×4×2×2=80B .12×(-5)=-50C .(-9)×5×(-4)×0=9×5×4=180D .(-36)×(-1)=-364.计算填空:(1)(-3)×5×(-1)=______;(2)(-2)×(-6)×(61-)=_______; (3)0×(-4)×5=________。
5.指出下列变化中所运用的运算律:(1)3×(-2)=-2×3( );(2)-13+12=12-13( ); (3)3×(-2)×(-5)=3×[(-2)×(-5)]( ); (4)68×(524-216)=68×524-68×216( ). 要做学疑之星,提价值性问题:阅读课文内容,你认为模糊或不懂的地方记录下来:二.研学析疑(合作交流.解决问题)【问题一】计算下面的题目,观察相邻的两题,它们有什么特点?请尝试用自己的语言表达出来?⑴(-7)×8=______;8×(-7)=______;(53-)×(-109)=_______;(-109)×(53-)=_______;⑵[(-4)×(-6)]×5=__________;(-4)×[(-6)×5]=__________。
精品2016-2017北师大版七年级数学上册全册导学案教案(K12教育文档)
精品2016-2017北师大版七年级数学上册全册导学案教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(精品2016-2017北师大版七年级数学上册全册导学案教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为精品2016-2017北师大版七年级数学上册全册导学案教案(word版可编辑修改)的全部内容。
第一章丰富的图形世界导学案第一节生活中的立体图形【学习目标】1。
经历从现实世界中抽象出形象的过程,感受图形世界的丰富多彩。
2.在具体情境中,认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征.3.通过丰富的实例,进一步认识点、线、面,初步感受点、线、面之间的关系.4。
在对图形进行观察、操作等活动中,积累处理图形的经验,发展空间观念。
【学习方法】自主探究与合作交流相结合【学习重难点】重点:认识常见的几何体的基本元素,了解棱柱的一些基本概念及其某些特性.难点:用语言描述常见几何体的某些特征及对几何体的分类.【学习过程】模块一预习反馈一、学习准备1.在小学学习了的立体图形有2.长方体有____个面,每一个面都是_______,正方体有____个面,每一个面都是__________长方体的表面积=_________________________,长方体的体积=_________________________正方体的表面积=_________________________,正方体的体积=_________________________ 3。
阅读教材:p2—p6第1节《生活中的立体图形》,并完成随堂练习和习题二、教材精读4.写出下列几何体的名称____________________________________________________________________________5。
BS北师版 初一七年级数学 上册第一学期秋季(导学案)第二章 有理数及其运算 2.1 有理数
2.1 有理数〔学习目标〕1、了解集合的概念,理解有理数及有关概念;2、能将所给的有理数按要求进行分类,体验分类思想.〔重点难点〕有理数及有关概念是重点;有理数的分类是难点.〔学习过程〕一、导入新课[投影1]1、“一个数如果不是正数,那么一定是负数”这句话对不对?为什么? 不对.因为零既不是正数,也不是负数.所以,一个数可能是正数,负数或零.2、引入负数后,你已经认识了哪些类型的数?试举几例.正整数,如1,2,3,…;零,0;负整数,如-1,-2,-3,…;正分数,如1/2,2/3,15/7,0.1,5.32,…;负分数,如-0.5,-5/2,-2/3,-1/7,-15,0.25,….我们学过的有限小数和无限循环小数都可化为分数.二、有理数及分类1、有理数的概念正整数、0、负整数统称为整数.正分数和负分数统称为分数.整数和分数统称为有理数.2、有理数的分类(1)按定义有理数可以怎样分类?(2)按性质有理数可以怎样分类?⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数0负整数负有理数负分数 注意:对概念进行分类,可以明了概念之间的关系,有利于我们进一步理解概念;分类必须按同一标准进行,做到不重复不遗漏.三、例题[投影3]例 把下列各数填入表示它所在的数集的圈里. -17,22/7, -3/5,3,0.107, -63% ,0.分析:把一些具有相同特征的数合在一起组成了一个集合.所有正整数合在一起组成正整数集合,所有负整数合在一起组成负整数集合….什么是正数集合,负数集合,整数集合,分数集合?它们中分别是哪些数? · 0.2 -答:正数集合中有22/7,3,0.107;负数集合中有-17 ,-3/5, -63%,;整数集合中有-17,3,0;分数集合中有22/7,0.107,-3/5,四、巩固练习[投影4]1、填空:(1)有理数中,是整数而不是正数的是 ;是负数而不是整数的是 .(2)零是 还是 ;但不是 ,也不是 .[投影5]2、把下列各数放在相应的集合中.10,-0.72,-2,0,-98,25,8/3,6.3%,3.14.五、课堂小结1、什么是整数、分数、有理数?2、有理数可以怎样分类?分类要注意什么问题?作业:课本14面第1题.有理数作业优化设计1、_____ _ __ _统称为整数,____ __统称为分数,整数和分数统称为___ __.2、是正数而不是整数的数是 ;是负数而不是分数的数是 .3、下列说法正确的是( )A、整数就是自然数 B、0不是自然数C、正数和负数统称为有理数 D、0是整数而不是正数4、下列说法不正确的是( )A 、有理数可分为正整数、正分数、0、负整数和负分数B 、一个有理数不是分数就是整数C 、一个有理数不是正数就是负数D 、若一个数是整数,则这个数一定是有理数5、正整数集合与负整数集合合并在一起构成的集合是( )A 、整数集合B 、有理数集合C 、自然数集合D 、以上说法都不对6、+4,-112,0,3.6中,既是正数,又是分数的是 .7、下列说法中不正确的是( )A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .不是负数就是正数和0,不是正数就是负数和08、把下列各数填入相应的集合内:· 0.2. -· 0.2 -15,38 ,0,0.15,-30,-12.8,225,+20,-60.正数集合 负数集合9、把下列各数填入相应的大括号内:-7,0.125,12,-312,3,0,50%,-0.3. 正数集合:{…};负数集合:{ …}; 自然数集合:{ …};正整数集合:{ …}; 分数集合:{…};负分数集合:{…}.。
七年级数学下册 7.17.2导学案 (新版)北京课改版
7.1观察与7.2实验预习案一、学习目标1、能通过观察的到一些结论.2、能通过实验来检验某些猜想或理论.3、能灵活运用所学的知识解决一些实际问题. 二、预习内容范围:自学课本P 108-P 111,完成练习. 三、预习检测1、如右图所示水杯从上面看到的图形是( )2、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则!!98100的值为( ) A .4950 B .99! C .9 900 D .2!探究案一、合作探究(10分钟)探究要点1、通过观察的到一些结论.认识来源于实践,观察与实验是我们认识事物的重要方法.学习数学同样如此,通过观察与实验,我们可以发现许多规律.历史上的很多发明创造源于观察.例如鲁班观察丝茅草,发明了锯条;瓦特观察水烧开后水壶盖被水蒸气顶开,发明了蒸汽机……交流:1、在一个晴朗的夜晚,如果你在野外迷失了方向,你有办法确定朝北的方向吗?结合图7-1加以说明.2、在图7-2中,有一条直线a,一条射线b和一条线段c.青观察它们的位置,并动脑筋思考一下,a,b,c之间有没有交点.动手画一画,和你观察得出的结论进行比较.3、在图7-3中,AB、CD是两条线段.请观察AB、CD的长短一样吗?量一量,然后和你观察得出的结论进行比较.4、如图7-4,请观察,图中的4条红色线条是直的吗?动手画一画,并和你观察的结论进行比较.5、在一个正方体模型的六个面上,分别标上数字1,2,3,4,5,6.图7-5是从三个不同的方向看到的几个数字.观察图形中的数字特点,那么,“1”相对面上的数字是_____;“2”相对面上的数字是_____;“3”相对面上的数字是_____.请同学们完成4、5并交流结论.探究要点2、通过实验来检验某些猜想或理论.通过以上的问题,你认为只凭观察做出的判断可靠吗?我们知道,观察是获得感性认识的重要途径,但观察得到的结果是否正确,还需要经过验证.正如恩格斯所说:“单凭观察所得的经验,是决不能充分证明必然性的.”实验是人们认识事物的一种有目的的探索过程,一般是为了检验某种猜想或理论而进行的操作或活动.探索:1、有12个乒乓球,它们的形状、大小和颜色都相同,其中有11个球的质量相等,有一个球略重一点.你能用最少的次数找出这个质量略重的乒乓球吗?可以用天平验证.2、用图7-6所示的两块形状、大小相同的三角尺,你能拼出多少形状不同的三角尺?能拼出多少形状不同的四边形?跟踪练习:同一平面上的三点可以确定多少条直线?同学们可以动手操作一下.要分情况讨论.二、小组展示(10分钟)每小组口头或利用投影仪展示一道题, 一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)内容展示小组(随机)___三、归纳总结本节的知识点:1、通过观察的到一些结论.2、通过实验来检验某些猜想或理论.四、课堂达标检测1、下列不属于自然现象的是()A.伊拉克大沙漠B.伊拉克战争C.伊拉克气温高降水少D.伊拉克石油蕴藏量丰富2、观察下图中的两个角,你认为哪个角大?用量角器量一量,并和你观察得出的结论进行比较.3、取一张纸片,将它平举到自己的头部高度然后放手,观察纸片飘落下来的过程,并重复做几次。
(新)北师大版数学七年级上册同步课件:271
自主解答:解:(1)(+3)×(+9)=27; (2)(-0.5)×(-1.2)=0.6; (3)35×(-123)=-35×53=-1; (4)(-312)×0=0.
规律总结:两个有理数相乘的“四步法” 1.看:先看因数中有没有 0,其次看各因数的符号. 2.判:判断积的符号. 3.算:计算积的绝对值. 4.写:写出两个有理数的积,注意积为负时,不要漏掉负号.
题组 A 两个有理数相乘 1.计算(-10)×|-3|等于( B ) A.30 B.-30 C.±30 D.-13
解析:(-10)×|-3|=-10×3=-30.故选 B.
2.如果(-12)×a 是一个正数,那么( B ) A.a>0 B.a<0 C.a≥0 D.a≤0
解析:因为两数相乘,同号得正,而-12是一个负数,所以 a 也应该是一个负数,即 a<0,故选 B.
• 【辨一辨】
• 1.如果abc<0,那么a,b,c中至少有一√个负
数.( )
×
• 2.同号两数相乘,符号不变.( ) ×
• 3.有奇数个负因数的乘法算式,积的符号一
定是负数.
•( )
知识点 1 两个有理数相乘 【例 1】计算: (1)(+3)×(+9);(2)(-0.5)×(-1.2); (3)35×(-123);(4)(-312)×0. 思路点拨:先确定两个因数的符号,再按照乘法法则确定积 的符号,最后将绝对值相乘;若因数中有一个为 0,则积为 0.
• 【议一议】
• 有n个不等于0的有理数相乘,它们的积的符号 如何确定?
• 由负因数的个数确定.负因数的个数为奇数个 时,积为负;负因数的个数为偶数个时,积为 正.
• 【猜一猜】 • 三个有理数的积为0,可以推D 出( ) • A.三个数都为0 • B.三个数中有一个为0,其余都不为0 • C.三个数中有两个为0 • D.三个数中至少有一个为0
271导学案.第1辑.七年级数学.配R版
1章有理数027…………029031033035091037………………039041………………043045047049091第3章一元一次方程3.1从算式到方程第1课时一元一次方程051………………第2课时等式的性质053……………………3.2解一元一次方程(一) 合并同类项与移项第1课时合并同类项055……………………第2课时移项057…………………………3.3解一元一次方程(二) 去括号与去分母第1课时去括号059…………………………第2课时去分母061…………………………3.4实际问题与一元一次方程第1课时生产调度问题和工程问题063……………………………第2课时销售中的盈亏和球赛积分表问题065…………………………第3课时电话计费问题067………………第3章复习学案069…………………………………第3章过关测试089…………………………………第4章几何图形初步4.1几何图形第1课时立体图形与平面图形071………第2课时从不同方向看和展开图073……………………………第3课时点㊁线㊁面㊁体075…………………4.2直线㊁射线㊁线段第1课时直线㊁射线㊁线段077……………第2课时线段的度量和比较079…………4.3角第1课时角081………………………………第2课时角的比较与运算083……………第3课时余角和补角085……………………4.4课题学习设计制作长方体形状的包装纸盒(略)087……………………………第4章复习学案087…………………………………第4章过关测试089…………………………………01有理数1.1正数和负数重点:知道什么是正数和什么是负数,理解数0表示的量的意义,能用正㊁负数表示具有相反意义的量.难点:理解负数㊁数0表示的量的意义.1.阅读探究课本的内容,熟记基础知识,知道正数和负数,理解数0表示的量的意义,能用正㊁负数表示具有相反意义的量.2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题.3.建议用15分钟完成预习案,将预习中不能解决的问题标出来,并写到后面 我的疑惑 处.Ⅰ.旧知回顾我们小学学过的数有哪些?请举例说明...(易错题)如果水库的水位高于标准水位3m时,记作+那么低于标准水位2m时,应记作()A.-2B.-2mC.-1下列各数中,哪些是正数,哪些是负数?,,,,,,3表示的量的意义是什么?5.Ⅱ.质疑探究 质疑解疑㊁合作探究正数与负数的有关概念请同学们探究下面的问题,并在题目的横线上填出正确答案.问题1:我们把的数叫做正数,有时在正数前面也加上号.问题2:在正数前面加上号的数叫做负数.问题3:数0既不是,也不是.问题4在同一个问题中,分别用正数与负数表示的量具有的意义.用正㊁负数表示具有相反意义的量用正㊁负数表示具有相反意义的量时,究竟规定哪一种意义为正,哪一种意义为负不是绝对的,但在处理实际问题时,通常把 上升 前进 收入 增加 规定为正,相应的, 下降 后退 支出 减少 规定为负.问题1:相反意义的量是单独出现的吗?问题2:用正㊁负数表示具有相反意义的量,是固定的吗?问题3:具有相反意义的量有什么条件?问题4:0就是没有吗?00正数与负数的判断(重点)ʌ例1ɔ 将下列各数填入相应的大括号里:-9,12,0,-218,2000,+61,310,-10.8.正数: , {};负数: , {}.思考1:正数的定义是什么?思考2?.正数与负数的实际应用(重点)ʌ例2ɔ 用正㊁负数表示下列问题中的数据:(1)水位站在记录水位变化时,将水位上升记为正.则水位上升2.5m 记作 ,水位下降1.8m 记作 ,水位不升也不降记作;(2)如果收入为正,那么某人月收入1200元记作 ,月支出800元记作;(3)如果弹簧伸长为正,那么弹簧伸长3c m 记作 ,收缩2c m 记作 ;(4)如果物价上升为正,那么某月原油价格较上月下降0.4%记作 ,较上年同期上升9.6%记作 .思考1:若规定一个方向为正,则它的相反方向用什么表示?思考2㊁负数表示具有相反意义的量?.Ⅲ.我的知识网络图 归纳总结㊁串联整合正数㊁0㊁负数正数㊁0㊁负数在日常生活中的应用常见的数的分类 Ⅳ.当堂检测 有效训练㊁反馈矫正1.某超市出售婴儿奶粉,包装上标有净含量400ʃ5g 的字样,则下列选项中,奶粉的净含量合格的是( )A.390g B .398g C .406g D.450g 2.用正㊁负数表示下列问题中的数据:(1)如果节约为正,那么节约水10m 3记作 ,浪费水0.5m 3记作 ;(2)如果注入为正,那么向油罐车里注入汽油4t 记作 ,放出汽油1.8t 记作 ;(3)如果零上1ħ记作+1ħ,那么南极大陆中部某地的年平均气温为零下56ħ记作 ,最低气温曾达到零下88.3ħ记作 ;(4)北京市大约高出海平面52.3m ,记作+52.3m ,那么吐鲁番盆地低于海平面155m,记作 .1.在-3,12-2.4,230-1.7这些数中,正数有( A.1个B .2个C .3个 D.4个2.既不是正数,也不是负数的数( )A.有无数个B .没有C .有一个 D.不确定3.下列说法正确的是( )A.上升与下降是具有相反意义的量B .前进20米是具有相反意义的量C .向南走50米与向北走40米是具有相反意义的量D.收入20元与下降2米是具有相反意义的量二㊁综合应用题 挑战高手,我能行!4.一个点在水平直线上移动,如果规定向右移动为正,那么:(1)该点向右移动3c m 应记作 ;(2) -3.5c m 的含义是 ;(3) 0c m 的含义是 .5.如果-10t 表示运出10t ,那么+20t 表示 .6.如果顺时针旋转30度记作+30度,那么-45度表示 .7.孔子出生于公元前551年,如果公元前551年用-551年表示,那么李白出生于公元701年,应表示为 .三㊁拓展探究题 战胜自我,成就自我!8.[ ]体育课上,华英学校对九年级男生进行了引体向上测试,以7个为标准,超过的个数记为正数,不足的个数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0.(1)达标率是多少?(2)他们共做了多少个引体向上?9.[ ]某闹钟的产品说明书上写有:A 型: 一昼夜误差不超过ʃ12秒 ;B 型: 一昼夜误差不超过ʃ10秒 .你认为哪一型号的闹钟更准确一些?030 归入上述哪一类中呢?.教材助读认真阅读教材,完成下面各题:整数包括㊁ 和 ;分数包括 和 ; 和 统称为 .4有理数的两种分类标准是什么?5 . Ⅱ.质疑探究 质疑解疑㊁合作探究认识有理数问题1?问题2:负整数是如何定义的?问题3:什么是整数?什么是分数?问题4:什么是有理数?有理数的分类问题1,数的范围扩充到有理数,那么有理数有哪两种分类方法?问题2:将有理数进行分类,首先要确定什么?问题3:有理数按整数和分数分,如何分类?00问题4:有理数按性质符号分,如何分类?问题5:有理数的两种分类的共同特点是什么?有理数的概念与分类(重点)ʌ例1ɔ 把下列各数填入相应的大括号内:7,-227,-9.5,23,0,-2012,3.14.正整数集合:{ };负整数集合:{};正分数集合: {};负分数集合: {};正有理数集合: {};负有理数集合: {}.思考1:如何区分整数和分数?思考2:有理数的两种分类标准是什么?.中,哪些是负数,而不是整数?哪些是整数,而不是负数?哪些既是负数,又是整数?-3,-2.3,5,-5.1,0,-1.有理数的理解(难点)ʌ例2ɔ 2π是有理数 这种说法正确吗?为什么?Ⅲ.我的知识网络图 归纳总结㊁串联整合分类一:有理数整数正整数 ìîíïïï 正分数 {ìîíïïïïïï05点向两边分别取点.(1)所有的 都可以用 表示,但数轴上的点并不都表示 .)一般地,设a 是一个正数,则数轴上表示数a 的点在原点的边,与原点的距离是 个单位长度;表示数-a 的点在原点的 边,与原点的距 1(一)基础知识探究问题1:温度计上刻度的正负是怎样规定的问题2:每相邻两条刻度线之间的距离有什么特点?问题3:温度计上的刻度,使我们能方便地读出温度,直观地判断温度的高低.类似地,我们可以用直线上的点来表示数.规定了 , 和 的直线叫做数轴.问题4:判断正误.(1)数轴上的点都表示整数;( )(2)数轴是一条直线;( )(3)数轴上的一个点只能表示一个数;( )(4)数轴上找不到既不表示正数,又不表示负数的点;( ).( )正㊁负数在数轴上的位置以及有理数与数轴上点的关系.问题1:画出数轴,并在数轴上标出表示下列各数的点:4,-2,-4.5,113,0.问题2:有理数与数轴上的点有什么关系?问题3:问题1中表示正数的点在原点的哪一侧?表示负数的点呢?问题4:问题1中的五个数对应的点到原点的距离各是多少?问题5:若数轴上点A 表示正数,点B 表示负数,则它们分别在原点的哪个方向?00问题6:在数轴上,原点右侧的点表示什么数?左侧呢?数轴及其应用(重点)例1 如图3,在数轴上有三个点A ,B ,C .请回答:怎样移动A ,B ,C 中的两个点,才能使三个点表示的数相同?图3示一个数的点在表示-2.5的点的左边,并且两点相距4个单位长度,求这个数.数轴的实际应用2 某人从A 地出发向东走10m ,然后折回向西走3m ,又折回向东走6m ,此时该人在A 地的哪个方向,距离A 地多远?Ⅲ.我的知识网络图 归纳总结㊁串联整合数轴数轴的 三要素画法与有理数的关系Ⅳ.当堂检测 有效训练㊁反馈矫正1.在数轴上,原点和原点左边的点所表示的数是()A.正数B .负数C .非正数 D.非负数2.数轴上与表示+1的点相距三个单位长度的点表示的数是 .3.一只蜗牛从一条数轴的原点开始,先向左爬了4个单位(4)先向左移动3307-a是负数..预习自测.5的相反数是;是-8的相反数;0是的相反数.如果m=-3,那么-m= ;如果m=2.5,那么-m= .(一)基础知识探究问题1:在数轴上表示两组数问题3:(1)什么数的相反数大于它本身?(2)什么数的相反数等于它本身?(3)什么数的相反数小于它本身?问题4:判断下列语句的对错,如果错误,请举例说明.(1)只有符号不同的两个数互为相反数;(2)互为相反数的两个数一定一个是正数,一个是负数;(3)相反数和我们以前学过的倒数是一样的;(4)正数和负数互为相反数;(5)一个数的相反数一定是负数.问题5:下列各组数中,哪组数相等?哪组数互为相反数?(1)+(-3)与-3;(2)+(+8)与8;(3)-(+3)与3;(4)-(-9)与9.-a的正负问题1a=1,2,3,4, ,则-a等于什么?-a是什么数?问题2:若a=0,则-a等于什么?问题3:若a=-1,-2,-3,-4, ,则-a等于什么?-a是什么数?。
北师大七年级数学上册2.1有理数导学案
新知3:有理数的概念及其分类
10、统称为有理数
11、将所有学过的数进行分类
对应练习:
12、请把下列各数填入相应的集合中
3, , , ,0, ,15,
正数集合:{….}
负数集合:{….}
整数集合:{…பைடு நூலகம்}
分数集合:{….}
13、下列叙述正确的是()
A.正数和分数统称为有理数B.0是整数但不是正数
重点和难点:用正、负数表示具有相反意义的量;有理数的分类
学案
知识方法策略
一、预习训练
1、回忆一下,小学已经学过的哪些类型的数?并列举出来
2、什么叫做正数?什么叫做负数?它们有什么关系?
3、阅读并完成书本第23至24页的内容,并请同学们举一些生活中的“具有相反意义的量”的例子。
二、探究新知
新知1:具有相反意义的量
例题:(1)某人转动转盘,如果用+7圈表示沿逆时针方向转了7圈,那么沿顺时针方向转了10圈怎样表示?
(2)在某次乒乓球队质量检测中,一只乒乓球超出标准质量0.01g记作+0.01g,那么-0.02g表示什么?
(3)某大米包装袋上标注着净含量:“10kg 120g”,这里的“10kg 120g”表示什么?
5、把下列各数分别填入相应集合的大括号里: , ,20, ,0, , ,
正数集合:{….}
负数集合:{….}
整数集合:{….}
分数集合:{….}
7、在图纸上零件的尺寸为(25 0.003)mm,甲工人加工出来的零件尺寸为25.002mm,乙工人加工出来的零件尺寸为24.995mm,则工人加工出来的零件合格,加工出来的零件允许的最小尺寸是mm
1.2.2导学案
呼和浩特市第十九中学“双载体、四导型“教学模式七年级数学学科导学案
七年级班姓名
课题:1.2。
2数轴
学习目标
1、掌握数轴概念,理解数轴上的点和有理数的对应关系;
2、会正确地画出数轴,利用数轴上的点表示有理数;
3、领会数形结合的重要思想方法;
2、在一条东西向的马路上,有一个汽车站,汽车站东3m
柳树和一棵杨树,汽车站西3m和4m处分别有一棵槐树和一根电线杆
试画图表示这一情境?
3、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?。
【配套K12】七年级数学下册2.2.1探索直线平行的条件导学案2新版北师大版
2.2.1探索直线平行的条件预习案一、预习目标及范围1. 能识别同位角,掌握“同位角相等,两直线平行”;2. 知道“过直线外一点有且只有一条直线与这条直线平行”;3. 知道“平行于同一条直线的两条直线平行”;4. 预习课本第44和45页. 二、预习要点1.如果∠1和∠2相对于直线a 、b 和c 的位置,都在直线a 和b 的上方,在直线c 的同一侧.这两个角叫做 .2. 同位角 ,两直线 .3.平行于同一条直线的两条直线 .4.过直线外一点 直线与这条直线平行. 三、预习检测1.如图,能与a Ð构成同位角的角有( )A .4个B .3个C .2个D .1个2.如图,如果∠D=∠EFC,那么 ( ) A.AD ∥BC B.EF ∥BC C.AB ∥DC D.AD ∥EFF E D CBA探究案一、合作探究(9分钟),要求各小组组长组织成员进行合作探究、讨论。
探究:活动1.如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所成夹角为多少度时,木条a与木条b才能平行?2.如果木条b与墙边边缘不垂直,那么木条a与墙壁边缘所成夹角为多少度时,木条a与木条b才能平行?探究:活动2.如图,三根木条相交成∠1,∠2,固定木条a,c转动木条b,观察∠1,∠2满足什么条件时木条a与b平行?2.转动木条b时,观察∠1和∠2的大小关系有几种?此时木条a与木条b的位置关系发生了什么变化?木条a何时与木条b平行?3.你能得出判断两条直线平行的方法吗?12探究:活动3:你还记得怎样用移动三角尺的方法画两条平行线吗?你能用这种方法过已知直线外一点画它的平行线吗?尝试完成下面的画图的任务。
1.你能过直线AB外一点P画直线AB的平行线吗?能画几条?2.分别边点C、D画直线AB的平行线EF、GH,那么EF和GH有怎样的位置关系?二、小组展示(7分钟)每小组口头或利用投影仪展示, 一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)示小组(随机)________ 三、归纳总结1、本节课你学会了什么本领?2、在本节课的学习过程中你还有那些困惑?3、除了今天的方法外,你还能有其他说明两直线平行的办法吗? 四、随堂检测1.如图,∠1和∠2是直线_______和直线________被直线_____所截得的同位角.321FE DCB A2.如图 ∵AB ⊥BD ,CD ⊥BD (已知)∴AB ∥CD( ) 又∵∠1=∠CEF (已知).∴AB ∥EF( ) ∴CD ∥EF( )参考答案预习检测1、B2、D随堂检测1、AF、EF、AB2、∵AB⊥BD,CD⊥BD(已知)∴AB∥CD(垂直于同一条直线的两条直线平行)又∵∠1=∠CEF(已知).∴AB∥EF( 同位角相等,两直线平行.)∴CD∥EF(平行于同一条直线的两条直线平行)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 课时
解方程 ( 一)
第5节
平
行
预习案 …………………………………………… 0 1 3
第 1 课时
平
行
训练案 …………………………………………… 0 7 8 第 3 课时 解方程 ( 三) 预习案 …………………………………………… 0 2 9 探究案 …………………………………………… 0 2 9 训练案 …………………………………………… 0 7 9
第1节
你今年几岁了
第 1 课时 一元一次方程
第3节
角的度量与表示
第 1 课时
预习案 …………………………………………… 0 2 1 探究案 …………………………………………… 0 2 1 训练案 …………………………………………… 0 7 5 第 2 课时 用等式的基本性质解方程 预习案 …………………………………………… 0 2 3 探究案 …………………………………………… 0 2 3 训练案 …………………………………………… 0 7 6
第 1 课时
统计图的选择
打折销售
预习案 …………………………………………… 0 5 1 探究案 …………………………………………… 0 5 1 训练案 …………………………………………… 0 9 2 ʏ 第 6 章复习学案 ……………………………… 0 5 3 梳理案 …………………………………………… 0 5 3 探究案 …………………………………………… 0 5 3 训练案 …………………………………………… 0 9 3 ʏ 第 6 章检测卷 ………………………………… 0 9 5
直
第7节
有趣的七巧板
第 1 课时
有趣的七巧板
第4章
预习案 …………………………………………… 0 1 7 探究案 …………………………………………… 0 1 7 训练案 …………………………………………… 0 7 1 ʏ 第 4 章复习学案 ……………………………… 0 1 9 梳理案 …………………………………………… 0 1 9 探究案 …………………………………………… 0 1 9 训练案 …………………………………………… 0 7 2 第 章检测卷 ………………………………… ʏ 4 0 7 3
第 1 课时
我变胖了
预习案 …………………………………………… 0 4 9 探究案 …………………………………………… 0 4 9 训练案 …………………………………………… 0 9 1
第5节
打折销售
第5节
统计图的选择
第 1 课时
预习案 …………………………………………… 0 3 5 探究案 …………………………………………… 0 3 5 训练案 …………………………………………… 0 8 2
第6节
希望工程 义演
预习案 …………………………………………… 0 4 7 探究案 …………………………………………… 0 4 7 训练案 …………………………………………… 0 9 0
第4节
第4节
你有信心吗
第 1 课时
我变胖了
你有信心吗
预习案 …………………………………………… 0 3 3 探究案 …………………………………………… 0 3 3 训练案 …………………………………………… 0 8 1
第 1 课时
角的比较
预习案 …………………………………………… 0 2 5 探究案 …………………………………………… 0 2 5 训练案 …………………………………………… 0 7 7 第 2 课时 解方程 ( 二) 预习案 …………………………………………… 0 2 7 探究案 …………………………………………… 0 2 7
第3章
第6节 探索规律
第 1 课时 探索规律 预习案 …………………………………………… 0 0 1 探究案 …………………………………………… 0 0 1 训练案 …………………………………………… 0 6 1 ʏ 第 3 章复习学案 ……………………………… 0 0 3 梳理案 …………………………………………… 0 0 3 探究案 …………………………………………… 0 0 3 训练案 …………………………………………… 0 6 3 ʏ 第 3 章检测卷 ………………………………… 0 6 4
第1节
线段 ㊁ 射线 ㊁ 直线
第 1 课时
预习案 …………………………………………… 0 0 5 探究案 …………………………………………… 0 0 5 训练案 …………………………………………… 0 6 5
线段 ㊁ 射线 ㊁ 直线
第2节
比较线段的长短
第 1 课时
第5章
比较线段的长短
预习案 …………………………………………… 0 0 7 探究案 …………………………………………… 0 0 7 训练案 …………………………………………… 0 6 6
角的度量与表示
预习案 …………………………………………… 0 0 9 探究案 …………………………………………… 0 0 9 训练案 …………………………………………… 0 6 7
第4节
角的比较
第2节
解方程Leabharlann 预习案 …………………………………………… 0 1 1 探究案 …………………………………………… 0 1 1 训练案 …………………………………………… 0 6 8
探究案 …………………………………………… 0 1 3 训练案 …………………………………………… 0 6 9
第6节
垂
直
预习案 …………………………………………… 0 1 5 探究案 …………………………………………… 0 1 5 训练案 …………………………………………… 0 7 0
第 1 课时
垂
预习案 …………………………………………… 0 4 5 探究案 …………………………………………… 0 4 5 训练案 …………………………………………… 0 8 9
第 1 课时
科学记数法
第3节
扇形统计图
第 1 课时
第3节
日历中的方程
第 1 课时
扇形统计图
日历中的方程
预习案 …………………………………………… 0 3 1 探究案 …………………………………………… 0 3 2 训练案 …………………………………………… 0 8 0