年高考数学压轴题系列训练含答案及解析详解六

合集下载

上海高考数学函数压轴题解析详解

上海高考数学函数压轴题解析详解
代入③,得

化简得 .
当 时,上式恒成立.
因此,在 轴上存在定点 ,使 .(12分)
9.(本小题满分14分)
已知数列 各项均不为0,其前 项和为 ,且对任意 都有 ( 为大于1的常数),记 .
(1)求 ;
(2)试比较 与 的大小( );
(3)求证: ,( ).
解:(1)∵ ,①
∴ .②
②-①,得

即 .(3分)
∴ .(当且仅当 时取等号).
综上所述, ,( ).(14分)
在①中令 ,可得 .
∴ 是首项为 ,公比为 的等比数列, .(4分)
(2)由(1)可得 .

∴ ,(5分)

而 ,且 ,
∴ , .
∴ ,( ).(8分)
(3)由(2)知 , ,( ).
∴当 时, .

,(10分)
(当且仅当 时取等号).
另一方面,当 , 时,

∵ ,∴ .
∴ ,(当且仅当 时取等号).(13分)
又MN⊥MQ, 所以
直线QN的方程为 ,又直线PT的方程为 ……10分
从而得 所以
代入(1)可得 此即为所求的轨迹方程.………………13分
6.(本小题满分12分)
过抛物线 上不同两点A、B分别作抛物线的切线相交于P点,
(1)求点P的轨迹方程;
(2)已知点F(0,1),是否存在实数 使得 若存在,求出 的值,若不存在,请说明理由.
40若u[0,1],v[–1,0],同理可证满足题设条件.
综合上述得g(x)满足条件.
3. (本小题满分14分)
已知点P( t , y )在函数f ( x ) = (x –1)的图象上,且有t2– c2at + 4c2= 0 ( c 0 ).

浙江省2021年高考数学压轴卷(含解析)

浙江省2021年高考数学压轴卷(含解析)

浙江省2021年高考数学压轴卷〔含解析〕本试题卷分选择题和非选择题两局部。

全卷共4页 , 选择题局部1至2页 ; 非选择题局部3至4页。

总分值150分。

考试用时120分钟。

参考公式 : 如果事件A ,B 互斥 , 那么()()()P A B P A P B +=+如果事件A , B 相互独立 , 那么()()()P AB P A P B =如果事件A 在一次试验中发生的概率是p , 那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn kn nP k p p k n -=-=台体的体积公式11221()3V S S S S h =++其中12,S S 分别表示台体的上、下底面积 ,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积 , h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积 , h 表示锥体的高球的外表积公式 24S R =π球的体积公式 343V R =π 其中R 表示球的半径选择题局部〔共40分〕一、选择题 : 本大题共10小题 , 每道题4分 , 共40分。

在每道题给出的四个选项中 ,只有一项为哪一项符合题目要求的。

1.已知集合{0A x x =≤或}2x ≥ , {}|11B x x =-<< , 那么A B =〔 〕A .()1,-+∞B .()1,1-C .(]1,0-D .[)0,12.已知i 是虚数单位 , 那么()()112i i +-=〔 〕 A .3i +B .3i -C .1i -+D .1i --3.已知a 、b R ∈ , 且a b > , 那么A .11a b<B .sin sin a b >C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22a b >4.函数()2cos xx x f x e+=在[]2,2ππ-上的大致图象为〔 〕A .B .C .D .5.设m R ∈ , 那么〞12m ≤≤〞是〞直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点〞的〔 〕A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知离散型随机变量X 的所有可能取值为0 , 1 , 2 , 3 , 且()213P X ≥=, 1(3)6P X ==, 假设X 的数学期望()54E X = , 那么()43D X -=〔 〕A .19B .16C .194 D .747.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为()12,0F - , ()22,0F , P为双曲线上位于第二象限内的一点 , 点Q 在y 轴上运动 , 假设21PQ QF PF +-的最小值为233, 那么双曲线的离心率为〔 〕 A .3B .23C .33D .438.已知1x , 2x , 是函数()()()tan 0,0f x x ωϕωϕπ=-><<的两个零点 , 且12x x -的最小值为3π, 假设将函数()f x 的图象向左平移12π个单位长度后得到的图象关于原点对称 , 那么ϕ的最大值为〔 〕 A .34π B .4π C .78π D .8π 9.如以下图 , 正方形ABCD 和正方形ADEF 成60︒的二面角 , 将DEF 绕DE 旋转 ,在旋转过程中〔1〕对任意位置 , 总有直线AC 与平面DEF 相交 ;〔2〕对任意位置 , 平面DEF 与平面ABCD 所成角大于或等于60︒ ; 〔3〕存在某个位置 , 使DF ⊥平面ABCD ; 〔4〕存在某个位置 , 使DF BC ⊥. 其中正确的选项是〔 〕. A .〔1〕〔3〕 B .〔2〕〔3〕C .〔2〕〔4〕D .〔3〕〔4〕10.已知函数()321162f x x bx cx =++的导函数()'f x 是偶函数 , 假设方程()'ln 0f x x -=在区间1,e e ⎡⎤⎢⎥⎣⎦(其中e 为自然对数的底)上有两个不相等的实数根 , 那么实数c 的取值范围是 A .2111,2e 2⎡⎤---⎢⎥⎣⎦B .2111,2e 2⎡⎫---⎪⎢⎣⎭C .2111e ,22⎡⎫--⎪⎢⎣⎭D .2111e ,22⎡⎤--⎢⎥⎣⎦非选择题局部〔共110分〕二、填空题 : 本大题共7小题 , 多空题每道题6分 , 单空题每道题4分 , 共36分。

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

2022届高考数学压轴题含答案解析

2022届高考数学压轴题含答案解析

2022届高考数学压轴题1.已知函数f(x)=xlnx−12(a+1)x2﹣x.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若对任意的x∈[e﹣1,e]都有f(x)≥﹣1,求实数a的取值范围.【解答】解:(1)f(x)=xlnx﹣x2﹣x的导数为f′(x)=1+lnx﹣2x﹣1=lnx﹣2x,可得曲线y=f(x)在点(1,f(1))处的切线斜率为k=f′(1)=﹣2,f(1)=﹣2,则曲线y=f(x)在点(1,f(1))处的切线方程为y+2=﹣2(x﹣1),即为y=﹣2x;(2)对任意的x∈[e﹣1,e]都有f(x)≥﹣1,所以f(1)=−12(a+1)﹣1≥﹣1,所以a≤﹣1.下面证明当a≤﹣1时,对任意的x∈[e﹣1,e]时,都有f(x)≥﹣1.易得f′(x)=lnx﹣(a+1)x,①若a+1≤﹣e,即a≤﹣e﹣1,当x∈[e﹣1,e]时,f′(x)=lnx﹣(a+1)x≥0,所以f(x)在[e﹣1,e]上递增,所以当x∈[e﹣1,e]时,f(x)≥f(e﹣1)=﹣e﹣1−12(a+1)e﹣2﹣e﹣1≥−32e﹣1>﹣1,满足题意,故a≤﹣e﹣1;②若﹣e<a+1≤0,即﹣e﹣1<a≤﹣1,设h(x)=lnx﹣(a+1)x(x∈[e﹣1,e]),则易得h(x)=lnx﹣(a+1)x在(x∈[e﹣1,e]递增,又h(1)=﹣(a+1)≥0,h(e﹣1)=﹣1﹣(a+1)e﹣1<0,所以h(x)=lnx﹣(a+1)x在[e﹣1,1]上存在零点,设为x0,则lnx0﹣(a+1)x0=0,所以f(x)在[e﹣1,x0)递减,在(x0,e]递增,所以当x∈[e﹣1,e]时,f(x)≥f(x0)=x0lnx0−12(a+1)x02﹣x0=12x0lnx0﹣x0,设g(x)=12xlnx﹣x(x∈[e﹣1,1]),则g′(x)=12lnx−12<0,所以g(x)=12xlnx﹣x在(e﹣1,1]递减,所以g(x)≥g(﹣1)=﹣1,所以当﹣e﹣1<a≤﹣1时,f(x)≥﹣1,满足题意.综上可得,a 的取值范围是(﹣∞,﹣1].2.已知抛物线C :x 2=2py (p >0)的焦点是F ,直线l :2kx ﹣2y +1=0恰好经过F ,且与C 相交于不同的两点A ,B ,抛物线C 在A ,B 两点处的切线相交于点P . (Ⅰ)求证:点P 在定直线y =−12上;(Ⅱ)点E (0,t ),当AF →=2FB →时,D 为线段AB 的中点,且满足DE →•DF →=0,求四边形APBE 的面积四边形S 四边形APBE .【解答】解:(Ⅰ)证明:∵直线l :2kx ﹣2y +1=0恰好经过F (0,12), ∴p =1,抛物线方程为x 2=2y .联立{y =kx +12x 2=2y,整理可得x 2﹣2kx ﹣1=0, △=4(k 2+1)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k ,x 1x 2=﹣1,因为y =x 22的导数为y ′=x ,所以抛物线在A (x 1,x 122)处的切线方程为:y =x 1x −x 122, 同理抛物线在B (x 2,x 222)处的切线方程为y =x 2x −x 222. 联立①②可得{x =x 1+x 22=k y =−12,即点P 的坐标为(k ,−12). ∴点P 在定直线y =−12上;(Ⅱ)∵AF →=2FB →,∴x 1=﹣2x 2,又x 1+x 2=2k ,∴x 1=4k ,x 2=﹣2k ,代入x 1x 2=﹣1,解得k =±√24. 由对称性可知,求四边形APBE 的面积只需取k =√24,AB =√1+k 2√(x 1−x 2)2−4x 1x 2=√1+k 2⋅√4k 2+4=2(1+k 2)=94,设AB 的中点为D ,则x D =x 1+x 22=k =√24,y D =kx D +12=58,即可得D (√24,58). ∵E (0,t ),DE →⋅DF →=0,∴216+18×(58−t)=0,解得t =138, 将直线AB 方程√24x −y +12=0化为x −2√2y +√2=0,则点E到AB的距离d1=|0−2√2×138+√2|√1+8=3√24.所以S△ABE=12|AB|•d1=27√232,由(Ⅰ)知两切线的交点P的坐标(k,−1 2),又k=√24,此时P的坐标(√24,−12),则点P到AB的距离d2=|√24−2√2×(−12)+√2|√1+8=3√24,∴S△ABP=12|AB|•d2=27√232.又已知P,E两点在AB的同侧,所以S四边形APBE=S△ABE+S△ABP=27√232+27√232=27√216.。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

2023年新高考地区数学名校地市选填压轴题好题汇编(六)含答案解析

2023年新高考地区数学名校地市选填压轴题好题汇编(六)含答案解析

2023年新高考数学选填压轴题汇编(六)一、单选题1.(2022·福建省福州华侨中学高三阶段练习)函数f x =A sin ωx +π4ω>0 的图象与x 轴的两个相邻交点间的距离为π3,要得到函数g x =A cos ωx 的图象,只需将f x 的图象( )A.向左平移π12个单位 B.向右平移π4个单位C.向左平移π4个单位D.向右平移3π4个单位【答案】A【解析】由题意,函数f x =A sin ωx +π4 ω>0 的图象与x 轴的两个相邻交点间的距离为π3∴ 周期T =2π3,由周期公式:T =2πω∴T =2π3=2πω解得: ω=3∴f x =A sin 3x +π4 =A sin3x +π12要得到g x =A cos3x ,即g x =A cos3x =A sin 3x +π2=A sin3x +π6 由题意,可得f x 向左平移π12个单位可得g x .故选:A .2.(2022·福建省福州屏东中学高三开学考试)若函数f x =e x -a -1 x +1在(0,1)上不单调,则a 的取值范围是( )A.2,e +1B.2,e +1C.-∞,2 ∪e +1,+∞D.-∞,2 ∪e +1,+∞【答案】A【解析】∵f (x )=e x -(a -1)x +1,∴f (x )=e x -a +1,若f (x )在(0,1)上不单调,则f (x )在(0,1)上有变号零点,又∵f (x )单调递增,∴f 0 ∙f 1 <0,即(1-a +1)(e -a +1)<0,解得2<a <e +1.∴a 的取值范围是(2,e +1).故选:A .3.(2022·福建省福州第二中学高三阶段练习)已知圆C :x 2+y 2-10y +21=0与双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线相切,则该双曲线的离心率是A.2B.53C.52D.5【答案】C【解析】由双曲线x 2a 2-y 2b2=1(a >0,b >0),可得其一条渐近线的方程为y =b a x ,即bx -ay =0,又由圆C :x 2+y 2-10y +21=0,可得圆心为C (0,5),半径r =2,则圆心到直线的距离为d =-5a b 2+(-a )2=5a c ,则5a c =2,可得e =c a =52,故选C .4.(2022·福建省福州第一中学高三开学考试)过圆x 2+y 2=64上的动点作圆C :x 2+y 2=16的两条切线,两个切点之间的线段称为切点弦,则圆C 不在任何切点弦上的点形成的区域的面积为( )A.4πB.6πC.8πD.12π【答案】A 【解析】设圆x 2+y 2=64的动点为P m ,n ,过P 作圆C 的切线,切点分别为A ,B ,则过P ,A ,B 的圆是以PO 直径的圆,该圆的方程为:x x -m +y y -n =0.由x 2+y 2=16x x -m +y y -n =0 可得AB 的直线方程为:mx +ny =16.原点到直线mx +ny =16的距离为16 m 2+n 2=1664=2,故圆C 不在任何切点弦上的点形成的区域的面积为4π,故选:A .5.(2022·福建省福州第一中学高三开学考试)某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是A.16π9B.8π9C.16π27D.8π27【答案】A【解析】设圆柱的半径为r ,高为x ,体积为V ,则由题意可得r 2=3-x3,∴x =3-32r ,∴圆柱的体积为V (r )=πr 23-32r (0<r <2),则V (r )=169π∙34r ∙34r ∙3-32r ≤16π9∙34r +34r +3-32r 33=16π9.当且仅当34r =3-32r ,即r =43时等号成立.∴圆柱的最大体积为16π9,故选:A .6.(2022·福建省福州延安中学高三开学考试)已知2sin 2x +cos 2y =1,则sin 2x +cos 2y 的取值范围是( )A.0,12B.12,1C.22,1D.12,22【答案】B【解析】∵2sin 2x +cos 2y =1,∴cos 2y =1-2sin 2x ,∴0≤1-2sin 2x ≤1,∴0≤sin 2x ≤12,又sin 2x +cos 2y =sin 2x +1-2sin 2x =1-sin 2x ∈12,1,∴sin 2x +cos 2y 的取值范围是12,1.故选:B7.(2022·福建·福州十八中高三开学考试)设函数f (x )的定义域为R ,f (x +1)为偶函数,f (x +2)为奇函数,当x ∈[1,2]时,f (x )=ax +b .若f (0)+f (3)=4,则f 92=( )A.-2B.32C.-72D.72【答案】A【解析】因为f (x +1)为偶函数,则f (x +1)的图像关于y 轴对称,所以f (x )关于x =1对称,则f (0)=f (2),试卷第2页,共40页因为f (x +2)为奇函数,则f (x +2)的图像关于原点对称,且f (2)=0,所以f (x )关于(2,0)对称,则f (3)=-f (1),因为当x ∈[1,2]时,f (x )=ax +b ,所以f (1)=a +b ,f (2)=2a +b =0,因为f (0)+f (3)=4,所以f (2)-f (1)=a =4,故f (2)=2a +b =8+b =0⇒b =-8,从而当x ∈[1,2]时,f (x )=4x -8,故f 92 =-f -12 =-f 52 =f 32 =4×32-8=-2.故选:A .8.(2022·福建·闽江学院附中高三开学考试)设函数f x 是奇函数f x x ≠0 的导函数,f -1 =-2.当x >0时,f x >2,则使得f x >2x 成立的x 的取值范围是( )A.-∞,-1 ∪0,1 B.-1,0 ∪1,+∞ C.-∞,-1 ∪1,+∞ D.-1,0 ∪0,1【答案】B【解析】因为当x >0时,f x >2,所以f 'x -2>0,故令g x =f x -2x ,则g 'x =f 'x -2>0,故g x 在0,+∞ 上单调递增.因为f -1 =-2,所以g -1 =f -1 +2=0,又因为f x 为奇函数,所以g x =f x -2x 为奇函数,所以g 1 =0,且在区间-∞,0 上,g x 单调递增.所以使得f x >2x ,即g x >0成立的x 的取值范围是-1,0 ∪1,+∞ .故选:B9.(2022·江苏·常州市平陵高级中学高三开学考试)若函数f x =x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m 的值A.与a 有关,且与b 有关 B.与a 有关,但与b 无关C.与a 无关,且与b 无关 D.与a 无关,但与b 有关【答案】B【解析】因为最值在f (0)=b ,f (1)=1+a +b ,f -a 2 =b -a 24中取,所以最值之差一定与b 无关,选B .10.(2022·江苏·常州市平陵高级中学高三开学考试)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=a ⋅2x +b .若f (0)+f (3)=6,则f log 296 的值是( )A.-12 B.-2 C.2 D.12【答案】B【解析】f (x +1)为奇函数,即其图象关于(0,0)点对称,所以f (x )的图象关于(1,0)点对称,f (x +2)为偶函数,即其图象关于y 轴对称,因此f (x )的图象关于直线x =2对称,所以f (1)=0,f (0)=-f (2),f (3)=f (1),所以f (1)=2a +b =0,f (0)+f (3)=-f (2)=-(4a +b )=6,由此解得a =-3,b =6,所以x ∈[1,2]时,f (x )=-3⋅2x +6,由对称性得f (x +2)=f (2-x )=-f (1-(1-x ))=-f (x ),所以f (x +4)=-f (x +2)=f (x ),f (x )是周期函数,周期为4,6<log 296<7,f (log 296)=f (log 296-4)=f (4-log 296+4)=f log 225696 =f log 283 =-3×83+6=-2,故选:B .11.(2022·江苏·盐城市伍佑中学高三开学考试)已知函数f x =x 2+4a -3 x +3a ,x <0log ax +1 +1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程f x =2-x 恰好有两个不相等的实数解,则a 的取值范围是( )A.12,23 ∪34B.23,34 C.13,23 ∪34D.13,34【答案】C【解析】函数f x 在R 上单调递减,则3-4a 2≥00<a <102+4a -3 ⋅0+3a ≥log a 0+1 +1,解得13≤a ≤34,在同一直角坐标系中,画出函数y =f x 和函数y =2-x 的图象,如图:由图象可知,在0,+∞ 上,f x =2-x 有且仅有一个解,故在-∞,0 上,f x =2-x 有且仅有一个解,当3a >2即a >23时,由x 2+4a -3 x +3a =2-x ,即x 2+4a -2 x +3a -2=0,x <0,则Δ=(4a -2)2-43a -2 =0,解得a =34或1(舍去),当a =34时,方程可化为x +12 2=0,x =-12符合题意;当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件,综上:a 的取值范围为13,23 ∪34.故选:C .12.(2022·江苏·盐城市伍佑中学高三开学考试)已知正实数a ,b 满足abe a +ln b +1=0,则( )A.b >1eB.a <1C.ab =1D.e a <1b【答案】D【解析】因为abe a +ln b +1=0,所以ae a =-ln b -1b>0,故ln b +1<0,即0<b <1e,故选项A 错误;若a =1,则eb +ln b +1=0,作出函数y =ln x 与y =-ex -1的图象如图所示:显然有交点,则方程eb +ln b +1=0有解,故选项B 错误;若ab =1,则e a -ln a +1=0,即e a =ln a -1,作出函数y =e x 与y =ln x -1的图象如图所示:显然无交点,则方程e a -ln a +1=0无解,故选项C 错误;因为abe a +ln b +1=0,则ae a +1b =-ln bb=-ln b ⋅e -ln b >ae a ,且-ln b >0,令f x =xe x (x >0),则fx =x +1 e x >0,所以f x在区间,+∞ 上单调递增,所以f -ln b >f a ,即-ln b >a ,因此e a <1b,故选项D 正确.故选:D13.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知函数f x =ln x x 2,若f x <m -1x2在(0,+∞)上恒成立,e =2.71828⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( )试卷第2页,共40页A.m >eB.m >e2C.m >1D.m >e【答案】B【解析】若f x <m -1x 2在(0,+∞)上恒成立,即f x +1x2<m 在(0,+∞)上恒成立,令g (x )=f (x )+1x 2=ln x +1x 2,故只需g (x )max <m 即可,g (x )=1x ⋅x 2-(ln x +1)⋅2xx 4=-2ln x -1x 3,令g(x )=0,得x =e -12,当0<x <e-12时,g(x )>0;当x >e-12时,g (x )<0,所以g (x )在0,e-12上是单调递增,在e -12,+∞ 上是单调递减,所以当g (x )max =g e -12 =e2,所以实数m 的取值范围是m >e2.故选:B .14.(2022·河北省唐县第一中学高三开学考试)定义运算a *b ,a *b ={a b a ≤ba >b,例如1*2=1,则函数y =1*2x 的值域为A.0,1 B.-∞,1 C.1,+∞ D.0,1【答案】D【解析】当1≤2x 时,即x ≥0时,函数y =1*2x =1当1>2x 时,即x <0时,函数y =1*2x =2x ∴f (x )=1,x ≥02x ,x <0由图知,函数y =1*2x 的值域为:(0,1].故选D .15.(2022·重庆·临江中学高三开学考试)已知函数f x =log 3x ,x >03x,x ≤0,若函数g x =f x 2-m +2 f x +2m恰好有5个不同的零点,则实数m 的取值范围是( )A.0,1B.0,1C.1,+∞D.1,+∞【答案】A【解析】画出函数的大致图象,如下图所示:∵函数g x =f x 2-m +2 f x +2m 恰好有5个不同的零点,∴方程f x2-m +2 f x +2m =0有5个根,设t =f (x ),则方程化为t 2-m +2 t +2m =0,易知此方程有两个不等的实根t 1,t 2,结合f (x )的图象可知,t 1∈0,1 ,t 2∈1,+∞ ,令h (t )=t 2-m +2 t +2m ,则由二次函数的根的分布情况得:Δ=(m +2)2-8m >0h (0)>0h (1)≤0,解得:0<m ≤1.故选:A16.(2022·重庆·临江中学高三开学考试)已知定义在(-3,3)上的函数f (x )满足f (x )+e 4x f (-x )=0,f (1)=e 2,f (x )为f (x )的导函数,当x ∈[0,3)时,f (x )>2f (x ),则不等式e 2x f (2-x )<e 4的解集为( )A.(-2,1)B.(1,5)C.(1,+∞)D.(0,1)【答案】B 【解析】令g x =f xe2x ,所以f x =e 2x g x ,因为f x +e 4x f -x =0,所以e 2x ⋅g x +e 4x ⋅e -2x g -x =0,化简得g x +g -x =0,所以g x 是-3,3 上的奇函数;gx =f x e 2x -2e 2x f x e 4x =f x -2f x e 2x,因为当0≤x <3时,f x >2f x ,所以当x ∈0,3 时,g x >0,从而g x 在0,3 上单调递增,又g x 是-3,3 上的奇函数,所以g x 在-3,3 上单调递增;考虑到g 1 =f 1 e 2=e 2e2=1,由e 2x f 2-x <e 4,得e 2x e 22-x g 2-x <e 4,即g 2-x <1=g 1 ,由g x 在-3,3 上单调递增,得-3<2-x <3,2-x <1,解得1<x <5,所以不等式e 2x f 2-x <e 4的解集为1,5 ,故选:B .17.(2022·重庆南开中学高三阶段练习)公元656年,唐代李淳风注《九章》时提到祖暅的开立圆术.祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”,意思是两个同高的立体,如在等高处的截面积恒相等,则体积相等.上述原理在中国被称为祖暅原理,我们可以应用此原理将一些复杂几何体转化为常见几何体的组合体来计算体积.如图,将双曲线C :y 2-x 2=5与直线x =±2所围成的平面图形绕双曲线的实轴所在直线旋转一周得到几何体Γ,下列平面图形绕其对称轴(虚线所示)旋转一周所得几何体与Γ的体积相同的是( )A.图①,长为6、宽为4的矩形的两端去掉两个弦长为4、半径为3的弓形B.图②,长为25、宽为4的矩形的两端补上两个弦长为4、半径为3的弓形C.图③,长为6、宽为4的矩形的两端去掉两个底边长为4、腰长为3的等腰三角形D.图④,长为25、宽为4的矩形的两端补上两个底边长为4、腰长为3的等腰三角形【答案】B【解析】由y 2-x 2=5x =2得:y =±3,则当y =t 5<t <3 与C 相交于两点时,内圆半径r =t 2-5,则在该位置旋转一周所得圆环面积为4π-t2-5 π=9-t 2 π;将所有图形均以矩形的中心为原点,以对称轴为y 轴建立平面直角坐标系,试卷第2页,共40页对于③,双曲线实轴长为25,③中y 轴的最短距离为6-232-22=6-25,不合题意,③错误;对于④,几何体Γ母线长为6,④中y 轴的最长距离为25+232-22=45,不合题意,④错误;对于①,在y 轴的最短距离为6-2×3-32-22 =25,母线长为6,与几何体Γ吻合;当y =t 5<t <3 与①中图形相交时,两交点之间距离为232-3+5-t 2,此时圆环面积为4π-32+3+5-t 2 π=-t 2+23+5 t -14-25 π,不合题意,①错误对于②,在y 轴的最长距离为25+2×3-32-22 =6,矩形高为25,与几何体Γ吻合;当y =t 5<t <3 与②中图形相交时,两交点之间距离为232-t 2=29-t 2,此时圆面积为9-t 2 π,与圆环面积相同,满足题意,②正确.故选:B .18.(2022·辽宁·高三开学考试)已知函数f x 满足:f 1 =14,4f x f y =f x +y +f x -y x ,y ∈R ,则2022k =0f (k )= ( )A.12B.14C.-14D.-12【答案】A【解析】4f x f y =f x +y +f x -y x ,y ∈R ,令x =1,y =0得:4f 1 f 0 =2f 1 ,因为f 1 =14,所以f 0 =12,令x =n ,y =1得:4f n f 1 =f n +1 +f n -1 ,即f n =f n +1 +f n -1 ,则f n +1 =f n +2 +f n ,上面两式子联立得:f n +2 =-f n -1 ,所以f n -1 =-f n -4 ,故f n +2 =f n -4 ,故f x 是以6为周期的函数,且f 0 +f 1 +f 2 +f 3 +f 4 +f 5 =f 0 +f 1 +f 2 -f 0 -f 1 -f 2 =0,所以2022k =0f (k )= 3375k =0f (k )+f 2022 =0+ f 2022 =f 0 =12故选:A19.(2022·辽宁·沈阳市第四中学高三阶段练习)已知△ABC ,I 是其内心,内角A ,B ,C 所对的边分别a ,b ,c ,则( )A.AI =13(AB +AC )B.AI =cAB a +bACaC.AI =bAB a +b +c +cAC a +b +cD.AI =cAB a +b +bACa +c 【答案】C【解析】延长AI ,BI ,CI ,分别交BC ,AC ,AB 于D ,E ,F .内心是三角形三个内角的角平分线的交点.在三角形ABD 和三角形ACD 中,由正弦定理得:BD sin 12∠BAC =c sin ∠ADB ,CD sin 12∠BAC =bsin ∠ADC ,由于sin ∠ADB =sin ∠ADC ,所以BD c =CD b ,BD CD =c b ,BD BD +CD =c b +c ,BD a =c b +c ,BD =acb +c,同理可得c BD =AI DI ,c BD +c =AI DI +AI =AIAD ,AI =c ⋅AD BD +c =c ac b +c+c ⋅AD =b +c a +b +c ⋅AD .所以AD =AB +BD =AB +c b +c BC =AB +c b +c AC -AB=b b +c AB +c b +c AC,则AI =b +c a +b +c ⋅AD =b +c a +b +c ⋅b b +c AB +c b +c AC =b a +b +c AB +ca +b +c AC .故选:C 20.(2022·辽宁·东北育才学校高三阶段练习)已知不等式x ln x +(x +1)k <2x ln2的解集中仅有2个整数,则实数k 的取值范围是( )A.0,34ln 43 B.34ln 43,23ln2C.23ln2,+∞D.34ln 43,23ln2【答案】D【解析】由x ln x +x (k -ln4)+k <0可得:k (x +1)<x ln4-x ln x ,设f (x )=k (x +1),g (x )=x ln4-x ln x ,g (x )=ln4-ln x -1,x ∈0,4e时,g (x )>0,g (x )单调递增,x ∈4e ,+∞ 时,g (x )<0,g (x )单调递减,则当x =4e时函数g x 取得最大值,如示意图:由图可知,当k ≤0时,整数解超过了2个,不满足题意;当k >0时,需满足f 2 <g 2 f 3 ≥g 3 得:34ln 43≤k <23ln2.故选择:D .21.(2022·辽宁·东北育才学校高三阶段练习)若α,β∈0,π2,且(1+cos2α)(1+sin β)=sin2αcos β,则下列结论正确的是( )A.α+β=π2B.α+β2=π2C.2α-β=π2D.α-β=π2【答案】C【解析】∵α,β∈0,π2,∴cos α≠0.由(1+cos2α)(1+sin β)=sin2αcos β,可得2cos 2α(1+sin β)=2sin αcos αcos β,即cos α(1+sin β)=sin αcos β.∴cos α=sin αcos β-cos αsin β=sin α-β ,∴sin α-β =sin π2-α.∵α,β∈0,π2 ,∴-π2<α-β<π2,且0<π2-α<π2.由于函数y =sin x 在x ∈-π2,π2 上单调递增,∴α-β=π2-α,即2α-β=π2.故选:C .二、多选题22.(2022·福建省福州华侨中学高三阶段练习)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋.一艘货船的吃水深度(船底到水面的距离)为4m .安全条例规定至少要有2.25m 的安全间隙(船底到海底的距离),下表给出了某港口在某试卷第2页,共40页季节每天几个时刻的水深.时刻水深/m 时刻水深/m 时刻水深/m 0:00 5.09:00 2.518:00 5.03:007.512:00 5.021:00 2.56:005.015:007.524:005.0若选用一个三角函数f x 来近似描述这个港口的水深与时间的函数关系,则下列说法中正确的有( )A.f x =2.5cos π6x+5 B.f x =2.5sin π6x+5C.该货船在2:00至4:00期间可以进港 D.该货船在13:00至17:00期间可以进港【答案】BCD【解析】依据表格中数据知,可设函数为f x =A sin ωx +k ,由已知数据求得A =2.5,k =5,周期T =12,所以ω=2πT =π6﹐所以有f x =2.5sin π6x +5,选项A 错误;选项B 正确;由于船进港水深至少要6.25,所以2.5sin π6x +5≥6.25,得sin π6x ≥12,又0≤x ≤24⇒0≤π6x ≤4π,则有π6≤π6x ≤5π6或13π6≤π6x ≤17π6,从而有1≤x ≤5或13≤x ≤17,选项C ,D 都正确.故选:BCD23.(2022·福建省福州屏东中学高三开学考试)已知函数f x =3sin 2x +φ -π2<φ<π2 的图像关于直线x =π3对称,则( )A.函数f x +π12 为奇函数B.函数f x 在π3,π2上单调递增C.函数f x 的图像向右平移a a >0 个单位长度得到的函数图像关于x =π6对称,则a 的最小值是π3D.若方程f x =a 在π6,2π3 上有2个不同实根x 1,x 2,则x 1-x 2 的最大值为π2【答案】AC【解析】因为函数f x =3sin 2x +φ -π2<φ<π2 的图像关于直线x =π3对称,所以,2×π3+φ=π2+k π,k ∈Z ,解得φ=-π6+k π,k ∈Z ,因为-π2<φ<π2,所以φ=-π6,即f x =3sin 2x -π6,所以,对于A 选项,函数f x +π12 =3sin2x ,是奇函数,故正确;对于B 选项,当x ∈π3,π2 时,2x -π6∈π2,5π6,由于函数y =sin x 在π2,5π6 上单调递减,所以函数f x 在π3,π2 上单调递减,故错误;对于C 选项,函数f x 的图像向右平移a a >0 个单位长度得到的函数图像对应的解析式为g x =3sin 2x -2a -π6,若g x 图像关于x =π6对称,则2×π6-2a -π6=π2+k π,k ∈Z ,解得a =-π6+k π2,k ∈Z ,由于a >0,故a 的最小值是π3,故正确;对于D 选项,当x ∈π6,2π3时,2x -π6∈π6,7π6,故结合正弦函数的性质可知,若方程f x =a 在π6,2π3上有2个不同实根x 1,x 2,不妨设x 1<x 2,则x 1-x 2 取得最大值时满足2x 1-π6=π6且2x 2-π6=5π6,所以,x 1-x 2 的最大值为π3,故错误.故选:AC 24.(2022·福建省福州屏东中学高三开学考试)已知定义在R 上的奇函数f x 图象连续不断,且满足f x +2 =f x ,则以下结论成立的是( )A.函数f x 的周期T =2B.f 2019 =f 2020 =0C.点1,0 是函数y =f x 图象的一个对称中心D.f x 在-2,2 上有4个零点【答案】ABC【解析】定义在R 上的奇函数f (x )图象连续不断,且满足f (x +2)=f (x ),所以函数的周期为2,所以A 正确;f (-1+2)=f (-1),即f (1)=f (-1)=-f (1),所以f (1)=f (-1)=0,所以f (2019)=f (1)=0,f (2020)=f (0)=0,所以B 正确;f x +2 =f x =-f -x ⇒f x +2 +f -x =0⇒f x 图象关于1,0 对称,所以C 正确;f (x )在[-2,2]上有f (-2)=f (-1)=f (0)=f (1)=f (2)=0,有5个零点,所以D 不正确;故选:ABC .25.(2022·福建省福州第二中学高三阶段练习)已知函数f (x )=-x 2-2x ,x <0f (x -2),x ≥0,以下结论正确的是( )A.f (-3)+f (2019)=-3B.f x 在区间4,5 上是增函数C.若方程f (x )=kx +1恰有3个实根,则k ∈-12,-14D.若函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则6i =1x i f x i 的取值范围是0,6【答案】BCD【解析】函数f (x )的图象如图所示:对A ,f (-3)=-9+6=-3,f (2019)=f (1)=f (-1)=1,所以f (-3)+f (2019)=-2,故A 错误;对B ,由图象可知f x 在区间4,5 上是增函数,故B 正确;对C ,由图象可知k ∈-12,-14,直线f (x )=kx +1与函数图象恰有3个交点,故C 正确;对D ,由图象可得,当函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则0<b <1,所以当b →0时,6i =1x i f x i →0;当b →1时,6i =1x i f x i →6,所以6i =1x i f x i 的取值范围是0,6 ,故D 正确.故选:BCD .26.(2022·福建省福州第二中学高三阶段练习)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A.0<x 0<1eB.x 0>1eC.f (x 0)+2x 0<0D.f (x 0)+2x 0>0【答案】AD试卷第2页,共40页【解析】函数f (x )=x ln x +x 2,(x >0),∴f (x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f x 0 =0,即∴ln x 0+1+2x 0=0,∴f 1e =2e >0,当x >1e时,f x >0∵x →0,f (x )→-∞,∴0<x 0<1e,即A 选项正确,B 选项不正确;f x 0 +2x 0=x 0ln x 0+x 20+2x 0=x 0ln x 0+x 0+2 =x 01-x 0 >0,即D 正确,C 不正确.故答案为:AD .27.(2022·福建省福州第一中学高三开学考试)设函数f x =sinπxx 2-x +54,则下列结论正确的是( )A.f x 的最大值为1B.f x ≤4xC.曲线y =f x 存在对称轴D.曲线y =f x 存在对称中心【答案】ABC【解析】A :因为x 2-x +54=x -12 2+1≥1,sinπx ≤1,所以sinπx ≤x 2-x +54⇒sinπx x 2-x +54≤1⇒f (x )≤1,当且仅当x =12时,f x =1故A 正确;B :f x ≤4x 等价于sinπx ≤4x 3-x 2+54x ,设g x =x -sin x ,x ∈0,+∞ ,g (x )=1-cos x ≥0,所以函数g (x )=x -sin x 在x ∈[0,+∞)时单调递增,因此有g (x )≥g (0)=0-sin0=0,即x ≥sin x ,x ∈0,+∞ ,而设函数h (x )=x -sin x ,h (-x )=-x -sin (-x ) =x -sin x =h (x ),所以h (x )=x -sin x 是实数集上的偶函数,因此有x ≥sin x ,即πx ≥sinπx ,4x x 2-x +54 ≥4x ×1=4x ,f x ≤πx x 2-x +54≤πx ≤4x ,故B 正确;C :因为f 12+x -f 12-x =sinπ12+x 12+x -12 2+1-sinπ12-x 12-x -12 2+1=cosπx -cosπx x 2+1=0,所以曲线y =f x 关于直线x =12对称,故C 正确;D :设曲线y =f x 存在对称点,设为(a ,b ),则有f (a +x )+f (a -x )=2b ,当x =0时,则有2f (a )=2b ⇒f (a )=b ,当x =a 时,则有f (2a )=2b ⇒2f (a )=f (2a ),即sin2a π(2a )2-2a +54=2⋅sin a πa 2-a +54⇒2sin a πcos a π(2a )2-2a +54=2⋅sin a πa 2-a +54,因此有sin a π=0,所以a 为整数,b =f a =sin a πa 2-a +54=0,令x =12,f a +12 +f a -12=0,而f a +12 +f a -12 =sinπa +12 a +12-12 2+1+sinπa -12a -12-12 2+1=cos a πa 2+1-cos a π(a -1)2+1,显然f a +12 +f a -12=0不恒成立,故D 不正确.故选:ABC .28.(2022·福建省福州第一中学高三开学考试)甲箱中有5个红球,2个白球和3个黑球;乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以A 1,A 2,A 3表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )A.P B =25B.P B |A 1 =511C.事件B 与事件A 1不相互独立D.A 1,A 2,A 3两两互斥【答案】BD 【解析】P A 1 =510=12,P A 2 =210=15,P A 3 =310,又P B |A 1 =511,P B |A 2 =411,P B |A 3 =411,故B 正确.故P (B )=P B |A 1 P A 1 +P B |A 2 P A 2 +P B |A 3 P A 2=511×12+411×15+411×310=922,故A 错误.P B P A 1 =922×12=944,P BA 1 =P B |A 1 P A 1 =522,故P B P A 1 ≠P BA 1 ,所以事件B 与事件A 1不相互独立,根据互斥事件的定义可得A 1,A 2,A 3两两互斥,故选:BD .29.(2022·福建·福州十八中高三开学考试)已知函数f (x )=sin (ωx +φ)(0<ω<10,0<φ<π)的部分图象如图所示,则下列结论正确的是( )A.ω=2B.ω=3C.f (x )在5π12,11π12上单调递增D.f (x )图像关于直线x =2π3对称【答案】AC【解析】由图可知: x =0,y =32;可得:ω×0+φ=2π3+2k π,k ∈Z ,所以φ=2π3+2k π,k ∈Z 又0<φ<π,所以φ=2π3;由x =π6,y =0,可得π6ω+2π3=π+2k π,k ∈Z ,所以ω=2+12k ,k ∈Z又0<ω<10,可得ω=2,所以A 选项正确,B 选项错误;所以函数的解析式为:f (x )=sin 2x +2π3 ,则f (x )在R 上的增区间满足:-π2+2k π≤2x +2π3≤π2+2k π,k ∈Z解得增区间为-7π12+k π,-π12+k π,k ∈Z ,所以当k =1时,函数f (x )的单调增区间为5π12,11π12,所以C 选项正确;当x =2π3时,f 2π3 =sin2π=0≠±1,所以直线x =2π3不是f (x )的对称轴,所以D 选项不正确;故选:AC .30.(2022·福建·闽江学院附中高三开学考试)关于函数f (x )=sin |x |+|sin x |,下列叙述正确的是( )A.f (x )是偶函数B.f (x )在区间π2,π单调递增C.f (x )的最大值为2 D.f (x )在[-π,π]有4个零点【答案】AC【解析】f (-x )=sin -x +sin (-x ) =sin x +sin x =f (x ),f (x )是偶函数,A 正确;x ∈π2,π 时,f (x )=sin x +sin x =2sin x ,单调递减,B 错误;试卷第2页,共40页f (x )=sin x +sin x ≤1+1=2,且f π2=2,因此C 正确;在[-π,π]上,-π<x <0时,f (x )=sin (-x )+(-sin x )=-2sin x >0,0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错.故选:AC .31.(2022·江苏·常州市平陵高级中学高三开学考试)已知关于x 的不等式a (x -1)(x +3)+2>0的解集是x 1,x 2 ,其中x 1<x 2,则下列结论中正确的是( )A.x 1+x 2+2=0 B.-3<x 1<x 2<1C.x 1-x 2 >4D.x 1x 2+3<0【答案】ACD【解析】由题设,a (x -1)(x +3)+2=ax 2+2ax -3a +2>0的解集为x 1,x 2 ,∴a <0,则x 1+x 2=-2x 1x 2=2a-3<0,∴x 1+x 2+2=0,x 1x 2+3=2a<0,则A 、D 正确;原不等式可化为f (x )=a (x -1)(x +3)>-2的解集为x 1,x 2 ,而f(x )的零点分别为-3,1且开口向下,又x 1<x 2,如下图示,∴由图知:x 1<-3<1<x 2,x 1-x 2 >4,故B 错误,C 正确.故选:ACD .32.(2022·江苏·盐城市伍佑中学高三开学考试)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,f (x )+f (x +6)=0,且对任意的x 1,x 2∈[-3,0],当x 1≠x 2时,都有x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1),则以下判断正确的是( )A.函数f (x )是偶函数B.函数f (x )在[-9,-6]上单调递增C.x =2是函数f (x +1)的对称轴D.函数f (x )的最小正周期是12【答案】BCD【解析】因为定义在R 上的函数f (x ) 满足f (x )+f (-x )=0,即f (-x )=-f (x ),故函数f (x )是奇函数,故A 错误;因为f (x )+f (x +6)=0,故f (x +6)=-f (x ),而f (-x )=-f (x ),所以f (x +6)=f (-x ),即f (x )的图象关于x =3对称,则x =2是函数f (x +1)的对称轴,故C 正确;因为f (x +6)=f (-x ),所以f (x +12)=-f (x +6)=f (x ),故12是函数f (x )的周期;对任意的x 1,x 2∈[-3,0] ,当x 1≠x 2 时,都有x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1) ,即(x 1-x 2)⋅[f (x 1)-f (x 2)]<0,故x ∈[-3,0]时,f (x )单调递减,又因为f (x )为奇函数,所以x ∈[0,3]时,f (x )单调递减,又因为f (x )的图象关于x =3对称,故x ∈[3,6]时,f (x )单调递增,因为12是函数f (x )的周期,故函数f (x )在[-9,-6] 单调性与x ∈[3,6]时的单调性相同,故函数f (x )在[-9,-6]上单调递增,故B 正确,作出函数f (x )的大致图象如图示:结合图象可得知12是函数f (x )的最小正周期,D 正确;故选:BCD33.(2022·江苏·盐城市伍佑中学高三开学考试)已知函数f (x )=ln (x +1)x,下列选项正确的是( )A.函数f (x )在(-1,0)上为减函数,在(0,+∞)上为增函数B.当x 1>x 2>0时,f (x 1)x 22>f (x 2)x 21C.若方程f (|x |)=a 有2个不相等的解,则a 的取值范围为(0,+∞)D.1+12+⋯+1n -1 ln2≤ln n ,n ≥2且n ∈N +【答案】BD【解析】对于选项A :f x =ln x +1 x ,x ∈-1,0 ∪0,+∞ .则f x =x -x +1 ln x +1x +1 x2,令g x =x -x +1 ln x +1 ,x ∈-1,0 ∪0,+∞ ,则g x =-ln x +1 ,当x ∈-1,0 时,g x >0,g x 单调递增;当x ∈0,+∞ 时,g x <0,g x 单调递减.所以对任意x ∈-1,0 ∪0,+∞ ,g x <g 0 =0,即f x <0,所以f x 在-1,0 ,0,+∞ 都是减函数,故A 错误;对于选项B :令h x =x 2f x =x ln x +1 ,x ∈0,+∞ ,则h x =x +x +1 ln x +1x +1,当x ∈0,+∞ 时,h x >0,h x 单调递增,所以当x 1>x 2>0时,h x 1 >h x 2 ,即x 12f x 1 >x 22f x 2 ,所以f x 1 x 22>f x 2 x 12,故B 正确;对于选项C :因为y =f x 是偶函数,所以“方程f x =a 有2个不相等的解”等价于“方程f x =a 在0,+∞ 上有1个解”.由A 可知,f x 在0,+∞ 上单调递减,且x →0时,f x →1;x →+∞时,f x →0,所以,当0<a <1时,方程f x =a 在0,+∞ 上有1个解,即f x =a 有2个不相等的解,故C 错误;对于选项D :由A 知,f x 在0,12 上单调递减,则对任意x ∈0,12 ,f x ≥f 12 =2ln 32=ln 94>ln2,即ln x +1 x >ln2,所以当n ≥2时,ln 1n+1 1n>ln2,即1n ln2<ln n +1n.所以ln2=ln2,12ln2<ln 32,13ln2<ln 43,⋯,1n -1ln2<ln nn -1,以上式子相加得ln2+12ln2+13ln2+⋯+1n -1ln2≤ln2+ln 32+ln 43+⋯+ln n n -1,即1+12+13+⋯+1n -1 ln2≤ln n (n =2时,等号成立),故D 正确.故选:BD .34.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知函数f x =A cos ωx +φ (A >0,ω>0,0<φ<π)的图象的一个最高点为-π12,3 ,与之相邻的一个对称中心为π6,0 ,将f x 的图象向右平移π6个单位长度得到函数g x 的图象,则( )A.g x 为偶函数B.g x 的一个单调递增区间为-5π12,π12试卷第2页,共40页C.g x 为奇函数D.g x 在0,π2上只有一个零点【答案】BD 【解析】由题意,可得T 4=π6--π12 =π4,所以T =π,可得w =2πT=2,所以f x =3cos (2x +φ),因为f -π12 =3cos 2×-π12 +φ =3,所以φ-π6=2k π,k ∈Z ,因为0<φ<π,所以φ=π6,即f x =3cos 2x +π6 ,所以g x =3cos 2x -π6 +π6 =3cos 2x -π6 ,可得函数g x 为非奇非偶函数,令-π+2k π≤2x -π6≤2k π,k ∈Z ,可得-5π12+k π≤x ≤π12+k π,k ∈Z ,当k =0时,函数g x 的一个单调递增区间为-5π12,π12;由2x -π6=π2+k π,,k ∈Z ,解得x =π3+k π,k ∈Z ,所以函数g x 在0,π2上只有一个零点.故选:BD35.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知f x 为函数f x 的导函数,若x 2f x +xf x =ln x ,f 1 =12,则下列结论错误的是( )A.xf x 在0,+∞ 上单调递增B.xf x 在0,+∞ 上单调递减C.xf x 在0,+∞ 上有极大值12D.xf x 在0,+∞ 上有极小值12【答案】ABC【解析】由x 2f x +xf x =ln x ,可知x >0,则xf x +f x =ln x x ,即xf x =ln xx.设g x =xf x ,则由g x =ln xx>0得x >1,由g x <0得0<x <1,所以g x =xf x 在1,+∞ 上单调递增,在0,1 上单调递减,所以当x =1时,函数g x =xf x 取得极小值g 1 =f 1 =12.故选:ABC .36.(2022·重庆·临江中学高三开学考试)若4x -4y <5-x -5-y ,则下列关系正确的是( )A.x <yB.y -3>x -3C.x >yD.13 y <3-x【答案】AD【解析】由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f x =4x -5-x ,则f x <f y .因为g x =4x ,h x =-5-x 在R 上都是增函数,所以f x 在R 上是增函数,所以x <y ,故A 正确;因为G x =x -3在0,+∞ 和-∞,0 上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y =13 x 在R 上是减函数,且x <y ,所以13 y <13 x ,即13y<3-x ,故D 正确.故选:AD .37.(2022·重庆·临江中学高三开学考试)已知函数f x 的定义域是0,+∞ ,且f xy =f x +f y ,当x >1时,f x<0,f 2 =-1,则下列说法正确的是( )A.f 1 =0B.函数f x 在0,+∞ 上是减函数C.f 12022 +f 12021 +⋅⋅⋅+f 13 +f 12+f 2 +f 3 +⋅⋅⋅+f 2021 +f 2022 =2022D.不等式f 1x -f x -3 ≥2的解集为4,+∞【答案】ABD【解析】对于A ,令x =y =1 ,得f 1 =f 1 +f 1 =2f 1 ,所以f 1 =0,故A 正确;对于B ,令y =1x >0,得f 1 =f x +f 1x =0,所以f 1x=-f x ,任取x 1,x 2∈0,+∞ ,且x 1<x 2,则f x 2 -f x 1 =f x 2 +f 1x 1 =f x 2x 1,因为x 2x 1>1,所以f x 2x 1<0,所以f x 2 <f x 1 ,所以f x 在0,+∞ 上是减函数,故B 正确;对于C ,f 12022 +f 12021 +⋅⋅⋅+f 13 +f 12+f 2 +f 3 +⋅⋅⋅+f 2021 +f 2022 =f 12022×2022 +f 12021×2021 +⋅⋅⋅+f 13×3 +f 12×2 =f 1 +f 1+⋅⋅⋅+f 1 +f 1 =0,故C 错误;对于D ,因为f 2 =-1,且f 1x =-f x ,所以f 12=-f 2 =1,所以f 14 =f 12 +f 12 =2,所以f 1x -f x -3 ≥2等价于f 1x +f 1x -3≥f 14 ,又f x 在0,+∞ 上是减函数,且f xy =f x +f y ,所以1x x -3 ≤141x >01x -3>0,解得x ≥4,故D 正确,故选:ABD .38.(2022·重庆南开中学高三阶段练习)在棱长为3的正方体ABCD -A 1B 1C 1D 1中,点P 在棱DC 上运动(不与顶点重合),则点B 到平面AD 1P 的距离可以是( )A.2B.3C.2 D.5【答案】CD【解析】以D 为原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D (0,0,0),A (3,0,0),B (3,3,0),D 1(0,0,3),设P (0,t ,0),所以AP =-3,t ,0 ,AD 1 =-3,0,3 ,AB =(0,3,0),设n 1=x 1,y 1,z 1 为平面AD 1P 的法向量,则有: n 1 ⋅AP=-3x 1+ty 1=0n 1 ⋅AD 1 =-3x 1+3z 1=0,令y 1=3,可得n=(t ,3,t ),试卷第2页,共40页则点B 到平面AD 1P 的距离为d =AB ⋅nn=92t 2+9,因为0<t <3,所以距离的范围是(3,3).故选:CD .39.(2022·重庆南开中学高三阶段练习)已知a >b >1,则( )A.a ln b >b ln aB.e 1a-1b<a bC.a >e1-1bD.若b m =b +n ,则a m >a +n【答案】BC【解析】因为a >b >1,所以a ln b >b ln a ⇔ln b b>ln aa ,设函数f (x )=ln x x (x >1),f (x )=1-ln xx 2,当x ∈(1,e )时,f (x )>0,函数f (x )单调递增,当x ∈(e ,+∞)时,f (x )<0,函数f (x )单调递减,所以A 选项错误;因为a >b >1,所以由e 1a-1b<a b ⇔1a -1b <ln a -ln b ⇔ln a -1a >ln b -1b,设函数g (x )=ln x -1x ,g (x )=1x +1x 2,当x ∈(0,+∞)时,g(x )>0,函数g (x )单调递增,所以B 选项正确;因为a >e 1-1b ⇔ln a >1-1b ,设函数h (a )=ln a -1-1a ,所以h (a )=a -1a 2,当a ∈1,+∞ 时,h (a )>0,函数h (a )单调递增,当a ∈0,1 时,h (a )<0,函数h (a )单调递减,所以h (a )>h (1)=0,即ln a -1-1a >0⇒ln a >1-1a,因为a >b >1,所以1a <1b ⇒1-1a >1-1b ,因此ln a >1-1a >1-1b,所以C 选项正确.令b =2,m =0,则有n =-1,又令a =3,所以a m =a 0=1,a +n =2,显然不成立,所以D 选项错误,故选:BC40.(2022·辽宁·高三开学考试)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为( )A.52B.32C.132D.172【答案】AC【解析】方法一(几何法,双曲线定义的应用)情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过F 1作圆D 的切线切点为B ,所以OB ⊥F 1N ,因为cos ∠F 1NF 2=35>0,所以N 在双曲线的左支,OB =a ,OF 1 =c , F 1B =b ,设∠F 1NF 2=α,由即cos α=35,则sin α=45,NA =32a ,NF 2 =52aNF 2 -NF 1 =2a52a -32a +2b =2a ,2b =a ,∴e =52选A 情况二若M 、N 在双曲线的两支,因为cos ∠F 1NF 2=35>0,所以N 在双曲线的右支,所以OB =a ,OF 1 =c ,F 1B =b ,设∠F 1NF 2=α,由cos ∠F 1NF 2=35,即cos α=35,则sin α=45,NA =32a ,NF 2 =52aNF 2 -NF 1 =2a 32a +2b -52a =2a ,所以2b =3a ,即b a =32,所以双曲线的离心率e =c a =1+b 2a2=132选C方法二(答案回代法)A 选项e =52特值双曲线x 24-y 2=1,∴F 1-5,0 ,F 25,0 ,过F 1且与圆相切的一条直线为y =2x +5 ,∵两交点都在左支,∴N -655,-255 ,∴NF 2 =5,NF 1 =1,F 1F 2 =25,则cos ∠F 1NF 2=35,C 选项e =132特值双曲线x 24-y 29=1,∴F 1-13,0 ,F 213,0 ,过F 1且与圆相切的一条直线为y =23x +13 ,∵两交点在左右两支,N 在右支,∴N 141313,181313 ,∴NF 2 =5,NF 1 =9,F 1F 2 =213,则cos ∠F 1NF 2=35,解法三:依题意不妨设双曲线焦点在x 轴,设过F 1作圆D 的切线切点为G ,若M ,N 分别在左右支,因为OG ⊥NF 1,且cos ∠F 1NF 2=35>0,所以N 在双曲线的右支,又OG =a ,OF 1 =c ,GF 1 =b ,设∠F 1NF 2=α,∠F 2F 1N =β,在△F 1NF 2中,有NF 2 sin β=NF 1 sin α+β=2csin α,故NF 1 -NF 2 sin α+β -sin β=2c sin α即a sin α+β -sin β=c sin α,试卷第2页,共40页所以a sin αcos β+cos αsin β-sin β=csin α,而cos α=35,sin β=a c ,cos β=b c ,故sin α=45,代入整理得到2b =3a ,即b a =32,所以双曲线的离心率e =c a =1+b 2a 2=132若M ,N 均在左支上,同理有NF 2sin β=NF 1sin α+β=2c sin α,其中β为钝角,故cos β=-bc,故NF 2 -NF 1 sin β-sin α+β=2c sin α即a sin β-sin αcos β-cos αsin β=c sin α,代入cos α=35,sin β=a c ,sin α=45,整理得到:a 4b +2a=14,故a =2b ,故e =1+b a 2=52,故选:AC .41.(2022·辽宁·沈阳市第四中学高三阶段练习)将以下四个方程e x =a -x 、x 2=a -x (x >0)、x =a -x 、ln x =a -x 的正数解分别记为x 1,x 2,x 3,x 4,则以下判断一定正确的有( )A.x 1<x 2<x 3<x 4 B.x 1+x 2+x 3+x 4=2aC.x 3-x 1=x 4-x 2D.x 1x 4=x 2x 3【答案】BC【解析】画出y =e x ,y =x 2x >0 ,y =x ,y =ln x ,y =a -x 的图象如下图所示,y =x y =a -x ⇒x =y =a 2,由图可知x 1,x 4关于x =a 2对称,x 2,x 3关于x =a2对称,所以x 1+x 4=a ,x 2+x 3=a ,则x 1+x 2+x 3+x 4=2a ,x 1-x 2+x 4-x 3=0,x 3-x 1=x 4-x 2,所以BC 选项正确.当a =2时,x 1+x 4=x 2+x 3=2且x 2=x 3=1,x 1<x 2=x 3<x 4所以A 选项不正确,对于D 选项,x 1x 4<x 1+x 422=1=x 2x 3,所以D 选项不正确.故选:BC42.(2022·辽宁·沈阳市第四中学高三阶段练习)已知函数f (x )在R 上有定义,记f (x )为函数f (x )的导函数,又f (2x -1)是奇函数,则以下判断一定正确的有( )A.f 4x -2 是奇函数 B.f x -1 +f 3x -1 是奇函数C.f 4x 2-2 是偶函数 D.f (-5x -1)是偶函数【答案】BCD【解析】若f x =x +1,则f 2x -1 =2x 为奇函数,而f 4x -2 =4x -1为非奇非偶函数,所以A 选项错误.由于f 2x -1 是奇函数,所以f -2x -1 =-f 2x -1 ,对于函数f x -1 +f 3x -1 ,f -x -1 +f -3x -1 =-f x -1 -f 3x -1 =-f x -1 +f 3x -1 ,所以f x -1 +f 3x -1 是奇函数,B 选项正确.对于函数f 4x 2-2 ,f 4-x 2-2 =f 4x 2-2 ,所以函数f 4x 2-2 是偶函数,C 选项正确.对于D 选项,先证明奇函数的导数是偶函数:若f x 是定义在R 上的奇函数,则f -x =-f x ,两边求导得f -x =-f x ,即-f -x =-f x ,即f -x =f x ,所以奇函数的导数是偶函数.然后证明f -5x -1 为奇函数:由于f 5x -1 =-f -5x -1 ,所以f -5x -1 为奇函数,所以f (-5x -1)是偶函数,D 选项正确.故选:BCD43.(2022·辽宁·东北育才学校高三阶段练习)已知函数f x 的定义域为-∞,0 ∪0,+∞ ,图象关于y 轴对称,导函数为f x ,且当x <0时,f x >f xx,设a >1,则下列大小关系正确的是( )A.a +1 f 4aa +1 >2a f 2a B.f 2a >a f 2aC.4af a +1 a +1>a +1 f 4a a +1D.2f 2a <a +1 f 4a a +1 【答案】AD【解析】当x <0时,fx >f x x ,即f x -f x x =xf x -f x x>0,所以xf (x )-f (x )<0,构造函数g x =f x x ,则g(x )=xf (x )-f (x )x 2<0,∴当x <0时,g x 单调递减,又由题意可得f x 是偶函数,∴g x 是奇函数,则当x >0时,g x 也单调递减.对于A ,∵a >1,∴0<4a a +1<4a 2a=2a ,∴g 4aa +1 >g 2a ,即f 4a a +1 4a a +1>f 2a 2a ,∴a +1 f 4a a +1 >2a f 2a ,故A 正确;对于B ,∵a >1,∴2a >2a >0,∴g 2a <g 2a ,即f 2a2a <f 2a 2a,可得f 2a <a f 2a ,故B 错误;对于C ,∵a >1,a +1-4a a +1=a -1 2a +1>0,即a +1>4a a +1>0,∴g a +1 <g 4aa +1 ,即f a +1 a +1<f 4a a +1 4a a +1,∴4af a +1 a +1<a +1 f 4aa +1,故C 错误;对于D ,∵a >1,2a -4a a +1=2a 2+2a -4a a +1=2a a -1 a +1>0,∴2a >4aa +1>0,g 2a <g 4a a +1 ,即f 2a 2a <f 4a a +1 4a a +1,∴2f 2a <a +1 f 4a a +1 ,故D 正确.故选:AD .44.(2022·辽宁·东北育才学校高三阶段练习)已知函数f x =sin ωx +φ ω>0,φ∈R 在区间7π12,5π6上单调,且满足f 7π12=-f 3π4 有下列结论正确的有( )A.f 2π3 =0B.若f 5π6-x =f x ,则函数f x 的最小正周期为π;试卷第2页,共40页。

2024年高考数学专项突破数列大题压轴练(解析版)

2024年高考数学专项突破数列大题压轴练(解析版)

数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列;(2)求数列{}n na 的前n 项和n A .2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1n nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;(2)设数列{}n a 的前n 项和为n S ,求使得不等式2022n S >成立的n 的最小值.6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .2024年高考数学专项突破数列大题压轴练(解析版)(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)ni i i i b b +=⎡⎤-⎣⎦∑.11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b-+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}11,n n n n n a b b a a ++=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a 满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n n b e +=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S为数列{}n a的前n项和,n T为S T+=.数列{}n S的前n项和,已知2n n(1)求证:数列{}n S是等比数列;(2)求数列{}n na的前n项和n A.2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*sin 3()cos cos n n c N b b =∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;S>成立的n的最小值.(2)设数列{}n a的前n项和为n S,求使得不等式2022n6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+-.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.【答案】(1)证明见解析(2){}n a 为等比数列,理由见解析10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)nii i i b b +=⎡⎤-⎣⎦∑.【答案】(1)12n n a -=(2)288n n+【分析】(1)选择条件①:先由{}1n S a +为等比数列结合等比中项列出式子,再设出等比数列{}n a 的公比,通过等比数列公式化简求值即可得出答案;选择条件②:先由1121222n n n n a a a na -+++⋅⋅⋅+=得出()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥,两式做减即可得出()122n n a a n +=≥,再验证1n =时即可利用等比数列通项公式得出答案;(2)通过14n n n T b b +=⋅得出()1142n n n T b b n --⋅≥=,两式相减结合已知即可得出()1142n n b b n +--=≥,即数列{}n b 的奇数项、偶数项分别都成公差为4的等差数列,将211(1)nii i i b b+=⎡⎤-⎣⎦∑转化即可得出答案.【详解】(1)选条件①:数列{}1n S a +为等比数列,()()()2211131S a S a S a ∴+=++,即()()2121123222a a a a a a +=++,11a = ,且设等比数列{}n a 的公比为q ,()()22222q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==,选条件②:1121222n n n n a a a na -+++⋅⋅⋅+= ①,()()1212122212n n n n a a a n a n ---++⋅⋅⋅+=-≥∴,即()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥ ②,由①②两式相减得:()()12221n n n n a na n a +=-≥-,即()122n n a a n +=≥,令1121222n n n n a a a na -+++⋅⋅⋅+=中1n=得出212a a =也符合上式,故数列{}n a 为首项11a =,公比2q =的等比数列,则1112n n n a a q --==,(2)由第一问可知,不论条件为①还是②,都有数列{}n a 为首项11a =,公比2q =的等比数列,即12n n a -=,11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .【答案】(1)43n a n =-,3nn b =(2)660【分析】(1)将14n n n S S a +=++移项作差可得{}n a 是等差数列,结合25a =可求出数列{}n a 的通项公式,将1,b q 代入等式计算,即可求出数列{}n b 的通项公式;(2)由2077a =可判断前20项中最多含有123,,b b b 三项,排除23b a =可确定前20项中14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT【答案】(1)1*(2)3n n a n -=⋅∈N ,()*)1(n b n n n =+∈N (2)()*)121(3n n T n n =+-∈N 【分析】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式作差即可得数列{}n a 的递推关系,即可求通项,最后验证1a 是否符合即可;数列{}n b 利用累乘法即可求,最后验证1b 是否符合即可;(2)由题,由等差数列的性质得()11n n n a a n c +-=+,即可求出n c 的通项公式,最后利用错位相减法求n T 即可【详解】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式相减可得13(2)n n a a n +=≥,故数列{}n a 从第3项开始是以首项为2a ,公比3q =的等比数列.又由已知132n n S S +=+,令1n =,得213+2S S =,即12132a a a +=+,得21226a a =+=,故123)2(n n a n -=⋅≥;又12a =也满足上式,则数列{}n a 的通项公式为1*(2)3n n a n -=⋅∈N ;16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}1,n n n a b b a a +=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a 满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC--=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:22211154b b b +++< .(2)由(1)可得:当1n =时,则1b 当2n ≥时,可得()(2211212n b n n=<-则222121111111114223nb b b ⎛+++=+-+- ⎝L 27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.⎫⎪⎪⎪28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值【答案】(1)230S =,384S =,133n n S +=+(2)7【分析】(1)根据123,,S S S 进行猜想,结合等比数列的知识进而求解,并进行推导.(2)利用裂项求和法求得m T ,由此列不等式,从而求得m 的最小值.【详解】(1)一阶和数列:{}2,6,4,对应112S =;二阶和数列:{}2,8,6,10,4,对应230S =;三阶和数列:{}2,10,8,14,6,16,10,14,4,对应384S =;故猜想136n n S S -=-,()1333n n S S --=-,所以数列{}3n S -是首项为139S -=,公比为3的等比数列,所以11393,33n n n n S S -+-=⋅=+.下面证明136n n S S -=-:设112124n m m S a a a a --=++++++ ,则()()()()1112112244n m m m m m S a a a a a a a a a --=+++++++++++++29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n nb e+=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

【选择题压轴题】专题6 立体几何【理科数学】备战2021高考之数学压轴题(新课标全国卷)含解析

【选择题压轴题】专题6 立体几何【理科数学】备战2021高考之数学压轴题(新课标全国卷)含解析

直线 AB ,CD 上的动点,点 P 为 EF 中点,Q 为正四面体中心(满足QA = QB = QC = QD ),若 PQ = 2 ,
则 EF 长度为( )
A. 2 6
B. 6C. 3Fra bibliotekD. 2
25.(2021·湖南长沙市·长郡中学高三月考)如图,已知正四棱柱 ABCD − A1B1C1D1 的底面边长为 1,侧棱
高中数学精选资源
专题 6 立体几何
1.(2021·浙江超级全能生 3 月联考)如图,已知在 ABC 中,BAC = 90, AB = 1, BC = 2, D 为线段 BC 上一点,沿 AD 将△ABD 翻转至 ABD ,若点 B 在平面 ADC 内的射影H 恰好落在线段 AC 上,则二面 角 B − DC − A 的正切的最大值为( )
形,ABC
=
3
, AA1
=
2
, BD
=
2
3 ,经过直线 BD 且与直线 A1C 平行的平面交直线 AA1 于点 P ,则
三棱锥 P − ABD 的外接球的表面积为( )
A. 17 2
B. 17
C. 57 6
114
D.
3
7/8
高中数学精选资源
30.(2021·超级全能生 1 月联考(理))已知三棱锥 P − ABC 中, ABC 是等腰直角三角形,AB ⊥ AC ,
AB = 6 ,PA = 2 2 ,PAB = PAC ,三棱锥P − ABC 的体积为 3 +1 ,则三棱锥P − ABC 外接
球的表面积为( A. 36π
) B. 32π
C. 24π
D. 16π
B. 2 + 2 6
C. 3 2 + 6

2019-2020年高考压轴卷 数学 含解析

2019-2020年高考压轴卷 数学 含解析

(图1) 2019-2020年高考压轴卷数学含解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知复数的实部为,虚部为1,则的模等于 .2.已知集合,集合,则 .3.右图1是一个算法流程图,若输入的值为,则输出的值为 .4.函数的定义域为 .5.样本容量为10的一组数据,它们的平均数是5,频率如条形图2所示,则这组数据的方差等于.6.设是两个不重合的平面,是两条不重合的直线,给出下列四个命题:①若则;②若,,则;③若,则;④若,则.其中正确的命题序号为7.若圆上有且只有两个点到直线的距离等于1,则半径的取值范围是 .8.已知命题在上为减函数;命题,使得.则在命题,,,中任取一个命题,则取得真命题的概率是9.若函数,其图象如图3所示,则 .10.函数的图象经过四个象限,则a的取值范围是.11.在中,已知角A,B,C的对边分别为a,b,c,且,则函数在上的单调递增区间是 .12. “已知关于的不等式的解集为,解关于的不等式.”给出如下的一种解法:解:由的解集为,得的解集为,即关于的不等式的解集为.x y12图3图2参考上述解法:若关于的不等式的解集为,则关于的不等式的解集为 .13.xx 年第二届夏季青年奥林匹克运动会将在中国南京举行,为了迎接这一盛会,某公司计划推出系列产品,其中一种是写有“青奥吉祥数”的卡片.若设正项数列满足,定义使为整数的实数k 为“青奥吉祥数”,则在区间[1,xx]内的所有“青奥吉祥数之和”为________14.已知,设集合,,若对同一x 的值,总有,其中,则实数的取值范围是 二、 解答题(本大题共6小题,共90分) 15.在中,角,,的对边分别为,,,向量,且 (1)求的值;(2)若,求边c 的长度.16.如图4,在四棱锥中,平面平面,AB ∥DC , 是等边三角形, 已知,.(1)设是上的一点,证明:平面平面; (2)求四棱锥的体积.17.如图5,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设AB = y km ,并在公路同侧建造边长为x km 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知AB = AC 1,且∠ABC = 60o .(1)求y 关于x 的函数解析式;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:x 取何值时,该公司建中转站围墙和两条道路总造价M 最低?ABCMPD图4公 路HG F E DC B A 图5OMNF 2F 1yx(图6)18. 如图6,椭圆过点,其左、右焦点分别为,离心率,是椭圆右准线上的两个动点,且. (1)求椭圆的方程; (2)求的最小值;(3)以为直径的圆是否过定点?请证明你的结论.19.已知函数(1)求曲线在点处的切线方程; (2)求函数的单调增区间;(3)若存在,使得是自然对数的底数),求实数的取值范围.20. 已知数列{a n }中,a 2=a(a 为非零常数),其前n 项和S n 满足S n =n(a n -a 1)2(n N*).(1)求数列{a n }的通项公式; (2)若a=2,且,求m 、n 的值;(3)是否存在实数a 、b ,使得对任意正整数p ,数列{a n }中满足的最大项恰为第项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由.数学Ⅱ(附加题)21A .[选修4-1:几何证明选讲](本小题满分10分) 如图,从圆外一点引圆的切线及割线,为切点. 求证:.21B .已知矩阵,计算.21C .已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是是参数).若直线与圆相切,求正数的值.21D .(本小题满分10分,不等式选讲)已知不等式对于满足条件的任意实数恒成立,求实数的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.P(第21 - A 题)(第22题)22.(本小题满分10分)22. 如图,在四棱锥P -ABCD 中,底面ABCD ,底面ABCD 是边长为2的菱形,,,M 为PC 的中点.(1)求异面直线PB 与MD 所成的角的大小;(2)求平面PCD 与平面P AD 所成的二面角的正弦值.23.(本小题满分10分)袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为X n . (1)求随机变量X 2的概率分布及数学期望E (X 2);(2)求随机变量X n 的数学期望E (X n )关于n 的表达式.xx 江苏高考压轴卷数学答案一、填空题1. 2.. 3.2 4. 5.7.2 6. ①③ 7. 8. 9.4 10. 11. 12. 13.2047 14. 提示: 1.,则,则. 2.{}{}{}2022≤=≥-=-==x x x x x y x B ,又,所以.3. 当时,,则;当时,,;当时,,;当时,不成立,则输出.4.要使原式有意义,则,即且.5.2出现次,5出现次,8出现次,所以[]2.7)55(4)55(2)52(41012222=-⨯+-⨯+-⨯=s . 6. 逐个判断。

数学高考压轴题含答案

数学高考压轴题含答案

数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

高考数学压轴题——圆锥曲线大题十个大招含答案全解析

高考数学压轴题——圆锥曲线大题十个大招含答案全解析

终结圆锥曲线大题十个大招招式一:弦的垂直平分线问题 (25)招式二:动弦过定点的问题 (26)招式四:共线向量问题 (28)招式五:面积问题 (35)招式六:弦或弦长为定值、最值问题 (38)招式七:直线问题 (43)招式八:轨迹问题 (47)招式九:对称问题 (54)招式十、存在性问题 (57)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.招式二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

专题06 超越不等式(方程)型-2021年高考数学复习压轴题解法分析与强化训练附真题及解析

专题06 超越不等式(方程)型-2021年高考数学复习压轴题解法分析与强化训练附真题及解析

专题06 超越不等式(方程)型[真题再现]例1 (2020·南京三模·20改编)已知函数2e ()xf x x ax a=-+(a ∈R),其中e 为自然对数的底数,若函数()f x 的定义域为R ,且(2)()f f a >,求a 的取值范围.【答案】(2,4)【解析】由函数f (x )的定义域为R ,得x 2-ax +a ≠0恒成立,所以a 2-4a <0,解得0<a <4.方法1(讨论单调性)由f (x )=e x x 2-ax +a ,得f'(x )=e x (x -a )(x -2)(x 2-ax +a )2. ①当a =2时,f (2)=f (a ),不符题意.②当0<a <2时,因为当a <x <2时,f ′(x )<0,所以f (x )在(a ,2)上单调递减,所以f (a )>f (2),不符题意.③当2<a <4时,因为当2<x <a 时,f ′(x )<0,所以f (x )在(2,a )上单调递减,所以f (a )<f (2),满足题意.综上,a 的取值范围为(2,4).方法2(转化为解超越不等式,先猜根再使用单调性)由f (2)>f (a ),得e 24-a >e a a. 因为0<a <4,所以不等式可化为e 2>e a a(4-a ). 设函数g (x )=e x x(4-x )-e 2, 0<x <4. 因为g'(x )=e x·-(x -2)2x 2≤0恒成立,所以g (x )在(0,4)上单调递减. 又因为g (2)=0,所以g (x )<0的解集为(2,4).所以,a 的取值范围为(2,4).例2 (2016·宿迁三校学情调研·14)已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对数的底,则满足f (e x )<0的x 的取值范围为 .【答案】()0,1【解析】易得f (1)=f (e)=0 ∵1(1)()1e x e f x x x---'=-= ∴当(0,1)x e ∈-时,()0f x '<,()f x 在(0,1)e -单减;当(1,)x e ∈-+∞时,()0f x '>,()f x 在(1,)e -+∞单增∴()0f x <的解集是1x e <<令1x e e <<,得01x <<,故f (e x )<0的x 的取值范围为()0,1.例3 (2020·扬州五月测试·20改编)不等式1ln 0x x x --≤的解集是 . 【答案】(0,1]【解法一】显然1x =是方程1ln 0x x x--=一个根 令1()ln f x x x x=--,则22222111112()10x x x f x x x x x ⎛⎫-+ ⎪-+⎝⎭'=+-==> 故()f x 在(0,)+∞单增,且(1)0f =所以不等式1ln 0x x x--≤的解集是(0,1]. 【解法二】1ln 0x x x --≤变形为1ln x x x-≤ 设1()f x x x=-,()ln g x x = 而1()f x x x=-在(0,)+∞单减,()ln g x x =在(0,)+∞单增,且图象均过(1,0) 所以不等式1ln 0x x x --≤的解集是(0,1]. 例4340x +=的根是 .【答案】43-【分析】利用“同构”构造函数,再利用函数的单调性.【解析】原方程可化为()()331123230x x x x+++++++=设3()f x x x=+,易得其为R上的单增奇函数所以()()1230x x+++=,43x=-即为所求.[强化训练]1.(2020·北京·6)已知函数()21xf x x=--,则不等式()0f x>的解集是().A. (1,1)- B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞【答案】D【分析】作出函数2xy=和1y x=+的图象,观察图象可得结果.【解析】因为()21xf x x=--,所以()0f x>等价于21x x>+,在同一直角坐标系中作出2xy=和1y x=+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x>+的解为0x<或1x>.所以不等式()0f x>的解集为:()(),01,-∞⋃+∞.2.关于的不等式的解集为___________.【答案】[1,)+∞x2ln10x x+-≥3. 方程e eln e 0x x x +-=的根是___________.【答案】1【解析】设()e eln x x x x e ϕ=+-,则e ()(1)e 0x x x xϕ'=++>,所以()x ϕ单调递增, 因为(1)0ϕ=,所以1x =.4.已知α、β分别是方程510x x ++=、10x +=的根,则α+β的值是 . 【答案】-15.已知实数x 、y 满足(1x y =,则2234662020x xy y x y ----+的值是 .【答案】2020【提示】两边取自然对数得((ln ln 0x y +++=设(()ln f x x =+,则易得其为R 上的单增奇函数所以0x y +=,故2234662020()(4)6()20202020x xy y x y x y x y x y ----+=+--++=.。

2019浙江省高考压轴卷数学附答案解析

2019浙江省高考压轴卷数学附答案解析

2 2
,所以 e2

1 a2

2 ,解得 a

2
,故选 B.
2
4
3.【答案】D 【解析】
根据题意和三视图知几何体是一个放倒的直三棱柱 ABC A ' B 'C ' ,
底面是一个直角三角形,两条直角边分别是 2 、斜边是 2,
且侧棱与底面垂直,侧棱长是 2,
∴ 几何体的表面积 S 2 1 21 2 2 2 2 2 6 4 2 , 2
14.【答案】 4 2 5
【解析】设向量
a,
b
的夹角为
,由余弦定理有:
4. 若复数 z 满足: 1 1 2z i 0 ( i 是虚数单位),则复数 z 的虚部是( )
A. 1 2
1
B.
2
C. 1 i 2
1 D. i
2
5. 函数 y 2x2 e x 在 2, 2 的图像大致为( ).
y
y
1
1
-2
O
2 x -2
O
2x
A
B
1
y
y
1
1
-2
2019 浙江省高考压轴卷
数学
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目 要求的.
1.已知全集U 1, 2,3, 4,5, 6, 集合 A 1,3,5, B 1, 2, 则 A CU B A. B. 5 C. 3 D. 3,5
2
xy0 ,
12.
已知
x,
y
满足条件

x

y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年高考数学压轴题系列训练含答案及解析详解六Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-199982009年高考数学压轴题系列训练含答案及解析详解六1.(本小题满分14分)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.解:(1)设切点A 、B 坐标分别为))((,(),(012112x x x x x x ≠和, ∴切线AP 的方程为:;0220=--x y x x 切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有41)1)(1(cos 102110110x x x x x x x x BFP +=--+⋅+==∠ ∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB. ②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(041411121121=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB. 2.(本小题满分12分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上并说明理由.(此题不要求在答题卡上画图)本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ② 且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而 又由N (1,3)在椭圆内,∴,1231322=+⨯>λ ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根, ∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且 于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤ 同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥ ∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ ∴⑧式成立,即A 、B 、C 、D 四点共圆. 解法2:由(Ⅱ)解法1及λ>12,∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上. 又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD ) 3.(本小题满分14分)已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足,4,3,2,),0(111=+≤>=--n a n na a b b a n n n (Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n(Ⅱ)猜测数列}{n a 是否有极限如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n >时,对任意b>0,都有.51<n a本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a n n n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba bn b n b a b a n n +<+=+>∴=证法2:设nn f 13121)(+++=,首先利用数学归纳法证不等式 .,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k +≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k kk k ,)1(1)11)((1)()1()1()1(bk f bb k k f bbb k f k k bk ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n b a n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则()2111222222,2242,3,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设00112212110021122120000121212350,22215tan .1152151515tan 15arctan.y yPF k PF k F PF PF M F PF y y k k F PF k k y y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。

相关文档
最新文档