数控加工中心刀具长度补偿的研究
数控加工的补偿方法
数控加工的补偿方法在20世纪六七十年代的数控加工中没有补偿的概念,所以编程人员不得不围绕刀具的理论路线和实际路线的相对关系来进行编程,这样容易产生错误。
补偿的概念出现以后,大大地提高了编程的工作效率。
在数控加工中有刀具半径补偿、刀具长度补偿和夹具补偿。
这三种补偿方法基本上能解决在加工中因刀具形状而产生的轨迹问题。
1、刀具半径补偿在数控机床进行轮廓加工时,由于刀具有一定的半径(如铣刀半径),因此在加工时,刀具中心的运动轨迹必须偏离实际零件轮廓一个刀具半径值,否则实际需要的尺寸将与加工出的零件尺寸相差一个刀具半径值或一个刀具直径值。
此外,在零件加工时,有时还需要考虑加工余量和刀具磨损等因素的影响。
有了刀具半径补偿后,在编程时就可以不过多考虑刀具直径的大小了。
刀具半径补偿一般只用于铣刀类刀具,当铣刀在内轮廓加工时,刀具中心向零件内偏离一个刀具半径值;在外轮廓加工时,刀具中心向零件外偏离一个刀具半径值。
当数控机床具备刀具半径补偿功能时,数控编程只需按工件轮廓进行,然后再加上刀具半径补偿值,此值可以在机床上设定。
程序中通常使用G41/G42指令来执行,其中G41为刀具半径左补偿,G42为刀具半径右补偿。
根据ISO标准,沿刀具前进方向看去,当刀具中心轨迹位于零件轮廓右边时,称为刀具半径右补偿;反之,称为刀具半径左补偿。
在使用G41、G42进行半径补偿时,应采取如下步骤:设置刀具半径补偿值;让刀具移动来使补偿有效(此时不能切削工件);正确地取消半径补偿(此时也不能切削工件)。
当然要注意的是,在切削完成且刀具补偿结束时,一定要用G40使补偿无效。
G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地退出工件后,才能执行G40命令来取消补偿。
2、刀具长度补偿根据加工情况,有时不仅需要对刀具半径进行补偿,还要对刀具长度进行补偿。
程序员在编程的时候,首先要指定零件的编程中心,才能建立工件编程的坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
数控加工中刀具补偿的应用
数控加工中刀具补偿的应用朱卫峰[中国长江动力公司(集团)]摘要:刀具补偿是数控机床的主要功能之一,他分为:刀具长度补偿、刀具半径补偿、刀具偏置补偿种。
它们基本上能解决加工过程中根据刀具几何形状尺寸产生零件轮廓轨迹等问题,从而保证加工出符合图纸尺寸要求的零件。
关键词:刀具半径补偿,刀具长度补偿,刀具几何补偿,磨损补偿引言:刀具补偿的理论及其实现,在各类数控系统中都已经是比较成熟的技术。
在使用数控机床加工零件的过程中,刀具的运动轨迹不等同于工件的轮廓。
为了保证工件轮廓形状,加工时数控系统必须根据工件轮廓和刀具的几何形状尺寸计算出刀具中心运动轨迹。
在建立、执行刀补后,数控系统自动计算、自动调整刀位点到刀具的运动轨迹从而加工出符合图纸尺寸要求的形状。
当刀具磨损或更换后,加工程序不变,只须更改程序中刀具补偿的数值。
刀具补偿使用简单方便,能极大提高编程的工作效率。
下面就刀具补偿在一般数控加工中的应用进行探讨:一.刀具半径补偿1.刀具半径补偿的概念A.在轮廓加工过程中,由于刀具总有一定的半径,刀具中心的运动轨迹与所需加工零件的实际轮廓并不重合。
在进行轮廓加工时,刀具中心偏离零件的实际轮廓表面(图纸中所要加工对象的轮廓)一个刀具半径值。
这种偏移,称为刀具半径补偿。
B.采用刀具半径补偿的作用和意义数控机床一般都具备刀具半径补偿的功能。
在加工中,使用数控系统的刀具半径补偿功能,就能避开数控编程过程中的繁琐计算,而只需计算出工件加工轮廓轨迹的起始点坐标值即可。
同时,利用刀具半径补偿功能,还可以实现同一程序的粗、精加工以及同一程序的阴阳模具加工等功能。
C.刀具半径补偿指令的使用方式根据ISO 标准规定,当刀具中心轨迹在编程轨迹前进方向的左边时,称为左刀补,用G41表示;刀具中心轨迹在编程轨迹前进方向的右边时,称为右刀补,用G42表示;注销刀具半径补偿时用G40表示。
2 刀具半径补偿过程A.刀具半径补偿建立:当输入的程序段包含有G41/G42命令时,系统认为此时已进入刀补建立状态。
数控加工中心刀具长度补
数控加工中心刀具长度补偿的研究加工中心刀具补偿的研究摘要:数控加工中心加工一个零件往往需要数把刀,为了简化编程,CNC系统采用刀具长度补偿可使在备制零件的加工程序时,不必考虑刀具的实际长度.阐述了刀具长度补偿的原理,研究了数控系统使用长度补偿旨令G43(G44)和H完成长度补偿功能,提出了刀具运行的实际位呈与编程中指令位置的计算方法.论述了刀具民数在CNC系统中的内存分配,分析了刀具长度补偿的方式、特点及CNC 系统中刀具长度补偿功能与其他指令的关系.结果表明:使用刀具长度补偿功能提高了加工效率。
加工中心是一种综合加工能力较强的设备,加工中心设置有刀库和自动换刀装置,在加工过程中由程序自动选刀和换刀,由于加工中心常用来加工形状复杂、工序多、精度要求较高、需用多种类型的普通机床和众多刀具、夹具且经多次装夹和调整才能完工的零件,因而加工一个零件需用十几把刀具甚至更多,由于每把刀具的长度都是不同的,在对被加工零件设置工件坐标系零点(一般为工件的卜表面)后,如果更换的刀具比编程时的标准刀具稍长则将使零件产生过切的现象Ul,反之使零件产生欠切的现象.利用数控系统的刀具长度补偿功能,可以解决上述问题.刀具长度补偿指令一般用于刀具轴向(Z向)的补偿,它使刀具在Z方向上的实际位移量比程序给定值增加或减少一个偏置值t2],这样在编制零件的加工程序时,不必考虑刀具的实际长度以及各把刀具不同的长度尺寸.另外,当刀具磨损、更换新刀或刀具安装有误差时,也可使用刀具长度补偿指令,以补偿刀具在长度方向上的尺寸变化,而不需要重新编制加工程序、重新对刀或重新调整刀具.大大简化了编程,减少了工时,提高了效率。
1 CNC系统执行刀具长度补偿功能分析1.1刀具长度补偿功能的运行分析刀具长度补偿是通过执行含有G43 ( G44)和H指令来实现,其指令格式为G43Z_H_或G44Z_H_,即把编程的Z坐标值加上(或减去)H_代码所指定的偏置寄存器中预设的偏置值或补偿值a后作为CNC实际执行的Z坐标值使用G43,G44指令时,无论用绝对坐标还是用增量坐标编程,程序中指定的Z轴移动的终点坐标值,都要与H所指定寄存器中的偏置量a进行运算,然后把运算结果作为终点坐标值进行加工当执行程序段G43Z_ H_时,刀具移动到的实际位置的Z坐标值为Z实际值=Z指令值+H中的偏置值;当执行程序段G44Z_ H_时,刀具移动到的实际位置的Z坐标值为Z实际值=Z指令值一H_中的偏置值.式中偏置值可以是正值,也可以是负值(6]当偏置值(补偿值)的士号与Z坐标指令值的士号相一致时:用G43指令时,刀具移动到的实际位置的Z坐标值等于:程序中Z坐标指令值+刀具长度补偿值;用G44指令时,刀具移动到的实际位置的Z坐标值等于:Z坐标指令值一刀具长度补偿值.当偏置值(补偿值)的士号与Z坐标指令值的士号相反时:用G43指令时,刀具移动到的实际位置的Z坐标值等于:程序中Z坐标指令值十符号相反的刀具长度补偿值;用G44指令时,刀具移动到的实际位置的Z坐标值等于:程序中Z坐标指令值一符号相反的刀具长度补偿值.零件加工完后,用G49或H00指令取消刀具长度补偿.当换刀时,用G43(G44)H_指令赋予了当前所用刀的刀长补偿而自动取消了前一把刀具的长度补偿.图1表示CNC中长度补偿指令G43的运行情况.图中Zo平面为工件的上表面,即工件坐标系的Z坐标原点位置.1.2刀具长度参数在CNC中的内存分配刀具长度补偿值可通过数据输人接口输入计算机.在CNC系统中,开辟一全程变量区,以存储刀具参数.可采用如下所示的用C语言描述的结构作为刀具参数的通用格式.Struct_OFFSETInt T_NUM;Int T_TYPE;Float几几L1;Float T_G_L2;Float T_G_R;Float TW_L1;Float T_WL2;Float毛WR;Float T_Time_life;其中T NUM表示刀具号;Tes TYPE为刀具的类型;T_G_L1,T_G_L2,T_G_R表示刀具的标准几何参数(单位为mm ) ; T_W_ L1, T_W_L2表示刀具的实际尺寸,是用于长度刀具补偿的量.2 CNC中刀具长度补偿的方式2.1本卜偿方式分析2.1.1机上测量方式采用Z向设定器(或用试切法)依次确定每把刀具与工件在机床坐标系中的相互位置关系,即利用刀尖(或刀具前端)在:方向上与工件坐标系原点的距离值作为长度补偿值(如图2所示).加工前分别调用刀库中的每把刀具,让Z轴回到机床参考点,再让刀具(或刀具前端)接触Zo平面,此时机床坐标系的Z坐标值直接作为每把刀的刀具长度补偿值.2.1.2机外刀具预调仪或自动测长装置十机内对刀方式具体方案有2种:其一是在刀具预调仪上测出的主轴端面至刀尖的距离输人计算机的刀具长度偏置寄存器中作为刀长补偿值(如图3所示)CNC系统中运行刀具长度补偿指令后,刀尖(或刀心)走程序要求的运动轨迹,这是因为数控系统假设的是刀尖(或刀心)相对于工件运动,而在刀具长度补偿有效之前,刀具相对于工件坐标系原点的坐标是机床上刀具长度定位基准点E点相对工件坐标系原点的坐标.试比较下列两个程序段运行后刀具的位置:G90G54GOOZ0G90G54GOOG43ZOH01显然如果程序段中没有运行刀具长度补偿指令时,会造成严重的撞击事故.其二是设标准刀具的长度补偿值为零,把在刀具预调仪上测出的各刀具长度与标准刀具的长度之差分别作为每刀把的刀具长度补偿植.其中,比标准刀具长的记为正值,比标准刀具短的补偿值记为负值(如图4所示)先通过机内对刀法测量出基准刀在返回机床参考点时刀位点在:轴方向与工件坐标系原点的距离,并输人偏置寄存器中.2.2刀具长度补偿方式的比较采用机上测量方法测量麻烦且误差大,需要很多占机调试工时,因此效率低,但投资少.当用同一把刀加工其它的工件时就要重新设置刀具长度补偿值.用机外刀具预调仪或自动测长装置测量不占用有效机时,把刀具调整工作事先在刀具预调仪上完成,而且机床在加工运行时,还可在对刀仪上测量其它刀具的长度,不必因为在机床上对刀而占用机床运行时间,提高效率,增加零件加工精度,充分发挥加工中心的作用,但是需添置刀具预调仪设备,成本较高.使用刀具长度作为刀长补偿,可以避免同一把刀具加工不同工件需修改刀具长度偏置.为了对刀具准备和管理更有效,可以按照一定的规则给每把刀具编号,作档案,把各刀具的相关参数,如长度、半径、刀具形状和角度等写在小标牌上;或者对每个刀柄都设置编码,如贴到每个刀柄的条形码或磁卡,刀具预调仪与管理计算机相连,计算机自动保存每把刀具调整完后的相关数据,也可以写人该刀柄的磁卡上,纳人计算机管理系统.这样即使是因刀库容量原因而取下来的刀具在下一次安装使用时,只需根据标牌上的刀长数值作为长度补偿值而不需再进行测量3 CNC系统中刀具长度补偿功能与其他指令的关系3.1刀具长度补偿与半径补偿功能的关系如果在零件的数控加工程序中,既有刀具长度补偿又有刀具半径补偿(在控制器中补偿)指令时,必须把含有长度补偿的程序段写在含有半径补偿的程序段前面,否则半径补偿无效例如:在下面的程序段中:N50 GOOG41X20Y20D02N60 GOOG43Z10数控系统不执行刀具半径补偿若改为:N50 GOOG43Z10N60 GOOG41X20Y20D02则数控系统既执行刀具半径系统又执行刀具长度补偿指令.3.2刀具长度补偿与其它指令的关系a.G43,G44指令只能用于直线运动之中,在非直线运动语句中使用时会产生报警;b.G43,G44为同组模态指令,它们会自动取消上次刀具长度补偿而不需要用专门的G49指令,为了安全起见,在一把刀加工结束或程序段结束时,都应取消刀具长度补偿;c.刀具长度补偿必须伴随相立的插补运动(GOO,GO1,G81,G83等)才能有效;d.对于立式两轴半数控系统不需要预先确定加工平面;e.在同一程序段内如果既有运动指令又有刀具长度补偿指令,机床首先执行刀具长度偿指令,然后再执行运动指令如:N100 GO1G43Z-IOHOSF100;4结论a.提出了采用刀具长度补偿指令G43比及G44 H,加工中心的刀具在所编制的零件加工程序控制下在Z方向上的实际位置的计算方法;b.论述了用C语言描述的结构作为刀具参数的通用格式,在CNC 系统中,开辟一全程变量区,以存储刀具参数;c.对刀具长度补偿的三种方式进行了分析比较;d.分析了CNC系统中刀具长度补偿功能与刀具半径补偿功能及其他指令的关系;注释:一般而言,刀具长度补偿对二轴和三轴联动数控加工有效,但对刀具摆动的四、五坐标联动数控加工则无效.刀具长度在进行刀位计算时可以不考虑,但后置处理计算过程中必须要考虑.文章中提出的刀具长度补偿在数控加工中中易于实现.在生产实际中可根据各个厂家的能力灵活选用刀具长度补偿方式.参考文献1刘雄伟.数控机床操们与编程,训教程.机械工业出版利2胡育辉.数控铣床加工中心.辽宁利技出版社3杨叔子.机械加工工艺师手册.北京:机械工业出版社,2001.4王叶萍.数控加工工艺的设计要点f川.新技术新工艺, 2005.5制虹.数控加工工艺与编程.北京:人民邮电出版子土,2004.。
项目七刀具半径和长度补偿指令的应用
项目七刀具半径和长度补偿指令的应用任务描述:1、重点掌握使用刀具半径补偿功能和长度补偿功能。
2、理解刀具半径补偿和长度补偿在加工中心的应用。
任务分析:在加工中心中使用刀具补偿功能中要注意的事项。
一、刀具半径补偿1.1刀具半径补偿的作用:是把以刀具中心为编程轨迹转变为以工件轮廓为编程轨迹,即要求数控系统根据程序中的工件轮廓和刀具半径值自动计算出刀具中心轨迹。
刀具半径补偿功能的好处:1)简化编程,使编程人员编程时不用考虑刀具半径。
2)当刀具由于磨损、重磨或更换等原因使刀具半径发生变化时,不需要修改零件程序,只需修改存放在刀具半径偏置寄存器中的刀具半径值或者选用存放在另一个刀具半径寄存器中的刀具半径所对应的刀具即可。
1.2刀具半径补偿的过程•刀具半径补偿建立:•刀具半径补偿进行:•刀具半径补偿取消:1.3 建立刀具半径补偿指令1、指令格式:X YG17 G41 G00G18 X Y DG19 G42 G01X Y式中,G41——刀具半径左补偿;G42——刀具半径右补偿;X、Y——建立或取消刀具半径补偿的终点坐标值;Dxx——刀具偏置代号地址字,后面一般为两位数字的代号。
2、左补偿与右补偿的判断:* 刀具半径左补偿G41:沿刀具进刀方向看,刀具在零件左侧时采用左补偿。
* 刀具半径右补偿G42:沿刀具进刀方向看,刀具在零件右侧时采用右补偿。
1.4取消刀具半径补偿指令指令格式G00 X YG40 X ZG01 Y Z式中,G40 为取消刀具半径补偿指令说明:1. 功能:用于取消之前在指定平面上建立的刀具半径补偿。
2. 在刀具补偿前,必须用G17 G18 G19指定径补计算平面,开机默认是G17。
3. 取消刀补时,不用指明刀补号。
1.5刀具半径补偿的目的在数控铣床上进行轮廓的铣削加工时,由于刀具半径的存在,刀具中心(刀心)轨迹和工件轮廓不重合。
如果数控系统不具备刀具半径自动补偿功能,则只能按刀心轨迹进行编程,即在编程时给出刀具中心运动轨迹,如图7-1所示的点划线轨迹,其计算相当复杂,尤其当刀具磨损、重磨或换新刀而使刀具直径变化时,必须重新计算刀心轨迹,修改程序,这样既繁琐,又不易保证加工精度。
数控加工中心刀具长度补偿的研究
维普资讯
第 4卷
第 3期
邵阳学院学报( 自然 科 学 版 )
Vo . O 3 14 N .
S p.2 0 e ,0 7
20 0 7年 9月
J un lo h o a gU i ri (N trl ce c d in) o ra f a y n nv sy aua S in e E io S e t t
—
.
.
c l ua ig me o f h e o i o f h l o b v d i p e e td T ed sr ui gt l a a tr mo gCNC EMS me r ac lt t d o er a p s i no et emo e rs n e . i i t r mee sa n n h t l t t o t s h tb n o p mo y i s
中 图分 类 号 : H 6 T11 文献标 识码 : A
Re e r h o s a c fCNC o l fs t n m a h n n e t r t o fe c i i g c n e o i
HUANG n —h iW ANG i g u Ho g u , L n -y n
s a c e h w ha heefce c a ei p o e . e r h ss o t tt f in yc n b m r v d i .
数控加工误差补偿的研究
高加工零件的加 工精度和效率, 降低 废品 率 ,具 有重要 的使 用和 推广 价值 。
数 控技 术 ; 差 补 偿 ; 床 ; 拟 补 偿 误 机 模
l 服电机和丝杆间采用柔性联轴器, 保 置。当一台加工中心在加工小的工
证 了两者 间没有 相 对转 动 。滚 珠 丝 件时 ,工 装 上一 次 可 以 装夹 几 个 工 杆 和 螺母 间预加 载 荷消 隙 。 同样 塞 件 , 编程 者不用考虑每 一个工件在编 数 控技术 自五十年 代问世以来 , 铁 调 整 的松 紧也 能给 系统 一定 的 承 !程时 的坐标 零点 , 只需按照 各 自的 而 已取得长足的进 展 , 着现代技 术的 载 和预 变形 , 加 系统 平稳性 , 随 增 因而 编程 零点进 行编程 , 后使用夹具偏 然 高速发展 ,数控加工因其精度高、柔 i数 控机床 无静 态 间隙 。 置来 移动 机 床在 每 一个 工 件上 的编 性 自动 化 及适 合加 工 复 杂零 件 的特 1 2刀具补偿 . 程零 点 。 性 ,已成为现 代先进制造 业的基础 , f 数控 加 工 中主 要 有 以下 几 种补 2 误差补偿分析 从 而在 机 械制 造企 业 的应 用 越来 越 偿方式 : 刀具长 度补偿 、刀具 半径补 2 1产生误差原因及对策 广泛。 由于制造 、安装 、受载 变形以 偿 、夹具 偏置补偿 ,它们基本上能解 j 在 加 工过 程 中 工 艺 系统会 产 及热变 形等多种 因素 的影响 , 实际 的 决加 工 过程 中因 刀具 形状 而产 生 的 生各 种 误差 从 而改 变 刀具 与工 件 数控 机 床在 运 动过 程 中不 可避 免 地 【轨迹 问题 。 1 )刀具 长度补 偿 :在对 在切 削过程 中的 相互 位置 关 系 影 要 出现各种误 差 , 以达到精 密加 工 难 个零件 编程的时候 , 首先要 指定零 响零 件 的加 工 精 度 在数 控 机床 上 的要求 。尤 其在高精 产 品的加 工 中 , I件的编程 中心 , 然后 才能建立 工件编 加工 零 件 所 产 生的 误差 主 要有 两 如何提 高零件 的 数控 加 工精 度 、减 程 坐标 系 。使 用 刀具 长 度 补偿 是 通 大类 :加 工方法误差△ G 及调安误 少误差 ,以及 对 由于各 种原 因引起 }过执 行指令来 实现的 , 同时我们给 出 }差 △ T— A 为保证 工件的加 工精 的误差进行补偿 ,也受到越来越 多 ; 个 Z坐标值 , 这样 刀具 在补偿之 后 度 误差 总 和 应不 超过 工 件加 工精 的 关注 。误差 补 偿方 法是 通 过建 立 j移 动到离工件表 面距离为 Z的地 方。
浅析数控系统的刀具补偿
浅析数控系统的刀具补偿作者:陈永红来源:《现代企业文化·理论版》2010年第10期摘要:文章通过对不同数控机床的刀具补偿功能较全面的分析和计算。
掌握了其刀具补偿应用技能,为在理论教学和实践操作解决各种具体实际问题,提供了参考。
关键词:数控机床;刀具补偿;刀具轨迹;刀位点一、数控刀具补偿功能使用立铣刀在数控铣床或数控加工中心上加工工件时,可以清楚看出刀具中心的运动轨迹与工件已加工轮廓不重合,这是因为工件轮廓是立铣刀以运动包络的方式形成的。
立铣刀的中心称为刀具的刀位点,刀位点的运动轨迹即代表刀具的运动轨迹。
在数控加工中是按工件轮廓尺寸编制程序,还是按刀位点的运动轨迹编制程序,需要根据具体情况来处理。
二、数控系统中的刀具补偿(一)数控车床刀具补偿1刀具位置补偿。
对于刀具磨损或重新安装刀具引起的刀具位置变化,建立、执行刀具位置补偿后,其加工程序不需要重新编制。
办法是测出每把刀具的刀位点相对于某一理想位置的刀位偏差(X向与Z向)并输入到指定的存储器内,程序执行刀具补偿指令后,当前刀具的实际位置就到达理想位置。
2刀尖圆弧半径补偿。
编制数控车床加工程序时,车刀刀尖被看作是一个点(假想刀尖P 点),但实际上为了提高刀具的使用寿命和降低工件表面粗糙度,车刀刀尖被磨成半径不大的圆弧,这必将产生加工工件的形状误差。
由于刀尖圆弧所处的特殊位置。
车刀的形状对工件加工也将产生影响,而这些可采用刀尖圆弧半径补偿来解决。
3刀补参数。
每一个刀具补偿号对应刀具位置补偿(X和Z值)和刀尖圆弧半径补偿(R和T值)共4个参数,在加工之前输入到对应的存储器。
在自动执行过程中,数控系统按该存储器中的X、Z、R、T的数值,自动修正刀具的位置误差和自动进行刀尖圆弧半径补偿。
意义:在进行工件轮廓的加工时,由于刀具半径、刀尖半径的存在,刀具中心或假想刀尖和工件轮廓不重合。
当刀具磨损、重磨、换刀时,要重新计算刀心轨迹,修改程序。
然而当数控系统具备刀具半径自动补偿功能时,则只需按工件轮廓进行编程,数控系统会自动计算刀心轨迹,使刀具偏离工件轮廓一个半径值,不需要修改程序。
简述刀具补偿在数控加工中的作用
简述刀具补偿在数控加工中的作用
刀具补偿是一种在数控加工中常用的技术,旨在纠正加工过程中刀具的偏斜和长度不足等问题,保证加工质量和效率。
本文将简要介绍刀具补偿的基本原理和作用。
刀具补偿的基本原理是通过测量刀具的偏斜和长度不足,来调整数控加工中的刀具参数,使刀具沿着正确的轨迹运动,达到高质量的加工效果。
刀具补偿的主要工具是刀具补偿器,它可以通过改变刀具的偏斜和长度来补偿刀具的误差。
刀具补偿的作用包括:
1. 提高加工精度:刀具补偿可以帮助数控加工中心实现高精度加工,减少加工误差,提高产品的质量和一致性。
2. 降低加工成本:通过刀具补偿,可以实现刀具的精确定位,降低刀具的磨损和损坏,延长刀具的使用寿命,降低加工成本。
3. 改善加工过程的稳定性:刀具补偿可以帮助数控加工中心实现稳定的加工过程,降低加工过程中的噪声和震动,保证加工过程的一致性和稳定性。
刀具补偿在数控加工中的应用非常广泛,是实现高质量、高效率加工的重要技术之一。
随着数控加工技术的不断发展和进步,刀具补偿技术也在不断更新和改进,以适应不同的加工环境和需求。
加工中心刀具长度补偿课件
通过调整刀具长度补偿值,可以 确保工件坐标系与机床坐标系之 间的正确对齐,提高加工精度和 减小误差。
刀具长度补偿的重要性
在加工过程中,由于刀具磨损、更换 刀具等原因,实际使用的刀具长度可 能与编程时设定的长度存在差异。
刀具长度补偿能够自动调整刀具长度 ,确保工件坐标系的准确性,提高加 工质量和效率。
总结词
手动补偿方法是一种传统的刀具长度补偿方法,需要操作员根据测量结果手动 调整刀具长度。
详细描述
操作员使用测量工具测量刀具的实际长度,然后根据测量结果手动调整刀具长 度补偿值。这种方法简单易行,但精度不高,容易受到人为误差的影响。
自动补偿方法
总结词
自动补偿方法是一种现代化的刀具长度补偿方法,通过高精度的测量系统和自动控制系统实现刀具长度的自动测 量和补偿。
高精度补偿技术的需求
高精度加工要求
随着制造业对产品精度要 求的提高,需要更高精度 的刀具长度补偿技术来保 证加工质量。
纳米级补偿
研发纳米级补偿技术,实 现刀具长度的精确控制, 提高加工表面的光洁度和 平整度。
动态实时补偿
在加工过程中,根据实时 监测数据,动态调整补偿 值,减小误差和提高加工 稳定性。
详细描述
自动补偿方法使用高精度的测量系统,如激光干涉仪或电容传感器等,实时测量刀具的实际长度,并将测量结果 反馈给加工中心控制系统。控制系统根据反馈结果自动调整刀具长度补偿值,实现刀具长度的自动补偿。这种方 法精度高,能够显著提高加工精度和生产效率。
实时补偿方法
总结词
实时补偿方法是一种先进的刀具长度补偿方法,通过实时的刀具长度监测和补偿系统,实现刀具长度 的动态调整。
实时监测
在加工过程中,需要实时监测补偿值 的准确性,及时调整以确保加工质量 。
刀具长度补偿
Bewise Inc. Reference source from the internet.刀具长度补偿功能,是数控机床的一项重要功能,在准备功能中用G43、G44、G49表示,但是若使用得不好很容易造成撞车和废品事故。
下面以加工中心为例,介绍生产实践中常用的几种刀具长度补偿方法。
1 刀具长度补偿功能的执行过程典型的指令格式为G43 Z_H_;或G44 Z_H_。
其中G43指令加补偿值,也叫正向补偿,即把编程的Z值加上H代码指定的偏值寄存器中预设的数值后作为CNC实际执行的Z坐标移动值。
相应的,G44指令减去预设的补偿值,也叫负向补偿。
当指令G43时,实际执行的Z坐标值为Z’=Z_+(H_);当指令G44时,实际执行的Z坐标值为Z’=Z_-(H_);这个运算不受G90绝对值指令或G91增量值指令状态的影响。
偏值寄存器中可预设正值或负值,因此有如下等同情况。
指令G43、H设正值等同于指令G44、H设负值的效果:指令G43、H设负值等同于指令G44、H设正值的效果。
因此一般情况下,为避免指令输入或使用时失误,可根据操作者习惯采用两种方式:只用指令G43,H设正值或负值:H只设正值,用指令G43或G44。
以下介绍使用较多的第一种情况。
指令格式中Z值可以为0,但H0或H00将取消刀具长度补偿,与G49效果等同,因为0号偏值寄存器被NC永远置0。
一般情况下,为避免失误,通过设定参数使刀具长度补偿只对Z轴有效。
例如当前指令为G43X_H_;时,X轴的移动并没有被补偿。
被补偿的偏置值由H后面的代码指定。
例如H1设20.、H2设-30.,当指令“G43 Z100.H1;”时,Z轴将移动至120.处:而当指令“G43 Z100. H2;”时,Z轴将移动至70.处。
G43(G44)与G00、G01出现在一个程序段时,NC将首先执行G43(G44)。
可以在固定循环的程序段中指令G43(G44),这时只能指令一个H代码,刀具长度补偿同时对Z值和R值有效。
数控加工中的三种补偿和补偿技巧
三种补偿在数控加工中有3种补偿:刀具长度的补偿;刀具半径补偿;夹具补偿。
这三种补偿基本上能解决在加工中因刀具外形而产生的轨迹问题。
下面是三种补偿在一般加工编程中的应用。
一、刀具长度补偿:1.刀具长度的概念刀具长度是一个很重要的概念。
我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。
每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm 的钻头和一把长为350mm的丝锥。
先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,假如两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。
此时假如设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z (或Z)补偿了丝锥的长度,保证了加工零点的正确。
2.刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。
另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。
3.刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。
使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。
使用刀具长度作为刀长补偿的理由如下:首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。
刀具长度补偿的理解与应用
数控加工中心刀具补偿的研究与应用谢民雄万向钱潮(桂林)汽车底盘部件有限公司摘要:刀具补偿是一个很重要的数控功能;数控加工中心加工一个零件通常需要数把刀,CNC系统通过补偿指令完成各把刀具补偿功能,以保证在加工过程中各把刀移动到正确的位置和下降到正确的高度。
理解领会刀具补偿的方式特点和正确应用刀具补偿各项功能,对于在工作生产中提高工作效率,保证安全生产具有十分重要的意义。
关键词:刀具补偿;方式特点;安全生产加工中心本质上就是数控铣床,但是相对于数控铣床则多增加了刀库和自动换刀装置,在加工过程中由程序自动选刀和换刀.由于加工中心常用来加工形状复杂、工序多、精度要求较高的零件,因而加工一个零件需用几把或十几把刀具甚至更多.由于每把刀具的直径大小和长度都是不同的,在对被加工零件确定工件坐标系零点后,有必要引入刀具补偿功能,以保证在加工过程中各把刀下降到正确的高度和以正确的刀具路径进行切削加工。
刀具补偿可分为刀具长度补偿和刀具半径补偿。
长度补偿是指主轴轴向的补偿,也就是铣刀轴向的补偿,而对于铣刀径向的补偿,也就是每把铣刀直径大小不一样,在直径方向的补偿叫半径补偿。
一.刀具半径补偿1.刀具半径补偿意义:数控加工中心在程序运行时将刀具当做一个点做轨迹运动。
比如用刀具R3铣边长100的正方形凸台时,程序按边长100的正方形尺寸输入,而刀具轴心的轨迹是边长106的正方形,则工件上铣削的是符合图纸尺寸的100的正方形。
假如不用刀具半径补偿功能,则加工时刀具轴心的轨迹是边长100的正方形,则工件上铣削出的是边长为94的正方形凸台,不符合图纸尺寸的要求。
2.指令格式G17/G18/G19 G00/G01 G41/G42 IP_D_G41:刀具半径左补偿G42:刀具半径右补偿半径补偿仅能在规定的坐标平面内进行,使用平面选择指令G17、G18或G19可分别选择XY、ZX或YZ平面为补偿平面。
半径补偿必须规定补偿号,由补偿号D存入刀具半径值,则在执行上述指令时,刀具可自动左偏(G41)或右偏(G42)一个刀具半径补偿值。
数控铣床与加工中心刀具补偿讲解
数控铣床与加工中心5.4 刀具补偿和偏置功能刀具补偿可分为刀具长度补偿和刀具半径补偿,其内容和方法已在前面章节中作了详细说明,本章拟用另外一种指令格式对刀具长度补偿功能进行介绍,目的在于进一步强调不同的数控系统对同一编程功能可能采用不同的指令格式。
5.4.1 刀具半径补偿G41、G42、G40刀具半径补偿有两种补偿方式,分别称为B型刀补和C型刀补。
B型刀补在工件轮廓的拐角处用圆弧过渡,这样在外拐角处,由于补偿过程中刀具切削刃始终与工件尖角接触,使工件上尖角变钝,在内拐角处会则引起过切。
C型刀补采用了比较复杂的刀偏矢量计算的数学模型,彻底消除了B型刀补存在的不足。
下面仅讨论C型刀补。
(1).指令格式指令格式:G17/G18/G19 G00/G01 G41/G42G41:刀具半径左补偿G42:刀具半径右补偿半径补偿仅能在规定的坐标平面内进行,使用平面选择指令G17、G18或G19可分别选择XY、ZX或YZ平面为补偿平面。
半径补偿必须规定补偿号,由补偿号L存入刀具半径值,则在执行上述指令时,刀具可自动左偏(G41)或右偏(G42)一个刀具半径补偿值。
由于刀补的建立必须在包含运动的程序段中完成,因此以上格式中,也写入了GOO(或GO1)。
在程序结束前应取消补偿。
具体的判断方法见本书第二章。
(2).刀补过程刀具补偿包括刀补建立,刀补执行和刀补取消这样三个阶段,其中刀补建立与刀补取消均应在非切削状态下进行。
程序中含有G41或G42的程序段是建立刀补的程序段,含有G40的程序段是取消刀补的程序段,在执行刀补期间刀具始终处于偏置状态。
为了在建立刀补和取消刀补时,避免发生过切或撞刀,以及在刀补执行期间掌握刀具在运动段的拐角处的运动情况,有必要对刀补过程作一简要说明。
(3).刀具偏置矢量刀具偏置矢量是二维矢量,其大小等于D代码所规定的偏置量,矢量方向的计算是依照各轴刀具进给情况而于控制单元内自动完成的。
通过该偏置矢量计算出刀具中心偏离编程轨迹的实际轨迹。
加工中心刀具长度补偿的应用探讨
点设定 之后 , 即使是 1号刀 和 2号刀 长度 不 同 , 因补 标 牌上 的 刀 长 数 值 作 为 刀 具 长 度 补 偿 而 无 需 再 测
图 1 孔 加 工
如 图 1所示 我们 要加 工 两个  ̄ 0 2 mm 的孔 ( 用 1号刀) 和一 个  ̄1 mm( 2号 刀 ) 0 用 的孔 , 别 用 一 分 把长度 5 rm 直 径 2 rm 的 1 刀( 0 a 0 a 号 基准 刀 ) 和长度
维普资讯
关键词 ; 加工中心 ; 刀具补偿 ; 应用
中 图 分 类号 : G6 9 T 5 ・
1 刀具 长度 补偿 的概 念
2 刀具 长度 补偿 功 能 的执行 过 程
刀具 长 度补 偿 是数 控 机 床 一项 非 常 重 要 的 概 刀具 长度补偿 的执 行过程 一般 分三 步 。( ) 1 建 念 。一般 在使用数 控机床尤其 是加工 中心 的加工 过 立刀具长度 补偿 。刀 具 由起 刀点 接 近 工件 , 刀具 长 程 中 , 常会用换 刀指令选 择不 同的刀具 , 就使 刀 度补偿方 向 由 G 3或 G4 通 这 4 4确定 , 在原 来 的程序 中 Z 具 的长度发 生变 化 , 造成 了非 基 准 刀 的刀位 点 起始 坐标 的 基 础 上 伸 长 或 缩 短 一 个 刀 具 长度 补 偿 值 。 位 置和基准 刀的刀位 点起始位 置不重 合 。在 编程过 () 2进行 刀具 长度补偿 。一 旦建立 了刀具 长度补 偿 , 程中 , 若对 刀具长度 的变化不作 适 当处 理 , 会造成 则 一直维 持 该 状态 , 到取 消刀 具 长 度 补 偿 为 止 。 就 直 零 件报废 、 至撞刀 。为此 , 甚 在数 控加工 中引人 了刀 在刀 具补 偿进 行期 间 , 刀具 中心 Z坐标 始终 偏离 程
刀具长度补偿的计算与分析
的机械坐标即为该点相对于机床零点 的坐标值 ,因为 到达 了指定的该点位 置 ,所 以余 移动量 、Y 3个 、 坐标值都为 0 。 F N C参考手册解释绝对坐标 ( bo t) 为刀 A U A sl e u 位点在当前 工件 坐标 系 中的位 置 ,相对 坐标 ( e Rl a re i )为与操作者预先设 置为零 点 的相对位 置。在相 v 对坐标 中,只说 了一个相对 位置 ,但是却 没有说 明预 先设置为零点相对于谁的位置 ;绝 对坐标解 释得很 清 楚 ,可以理解为程序中所指定的刀位点相对于工件坐
一
图 1 显 示 原 始综 合 坐 标 系
图 2 4所示 ,刀具 实 际 在 工 件 上 的位 置 则 如 图 5 —
所示。 。
机 械坐标 和余移动量是最好理解 的,所谓机械坐 标 ( cie Mah )就是 指 当前 刀位 点在机 床坐 标系 中 的 n 位置 ,余移 动量 ( iac o D s net G )就是指刀位点在 当 t o
2 坐标 系数 据分 析
目前有 3 把数控 刀具 ,其绝对长度用对刀仪测试 为 H =10m 】 0 m, =10m 1 m, =10m 2 m,将工件 坐标系 ( 5 )原点设置在工件 ( G4 四方体 )上表 面中 心点处 ,分别 用这 3把刀具运行下 面程序 :
0 01; 01 G9 0G5 0 4G 0X0Y0 5 Z 0:
标系原点 的位置 。现在通过实例来 解释绝对坐标 和相 对坐标 的差异。
工 中应用 最 多 ,也是 机床 操 作工 和 编程 员理 解 最好 的;而刀具长度补偿 由于较少 使用 ,所 以较难 理解 , 特别是涉及到 刀具长度补偿 的数据计算 与分析则更是
举步维艰 。在 目前企业 的数控加工 中 ,数控加工 中心
数控铣削加工刀具长度补偿时机把握
( h nIstt o hp u dn ,Wu a 3 0 0 C N) Wu a ntue f i i i i S b l g hn4 0 5 , H
Ab ta t sr c :Re a d n o lCNC li g p o r m mi g a d ma h n n o ll n t o e s to t o . Re s n b e g r i g to miln r g a n n c i i g to e gh c mp n ain me h ds a o a l ln t c mp n ain p lc t n o l smp i p o e sng r c d r e g h o e s to a p iai c u d i l y r c s i p o e u e, e tb ih n o c n ei g h o f sa ls i g r a c ln t e
c ma Ns . 数控 专栏 cen r
时, 差值 为 负 。
( ) 度 补 偿 值 设 定 通 过 按 下 MD 2 长 I键 盘 上
数 控铣 削 加 工刀 具 长 度补 偿 时 机把 握
周 兰
( 汉船舶 职业技 术 学院机械 工程 系 , 北 武汉 405 ) 武 湖 300
摘 要 : 多把 刀具 的数 控铣 削编 程与加 工用 到刀具 长度 补偿 方 式 , 度 补偿 合理 应 用 能够 简化 ) -程 序 , 长 jr n- 长 度补偿 建立或 取消 时机把 握不 当会 造成 空切 、 少切 或 过切 。通 过 生产案 例说 明合理 应用 长度补偿 时
具 长度 补偿 , 指令格 式是 : 4 O / 0 Hx 。 G 3G 0 G 1Z x
数控加工中刀具补偿应用研究毕业论文
数控加工中刀具补偿应用研究毕业论文目录前言................................................................................................................ 错误!未定义书签。
摘要................................................................................................................ 错误!未定义书签。
绪论................................................................................................................ 错误!未定义书签。
第1章数控加工中刀具补偿概念 .. (2)1.1刀具半径补偿 (2)1.2刀具长度补偿 (3)第2章刀具补偿功能在数控加工中的应用 (4)2.1数控车床中刀尖圆弧半径补偿的应用 (4)2.2刀具半径补偿在数控铣削中的应用 (5)2.3刀具长度补偿在数控加工中心的应用 (5)2.4加工举例 (6)第3章数控车床刀具半径、长度补偿分析 (9)3.1引起误差分析 (9)3.1.1误差原因 (9)3.1.2 刀具圆弧半径补偿计算 (10)3.2刀具半径补偿实现 (10)3.2.1 刀具半径补偿方法 (10)3.2.2 刀具半径补偿注意事项 (11)3.3刀具长度补偿分析 (11)3.4合理把握刀具长度补偿时机 (12)3.5确定刀具长度补偿的三种方法 (14)第4章数控铣床编程中刀具半径补偿使用技巧分析 (16)4.1 使用直径不同的刀具时,可以不改变加工程序,只改变刀具表中的直径值即可 214.2 工件进行粗、半精、精加工时,也可以不改变加工程序,改变刀具表中的刀具偏置值即可 22结论 (20)致谢 (21)参考文献 (22)第1章数控加工中刀具补偿概念1.1刀具半径补偿刀具半径补偿的概念。
刀具长度补偿在数控铣削加工中的应用
人, 助教 , 学士学位 , 主要研究 方向为数控技术。
5- 9. 率 ,更利于知识 的传播和流动。网络 结构 分别在微 观层 面的节点维 2 2 [】 8张丽妮. 基于 k o — e 的知识管理研究 . nw n t 现代情报,0 4()2 12 3 20 , : 0 — 0 . 5 度和宏观层面 的整体维度对知识流动的效率起重要作用。为 了提高 【] 恩 尧, 9蒋 侯东 . 基于 MI 台 的企 业 知识 网络 的组 建f1 业 研 究, S平 J. 商 知识流动效率 , 在构建和 动态演化知识 网络 的过程中 , 要构造符合小 2 0 , ) 半 月 版) 6 0 2( ( 9上 :. 3 世界特征和服从幂律 分布 的复杂网络。对于单个节点来说 ,要提高 [0B r S t cua H ls h Sca Src r o C m eio. 1]ur R . r trl oe: e oi t t e f o p tin S u T l uu t 节 点 度 和 中 心性 , 量 占据 结 构 洞 位 置 , 强 节 点 间连 接 强 度 ; 于 尽 加 对 C mb i g A: r a d Un v r i e s1 9 a rd e M Ha v r ie t Pr s , 9 2. s y 整个网络来 说, 要增大网络规模 , 尤其是争取多样性和 非重复性 的非 [l o t om, i ig D ni n t nt f isi no a o 1I N oe B b V A Gl n . est adSr g o e nInvt n s y e h T i 冗余节点的加入 , 少非冗余联 系, 减 尽量避 免网络 同质性 。增加节点 Newok : Co ee c n o en n eViw.WokigP pe.0 4. t r s A mp t n e a d G v r a c e r n a r2 0 问联 系 , 建 全 连 通 网 络 , 构 多节 点 互 通 , 少 知 识 传 递 时 所 经 过 的 路 减 [2Fe m nLC C nrlyi sca ntok: o cpul lr ct n[. 1]re a . et i n oil ew rs cneta ca f ai J at i i o 1 径长度 , 增加网络密度 , 并保持 网络 稳定性。 改善 网络结构 , 将大大 Sca Ne ok,17 , 1 2 5 2 9 oi t rs 9 9 () 1 - 3 . l w : 提 高 网 络 内 知识 流 动 的效 率 、 平 和 范 围。 水 [3G ao e e S h Srn h f Wek is 1]rnvt r M.. e t g o a Te.Am r a Jun l f t T et ei n ora c o
数控加工中的三种补偿和补偿技巧
三种补偿在数控加工中有3种补偿:刀具长度的补偿;刀具半径补偿;夹具补偿。
这三种补偿基本上能解决在加工中因刀具外形而产生的轨迹问题。
下面是三种补偿在一般加工编程中的应用。
一、刀具长度补偿:1.刀具长度的概念刀具长度是一个很重要的概念。
我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。
每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm 的钻头和一把长为350mm的丝锥。
先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,假如两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。
此时假如设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z (或Z)补偿了丝锥的长度,保证了加工零点的正确。
2.刀具长度补偿的工作使用刀具长度补偿是通过执行含有G43(G44)和H指令来实现的,同时我们给出一个Z坐标值,这样刀具在补偿之后移动到离工件表面距离为Z的地方。
另外一个指令G49是取消G43(G44)指令的,其实我们不必使用这个指令,因为每把刀具都有自己的长度补偿,当换刀时,利用G43(G44)H指令赋予了自己的刀长补偿而自动取消了前一把刀具的长度补偿。
3.刀具长度补偿的两种方式(1)用刀具的实际长度作为刀长的补偿(推荐使用这种方式)。
使用刀长作为补偿就是使用对刀仪测量刀具的长度,然后把这个数值输入到刀具长度补偿寄存器中,作为刀长补偿。
使用刀具长度作为刀长补偿的理由如下:首先,使用刀具长度作为刀长补偿,可以避免在不同的工件加工中不断地修改刀长偏置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加工中心刀具补偿的研究摘要:数控加工中心加工一个零件往往需要数把刀,为了简化编程,CNC系统采用刀具长度补偿可使在备制零件的加工程序时,不必考虑刀具的实际长度.阐述了刀具长度补偿的原理,研究了数控系统使用长度补偿旨令G43(G44)和H完成长度补偿功能,提出了刀具运行的实际位呈与编程中指令位置的计算方法.论述了刀具民数在CNC 系统中的存分配,分析了刀具长度补偿的方式、特点及CNC系统中刀具长度补偿功能与其他指令的关系.结果表明:使用刀具长度补偿功能提高了加工效率。
加工中心是一种综合加工能力较强的设备,加工中心设置有刀库和自动换刀装置,在加工过程中由程序自动选刀和换刀,由于加工中心常用来加工形状复杂、工序多、精度要求较高、需用多种类型的普通机床和众多刀具、夹具且经多次装夹和调整才能完工的零件,因而加工一个零件需用十几把刀具甚至更多,由于每把刀具的长度都是不同的,在对被加工零件设置工件坐标系零点(一般为工件的卜表面)后,如果更换的刀具比编程时的标准刀具稍长则将使零件产生过切的现象Ul,反之使零件产生欠切的现象.
利用数控系统的刀具长度补偿功能,可以解决上述问题.
刀具长度补偿指令一般用于刀具轴向(Z向)的补偿,它使刀具在Z方向上的实际位移量比程序给定值增加或减少一个偏置值t2],这样在编制零件的加工程序时,不必考虑刀具的实际长度以及各把刀具不同的长度尺寸.另外,当刀具磨损、更换新刀或刀具安装有误差时,也可使用刀具长度补偿指令,以补偿刀具在长度方向上的尺寸变化,而不需要重新编
制加工程序、重新对刀或重新调整刀具.大大简化了编程,减少了工时,提高了效率。
1 CNC系统执行刀具长度补偿功能分析
1.1刀具长度补偿功能的运行分析
刀具长度补偿是通过执行含有G43 ( G44)和H指令来实现,其指令格式为G43Z_H_或G44Z_H_,即把编程的Z坐标值加上(或减去)H_
代码所指定的偏置寄存器中预设的偏置值或补偿值a后作为CNC实际执行的Z坐标值
使用G43,G44指令时,无论用绝对坐标还是用增量坐标编程,程序中指定的Z轴移动的终点坐标值,都要与H所指定寄存器中的偏置量a进行运算,然后把运算结果作为终点坐标值进行加工当执行程序段G43Z_ H_时,刀具移动到的实际位置的Z坐标值为Z实际值=Z指令值+H中的偏置值;当执行程序段G44Z_ H_时,刀具移动到的实际位置的Z坐标值为Z实际值=Z指令值一H_中的偏置值.式中偏置值可以是正值,也可以是负值(6]
当偏置值(补偿值)的士号与Z坐标指令值的士号相一致时:
用G43指令时,刀具移动到的实际位置的Z坐标值等于:程序中Z坐标指令值+刀具长度补偿值;
用G44指令时,刀具移动到的实际位置的Z坐标值等于:Z坐标指令值一刀具长度补偿值.
当偏置值(补偿值)的士号与Z坐标指令值的士号相反时:
用G43指令时,刀具移动到的实际位置的Z坐标值等于:程序中Z坐标指令值十符号相反的刀具长度补偿值;
用G44指令时,刀具移动到的实际位置的Z坐标值等于:程序中Z坐标指令值一符号相反的刀具长度补偿值.
零件加工完后,用G49或H00指令取消刀具长度补偿.当换刀时,用G43(G44)H_指令赋予了当前所用刀的刀长补偿而自动取消了前一把刀具的长度
补偿.
图1表示CNC中长度补偿指令G43的运行情况.
图中Zo平面为工件的上表面,即工件坐标系的Z坐标原点位置.
1.2刀具长度参数在CNC中的存分配
刀具长度补偿值可通过数据输人接口输入计算机.在CNC系统中,开辟一全程变量区,以存储刀具参数.可采用如下所示的用C语言描述的结构作为刀具参数的通用格式.
Struct_OFFSET
Int T_NUM;
Int T_TYPE;
Float几几L1;
Float T_G_L2;
Float T_G_R;
Float TW_L1;
Float T_WL2;
Float毛WR;
Float T_Time_life;
其中T NUM表示刀具号;Tes TYPE为刀具的类型;T_G_L1,T_G_L2,T_G_R表示刀具的标准几何参数(单位为mm ) ; T_W_ L1, T_W_L2表示刀具的实际尺寸,是用于长度刀具补偿的量.
2 CNC中刀具长度补偿的方式
2.1本卜偿方式分析
2.1.1机上测量方式
采用Z向设定器(或用试切法)依次确定每把刀具与工件在机床坐标系中的相互位置关系,即利用刀尖(或刀具前端)在:方向上与工件坐标系原点的距离值作为长度补偿值(如图2所示).加工前分别调用刀库中的每把刀具,让Z轴回到机床参考点,再让刀具(或刀具前端)接触Zo平面,此时机床坐标系的Z坐标值直接作为每把刀的刀具长度补偿值.
2.1.2机外刀具预调仪或自动测长装置十机对刀方式
具体方案有2种:
其一是在刀具预调仪上测出的主轴端面至刀尖的距离输人计算机的刀具长度偏置寄存器中作为刀长补偿值(如图3所示)
CNC系统中运行刀具长度补偿指令后,刀尖(或刀心)走程序要求的运动轨迹,这是因为数控系统假设的是刀尖(或刀心)相对于工件运
动,而在刀具长度补偿有效之前,刀具相对于工件坐标系原点的坐标是机床上刀具长度定位基准点E点相对工件坐标系原点的坐标.
试比较下列两个程序段运行后刀具的位置:
G90G54GOOZ0
G90G54GOOG43ZOH01
显然如果程序段中没有运行刀具长度补偿指令时,会造成严重的撞击事故.
其二是设标准刀具的长度补偿值为零,把在刀具预调仪上测出的各刀具长度与标准刀具的长度之差分别作为每刀把的刀具长度补偿植.其中,比标准刀具长的记为正值,比标准刀具短的补偿值记为负值(如图4所示)
先通过机对刀法测量出基准刀在返回机床参考点时刀位点在:轴方向与工件坐标系原点的距离,并输人偏置寄存器中.
2.2刀具长度补偿方式的比较
采用机上测量方法测量麻烦且误差大,需要很多占机调试工时,因此效率低,但投资少.
当用同一把刀加工其它的工件时就要重新设置刀具长度补偿值.
用机外刀具预调仪或自动测长装置测量不占用有效机时,把刀具调整工作事先在刀具预调仪上完成,而且机床在加工运行时,还可在对刀仪上测量其它刀具的长度,不必因为在机床上对刀而占用机床运行时间,提高效率,增加零件加工精度,充分发挥加工中心的作用,但是需添置刀具预调仪设备,成本较高.
使用刀具长度作为刀长补偿,可以避免同一把刀具加工不同工件需修改刀具长度偏置.
为了对刀具准备和管理更有效,可以按照一定的规则给每把刀具编号,作档案,把各刀具的相关参数,如长度、半径、刀具形状和角度等写在小标牌上;或者对每个刀柄都设置编码,如贴到每个刀柄的条形码或磁卡,刀具预调仪与管理计算机相连,计算机自动保存每把刀具调整完后的相关数据,也可以写人该刀柄的磁卡上,纳人计算机
管理系统.这样即使是因刀库容量原因而取下来的刀具在下一次安装使用时,只需根据标牌上的刀长数值作为长度补偿值而不需再进行测量
3 CNC系统中刀具长度补偿功能与其他指令的关系
3.1刀具长度补偿与半径补偿功能的关系
如果在零件的数控加工程序中,既有刀具长度补偿又有刀具半径补偿(在控制器中补偿)指令时,必须把含有长度补偿的程序段写在含有半径补偿的程序段前面,否则半径补偿无效
例如:在下面的程序段中:
N50 GOOG41X20Y20D02
N60 GOOG43Z10
数控系统不执行刀具半径补偿若改为:
N50 GOOG43Z10
N60 GOOG41X20Y20D02
则数控系统既执行刀具半径系统又执行刀具长度补偿指令.
3.2刀具长度补偿与其它指令的关系
a.G43,G44指令只能用于直线运动之中,在非直线运动语句中使用时会产生报警;
b.G43,G44为同组模态指令,它们会自动取消上次刀具长度补偿而不需要用专门的G49指令,为了安全起见,在一把刀加工结束或程序段结束时,都应取消刀具长度补偿;
c.刀具长度补偿必须伴随相立的插补运动(GOO,GO1,G81,G83等)才能有效;
d.对于立式两轴半数控系统不需要预先确定加工平面;
e.在同一程序段如果既有运动指令又有刀具长度补偿指令,机床首先执行刀具长度偿指令,然后再执行运动指令如:
N100 GO1G43Z-IOHOSF100;
4结论
a.提出了采用刀具长度补偿指令G43比及G44 H,加工中心的刀具在所编制的零件加工程序控制下在Z方向上的实际位置的计算方法;
b.论述了用C语言描述的结构作为刀具参数的通用格式,在CNC 系统中,开辟一全程变量区,以存储刀具参数;
c.对刀具长度补偿的三种方式进行了分析比较;
d.分析了CNC系统中刀具长度补偿功能与刀具半径补偿功能及其他指令的关系;
注释:一般而言,刀具长度补偿对二轴和三轴联动数控加工有效,但对刀具摆动的四、五坐标联动数控加工则无效.刀具长度在进行刀位计算时可以不考虑,但后置处理计算过程中必须要考虑.
文章中提出的刀具长度补偿在数控加工中中易于实现.在生产实际中可根据各个厂家的能力灵活选用刀具长度补偿方式.
参考文献
1雄伟.数控机床操们与编程,训教程.机械工业出版利
2胡育辉.数控铣床加工中心.利技
3叔子.机械加工工艺师手册.:机械工业,2001.
4王叶萍.数控加工工艺的设计要点f川.新技术新工艺, 2005.
5制虹.数控加工工艺与编程.:人民邮电出版子土,2004.。