2021-2022年高三10月月考数学试题(文科)
黑龙江省鹤岗市第一中学2021-2022学年高三上学期第四次月考数学(文科)试卷(含答案)
![黑龙江省鹤岗市第一中学2021-2022学年高三上学期第四次月考数学(文科)试卷(含答案)](https://img.taocdn.com/s3/m/2ef92c6f854769eae009581b6bd97f192279bfdc.png)
鹤岗一中高三第四次月考数学文科试题一、单选题:(共12小题,每题5分,共60分)1.集合,则( )A .B .C .D .2.已知复数,则( )A .B .C .D .3.“”是“的最小正周期为”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知,则( )A .B .C .D .5.设偶函数在上单调递增,且,则不等式的解集是( )A .B .C .D .6.等比数列的各项均为正数,且,则( )A .2B .3C .10D .57.已知l ,m 是空间中两条不同的直线,是空间中两个不同的平面,下列说法正确的是( )A .若,则 B .若,则C .若,则D .若,则8.如图所示,在中,,AD 为BC 边上的高,M 为AD 的中点,若,则的值为( )A .B .C .D .{}2280,{lg 1}A xx x B x x =--≤=<∣∣A B = [2,4][2,10)(0,4][2,4)1i z =+(1)z z +=3i +3i -13i -13i+2ω=π2tan 3y x ω⎛⎫=+ ⎪⎝⎭π222log π,πa b c -===b c a <<b a c <<c a b <<a c b<<()f x [0,)+∞(3)0f =()()02f x f x +-<(,3)-∞-(3,0)(0,3)- (3,3)-(3,)+∞{}n a 564718a a a a +=313239310log log log log a a a a ++++= ,αβ,,l m l m αβ⊥⊂∥αβ⊥,l αβα∥∥l β∥,,l m l ααβ⊥⊥∥m β∥,l αβα⊥∥l β⊥ABC △2,3,60AB BC ABC ==∠=︒AM AB BC λμ=+λμ+5312-12239.在中,角A ,B ,C 的对边分别为a ,b ,c ,若,则的值为( )ABC .D .10.己知,且,若恒成立,则实数m 的取值范围是( )A .或B .或C .D .11.已知分别是双曲线的左、右焦点,动点P 在双曲线的左支上,点Q 为圆上一动点,则的最小值为( )A .6B .7C. D .512.已知函数,若对任意,都有,则实数a 的取值范围为( )A .B .C .D .二、填空题:(共4小题,每题5分,共20分)13.甲,乙,丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我没去过A 城市;乙说:我去过的城市比甲多,但没去过C 城市;丙说:我们三人去过同一城市;由此可判断甲去过的城市为________.14.若实数x ,y 满足约束条件,则的最大值为________.15.若圆锥的侧面展开图是半径为2,圆心角为的扇形,则这个圆锥的全面积是________.16.已知为双曲线的左、右焦点,双曲线的离心率为2,点P 在双曲线C的右支上,且的中点N 在圆上,其中c 为双曲线的半焦距,则________.三、解答题(共70分,17-21题每题12分)17.已知数列的前n 项和为.(1)求数列的通项;ABC △22sin 2sin(),2C A C a b bc =+-=cos B 1314-0,0x y >>211x y+=222x y m m +>+2m ≤-4m ≥4m ≤-2m ≥24m -<<42m -<<12,F F 22:14x C y -=22:(2)1G x y ++=2||PQ PF +32()ln f x x x x x =+-(0,)x ∈+∞()e xf x a -≥(,2]-∞-(,1]-∞-1,2⎛⎤-∞- ⎥⎝⎦(,0]-∞1020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩2z x y =+90︒12,F F 2222:1(0,0)x y C a b a b-=>>1PF 222:O x y c +=12sin F PF ∠={}n a 11,2,2n n n S S S a +==-{}n a n a(2)若,数列的前n 项和为,求证:.18.在中,内角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求角A ;(2)若,求a 的最小值.19.如图所示的四棱锥中,底面ABCD 为正方形,平面平面ABCD ,O ,M ,E 分别是AD ,PC ,BC 的中点,.(1)求证:平面POE ;(2)求三棱锥的体积.20.己知椭圆C 与双曲线有公共焦点,且右顶点为.(1)求椭圆C 的标准方程;(2)设直线与椭圆C 交于不同的A ,B 两点(A ,B 不是左右顶点),若以AB 为直径的圆经过点N ,求证:直线过定点,并求出定点.21.已知函数. (1)若,求证:函数在上单调递增;(2)若关于x 的不等式在上恒成立,求整数m 的最小值.(选考题,10分,请考生在第22、23题中任选一题作答.如果多做,按所做题的第一题记分.)22.以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知圆和圆的极坐标方程分别是和.(1)求圆和圆的公共弦所在直线的直角坐标方程;(2)若射线与圆的交点为O ,P 与圆的交点为O ,Q ,求的值.2log n n b a ={}n b n T 12311112nT T T T ++++< ABC △1cos 2b a Cc =+3AB AC ⋅=P ABCD -PAD ⊥,2PA PD PO AD ===BC ⊥M PAD -2212y x -=(2,0)N :l y kx m =+()(2)e ln ,1xf x x x ax a =-+-≥1a =()f x (1,)+∞()f x m ≤1,13x ⎛⎫∈ ⎪⎝⎭1C 2C 4cos ρθ=2sin ρθ=1C 2C π:6OM θ=1C 2C ||||OP OQ ⋅23.设(1)解不等式;(2)对任意的非零实数x ,有恒成立,求实数m 的取值范围.()|2||2|f x x x =-++()6f x ≥2()2f x m m ≥-+高三文数答案一、选择题:1.C 2.D 3.A 4.A 5.C 6.C 7.A 8.D 9.A 10.D 11.A 12.B 【详解】由题,可得在上恒成立;设,由于,所以在上是增函数,则有当时,;令,则有,所以函数;由于,当时,在上是减函数;当时,在上是增函数:所以当时,,则有;故.故选:B .二、填空题:13.B14.515.16三、解答题:17.(1)解:因为,所以当时,,则,所以,所以数列是以2为首项、公比为2的等比数列,所以.(2)证明:由(1)知,所以,e (ln 1)xa x x x ≤+-(0,)x ∈+∞()e (0)xg x x x =>()(1)e 0xg x x '=+>()g x (0,)x ∈+∞(0,)x ∈+∞()0g x >e (0)xt x x =>0,ln ln t t x x >=+e (ln 1)(ln 1)(0)xy x x x t t t =+-=->1ln 1ln y t t t t'=-+⋅=01t <<0,(ln 1)y y t t '<=-(0,1)t ∈1t >0,(ln 1)y y t t '>=-(1,)t ∈+∞1t =min 1y =-1a ≤-(,1]a ∈-∞-5π4112,2n n S S a +==-2n ≥12n n S a -=-1n n n a a a +=-12n n a a +={}n a 1222n n n a -=⨯=22,log nn n n a b a n ===(1)111,221n n n n T T n n +⎛⎫==- ⎪+⎝⎭所以,.18.(1)中,,由正弦定理知,,,,,又;(2)由(1)及得,所以,当且仅当时取等号,所以a.19.(1)在中,,O 为AD 的中点,则,又平面平面ABCD ,平面平面平面PAD ,于是得平面ABCD ,而平面ABCD ,则,又底面ABCD 是正方形,O ,E 分别是AD ,BC 的中点,即,因,PO ,平面POE ,所以平而POE .(2)因M 为PC 的中点,则点M 到平面PAD 的距离是点C 到平面PAD 的距离的,如图,因此,,所以三棱锥的体积为.12111nT T T +++ 111111*********n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 12121n ⎛⎫=-< ⎪+⎝⎭ABC △cos 2c b a C -=1sin sin cos sin 2B AC C -=π,sin sin[π()]sin cos cos sin A B C B A C A C A C ++=∴=-+=+ 11sin cos cos sin sin cos sin ,cos sin sin 22A C A C A C C A C C ∴+-=∴=1cos 2A ∴=π0π,3A A <<∴= 3AB AC ⋅=6bc =222222cos 6a b c bc A b c bc bc =+-=+-≥=b c =PAD △PA PD =PO AD ⊥PAD ⊥PAD ,ABCD AD PO =⊂PO ⊥BC ⊂PO BC ⊥BC OE ⊥PO OE O = OE ⊂BC ⊥12111111112222222322323M PAD C PAD P ACD V V V PO AD CD ---===⨯⋅⋅⋅⋅=⨯⨯⨯⨯⨯=M PAD -2320.(1)双曲线,所以椭圆的焦点坐标为:,椭圆的右顶点为,设椭圆的标准方程为:,所以,因此椭圆的标准方程为:;(2)直线l 方程与椭圆方程联立,得,设,于是有:,,因为以AB 为直径的圆经过点N ,所以,即,化简得:,而,所以有:,化简得:或,显然满足,当时,,此时直线l 过椭圆的右顶点不符合题意;当时,,此时直线l 恒过点,2212y x -==(2,0)N 22221(0)x y a b a b+=>>2222,431a c b a c ==⇒=-=-=2214x y +=()2222211484404x y k x kmx m y kx m ⎧+=⎪⇒+++-=⎨⎪=+⎩()()1122,,,A x y B x y ()()22222(8)41444041km kmm k ∆=-+->⇒<+2121222844,1414km m x x x x k k -+=-=++()()()()1122121202,2,0220NA NB NA NB x y x y x x y y ⊥⇒⋅=⇒--=⇒--+=()()()121212420x x x x kx m kx m -+++++=()()2212121(2)40k x x km x x m ++-+++=2121222844,1414km m x x x x k k -+=-=++()222224481(2)401414m km k km m k k-+⋅--⋅++=++226516120(56)(2)05m km k m k m k m k ++=⇒++=⇒=-2m k =-2241m k <+2m k =-2(2)y kx m y kx k y k x =+⇒=-⇒=-65m k =-6655y kx m y kx k y k x ⎛⎫=+⇒=-⇒=- ⎪⎝⎭6,05⎛⎫ ⎪⎝⎭综上所述:直线过定点,定点为.21.(1)依题意,,则,故当时,,故函数在上单调递增.(2)依题意,,对任意的恒成立,,只需对任意的恒成立即可.构造函数,由(1)可知,,,且上单调递增.,一定存在唯一的,使得,即,的单调递增区间为,单调递减区间为,,,所以故整数m 的最小值为.22.解:(1)圆即,则,圆即,则,6,05⎛⎫ ⎪⎝⎭()(2)ln xf x x e x x =-+-111()(1)1(1)(1)x x x x f x x e x e x e x x x -⎛⎫'=-+-=--=-- ⎪⎝⎭1x >()0f x '>()f x (1,)+∞(2)ln ,1xm x e x ax a ≥-+-≥1,13x ⎛⎫∈ ⎪⎝⎭1,0,(2)ln (2)ln x x a x x e x ax x e x x ≥>∴-+-≤-+- (2)ln xm x e x x ≥-+-1,13x ⎛⎫∈ ⎪⎝⎭()(2)ln xg x x e x x =-+-1()(1)x g x x e x ⎛⎫'=--⎪⎝⎭1,1,103x x ⎛⎫∈∴-< ⎪⎝⎭1()x t x e x =-120,(1)102t t e ⎛⎫=<=-> ⎪⎝⎭∴01,12x ⎛⎫∈ ⎪⎝⎭()00t x =00001,ln x e x x x ==-()g x ∴01,2x ⎛⎫⎪⎝⎭()0,1x ()()0max 0000001()2ln 12x g x g x x e x x x x ⎛⎫∴==-+-=-+ ⎪⎝⎭000115,1,222x x x ⎛⎫∈<+< ⎪⎝⎭()043g x -<<-3-1:4cos C ρθ=24cos ρρθ=2240x y x +-=2:2sin C ρθ=22sin ρρθ=2220x y y +-=两式相减得到两圆公共弦所在直线的直角坐标方程为:.(2)将代入圆和圆的极坐标方程得:,所以23.解:(1)令当时当时当时综上所述或(2恒成立等价于(当且仅当时取等)恒成立20x y -=π6θ=1C 2C ππ,1,66P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭||||1OP OQ ⋅==()|2||2|f x x x =-++ ()6()|2||2|6f x f x x x ∴≥⇒=-++≥202,202x x x x -=⇒=+=⇒=-2x ≤-|2||2|6(2)(2)63x x x x x -++≥⇒---+≥⇒≤-3x ∴≤-2x ≥|2||2|6(2)(2)63x x x x x -++≥⇒-++≥⇒≥3x ∴≥22x -<<|2||2|6(2)(2)646x x x x -++≥⇒--++≥⇒≥x φ∴∈3x ≤-3x ≥2()2f x m m ≥-+2min ()2f x m m ≥-+()|2||2||(2)(2)|4f x x x x x =-++≥--+= (2)(2)0x x -⋅+≤222min ()24220f x m m m m m m ∴≥-+⇒≥-+⇒--≤12m ∴-≤≤。
2020-2021学年浙江省杭州二中高三(上)第二次月考数学试卷(文科) Word版含解析
![2020-2021学年浙江省杭州二中高三(上)第二次月考数学试卷(文科) Word版含解析](https://img.taocdn.com/s3/m/c2b5cf0d91c69ec3d5bbfd0a79563c1ec5dad741.png)
2022-2021学年浙江省杭州二中高三(上)其次次月考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={y|y=2﹣x},P={y|y=},则M∩P=()A.{y|y>1} B.{y|y≥1} C.{y|y>0} D.{y|y≥0}2.等比数列{a n}中,a1>0,则“a1<a4”是“a3<a5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.确定相离B.确定相切C.相交且确定不过圆心D.相交且可能过圆心4.已知等比数列{a n}的公比为q(q为实数),前n项和为S n,且S3、S9、S6成等差数列,则q3等于()A.1 B.﹣C.﹣1或D.1或﹣5.已知x,y 满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A.B.C.D.46.已知等差数列{a n}的前n项和为S n ,且=5,=25,则=()A.125 B.85 C.45 D.357.若正数a,b 满足,的最小值为()A.1 B.6 C.9 D.168.已知F1,F2分别是椭圆的左,右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为()A.﹣1 B.2﹣C.D.9.若等差数列{a n}满足a12+a102=10,则S=a10+a11+…+a19的最大值为()A.60 B.50 C.45 D.40 10.已知函数f(x)是定义在R上的奇函数,在(0,2]上是增函数,且f(x﹣4)=﹣f(x),给出下列结论:①若0<x1<x2<4且x1+x2=4,则f(x1)+f(x2)>0;②若0<x1<x2<4且x1+x2=5,则f(x1)>f(x2);③若方程f(x)=m在[﹣8,8]内恰有四个不同的实根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8或8;④函数f(x)在[﹣8,8]内至少有5个零点,至多有13个零点其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共7小题,每小题4分,共28分.11.函数f(x)=的全部零点所构成的集合为.12.如图为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,如图所示,且A、B、C、D四点共圆,则AC的长为km.13.在△ABC中,∠A=,D是BC边上任意一点(D与B、C不重合),且丨|2=,则∠B=.14.已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成的角的大小为.15.已知sinα,cosα是关于x的方程x2﹣ax+a=0的两个根,则sin3α+cos3α=.16.已知O是△ABC外心,若,则cos∠BAC=.17.已知函数f(x)=﹣x,对,有f(1﹣x)≥恒成立,则实数a的取值范围为.三、解答题18.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+bsinC﹣a﹣c=0.(Ⅰ)求B;(Ⅱ)若b=,求2a+c的取值范围.19.如图,在三棱锥P﹣ABC中,BC⊥平面PAB.已知PA=AB,D,E分别为PB,BC的中点.(1)求证:AD⊥平面PBC;(2)若点F在线段AC上,且满足AD∥平面PEF,求的值.20.已知数列{a n}的首项为a(a≠0),前n项和为,且有S n+1=tS n+a(t≠0),b n=S n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)当t=1时,若对任意n∈N*,都有|b n|≥|b5|,求a的取值范围;(Ⅲ)当t≠1时,若c n=2+b1+b2+…+b n,求能够使数列{c n}为等比数列的全部数对(a,t).21.如图,已知圆G:x2﹣x+y2=0,经过抛物线y2=2px的焦点,过点(m,0)(m<0)倾斜角为的直线l交抛物线于C,D两点.(Ⅰ)求抛物线的方程;(Ⅱ)若焦点F在以线段CD为直径的圆E的外部,求m的取值范围.22.已知函数f(x)=x2﹣1,g(x)=a|x﹣1|.(Ⅰ)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅱ)求函数h(x)=|f(x)|+g(x)在区间[﹣2,2]上的最大值.2022-2021学年浙江省杭州二中高三(上)其次次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={y|y=2﹣x},P={y|y=},则M∩P=()A.{y|y>1} B.{y|y≥1} C.{y|y>0} D.{y|y≥0}考点:交集及其运算;函数的定义域及其求法;函数的值域.专题:函数的性质及应用.分析:先化简这两个集合,利用两个集合的交集的定义求出M∩P.解答:解:∵M={y|y=2﹣x}={y|y>0},P={y|y=}={y|y≥0},∴M∩P={y|y>0},故选C.点评:本题考查函数的值域的求法,两个集合的交集的定义,化简这两个集合是解题的关键.2.等比数列{a n}中,a1>0,则“a1<a4”是“a3<a5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:结合等比数列的性质,利用充分条件和必要条件的定义进行推断即可.解答:解:在等比数列中设公比为q,则由a1<a4,得a1<a1q3,∵a1>0,∴q3>1,即q>1.由“a3<a5”得,即q2>1,∴q>1或q<﹣1.∴“a1<a4”是“a3<a5”的充分不必要条件.故选:A.点评:本题主要考查充分条件和必要条件的推断,利用等比数列的运算性质是解决本题的关键,比较基础.3.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.确定相离B.确定相切C.相交且确定不过圆心D.相交且可能过圆心考点:直线与圆的位置关系.专题:计算题.分析:将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.解答:解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且确定不过圆心.故选C点评:此题考查了直线与圆的位置关系,涉及的学问有:圆的标准方程,点到直线的距离公式,娴熟把握直线与圆位置关系的推断方法是解本题的关键.4.已知等比数列{a n}的公比为q(q为实数),前n项和为S n,且S3、S9、S6成等差数列,则q3等于()A.1 B.﹣C.﹣1或D.1或﹣考点:等比数列的性质.专题:计算题.分析:依据等比数列的求和分别表示出S3、S9、S6代入2S9=S6+S3,即可得到答案.解答:解:依题意可知2S9=S6+S3,即2=+整理得2q6﹣q3﹣1=0,解q3=1或﹣,当q=1时,2S9=S6+S3,不成立故排解.故选B.点评:本题主要考查了等比数列的性质.属基础题.5.已知x,y 满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A.B.C.D.4考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,结合目标函数z=2x+y的最大值是最小值的4倍,建立方程关系,即可得到结论.。
河北省大名县第一中学2022届高三(实验班)上学期第一次月考数学(文)试题 Word版含答案
![河北省大名县第一中学2022届高三(实验班)上学期第一次月考数学(文)试题 Word版含答案](https://img.taocdn.com/s3/m/fce1ec380812a21614791711cc7931b765ce7bda.png)
高三文科数学月考试题学校:姓名:班级:考号:评卷人得分一、选择题1. [2021·吉大附中高三四模(文)]已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于()A. (0,1]B. [1,+∞)C.(0,2] D.2. [2021·哈三中一模(文)]已知f(x)是定义在R上的偶函数,周期为2,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. [2021·哈三中一模]下列结论中正确的个数是()①“x=”是“”的充分不必要条件;②若a>b,则am2>bm2;③命题“∀x∈R,sin x≤1”的否定是“∀x∈R,sin x>1”;④函数f(x )=-cos x在[0,+∞)内有且仅有两个零点.A. 1B. 2C. 3D. 44. [2021·吉林长春普高高三二模]下列函数中,既是奇函数又在(0,+∞)上单调递增的函数是() A. y=e x+e-x B. y=ln(|x|+1) C.y= D. y=x-5. [2021·吉大附中高三四模(文)]设函数f(x)=ln(1+x2)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A. B. C.D.6. [2021·吉林市普高高三第三次调研]若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=则此函数的“友好点对”有()A. 3对B. 2对C. 1对 D. 0对7. [2021·河北唐山高三摸底月考]设函数,“是偶函数”是“的图象关于原点对称”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. [2021·吉林长春高三二模(文)]关于函数y=2sin+1,下列叙述有误..的是()A. 其图象关于直线x=-对称B. 其图象可由y=2sin+1图象上全部点的横坐标变为原来的倍得到C. 其图象关于点对称D. 其值域为[-1,3]9. [2022·甘肃省高考诊断(二)(文)]已知△ABC的外接圆半径为1,圆心为O,且=0,则△ABC 的面积为()A. 1+B.C.1+ D.10. [2022·哈尔滨市第六中学高三一模(文)]已知向量a=(cosθ,-sinθ),b=(-cos2θ,sin2θ)(θ∈(π,2π)),若向量a,b的夹角为φ,则有()A. φ=θB. φ=π-θC.φ=θ-π D. φ=θ-2π11. [2021·河北武邑中学高二入学考试]已知数列,都是公差为1的等差数列,是正整数,若,则( )A. 81B. 99C. 108D. 11712. [2021·河南南阳一中高三第三次月考]已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )A. B. C.D.评卷人得分二、填空题13. [2021·河北五个一名校联盟高三一模(文)]设△的内角,,所对的边长分别为,若,则的值为.14. [2021·河南南阳方城一中高二开学考试]设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C= . 15. [2021·河南许昌五校高二第一次联考]已知在中,,,,,,则的值为.16. [2010·高考辽宁卷,16]已知数列{a n}满足a1=33,a n+1-a n=2n,则的最小值为.评卷人得分三、解答题17. [2021·吉林市普高高三第三次调研]已知函数f(x)=cos 2x+2sin2x+2sin x.(1)将函数f(2x)的图象向右平移个单位得到函数g(x)的图象,若x∈,求函数g(x)的值域;(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)=+1,A∈,a=2,b=2,求△ABC的面积.18. [2021·吉林长春高三二模(文)]已知数列{a n}满足a1=,a n+1=3a n-1(n∈N*).(1)若数列{b n}满足b n=a n-,求证:{b n}是等比数列;(2)求数列{a n}的前n项和S n.19. [2021·河南八市重点高中高二第一次月考(文)]正项数列满足.(1)求数列的通项公式;(2)令,求数列的前项和为.20. [2021·吉林长春高三二模(文)]已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB中点,求点A到平面CED的距离.21. [2021·湖南长沙长郡中学高三入学考试]已知椭圆的两个焦点分别为,以椭圆短轴为直径的圆经过点.(1)求椭圆的方程;(2)过点的直线与椭圆相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.22. [2021·广东省仲元中学、中山一中等七校高三联考(一)]在中,角所对的边分别为,且.(1)求的大小;(2)设的平分线交于,求的值.参考答案1. 【答案】A【解析】本题考查集合的基本运算、解一元二次不等式及求指数函数的值域,属于基础题.由于x2+x-2≤0,所以-2≤x≤1,依据指数函数的性质知y=2x>0,所以集合A =,B =,则A∩B =,故选A.2. 【答案】D【解析】本题考查充分条件与必要条件,函数的奇偶性与周期性,属于中档题.函数在上递增,利用偶函数得函数在上递减,利用周期得函数在上递减,故充分性成立;函数在上递减,利用周期得函数在上递减,利用偶函数得函数在上递增,必要性成立,综上,充分性与必要性均成立,故选D.3. 【答案】A【解析】本题考查充分必要条件、不等式性质、命题的否定及命题真假的判定,属于中档题.对于①,当x=时,sin ,充分性成立;当sin 时,x ++2kπ或x ++2kπ,k∈Z,得x=-+2kπ或x=+2kπ,k∈Z,故必要性不成立,故①正确;对于②,当m=0时,若a>b,am2>bm2不成立,故②不正确;对于③,命题“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”,故③不正确;对于④,函数y =与y=cos x的图象有且只有一个交点,故函数f(x )=-cos x 在内有且仅有一个零点,故④不正确.综上,正确的只有一个,故选A.4. 【答案】D【解析】本题考查函数的单调性与奇偶性学问,属于基础题.A,B选项中的函数为偶函数,排解,C选项中的函数是奇函数,但在(0,+∞)上不是单调递增函数.故选D.5. 【答案】A【解析】本题考查函数的奇偶性及导数在争辩函数中的应用,解一元二次不等式、确定值不等式,属于难题.∵f(-x )= ln =ln =f(x),∴函数f(x)为偶函数.当x≥0时,f(x)=ln (1+x2),求导得f'(x )=恒为正,即函数f(x)在单调递增,∵f(x)是偶函数,∴f(x)在(-∞,0)上单调递减,则f(x)>f(2x-1)等价于f(|x|)>f(|2x-1|),即|x|>|2x-1|,平方得3x2-4x+1<0,解得<x<1,故选A.6. 【答案】C【解析】本题考查新概念和函数的图象与性质,考查了数形结合的数学思想,属于中档题.设f(x )=(x>0)图象上任一点为A(x,y)(x>0,y>0),点A关于原点的对称点A'(-x,-y)在y=x+1上,所以-y=-x+1,即y=x-1,得“友好点对”的个数就是方程组的根的个数,而y=x-1(x>0)的图象与y的图象有且只有一个交点,∴“友好点对”共1对,故选C.7. 【答案】B【解析】本题考查函数的奇偶性,考查图象的对称性.若是偶函数,而不肯定是奇函数,故的图象不肯定关于原点对称;当的图象关于原点对称时,函数是奇函数,则是偶函数,因此“是偶函数”是“的图象关于原点对称”的必要不充分条件.故选B.8. 【答案】C【解析】本题考查三角函数的性质、图象变换,属于中档题.关于函数y =2sin+1,令x=-,求得y=-1,为函数的最小值,故A正确;由y =2sin+1图象上全部点的横坐标变为原来的倍,可得y =2sin+1的图象,故B正确;令x =π,求得y=1,可得函数的图象关于点对称,故C错误;函数的值域为[-1,3],故D正确.故选C.9. 【答案】D【解析】本题考查向量的运算.由=0得=-,两边平方可得·=0,则∠AOB =90°;由=0得=-,两边平方可得·=,则∠AOC=135°;同理可得∠BOC=135°,则△ABC的面积为S△AOB+S△BOC+S△AOC =,故选D.10. 【答案】C【解析】本题考查向量的夹角、向量的坐标运算、二倍角、同角三角函数的基本关系、诱导公式.由题意知cosφ==- () =-cosθ=cos(θ-π).由于θ∈(π,2π),所以θ-π∈(0,π),而φ∈[0,π],所以φ=θ-π,故选C.11. 【答案】D【解析】本题考查等差数列的通项公式与数列求和,考查计算力量.,.故选D. 12. 【答案】A【解析】本题考查分段函数导函数的应用,函数与方程的关系.=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.13. 【答案】4【解析】本题考查正弦定理与余弦定理、两角和与差公式,考查计算力量.由正弦定理可得=,又由于==,所以=,即, 所以.14. 【答案】【解析】本题考查正弦定理及余弦定理.由正弦定理得, 5b=3a,又b+c=2a,则,由余弦定理得,,又,所以.15. 【答案】【解析】本题主要考查平面对量的线性运算及平面对量数量积.在中,,建立直角坐标系,,,,依题意有D,E(2,0)得,得,故填. 16. 【答案】【解析】由已知可得a n-a n-1=2(n-1),a n-1-a n-2=2(n-2),…,a3-a2=2×2,a2-a1=2×1,左右两边分别相加可得a n-a1=2(1+2+3+…+(n-1)]=n(n-1),∴a n=n2-n+33.=n+-1,令F(n)=n+-1,n≤5时为减函数,n≥6时为增函数且F(5)>F(6),∴F(n)≥F(6)=,故的最小值为.17.(1) 【答案】f(x)=cos 2x+2sin2x+2sin x=cos2x-sin2x+2sin2x+2sin x=cos2x+sin2x+2sin x=1+2sin x,所以f(2x)=1+2sin2x.由于函数f(2x)的图象向右平移个单位得到函数g(x)的图象,所以g(x )=2sin+1,即g(x )=2sin+1.由于x ∈,所以2x ∈所以sin ∈,所以g(x)∈[0,3],所以函数g(x)的值域为[0,3].(2) 【答案】由于f(A )=+1,所以sin A =,由于A ∈,所以cos A=.又cos A =,a =2,b=2,所以c=4.所以△ABC面积S△ABC=bc sin A =2.18.(1) 【答案】由题可知a n+1=3(n∈N*),从而有b n+1=3b n,b1=a1-=1,所以{b n}是以1为首项,3为公比的等比数列.(2) 【答案】由第1问知b n=3n-1,从而a n=3n-1+,有S n=30++3++…+3n-1+=30+31+32+…+3n-1+×n =.19.(1) 【答案】由,得,由于数列是正项数列,所以.(2) 【答案】由第1问得,,所以.20.(1) 【答案】由于AD⊥平面BCD,BC⊂平面BCD,所以AD⊥BC,又由于AC⊥BC,AC∩AD=A, 所以BC⊥平面ACD,BC⊂平面ABC,所以平面ABC⊥平面ACD.(2) 【答案】由已知可得CD =,取CD中点为F,连接EF,由于ED=EC=AB =,所以△ECD为等腰三角形,从而EF =,S△ECD =,由第1问知BC⊥平面ACD,所以E到平面ACD的距离为1,S△ACD =,令A到平面CED的距离为d,由V A-ECD=·S△ECD·d=V E-ACD=·S△ACD·1,解得d =.所以点A到平面CED 的距离为21.(1) 【答案】由题意得,,, 解得,所以椭圆的方程为.(2) 【答案】①当直线的斜率不存在时,由, 解得,设,则.②当直线的斜率存在时,设直线的方程为,代入整理化简,得,依题意,直线与椭圆必相交于两点,设,则, 又,所以====.综上所述,为定值2.(说明:若假设直线为,按相应步骤给分)22.(1) 【答案】,,,,.(2) 【答案】在中,由正弦定理:,得,,.。
四川省成都市成华区某校2023-2024学年高三上学期10月月考文科数学试题含解析
![四川省成都市成华区某校2023-2024学年高三上学期10月月考文科数学试题含解析](https://img.taocdn.com/s3/m/5ef61f9b6e1aff00bed5b9f3f90f76c660374c75.png)
2023-2024学年度(上)阶段性考试(一)高2021级数学(文科)(答案在最后)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2340A x x x =∈--≤Z ∣,{2,}B x x n n ==∈Z ∣,则A B = ()A.{0,2,4}B.{}113-,,C.{4,2,0}-- D.{3,1,1}--【答案】A 【解析】【分析】根据一元二次不等式的求解方法,结合集合的交集,可得答案.【详解】由不等式2340x x --≤,分解因式可得()()410x x -+£,解得14x -≤≤,则{}1,0,1,2,3,4A =-,所以{}0,2,4A B = .故选:A.2.已知i 3i z =-(i 为虚数单位),则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由已知等式求出复数z ,得到复数z ,由复数的几何意义得z 在复平面内对应的点所在象限.【详解】由i 3i z =-,得3i13i iz -==--,则13i z =-+,在复平面内对应的点位于第二象限.故选:B3.抛物线24x y =的准线方程是()A.116x =-B.18x =-C.116y =-D.12y =-【答案】A 【解析】【分析】先化为标准型,利用抛物线的准线方程可得答案.【详解】因为214y x =,所以124p =,所以准线方程为116x =-.故选:A.4.已知函数()42,0log ,0x x f x x x -≤⎧=⎨>⎩,则6))f f ((-=()A.12B.2C.32D.3【答案】C 【解析】【分析】利用分段函数的定义代入求值即可.【详解】由题意可得:()()()()()43626868log82f f f f -=--=⇒-===.故选:C .5.已知,x y 满足约束条件1010220x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数2z x y =+的最小值是()A.1B.2C.11D.无最小值【答案】A 【解析】【分析】作出可行域,将目标函数变为122zy x =-+,通过平移直线12y x =-即可求出z 的最小值.【详解】根据题意,可行域如图所示:将直线12y x =-平移至刚好经过()1,0A 时,z 取的最小值:1201z =+⨯=.故选:A.6.下列函数中,既是π(0,)2上的增函数,又是以π为周期的偶函数的是()A.tan y x = B.cos 2y x= C.sin 2y x= D.in 1s 2y x =【答案】D 【解析】【分析】利用函数的奇偶性、在指定区间上的单调性逐项判断作答.【详解】显然函数tan y x =、sin 2y x =都是奇函数,AC 不是;当π(0,2x ∈时,2(0,π)x ∈,而函数cos y x =在(0,π)上单调递减,函数cos 2y x =在π(0,)2上单调递减,B 不是;函数1|sin |2y x =是周期为π的偶函数,当π(0,)2x ∈时,sin 0x >,为原函数,即1sin 2y x =在π(0,2上递增,D 是.故选:D7.定义在R 上的奇函数()f x 满足()1f x +是偶函数,当(]0,1x ∈时,()π2sin 2f x x =,则()2024f =()A.2-B.1- C.0D.2【答案】C 【解析】【分析】根据题意,由函数奇偶性的性质分析可得(2)()f x f x +=-,进而可得(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,从而利用周期性即可求解.【详解】根据题意,函数()f x 是定义在R 上的奇函数,则()()f x f x -=-,且(0)0f =,又函数(1)f x +是偶函数,则(1)(1)-+=+f x f x ,变形可得()(2)f x f x -=+,则有(2)()f x f x +=-,进而可得(4)(2)()f x f x f x +=-+=,所以函数()f x 是周期为4的周期函数,则(2024)(50640)(0)0f f f =⨯+==.故选:C.8.用半径为10cm ,圆心角为216 的扇形围成一个圆锥的侧面,这个圆锥的体积为()3cm A.128π B.128C.96πD.96【答案】C 【解析】【分析】根据题意确定圆锥的母线长,根据扇形的弧长求出圆锥的底面半径和高,根据圆锥体积公式即可求得答案.【详解】设圆锥的底面半径为R ,由题意可知圆锥母线长为10cm l =,由题意可得2162π102π,6360R R ⨯⨯=∴=,故圆锥的高为8h ==,故圆锥的体积为211ππ36896π33V R h ==⨯⨯=,故选:C9.下列说法正确的有()①对于分类变量X 与Y ,它们的随机变量2K 的观测值k 越大,说明“X 与Y 有关系”的把握越大;②我校高一、高二、高三共有学生4800人,其中高三有1200人.为调查需要,用分层抽样的方法从全校学生中抽取一个容量为200的样本,那么应从高三年级抽取40人;③若数据1x 、2x 、L 、n x 的方差为5,则另一组数据11x +、21x +、L 、1n x +的方差为6;④把六进制数()6210转换成十进制数为:()012621006162678⨯⨯⨯=++=.A.①④B.①②C.③④D.①③【答案】A 【解析】【分析】利用独立性检验可判断①;利用分层抽样可判断②;利用方差公式可判断③;利用进位制之间的转化可判断④.【详解】对于①,对于分类变量X 与Y ,它们的随机变量2K 的观测值k 越大,说明“X 与Y 有关系”的把握越大,①对;对于②,由分层抽样可知,应从高三年级抽取的人数为1200200504800⨯=,②错;对于③,记12n x x x x n +++= ,则()()()2221215nx x x x x x n ⎡⎤-+-++-=⎢⎥⎣⎦ ,所以,数据11x +、21x +、L 、1n x +的平均数为()()()()12121111111n n x x x x x x x n n ++++++=++++=+⎡⎤⎣⎦ ,其方差为()()()222121111111n x x x x x x n ⎡⎤+--++--+++--⎢⎥⎣⎦ ()()()2221215n x x x x x x n ⎡⎤=-+-++-=⎢⎥⎣⎦ ,③错;对于④,把六进制数()6210转换成十进制数为:()012621006162678⨯⨯⨯=++=,④对.故选:A.10.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移π6个单位,得到函数()g x 的图象,则()A.π()sin 23g x x ⎛⎫=+⎪⎝⎭B.π()sin 26g x x ⎛⎫=+⎪⎝⎭C.()sin 2g x x = D.π()sin 26g x x ⎛⎫=-⎪⎝⎭【答案】C 【解析】【分析】利用函数图象可求出()f x 的解析式为π()sin 23f x x ⎛⎫=+ ⎪⎝⎭,再根据平移规则可得()sin 2g x x =.【详解】由图象可知,33π5ππ42ω612T ==-,解得ω2=;由振幅可知1A =;将5π,06⎛⎫⎪⎝⎭代入可得5π5πsin 2066f A ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,又π2ϕ<,即可得ϕπ3=,因此π()sin 23f x x ⎛⎫=+⎪⎝⎭,易知πππ()()sin 2sin 2663g x f x x x 骣骣÷琪ç=-=-+=÷çç÷çç桫桫,故选:C.11.人们用分贝()dB 来划分声音的等级,声音的等级()d x (单位:dB )与声音强度x (单位:2W /m )满足()139lg110xd x -=⨯.一般两人小声交谈时,声音的等级约为45dB ,在有50人的课堂上讲课时,老师声音的等级约为63dB ,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A.1倍B.10倍C.100倍D.1000倍【答案】C 【解析】【分析】根据所给声音等级与声音强度的函数关系,求出声音等级即可比较得解.【详解】∵声音的等级式()d x (单位:dB )与声音强度x (单位:2W /m )满足()139lg 110xd x -=⨯,又∵老师的声音的等级约为63dB ,∴13639lg10x-=,解得610x -=,即老师的声音强度约为610-2W /m ,∵两人交谈时的声音等级大约为45dB ,13459lg10x-∴=,解得810x -=,即两人交谈时的声音强度约为810-2W /m ,∴老师上课时声音强度约为两人小声交谈时声音强度的681010010--=倍.故选:C12.函数()f x 的定义域为)(0,6,当02x <≤时,()11f x |x |=--+且()2(2)f x f x =+,若函数()()g x =f x +m 有四个不同的零点,则实数m 的取值范围为()A.11,)24(-- B.11,)42( C.2,1)(-- D.(12,)【答案】A 【解析】【分析】将()f x 在(0,2]上的图象每次向右平移2个单位,且纵坐标变为原来的一半,得到()f x 在)(0,6上的图象,根据()y f x =的图象与y m =-有四个不同的交点,得到m 的取值范围.【详解】先作出()f x 在(0,2]上的图象,根据()2(2)f x f x =+可知()f x 在(2,4]上的图象为()f x 在(0,2]上的图象向右平移2个单位且纵坐标变为原来的一半得到,同理得到)(4,6上的图象,如图:函数()()g x =f x +m 有四个不同的零点可看作()y f x =与y m =-有四个不同的交点,由图可知1142m <-<,故11(,)24m ∈--.故选:A .第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知等差数列{}n a 的前n 项和为n S ,若2610a a +=,则7S =______.【答案】35【解析】【分析】根据等差数列的前n 项和公式,及等差数列的性质求解即可.【详解】解: 等差数列{}n a 的前n 项和为n S ,2610a a +=,()()172677771035222a a a a S ++⨯∴====,故答案为:35.14.已知,02πθ⎛⎫∈-⎪⎝⎭,4cos 5θ=,则tan 2θ=___________.【答案】247-【解析】【分析】本题首先可通过同角三角函数关系求出3tan 4θ=-,然后根据二倍角公式即可得出结果.【详解】因为,02πθ⎛⎫∈- ⎪⎝⎭,4cos 5θ=,所以3sin 5θ=-,3tan 4θ=-,则22322tan 244tan 21tan 7314θθθ⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,故答案为:247-.15.如图,若坐标轴和双曲线与圆O 的交点将圆O 的周长八等分,且AB BO OC CD ===,则该双曲线的渐近线方程为______.【答案】y =【解析】【分析】根据圆的性质,结合代入法、双曲线渐近线方程进行求解即可.【详解】设双曲线的标准方程为()222210,0x y a b a b-=>>,设圆O 与双曲线在第一象限内的交点为E ,连接DE 、OE ,则22OE OD OC CD OC a ==+==,因为坐标轴和双曲线与圆O 的交点将圆O 的周长八等分,则1π2π84DOE ∠=⨯=,故点)E,将点E的坐标代入双曲线的方程可得))22221a b -=,所以ba=所以该双曲线的渐近线方程为y =.故答案为:y =16.设函数()π2sin cos 6f x x x ⎛⎫=⋅+⎪⎝⎭,有下列结论:①()f x 的图象关于点5π,012⎛⎫⎪⎝⎭中心对称;②()f x 的图象关于直线π6x =对称;③()f x 在π5π,612⎡⎤⎢⎥⎣⎦上单调递减;④()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上最小值为32-,其中所有正确的结论是______.【答案】②③【解析】【分析】整理化简()f x 解析式可得π1()sin(2)62f x x =+-,根据正弦函数的相关性质逐一进行判断即可.【详解】()212sin cos(2sin (cos sin )cos sin 622πf x x x x x x x x x =⋅+=⋅-=-111sin 2cos 2πsin(2)22262x x x =+-=+-,当5π12x =时,5πsin(2)012π6⨯+=,则()f x 的图象关于点5π1,122⎛⎫- ⎪⎝⎭中心对称,故①错误;当π6x =时,sin(2)1π6π6⨯+=,则()f x 的图象关于直线π6x =对称,故②正确;由ππ3π2π22π,Z 262k x k k +≤+≤+∈,得π2πππ,Z 63k x k k +≤≤+∈,当0k =即2π[,]6π3x ∈时,函数()f x 单调递减,则当π5π[,]612x ∈时,函数()f x 单调递减,故③正确;当ππ[,]66x ∈-时,πππ2[,]662x +∈-,可知函数()f x 在ππ[,]66-上单调递增,∴()f x 的最小值为π1sin 21π6π662f ⎡⎤⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故④错误.故答案为:②③.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.最近,纪录片《美国工厂》引起中美观众热议,大家都认识到,大力发展制造业,是国家强盛的基础,而产业工人的年龄老化成为阻碍美国制造业发展的障碍,中国应未雨绸缪.某工厂有35周岁以上(含35周岁)工人300名,35周岁以下工人200名,为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“35周岁以上(含35周岁)”和“35周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.()()()()()22n ad bc K a b c d a c b d -=++++,附表:()2P K k >0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“35周岁以下组”工人的概率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有95%的把握认为“生产能手与工人所在的年龄组有关”?生产能手非生产能手合计35岁以下35岁以上合计【答案】(1)710(2)列联表见解析,有把握.【解析】【分析】(1)分析可知,35周岁以上组工人有600.053⨯=(人),记为123,,A A A ;35周岁以下组工人有400.052⨯=(人),记为12,B B ,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率;(2)根据题中信息完善22⨯列联表,计算出2K 的观测值,结合独立性检验的基本思想可得出结论.【小问1详解】解:由已知得,样本中有35周岁以上组工人60名,35周岁以下组工人40名,所以,样本中日平均生产件数不足60件的工人中,35周岁以上组工人有600.053⨯=(人),记为123,,A A A ;35周岁以下组工人有400.052⨯=(人),记为12,B B ,从中随机抽取2名工人,所有可能的结果共有10种:()()()()()()121323111221,,,,,,,,,,,,A A A A A A AB A B A B ()22,A B ,()31,A B ,()31,A B ,()12,B B ,至少有一名“35周岁以下组”工人的可能结果共有7种:()11,A B ,()12,A B ,()21,A B ,()22,A B ,()31,A B ,()32,A B ,()12,B B ,故所求的概率:710P =.【小问2详解】解:由频率分布直方图可知,在抽取的100名工人中,“35周岁以上组”中的生产能手600.530⨯=(人),“35周岁以下组”中的生产能手400.2510⨯=(人),据此可得22⨯列联表如下:生产能手非生产能手合计35岁以下10304035岁以上303060合计4060100所以得:22100(10303030)256.25 3.841406040604K ⨯-⨯===>⨯⨯⨯,所以有95%的把握认为“生产能手与工人所在的年龄组有关”.18.已知向量(()2cos ,2,sin2m x n x == ,函数()f x m n =⋅ .(1)求函数()f x 的单调递增区间;(2)在ABC 中,a b c 、、分别是角、、A B C 的对边,且()3,1f C c ==,=ab ABC 的周长.【答案】(1)ππ[π,π](Z)36k k k -++∈;(2)3.【解析】【分析】(1)利用向量数量积的坐标表示,二倍角公式、辅助角公式求出并化简()f x ,再利用正弦函数单调性求解作答.(2)由(1)求出C ,再利用余弦定理求解作答.【小问1详解】依题意,2π()2cos 1cos22sin(2)16f x m n x x x x x =⋅=+=++=++ ,由πππ2π22π,Z 262k x k k -+≤+≤+∈得:ππππ,Z 36k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是ππ[π,π](Z)36k k k -++∈.【小问2详解】由(1)知,π()2sin(2)136f C C =++=,即πsin(2)16C +=,而()0,πC ∈,则ππ13π2(,)666C +∈,于是ππ262C +=,解得π6C =,由余弦定理有2222cos c a b ab C =+-,即221()(2()(2a b ab a b =+-+=+-+,解得2+=+a b ,所以ABC 的周长为3+.19.如图,在四棱锥-P ABCD 中,平面PAB ⊥平面ABCD ,底面ABCD 为菱形,PAB 为等边三角形,且2PA =,PC CD ⊥,O 为AB 的中点.(1)若E 为线段PC 上动点,证明:AB OE ⊥;(2)求点B 与平面PCD 的距离.【答案】(1)证明见解析(2)2【解析】【分析】(1)因E 为线段PC 上动点,明显要证明AB ⊥平面POC ,利用线面垂直判定定理,分别证明PC AB ⊥,OP AB ⊥即可;(2)利用等体积变换求距离即得.【小问1详解】连接OC ,OP .∵PAB 为等边三角形,OP AB ∴⊥,1OA =,OP =,又 平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,OP ⊂平面PAB ,OP ∴⊥平面ABCD ,又OC ⊂Q 平面ABCD ,OP OC ∴⊥,PC DC ⊥ ,CD AB ∥,PC AB ∴⊥,又OP AB ⊥ ,OP ⊂平面POC ,PB ⊂平面POC ,OP PC P ⋂=,AB ∴⊥平面POC又OE ⊂ 平面POC ,AB OE ∴⊥【小问2详解】由(1)知AB ⊥平面POCOC ⊂Q 平面POC ,∴AB OC ⊥.由题意22BC AB PA OB ====,∴PO OC ==,PC =,∴BOC 中,π3CBO ∠=,∴BDC 中,2π3BCD ∠=,∴BDC 中,由余弦定理得BD =,设点B 到平面PCD 的距离为h ,则--B PCD P BCD V V =即1133PCD BCD S h S OP ⋅=⋅△△,11112π222sin 32323h ⨯⨯=⨯⨯⨯,得62h =,故点B 与平面PCD 的距离为6220.已知椭圆E :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 的直线l 与E 交于A ,B 两点,2ABF △的周长为8,且点3(1,)2-在E 上.(1)求椭圆E 的方程;(2)设直线l 与圆O :222x y a +=交于C ,D 两点,当CD ⎡∈⎢⎣⎦时,求2ABF △面积的取值范围.【答案】(1)22143x y +=(2),35⎡⎤⎢⎥⎣⎦【解析】【分析】(1)由2ABF △的周长结合椭圆的定义得出48a =,再将3(1,)2-代入椭圆方程,即可求出b ,进而得出椭圆的方程;(2)设直线l 的方程为1x my =-,由点到之间距离公式及勾股定理得出[]20,2m ∈,设()11,A x y ,()22,B x y ,由直线l 方程与椭圆方程联立,得出12y y +和12y y ,代入2ABF S =[]211,3t m =+∈,()196h t t t=++,由()h t 的单调性得出值域,即可求出2ABF S 的范围.【小问1详解】因为2ABF △的周长为8,所以48a =,解得2a =,将点31,2⎛⎫- ⎪⎝⎭的坐标代入椭圆方程22214x yb +=,得291414b+=,解得b =,所以椭圆E 的方程为22143x y +=.【小问2详解】由(1)知圆O 的方程为224x y +=,设直线l 的方程为1x my =-,则圆心O 到直线l 的距离d =,由3CD ⎡=⎢⎥⎣⎦,可得[]20,2m ∈.设()11,A x y ,()22,B x y ,联立方程组221431x y x my ⎧+=⎪⎨⎪=-⎩,消去x 得()2243690+--=mymy ,则122643m y y m +=+,122943y y m =-+,所以2121212ABF S F F y y =⨯⨯-= ,设[]211,3t m =+∈,则2ABF S == ,设()196h t t t=++,易知()196h t t t =++在1,3⎡⎫+∞⎪⎢⎣⎭上单调递增,则()h t 在[]1,3上单调递增,因为()100163h t ≤≤,所以2,35ABF S ⎡⎤∈⎢⎥⎣⎦.21.已知函数2()2ln (1)21f x x a x ax =-+-+,R a ∈.(1)当1a =时,求函数()f x 在点(1,(1))f 处的切线方程;(2)若函数()f x 有两个零点12,x x ,求实数a 的取值范围;【答案】(1)410x y +-=(2)(1,0)-【解析】【分析】(1)求导,得到()14f '=-,利用导函数几何意义求出切线方程;(2)求定义域,求导,分1a ≤-,1a >-两种情况,结合函数单调性,得到要满足函数()f x 有2个零点,只需()2ln 101a a a ++<+,构造函数()()2ln 11xg x x x =+++,()1,x ∈-+∞,求导,得到其单调性,求出实数a 的取值范围.【小问1详解】当1a =时,2()2ln 221f x x x x =--+,()242f x x x'=--,()12424f '=--=-,()12213f =--+=-,所以函数()f x 在点(1,(1))f 处的切线方程为()341y x +=--,即410x y +-=;【小问2详解】函数()f x 的定义域为()0,∞+,()()()()21112212a x x f x a x a x x-+-+⎡⎤⎣⎦'=-+-=,当1a ≤-时,()0f x ¢>恒成立,()f x 单调递增,所以()f x 不可能有2个零点;当1a >-时,当101x a <<+时,()0f x ¢>,()f x 单调递增,当11x a >+时,()0f x '<,()f x 单调递减,当0x →时,()f x →-∞,当x →+∞时,()f x →-∞,所以要满足函数()f x 有2个零点,只需101f a ⎛⎫>⎪+⎝⎭,即()21112ln 1210111a a a a a ⎛⎫-+-⋅+> ⎪+++⎝⎭,整理得()2ln 101aa a ++<+,设()()2ln 11xg x x x =+++,函数的定义域为()1,-+∞,()()221011g x x x '=+>++,所以()g x 在定义域上单调递增,且()00g =,则不等式()2ln 101aa a ++<+的解集为()1,0-,所以a 的取值范围为()1,0-;【点睛】导函数处理零点个数问题,由于涉及多类问题特征(包括单调性,特殊位置的函数值符号,隐零点的探索、参数的分类讨论等),需要学生对多种基本方法,基本思想,基本既能进行整合,注意思路是通过极值的正负和函数的单调性判断函数的走势,从而判断零点个数,较为复杂和综合的函数零点个数问题,分类讨论是必不可少的步骤,在哪种情况下进行分类讨论,分类的标准,及分类是否全面,都是需要思考的地方22.数学中有许多美丽的曲线,如在平面直角坐标系xOy 中,曲线E :)()220x y ay a +=>(如图),称这类曲线为心形曲线.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,当2a =时,(1)求E 的极坐标方程;(2)已知P ,Q 为曲线E 上异于O 的两点,且0OP OQ ⋅=,求OPQ △的面积的最大值.【答案】(1)()21sin ρθ=-(2)3+【解析】【分析】(1)将cos x ρθ=,sin y ρθ=代入曲线E ,化简可得答案;(2)不妨设()1,P ρθ,2,2Q πρθ⎛⎫+⎪⎝⎭,()121sin ρθ=-,()221cos ρθ=-,则OPQ △的面积()()12121cos 1sin 2S ρρθθ==--,令sin cos t θθ=+,可得2221S t t =-+-,再利用配方计算可得答案.【小问1详解】将cos x ρθ=,sin y ρθ=代入曲线E ,得()22sin ρρρθ=-,即()21sin ρθ=-,所以,E 的极坐标方程为()21sin ρθ=-;【小问2详解】不妨设()1,P ρθ,2π,2Q ρθ⎛⎫+⎪⎝⎭,即()121sin ρθ=-,()2π21sin 21cos 2ρθθ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,则OPQ △的面积()()22121cos 1sin 2S ρρθθ==--()22sin cos 2sin cos θθθθ=-++由于()2sin cos 12sin cos θθθθ+=+,令πsin cos 4t θθθ⎛⎫=+=+ ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1t θθ=-,则()222221211S t t t t t =-+-=-+=-,故当t =()2max 13S =-=+,即OPQ △的面积的最大值为3+.。
2021-2022年高三10月月考数学文试题含答案
![2021-2022年高三10月月考数学文试题含答案](https://img.taocdn.com/s3/m/a8ccfc83f01dc281e53af0ed.png)
2021-2022年高三10月月考数学文试题含答案文科数学一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则A. [1,2]B. [0,2]C. [-2,+)D. [0,+)2.设向量,若,则实数的值为A .B .C .D .3.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则=----++)sin()2sin()cos()23sin(θπθπθπθπ A .-2B .2C .0D . 4.若,则的值是A .B .C .D . 5.函数的零点所在区间是A .B .C .D .(1,2) 6. 曲线在点(0,1)处的切线方程为A .B .C .D .7.已知<>=,且,,则A. B. C. D.8.函数(其中)的图象如图所示,为了得到的图象,则只需将的图象A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位9.在200m 高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30°、60°,则塔高A .mB .mC .mD .m10.已知O 是三角形ABC 所在平面内一定点,动点P 满足OA OP +=λ,则点P 的轨迹必通过三角形ABC 的 A.内心B.外心C.垂心D.重心 二、填空题 (本大题共5小题,每小题5分,共25分.请把答案填在答题纸对应横线上)11.求值:= .12.已知奇函数的图象关于直线对称,当时,,则 .13.函数的极值点为 .14.已知满足约束条件11,22x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩若目标函数的最大值为7,则的最小值为_________.15.已知是的角平分线,且,,,6032===A AB AC 则长为 .三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知向量=(,-),=(),函数.(Ⅰ)若求的值.(Ⅱ)当时,求函数的单调递增区间.17.(本小题满分12分)在中,内角所对的边分别是.已知2,4a c A ===-. (Ⅰ)求和的值;(Ⅱ)求的值.18.(本小题满分12分)设命题p :函数f (x )=lg(ax 2-x +116a )的定义域为R ;命题q :不等式3x -9x < a 对一切正实数x 均成立. (Ⅰ)如果p 是真命题,求实数a 的取值范围;(Ⅱ)如果命题“p 或q ”为真命题,求实数a 的取值范围.19.(本小题满分12分)已知定义在上的函数是奇函数.(Ⅰ)求a 的值;(Ⅱ)解不等式0)12()2(22<-+-t f t t f .20. (本小题满分13分)如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设,在路南侧沿直线铺设,现要在矩形区域内沿直线将与接通.已知,,公路两侧铺设的水管费用为每米万元,穿过公路的部分铺设的水管费用为每米2万元,设与所成的小于的角为.(Ⅰ)求矩形区域内的水管费用W 关于的函数关系式;(Ⅱ)求(Ⅰ)中水管费用W 的最小值及相应的角.21.(本小题满分14分)设函数(Ⅰ)当时,求函数的最大值; (Ⅱ)令21()()22a F x f x ax bx x=-++(),其图象上存在一点,使此处切线的斜率,求实数的取值范围;(Ⅲ)当,时,方程有唯一实数解,求实数的取值范围.F C B l 2 l 1高三月段质量检测试题 xx.10文科数学参考答案一、 选择题 CDBCC DDAAD二、 填空题 11. 12. -2 13.1 14. 7 15.三、 解答题16. 解: =sin2x-cos2x, -------------2分(1)由得sin2x-cos2x=0,即tan2x=. -------------4分 ∴∴Z k k k x ∈+=+=,1216212πππ. -------------6分 (2)∵=sin2x-cos2x =2(sin2x-cos2x) =2sin(2x-)------------9分 由,226222πππππ+≤-≤-k x k 得Z k k x k ∈+≤≤-,36ππππ -------------11分又∵,17.解:(1)在中,由,可得, -------------1分又由及,,可得 -------------3分由22222cos 20a b c bc A b b =+-⇒+-=,因为,故解得.-----------5分所以 -------------6分(2)由,, 得23cos 22cos 14A A =-=-,47cos sin 22sin -==A A A -------------9分所以3cos(2)cos 2cos sin 2sin 3338A A A πππ-+=-= -------------12分 18.解:(1)若命题p 为真,即ax 2-x +116a >0对任意x 恒成立.-------------2分 (ⅰ)当a =0时,-x >0不恒成立,不合题意; -------------3分(ⅱ)当a ≠0时,可得⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧ a >0,1-14a 2<0,解得a >2. -------------5分所以实数a 的取值范围是(2,+∞). -------------6分(2)令y =3x -9x =-(3x -12)2+14,则 -------------7分 由x >0得3x >1,则y <0. -------------8分若命题q 为真,则a ≥0. -------------10分由命题“p 或q ”为真,得p 与q 至少一个为真,所以实数a 的取值范围是[0,+). -------------12分19.解:(1)∵函数是奇函数,所以,------------2分即0124141412141141=+=++++=+++++-a a a a x xx x x , 故. -------------6分 (另解:由是奇函数,所以,故.再由)41(24141121)(x xx x f +-=++-=,通过验证来确定的合理性,不验证的-1分)(2)由(1)知由上式易知在R 上为减函数 .(的单调性也可用定义法或导数法证明)------------7分又因是奇函数,从而不等式0)12()2(22<-+-t f t t f 等价于,即-------------8分 在上为减函数,由上式得: ⎪⎩⎪⎨⎧+->-<<-<-<-12211-211212222t t t t t t ,解得 ------------11分∴不等式的解集为 -------------12分20.解:(Ⅰ)如图,过E 作,垂足为M ,由题意,4(0tan )3MEF αα∠=≤≤,故有,,.…… 3分 所以60(8060tan )12cos W αα=-⨯+⨯ sin 18060120cos cos ααα=-+ . …………6分 (Ⅱ)设(其中0040,tan )23πααα<=≤≤, 则22cos cos (sin )(sin 2)12sin ()cos cos f αααααααα----'==.………… 8分 令得,即,得. ………… 9分列表所以当时有,此时有.……… 12分答:水管费用的最小值为万元,相应的角. ………13分21.解:(Ⅰ)依题意,的定义域为,当时,, 21132()32x x f x x x x--'=--=-------------2分 由 ,得,解得;由 ,得,解得或.,在单调递增,在单调递减;F C B l 2l 1所以的极大值为,此即为最大值 ………4分(Ⅱ)1()ln ,[,3]2a F x x x x =+∈,则有在上 有解,∴≥, ………6分22000111(1)222x x x -+=--+ 所以 当时,取得最小值 ………8分(Ⅲ)因为方程有唯一实数解,所以有唯一实数解,设,则-------------9分①当时,∵∴恒成立,此时在上为单调增函数.又,)0(,0)1(1)(-∞→>-+=g m e e g 所以有唯一实数解;------10分 ②当时,由得,由得, 所以在上单调递增,在上单调递减, .若有唯一实数解,则必有11111()ln 011111m g e m m m m m e-=+=⇒=⇒=+---- ………13分 所以当或时,方程有唯一实数解. ………14分高三月段质量检测试题答题纸xx.10数学(文)一、选择题:(每小题5分,共50分)1---5 6---10二、填空题:(每小题5分,共25分)11. 12. 13. 14.15.三、解答题:(本大题共6小题,共75分)34148 8564 蕤a}29237 7235 爵32978 80D2 胒PEQ;AN29321 7289 犉36019 8CB3 貳39144 98E8 飨。
2021-2022学年河南省高三(上)段考数学试卷(文科)(三)(解析版)
![2021-2022学年河南省高三(上)段考数学试卷(文科)(三)(解析版)](https://img.taocdn.com/s3/m/3e691c3f8bd63186bdebbca3.png)
2021-2022学年河南省高三(上)段考数学试卷(文科)(三)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|﹣1≤x<5,x∈N},B={0,2,3,5},则A∪B=()A.{0,2,3}B.{﹣1,0,1,2,3,4}C.{0,1,2,3,4,5}D.{﹣1,0,1,2,3,4,5}2.“x2+x﹣2=0”是“x=﹣2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若幂函数在(0,+∞)上单调递增,则a=()A.1B.6C.2D.﹣14.设等差数列{a n}的前n项和为S n,若a3+a7=14,则S9=()A.20B.35C.45D.635.函数的部分图象大致为()A.B.C.D.6.函数f(x)=xe x﹣x2﹣2x﹣1的极大值为()A.﹣1B.C.ln2D.﹣(ln2)2﹣1 7.设函数则不等式f(x)≤2的解集为()A.[0,3]B.(﹣∞,3]C.[0,+∞)D.[0,1]∪[3,+∞)8.设p:∀x∈[2,3],kx>1,q:∃x∈R,x2+x+k≤0.若p或q为真,p且q为假,则k的取值范围为()A.B.C.D.9.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的开区间段,记为第一次操作;再将剩下的两个区间分别均分为三段,并各自去掉中间的开区间段,记为第二次操作;….如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的开区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即“康托三分集”.第三次操作后,从左到右第六个区间为()A.B.C.D.10.O是△ABC所在平面内一点,动点P满足(λ∈(0,+∞)),则动点P的轨迹一定通过△ABC的()A.内心B.重心C.外心D.垂心11.已知偶函数f(x)的定义域为R,f(1)=2021,当x≥0时,f′(x)≥6x恒成立,则不等式f(x)>3x2+2018的解集为()A.(﹣1,1)B.(1,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣1)∪(1,+∞)12.设a=ln1.2,b=2ln1.1,c=﹣1,则()A.b<a<c B.c<a<b C.a<c<b D.a<b<c二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量=(﹣4,x),=(3,2).若⊥,则||=.14.已知x,y满足,则z=3x﹣y的最大值为.15.已知函数图象的一条对称轴方程为x=,这条对称轴与相邻对称中心之间的距离为,则φ=.16.在△ABC中,角A,B,C的对边分别为a,b,c.若sin A=,a=5,则△ABC的面积为,其内切圆的半径为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别是a,b,c,且a<b<c,cos B=,cos(2A+C)=﹣.(1)求sin(A+C)的值;(2)求sin2A的值.18.已知数列{a n}满足a1=4,a n+1=2a n+2n+1(n∈N*),设数列{a n}的前n项和为S n.(1)证明:数列是等差数列.(2)求S n.19.某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂家的年产量)x万件与年促销费用m万元(m≥0)满足关系式(k为常数),如果不搞促销活动,则该产品的年销售量是1.5万件.已知生产该产品的固定年投入为10万元,每生产1万件该产品需要再投入25万元,厂家将每件产品的销售价格定为每件产品年平均成本的2倍(产品成本包括固定投入和再投入两部分资金).(1)将该产品的年利润y(万元)表示为年促销费用m(万元)的函数;(2)该厂家年利润的最大值为多少?20.已知函数f(x)=(x>0).(1)讨论f(x)的单调性;(2)当a=2时,求曲线y=f(x)过点(2,0)的切线与曲线y=f(x)的公共点的坐标.21.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AC=2,∠BAC=,.(1)求cos∠PBC.(2)若点M在线段PB上,记△ACM的周长为l,证明:l>5.22.已知函数f(x)=(ax﹣1)lnx﹣(2a﹣)x+ea.(1)当a>0时,证明:f(x)≥0;(2)若f(x)在(e,e2)上单调递增,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2020_2021学年10月四川成都武侯区成都七中林荫校区高三上学期月考文科数学试卷
![2020_2021学年10月四川成都武侯区成都七中林荫校区高三上学期月考文科数学试卷](https://img.taocdn.com/s3/m/e79e52bab52acfc788ebc911.png)
2020~2021学年10月四川成都武侯区成都七中林荫校区高三上学期月考文科数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1. A.B.C.D.复数的虚部为( ).2.A.B.C.D.,,则( ).4. A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件“”是“函数在上有极值”的( ).5.开始是否输出结束A.B.C.D.若如图所示的程序框图输出的是,则条件①可以为( ).6.某几何体的三视图如上图所示,则该几何体的体积为( ).3.A.B.C.D.若变量,满足约束条件,则的取值范围是( ).A.B.C.D.正(主)视图侧(左)视图俯视图7. A.B.C.D.在平面直角坐标系中,直线与曲线交于,两点,且,则( ).8. A.个B.个C.个D.个关于函数有如下命题,其中正确的个数有( ).①的表达式可改写为;②是以为最小正周期的周期函数;③的图象关于点对称;④的图象关于直线对称.9. A. B. C. D.如图,在四棱锥中,底面是边长为的正方形,与的交点为,平面,且,是边的中点,动点在四棱锥表面上运动,并且总保持,则动点的轨迹的周长为( )10.A.B.C. D.已知定义域为的奇函数的周期为,且时,.若函数在区间(且)上至少有个零点,则的最小值为( ).A.B.C.D.过抛物线的焦点作两条互相垂直的弦,,设为抛物线上的一动点.若,则的最小值是( ).12.A.B.C.D.已知定义在上的函数,其导函数为,若,且当时,,则不等式的解集为( ).二、填空题(本大题共4小题,每小题5分,共20分)13.某个年级有男生人,女生人,用分层抽样的方法从该年级全体学生中抽取一个容量为的样本,则此样本中女生人数为 .14.已知,,与垂直,则与的夹角为 .15.已知集合,有下列三个关系①;②;③,若三个关系中有且只有一个正确的,则.16.设,是正实数,函数,,若存在,使成立,则的取值范围为 .三、解答题(本大题共5小题,每小题12分,共60分)17.(1)(2)已知向量,,,且角、、分别为三边、、所对的角.求角的大小.若、、成等差数列,且,求边的长.18.(1)(2)某企业的甲、乙两种产品在东部地区三个城市以及西部地区两个城市的销售量,的数据如下:东部城市东部城市东部城市西部城市西部城市已知销售量和销售量大致满足线性相关关系,求出关于的线性回归方程.根据上述数据计算是否有的把握认为东、西部的地区差异与甲、乙两种产品的销售量相关.参考公式:,,其中.临界值表:19.(1)(2)如图,在四棱锥中,四边形是直角梯形,,,面,,是的中点.求证:平面平面.求三棱锥的体积.20.(1)(2)已知椭圆的两个焦点为,,焦距为,直线与椭圆相交于,两点,为弦的中点.求椭圆的标准方程.若直线与椭圆相交于不同的两点,,若(为坐标原点),求的取值范围.21.(1)12(2)已知函数,函数,函数的导函数为.求函数的极值.若.求函数的单调区间.求证:时,不等式恒成立.四、选做题(本大题共2小题,每小题10分,选做1小题)22.(1)(2)在直角坐标系中,曲线的参数方程为(为参数),在以为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.求曲线的普通方程和直线的直角坐标方程.设点,直线与曲线交于,两点,求的值.23.(1)(2)解答下列各题.求函数的最大值.若实数,,满足,证明:,并说明取等条件.。
2021-2022年高三10月月考数学文试题 含答案
![2021-2022年高三10月月考数学文试题 含答案](https://img.taocdn.com/s3/m/fe557370b0717fd5370cdc78.png)
2021年高三10月月考数学文试题含答案理科数学测试卷共4页。
满分150分。
考试时间120分钟。
注意事项:1.本试卷分为第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号框。
写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题:本大题12小题,每小题5分,共60分。
在每小题给出的四个备选项中.只有一项是符合题目要求的。
(1)设,则=(A) 4 (B) 2 (C)0 (D)(2)己知,,则(A) (B) (C) (D)(3)命题“对,都有”的否定为(A)对,都有(B)在R上的最小值小于在R上的最大值(C)使得(D)使得(4)已知函数,则=(A) 2 (B) 4 (C) 6 (D) 8(5)已知函数且曲线在处的切线为,则曲线在处的切线的斜率为(A) 2 (B) 4 (C) 6 (D) 8(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A) (B) (C) (D) 1(7)已知函数对任意满足,且当时,,设,,,则(A) (B) (C) (D)(8)函数的部分图象大致为(A) (B) (C) (D)(9)已知函数若,则的取值范围是(A) (B) (C) (D)(10)己知,,则=(A) (B) (C) (D)(11)已知函数,则关于的方程的解个数不可能为(A) 3 (B) 4 (C) 5 (D) 6(12)设函数,若有且仅有一个正实数,使得对任意的正实数都成立,则=(A) (B) 1 (C) 2 (D)3第II卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须做。
第22题~第23题为选考题,考生根据要求做答。
二、填空题:本大题共4小题,每小题5分,共20分。
辽宁省瓦房店市高级中学2022届高三数学10月月考试题 文
![辽宁省瓦房店市高级中学2022届高三数学10月月考试题 文](https://img.taocdn.com/s3/m/56d91db1294ac850ad02de80d4d8d15abe23007f.png)
辽宁省瓦房店市高级中学2022届高三数学10月月考试题 文一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设{}U -1012=,,,,集合{}21,A x x x U =<∈,则U C A =( ) A .{}012,, B .{}-1,12, C .{}-1,02, D .{}-1,01,2、若复数z 满足(1)3z i i +=-,则z 的共轭复数z =( ) A .23i -- B .23i -C .23i +D .23i -+3、设,a b R ∈, 则 “2()0a b a -<”是“a b <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件4、《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了用圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.3551135、在区间[-1,1]上随机取一个数x ,则sin πx 4的值介于-12与22之间的概率为 ( )A. 14B. 13C. 23D. 566、已知(0,)2πα∈,(0,)2πβ∈,且2sin 2cos 2cos (1sin )αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=7、ABC ∆中,2AB =,22AC =,45BAC ∠=︒,P 为线段AC 上任意一点,则PB PC ⋅的取值范围是( ) A .1,14⎡⎤-⎢⎥⎣⎦ B .1,04⎡⎤-⎢⎥⎣⎦ C .1,42⎡⎤-⎢⎥⎣⎦ D .1,22⎡⎤-⎢⎥⎣⎦8、已知幂函数()y f x =过点(4,2),令(1)(),n a f n f n n N +=++∈,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( )A .10B .120C .130D .1409、四个函数:①sin y x x =⋅;②cos y x x =⋅;③cos y x x =⋅;④2xy x =⋅的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .④①②③B .①④②③C .③④②①D .①④③② 10、已知0,0x y >>,182x y x y-=-,则2+x y 的最小值为( ) A 2 B .2 C .32 D .4 11、一个圆锥的母线长为2,圆锥的母线与底面的夹角为4π,则圆锥的内切球的表面积为( ) A .8πB .24(22)π C .24(22)π D 232(22)- 12、已知,(0,)2παβ∈,sin sin 0βααβ->,则下列不等式一定成立的是( )A .2παβ+<B .2παβ+=C .αβ<D .αβ>二.填空题:本大题共4小题,每小题5分 13、求值:100lg 20log 25+=________14、已知函数()4cos()f x x ωϕ=+(0,0ωϕπ><<)为奇函数,(,0),(,0)A a B b 是其图像上两点,若a b-的最小值是1,则1()6f =_________15、数列{}n a 中,12a =,22a =,*21(1),n n n a a n N +-=+-∈,n S 是数列{}n a 的前n 项和,则60S =_______16、下列命题中,正确命题的序号为 (写出所有正确命题的序号). ①函数()(0)af x x x x=+>的最小值为a ②已知定义在R 上周期为4的函数()f x 满足(2)(2)f x f x -=+,则()f x 一定为偶函数; ③定义在R 上的函数()f x 既是奇函数又是以2为周期的周期函数,则(1)(4)(7)0f f f ++=; ④已知函数32()(0)f x ax bx cx d a =+++≠,则0a b c ++=是()f x 有极值的必要不充分条件; ⑤已知函数()sin f x x x =-,若0a b +>,则()()0f a f b +>.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)如图,OPQ 是半径为2,圆心角为3π的扇形,C 是扇形弧上的一动点, 记COP θ∠=,四边形OPCQ 的面积为S .(1)找出S 与θ的函数关系;(2)试探求当θ取何值时,S 最大,并求出这个最大值. 18、(本小题满分12分) 已知数列{}n a 中,12811-=a ,0≠n a ,且641311+=+++n n n a S S , (1)求n a (2)若n n a log b 4=,n n b b b T +++= 21,当n 为何值时,n T 取最小值?并求出最小值。
2022-2023学年四川省成都市树德中学高三上学期10月月考数学(文)试卷(含详解)
![2022-2023学年四川省成都市树德中学高三上学期10月月考数学(文)试卷(含详解)](https://img.taocdn.com/s3/m/8acd92e65ebfc77da26925c52cc58bd631869314.png)
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)已知点 ,直线l与曲线C分别交于A,B两点,点M是AB的中点,求 的长.
13.已知数列 是正项等比数列,函数 的两个零点是 , ,则 ______.
【答案】
【解析】
【分析】先求出 ,根据等比中项求出 .
【详解】因为函数 的两个零点是 , ,
所以 .
因为数列 是正项等比数列,所以 ,解得: .
故答案为:
14.如图,在四边形ABCD中, ,E为边BC的中点,若 ,则 _________.
A. 的图象关于直线 对称
B. 的图象关于点 对称
C.把 的图象向左平移 个单位长度,得到一个偶函数的图象D. 在区间 上为增函数
10.若 , ,则x,y,z的大小关系为()
A. B.
C. D.
11.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为1,则经过该多面体的各个顶点的球的表面积为()
【详解】解:由题意可得, ,
故 .
故选:B
6.某工厂研究某种产品的产量 (单位:吨)与需求某种材料 (单位:吨)之间的相关关系,在生产过程中收集里组数据如表所示.根据表中数据可得回归直线方程为 ,则下列四个说法中正确的个数为()
3
4
6
2021-2022年高三10月月考数学(文)试题 Word含解析
![2021-2022年高三10月月考数学(文)试题 Word含解析](https://img.taocdn.com/s3/m/9504163a19e8b8f67d1cb951.png)
2021年高三10月月考数学(文)试题Word含解析本试卷是高三文科试卷,以基础知识和基本技能为为主导,在注重考查运算能力和分析问题解决问题的能力,知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式、复数、导数、圆锥曲线、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、等;考查学生解决实际问题的综合能力,是份较好的试卷.【题文】一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个备选项中,只有一项是符合题目要求的.【题文】1.已知,为两个集合,若命题,都有,则A.,使得B.,使得C.,使得D.,使得【知识点】命题及其关系A2【答案解析】C 若命题,都有,则,使得,故选C。
【思路点拨】根据命题的关系确定非P。
【题文】2. 已知向量,,则与A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【知识点】平面向量的数量积及应用F3【答案解析】A 因为=(-5)6+65=0,所以,故选A。
【思路点拨】根据向量的数量积为0,所以。
【题文】3.设集合,,则集合A. B. C. D.【知识点】集合及其运算A1【答案解析】C 由题意得M={x},N={x}则=M,所以故选C.【思路点拨】先求出M ,N再求再求出结果。
【题文】4.设一直正项等比数列中,为前项和,且,A. B. C. D.【知识点】等比数列及等比数列前n项和D3【答案解析】B 正数组成的等比数列,则q>0,且a23=a2a4=1,∴a3=1>0;又S 3=a 1+a 2+a 3= +1=7,即6q 2-q-1=0,解得q=,或q=-不符题意,舍去则a n =a 3×q (n-3)=()(n-3);∴a 1=4;∴S 5=514(1)2112⨯--=故答案为B 【思路点拨】先根据等比中项的性质可知a 3=a 2a 4求得a 3,进而根据S 3=a 1+a 2+a 3求得q ,根据等比数列通项公式求得a n ,进而求得a 1,最后利用等比数列的求和公式求得答案.【题文】5.对于平面、、和直线、、、,下列命题中真命题是A.若//,,则//B.若//,,则//C.若,,,,a m a n m n αα⊥⊥⊂⊂则D.若,则【知识点】空间中的平行关系空间中的垂直关系G4 G5【答案解析】若α∥β,α∩γ=α,β∩γ=b ,则由面面平行的性质定理可得:a ∥b ,故A 正确; 若a ∥b ,b ⊂α,则a ∥α或a ⊂α,故B 错误;若a ⊥m ,a ⊥n ,m ⊂α,n ⊂α,则m ,n 相交时a ⊥α,否则a ⊥α不一定成立,故C 错误; 若α⊥β,a ⊂α,则a 与β可能平行,可能垂直,也可能线在面内,故D 错误;故选:A【思路点拨】由面面平行的性质定理可判断A ;由线面平行的判定定理可判断B ;由线面垂直的判定定理可判断C ;由面面垂直的性质定理可判断D .【题文】6.若实数、满足约束条件23502500x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数是最小值是A.0B.4C.D.【知识点】简单的线性规划问题E5【答案解析】A 作出23502500x y x y x +-≤⎧⎪--≤⎨⎪≥⎩可行域如图,由,可得A (,0),由,可得B (0, ),由,可得C (0,-5).A 、B .C 坐标代入z=|x+y+1|,分别为:;,4,又z=|x+y+1|≥0,当x=0,y=-1时,z 取得最小值0.z=|x+y+1|取可行域内的红线段MN 时x+y+1=0.z 都取得最小值0.故选A .【思路点拨】先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线x+y+1=0时,z 最小值即可.【题文】7.某几何体的三视图如图所示,其中俯视图为扇形,则改几何体的体积为A. B. C. D. 【知识点】空间几何体的三视图和直观图G2 【答案解析】C 由三视图知几何体是圆锥的一部分,由正视图可得:底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,∴几何体的体积V=××π×22×4=π.故答案为:C【思路点拨】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算.【题文】8.将函数的的图像向右平移个单位,再将图象上每一点横坐标伸长为原的2倍后得到图像,若在上关于的方程有两个不等的实根,则的值为A.或B.或C.或D.或【知识点】三角函数的图象与性质C3【答案解析】D 将函数f (x )=sin (2x+ )的图象向右平移个单位,可得函数y=sin[2(x- )+]=sin (2x+)的图象;再将图象上横坐标伸长为原的2倍后得到y=g (x )=sin (x+)图象.由x+=kπ+,k ∈z ,求得g (x )的图象的对称轴方程为 x=kπ+.若x ∈[0,2π),则g (x )的对称轴方程为x=,或x=.关于x 的方程g (x )=m 在[0,2π)上有两个不等的实根x 1,x 2,则x 1+x 2 =2×,或x 1+x 2 =2×,故选:D .【思路点拨】由条件根据函数y=Asin (ωx+φ)的图象变换规律,可得g (x )的图象的对称轴方程,从而求得x 1+x 2 的值.【题文】9.已知函数是定义在上的奇函数,且(其中是的导函数)恒成立。
云南师范大学附属中学2021届高三高考适应性月考卷(二)文科数学试题
![云南师范大学附属中学2021届高三高考适应性月考卷(二)文科数学试题](https://img.taocdn.com/s3/m/4e64c764777f5acfa1c7aa00b52acfc789eb9fcc.png)
文科数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、选择题(本大题共12小题,每小题5分,共6分在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合305x A x x ⎧-⎫=<⎨⎬-⎩⎭,集合{}46B x x =<<,则A B = ()A .()3,6B .[)3,6C .[)4,5D .()4,52.瑞士数学家欧拉在1748年得到复数的三角方程:i e cos isin θθθ=+(i 为虚数单位),根据此公式可知,若i e 10θ+=,则θ的一个可能值为()A .0B .π2C .πD .3π23.cos 45cos15sin 45sin15+︒︒︒︒的值为()A .32B .32-C .12D .12-4.已知双曲线的方程为22143x y -=,双曲线右焦点F 到双曲线渐近线的距离为()A .1B C D .25.我国古代数学名著《增删算法统宗》中有如下问题:“一个公公九个儿,若问生年总不知,知长排来争三岁,其年二百七岁期.借问长儿多少岁,各儿岁数要详推.”大致意思是:一个公公九个儿子,若问他们的生年是不知道的,但从老大的开始排列,后面儿子比前面儿子小3岁,九个儿子共207岁。
问老大是多少岁?()A .38B .35C .32D .296.为了更好地配合我市“文明城市”的创建工作,我校开展了“文明行为进班级”的评比活动,现对甲,乙两个年级进行评比,从甲、乙两个年级中随机选出10个班级进行评比打分,每个班级成绩满分为100分,评分后得到如图所示的茎叶图,通过茎叶图比较甲、乙两个年级成绩的平均数及方差大小()A .x x <甲乙,22s s <甲乙B .x x >甲乙,22s s <甲乙C .x x <甲乙,22s s >甲乙D .x x >甲乙,22s s >甲乙7.若AB 是以O 为圆心,半径为1的圆的直径,C 为圆外一点,且2OC =,则CA CB ⋅=()A .3B .3-C .0D .不确定,随着直径AB 的变化而变化8.已知圆M 的方程为22680x y x y +--=,过点()0,4P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长量长的弦为BD ,则四边形ABCD 的面积为()A .30B .40C .60D .809.正四面体ABCD 的储视图为边长为1的正方形,则正四面体ABCD 的外接球的表面积为()A .3π2B .3π2C .3πD .12π10.已知()2sin cos f x x x =,下列结论中错误的是()A .()f x 即是奇函数也是周期函数B .()f x 的最大值为33C .()f x 的图象关于直线π2x =对称D .()f x 的图象关于点()π,0中心对称11.已卸抛物线()2:20C y px p =>,F 为C 的焦点,过焦点F 且倾斜角为α的直线l 与C 交于()11,A x y ,()22,B x y 两点,则下面陈述不正确的为()A .2121234x x y y p +=-B .22sin p AB α=C .112AF BF p+=D .记原点为O ,则2sin AOBp S α=12.下列四个命题:①1ln 22>,②2ln 2e>,③0.22.22log 0.4log 0.4log 0.4log 0.4a +=⋅,④1331log 7log 13<,其中真命题的个数为()A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件10,10,24,x y x y x y --≥⎧⎪+-≥⎨⎪-≤⎩,则32x y +的最大值为________.14.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin 2sin A C =,且三条边a ,b ,c 成等比数列,则cos A 的值为________.15.已知函数()ln 2f x x ax =-恰有三个零点,则实数a 的取值范围为________.16.边长为1的正方体ABCD A B C D ''''-,点FP 为面对角线CD '上一点,则AP BP +的最小值为________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)记n S 为正项数列{}n a 的前n 项和,且满足()241n n S a =+.(1)求数列{}n a 的通项;(2)求证:1223111112n n a a a a a a ++++< .18.(本小题满分12分)如图,在等腰梯形ABCD 中,AB CD ,222AB CD AD ===,将ADC 沿着AC 翻折,使得点D 到点P ,且AP BC ⊥.(1)求证:平面APC ⊥平面ABC ;(2)求点C 到平面APB 的距离.19.(本小题满分12分)为了调查高中生文理科偏向情况是否与性别有关,设计了“更擅长理科,理科文科无差异,更擅长文科三个选项的调在问卷”,并从我校随机选择了55名男生,45名女生进行问卷调查,问卷调查的统计情况为:男生选择更擅长理科的人数占25,选择文科理科无显著差异的人数占15,选择更擅长文科的人数占25;女生选择更擅长理科的人数占15,选择文科理科无显著差异的人数占35,选择更擅长文科的人数占15.根据调查结果制作了如下22⨯列联表.更擅长理科其他合计男生女生合计(1)请将22⨯的列联表补充完整,并判断能否有95%的把握认为文理科偏向与性别有关;(2)从55名男生中,根据问卷答题结果为标准,采取分层抽样的方法随机抽取5人,再从这5人中随机选取2人,求所选的2人中恰有1人更擅长理科的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.0500.0250.0100.0010k 3.8415.0246.63510.82820.(本小题满分12分)已知点()2,0M -,()2,0N ,点P 满足:直线PM 的斜率为1k ,直线PN 的斜率为2k ,且1234k k ⋅=-.(1)求点(),P x y 的轨迹C 的方程;(2)过点()1,0F 的直线l 交曲线C 于A ,B 两点,问在x 轴上是否存在点Q ,使得QA QB ⋅为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.21.(本小题满分12分)已知()22ln f x ax x x =-+.(1)若12a =-,求()f x 的最大值;(2)若()f x 有两个不同的极值点1x ,2x ,证明:()()()121214ln 543f x f x x x +++<-.请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.22.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系中,以坐标原点为极点,以x 轴的正半轴为极轴,曲线C 的极坐标方程为2ρ=,直线l的参数方程为2,,x t y =--⎧⎪⎨=⎪⎩(t 为参数).(1)求曲线C 和直线l 的直角坐标方程;(2)设点(P -,直线l 与曲线C 有不同的两个交点分别为A ,B ,求11PA PB+的值.23.(本小题满分10分)【选修4-5:不等式选讲】已知函数()123f x x x =-+-.(1)求函数()f x 的最小值M ;(2)若0a >,0b >,且a b M +=,证明:22111a b a b +≥++.云南师大附中2021届高考适应性月考卷(二)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案DCACBAABCBDB【解析】1.由题意知,()3,5A =,()4,6B =,所以()4,5A B =,故选D .2.由题意知,iπe 1cos πisin π10+=++=,故选C .3.原式()3cos4515cos302︒==︒︒-=,故选A .4.由题意知,双曲线的右焦点为)F,双曲线的渐近线方程为2y x =±,即20y -=,所以点)F到渐近线的距离d ==,故选C .5.由题意可知,九个儿子的年龄可以看成以老大的年龄1a 为首项,公差为3-的等差数列,所以()198932072a ⨯+⨯-=,解得135a =,故选B .6.由茎叶图可知,甲年级的平均分主要集中在70多分,而且比较集中,而乙主要集中在80分以上,但是比较分散,故选A .7.如图,()()()g g CA CB CO OA CO OB CO OA =++=+,A .8.圆M 的标准方程为()()223425x y -+-=,即圆是以()3,4M 为圆心,5为半径的圆,且由()()220344925-+-=<,即点()0,4P 在圆内,则最短的弦是以()0,4P 为中点的弦,所以22592AC ⎛⎫=+ ⎪⎝⎭,所以8AC =,过()0,4P 最长的弦BD 为直径,所以10BD =,且AC BD ⊥,故而1g g 402ABCD S AC BD ==,故选B .9.如图,该正四面体可以看成边长为1的正方体六个面对角线组成的正四面体ABCD ,所以正四面体ABCD 的外接球,即为边长为1的正方体的外接球,所以外接球的半径为32,则24π3π2S ⎛⎫== ⎪ ⎪⎝⎭,故选C .10.由()2sin cos f x x x =,所以()()()()22sin cossin cos f x x x x x f x -=--=-=-,所以()f x 是奇函数;()()()()222πsin 2πcos2πsin cos f x x x x x f x +=++==,所以()f x 又是周期函数;()()()()22πsin πcos πsin cos f x x x x x f x -=--==,所以()f x 关于直线π2x =对称;()()()()222πsin 2πcos 2πsin cos f x x x x x f x -=--=-=-,所以()f x 关于点()π,0对称,即选项A ,C ,D 正确;又()()()()222222sin cos sin 1sin 1sin f x x x x x x ==--()()22232sin 1sin 1sin 12422327x x x --⎛⎫=≤=⎪⎝⎭,当且仅当3sin 3x =,()max 239f x =,故B 选项错误,故选B .11.由题意知,令直线2px my =+,()11,A x y ,()22,B x y ,与抛物线2:2C y px =联立方程,消去x 得2220y pmy p --=,所以122y y pm +=,212y y p =-,所以21212224p p p x x my my ⎛⎫⎛⎫=++=⎪⎪⎝⎭⎝⎭,则2121234x gx y y p +=-,故A 正确;由1πtan 2m αα⎛⎫=≠ ⎪⎝⎭,所以12AB AF BF x x p =+=++()212222m y y p pm p =++=+=()222122121tan sin p p m p αα⎛⎫+=+= ⎪⎝⎭,当π2α=时,经检验22sin p AB α=亦成立,故B 确;所以12121211112222x x p p p p p AF BF x x x x +++=+=⎛⎫⎛⎫++++ ⎪⎪⎝⎭⎝⎭()122121224x x pp p x x x x ++==+++()()121222121222424x x p x x p p p p p p x x p x x ++++==+++++,故C 正确.如图,作OE 垂直AB 于E ,则22112g g g sin 22sin 22sin AOBp p p S AB OE ααα=== ,当π2α=时,经检验22sin AOB p S α= 亦成立,故D 错误,故选D.12.由2ln 2ln 4ln e 1=>=,故①正确;由2ln 2ln e ln 2e 2e >⇔>,考察函数ln x y x =,21ln x y x -'=,所以当()0,e x ∈时,0y '>,即y 在()0,e 上单调递增,当()e,x ∈+∞时,0y '<,即y 在()e,+∞上单调递减,所以e x =时,y 取到最大值1e ,所以ln 2ln e2e<,故②错误;令0.2log 0.4a =,2log 0.4b =,所以0.40.40.411log 0.2log 2log 0.41a b+=+==,所以a b ab +=,即0.220.22log 0.4log 0.4log 0.4glog 0.4+=,故③正确;由4372401219713=>=,所以133log 74>,由4313285612979131=<=,所以313log 134<,故④错误,故选B .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.约束条件所表示的线性区域,如图所示,又有题意知:32x y +在点()3,2A 处取得最大值,所以32x y +的最大值为13.14.由正弦定理知:sin 2sin a A c C==,又2b ac =,所以::2:1a b c =,从而由余弦定理得22222212cos 24b c aA bc+-+-===-.15.如图,函数()f x 恰有三个零点,等价于方程ln 2x ax =,有三个解,即函数ln y x =与函数2y ax =的图象有三个交点,又有2y ax =为过原点的直线,由图可知,当且仅当2y ax =为ln y x =切线的时候,方程ln 2x ax =恰有两个解,故而,令2y ax =为ln y x =的切线,设切点为()00,ln A x x ,则线的方程为()0001ln y x x x x -=-,由于切线过原点,所以0ln 1x =,即0e x =,此时直线的斜率为1e,由题意知,102e a <<,即10,2e a ⎛⎫∈ ⎪⎝⎭.16.如图甲,将等边ACD ' 沿CD '向后旋转到与面A BCD ''共面,得到等边1A CD ' ,则AP BP +的最小值即为图乙中线段1A B 的长,取A B '的中点I ,由题意知:等边ACD ' 的边长为,A BCD ''是以1BC =,A B '=1A B ===.甲乙三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(1)解:当1n =时,由11S a =,所以()21141a a =+,解得11a =,当2n ≥时,由()241n n S a =+①,则()21141n n S a --=+②,由①式减去②式得()()221411n n n a a a -=+-+,即()()()2211112n n n n n n n n a a a a a a a a ----+=-=+-,由题意知,10n n a a -+>,所以12n n a a --=,则数列{}n a 为11a =,公差为2的等差数列,所以21n a n =-.(6分)(2)证明:由(1)知,()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭,所以122311111111111213352121n n a a a a a a n n +⎛⎫+++=-+-++- ⎪-+⎝⎭11112212n ⎛⎫=-< ⎪+⎝⎭,证毕.(12分)18.(本小题满分12分)(1)证明:由等腰梯形222AB CD AD ===,则60ABC ∠=︒,又2AB BC =,所以AC BC ⊥①,又BC AP ⊥②又 AC AP A =③,由①②③知,BC ⊥平面APC ,所以平面,APC ⊥平面ABC .(6分)(2)解:如图,取AB 的中点E ,连接DE ,CE ,AC ,则AECD 为菱形,且60DAE ∠=︒,则AC DE ⊥,记垂足为O ,则12DO =,AC =,由(1)知,平面APC ⊥平面ABC,如图,又DO AC ⊥,所以DO ⊥平面ABC ,由(1)知,BC ⊥平面APC ,即BC CP ⊥,又1BC CP ==,所以BP =,所以13g 22ACB S AC CB ==,在ABP 中,由2AB =,1AP =,BP =所以2223cos 2g 4PA AB PB PAB AB AP +-∠==,所以sin 4PAB ∠=,则17g gsin 24PAB S AP AB PAB =∠=.设点C 到平面APB 的距离为h ,由P ACB C ABP V V --=,得11g g 33ACB ABP PO S h S = ,即217ACB ABP POgS h S == .(12分)19.(本小题满分12分)解:(1)补充22⨯的列联表如下:更擅长理科其他合计男生223355女生93645合计3169100所以()221002236933100334.628 3.841554531693123K ⨯⨯-⨯⨯==≈>⨯⨯⨯⨯,所以有95%的把握认为文理科偏向与性别有关.(6分)(2)由题意可知,选取的5人中,有2人更擅长理科,3人不更擅长理科,用1A ,2A 表示更擅长理科的两人,用1B ,2B ,3B 表示其他三人,则从这5人中,任取2人共有以下10种情况:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()12,B B ,()13,B B ,()23,B B ,满足条件的有()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,共6种情况,所以所选的2人中恰有1人更擅长理科的概率为35.(12分)20.(本小题满分12分)解:(1)由题意知:()122y k x x =≠-+,()222y k x x =≠-,由123gk 4k =-,即()32224y y g x x x =-≠±+-,整理得点(),P x y 的轨迹C 的方程为()221243x y x +=≠±.(4分)(2)假设在x 轴上存在点()0,0Q x ,使得g QA QB 为定值.当直线l 的斜率存在时,设直线l 的方程为()()10y k x k =-≠,联立方程()221,431,x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得()22223484120k x k x k +-+-=,令()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x gx k-=+,由()101,QA x x y =-,()202,QB x x y =-,所以()()()()()()2102012102012g 11QA QB x x x x y y x x x x kx x =--+=--+--()()()22221201201k x x x k x x k x =+-++++()2022581234x k x k-+-=++,将0x 看成常数,要使得上式为定值,需满足05816x +=,即0118x =,此时135g 64QA QB =-;当直线l 的斜率不存在时,可得31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,11,08Q ⎛⎫⎪⎝⎭,所以33,82QA ⎛⎫=- ⎪⎝⎭,33,82QB ⎛⎫=-- ⎪⎝⎭,135g 64OA QB =-,综上所迷,存在11,08Q ⎛⎫ ⎪⎝⎭,得g QA QB 为定值.(12分)21.(本小题满分12分)(1)解:当12a =-时,()212ln 2f x x x x =--+,所以()21f x x x'=--+,则()f x '在()0,+∞上是单调递减函数,且有()10f '=,当()0,1x ∈时,()0f x '>,即()f x 为()0,1上的增函数,当()1,x ∈+∞时,()0f x '<,即()f x 为()1,+∞上的减函数,所以()()max 312f x f ==-.(6分)(2)证明:由题意知:由()222ax x f x x-+'=则1x ,2x 即为方程2220ax x -+=的两个不同的正根,故而需满足:12121160,10,210,a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩解得116a >,所以()()()()22121211122212112ln 2ln 33f x f x x x ax x x ax x x x x +++=-++-+++()()211212*********ln 2ln 2312a a x x x x x x x x g a ⎛⎫⎡⎤=+-+-+=-+- ⎪⎣⎦⎝⎭,令116t a =>,()()()1212112ln 2312f x f x x x t t +++=-+-,令()12ln 212g t t t =-+-,所以()1212g t t'=-+,则()g t '为()16,+∞上的减函数,且()240g '=所以当()16,24t ∈时,()0g t '>,即()g t 为()16,24上的增函数;当()24,t ∈+∞时,()0g t '<,即()g t 为()24,+∞上的减函数,所以()()max 242ln 244g t g ==-,所以()()()121212ln 2442ln 2544ln 543f x f x x x +++≤-<-=-,证毕.(12分)22.(本小题满分10分)【选修4-4:坐标系与参数方程】解:(1)由222x y ρ=+,所以曲线C 的直角坐标方程为224x y +=,由2,,x t y =--⎧⎪⎨=⎪⎩(t 为参数),消去t 得直线l的直角坐标方程为0y +=.(5分)(2)由题意知,关于点(P -的直线l的参数方2,23,2t x y ⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C 的直角坐标方程得211270t t ++=,又121108130∆=-=>,所以方程有两个不同的解1t ,2t ,又12110t t +=-<,12g 270t t =>,所以10t <,20t <,有1t ,2t 的几何意义可知,121212121111111127t t PA PB t t t t t t ⎛⎫++=+=-+=-= ⎪⎝⎭.(10分)23.(本小题满分10分)【选修4-5:不等式选讲】(1)解:由绝对值三角不等式可知:()12313132f x x x x x x x =-+-≥-+-≥-+-=,当且仅当3x =时,两个不等式同时取等号,所以()f x 的最小值2M =.(5分)(2)证明:由(1)知,2a b +=,则()()114a b +++=,所以()()()()2211111112121111a b a b a b a b +-+-+=+-+++-+++++()111111144a b a b ⎛⎫++++ ⎪++⎝⎭⎝⎭=≥=当且仅当1a b ==,不等式取等号,所以22111a b a b +≥++.(10分)。
2021-2022学年山西省朔州市怀仁一中高三(上)第一次月考数学试卷(文科)(解析版)
![2021-2022学年山西省朔州市怀仁一中高三(上)第一次月考数学试卷(文科)(解析版)](https://img.taocdn.com/s3/m/cfe3969ab84ae45c3a358cec.png)
2021-2022学年山西省朔州市怀仁一中高三(上)第一次月考数学试卷(文科)一、选择题(共12小题,每小题5分,共60分).1.设集合P={x|x>﹣1},集合Q={x|x2<4},则P∩Q=()A.{x|x>﹣1}B.{x|﹣2<x<﹣1}C.{x|﹣2<x<2}D.{x|﹣1<x<2} 2.已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合共有()A.3个B.4个C.5个D.6个3.“|x﹣1|<1”是”log2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知p,q是两个命题,若(¬p)∨q是假命题,那么()A.p是真命题且q是假命题B.p是真命题且q是真命题C.p是假命题且q是真命题D.p是假命题且q是假命题5.已知函数,则f(f(﹣3))等于()A.1B.2C.3D.46.已知a=π﹣2,b=﹣log25,c=log2,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c7.若函数y=x2+2mx+1在[2,+∞)上单调递增,则实数m的取值范围是()A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,2)D.(﹣∞,2] 8.函数f(x)=的图象大致为()A.B.C.D.9.已知f(x)是定义在R上的奇函数,且满足5f(1﹣x)=f(1+x),当x∈(0,1]时,f (x)=log2(x+1),则f(2021)等于()A.1B.﹣1C.0D.log2310.已知函数,且f(a2)+f(3a﹣4)>2,则实数a的取值范围是()A.(﹣4,1)B.(﹣∞,﹣4)∪(1,+∞)C.(﹣∞,﹣1)∪(4,+∞)D.(﹣1,4)11.已知f(x)=(x2+ax+b)•lnx,(a,b∈R),当x>0时,f(x)≥0,则实数a的取值范围为()A.﹣2≤a<0B.a≥﹣1C.﹣1<a≤0D.0≤a≤112.已知函数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围是()A.(﹣∞,﹣2]B.[1,+∞)C.[﹣2,1]D.(﹣∞,﹣2]∪[1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A={x|2<x≤11},B={x|2x﹣a>0}.若A⊆B,则实数a的取值范围为.14.若函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),则函数g(x)=log a(x+m)的单调增区间为.15.已知f(x)=是(﹣∞,+∞)上的减函数,那么实数a的取值范围是.16.在下列命题中,正确命题的序号为(写出所有正确命题的序号).①函数的最小值为;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0;④已知函数f(x)=x﹣sin x,若a+b>0,则f(a)+f(b)>0.三、解答题(本大题共6小题,共70分)17.已知集合A={x|﹣2<x+1<3},集合B为整数集,令C=A∩B.(1)求集合C;(2)若集合D={1,a},C∪D={﹣2,﹣1,0,1,2},求实数a的值.18.函数f(x)=lg(x2﹣2x﹣3)的定义域为集合A,函数g(x)=2x﹣a(x≤2)的值域为集合B.(Ⅰ)求集合A,B;(Ⅱ)已知命题p:m∈A,命题q:m∈B,若¬p是¬q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣x2+2x.(1)求函数f(x)在R上的解析式;(2)解关于x的不等式f(x)<3.20.设二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1).(1)求实数a的值;(2)若函数g(x)=f(e x)在x∈[0,1]的最大值是1,求实数c的值.21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4711).22.若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)•f(x2)=1成立,则称该函数为“依赖函数”.(1)判断函数g(x)=2x是否为“依赖函数”,并说明理由;(2)若函数在定义域[m,n](m,n∈N,且m>1)上为“依赖函数”,求m+n的取值范围.(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的t∈R,有不等式f(x)≥﹣t2+(s﹣t)x+8都成立,求实数s的取值范围.参考答案一、选择题1.设集合P={x|x>﹣1},集合Q={x|x2<4},则P∩Q=()A.{x|x>﹣1}B.{x|﹣2<x<﹣1}C.{x|﹣2<x<2}D.{x|﹣1<x<2}解:∵P={x|x>﹣1},Q={x|﹣2<x<2},∴P∩Q={x|﹣1<x<2}.故选:D.2.已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合共有()A.3个B.4个C.5个D.6个解:由题意:M=∅,{7},{4,7},{7,8},{4},{8},六个故选:D.3.“|x﹣1|<1”是”log2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:∵|x﹣1|<1⇒0<x<2.log2x<1⇒0<x<2,∴“|x﹣1|<1”是”log2x<1”的充要条件.故选:C.4.已知p,q是两个命题,若(¬p)∨q是假命题,那么()A.p是真命题且q是假命题B.p是真命题且q是真命题C.p是假命题且q是真命题D.p是假命题且q是假命题解:结合复合命题的真假关系,由(¬p)∨q是假命题可知¬p为假,q是假,故p真q假,故选:A.5.已知函数,则f(f(﹣3))等于()A.1B.2C.3D.4解:∵函数,∴依题意得f(﹣3)=1,f(f(﹣3))=f(1)=log2(3+1)=2.故选:B.6.已知a=π﹣2,b=﹣log25,c=log2,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c 解:∵a=π﹣2=,∴0<a<1,∵b=﹣log25=log2,c=log2,<,∴log2<log2,即b<c<0.∴a>c>b,故选:C.7.若函数y=x2+2mx+1在[2,+∞)上单调递增,则实数m的取值范围是()A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,2)D.(﹣∞,2]解:根据题意,函数y=x2+2mx+1为开口向上的抛物线,对称轴为x=﹣m,函数y=x2+2mx+1在[2,+∞)上单调递增,则﹣m≤2,解得m≥﹣2,即m的取值范围为[﹣2,+∞);故选:A.8.函数f(x)=的图象大致为()A.B.C.D.解:函数的定义域为{x|x≠0},f(x)>0恒成立,排除C,D,当x>0时,f(x)==xe x,当x→0,f(x)→0,排除B,故选:A.9.已知f(x)是定义在R上的奇函数,且满足5f(1﹣x)=f(1+x),当x∈(0,1]时,f (x)=log2(x+1),则f(2021)等于()A.1B.﹣1C.0D.log23解:因为f(x)是定义在R上的奇函数,且满足f(1﹣x)=f(1+x),所以f(1+x)=f(1﹣x)=﹣f(x﹣1),则f(2+x)=﹣f(x),所以f(4+x)=﹣f(x+2)=f(x),故f(x)的周期为4,则f(2021)=f(505×4+1)=f(1),而当x∈(0,1]时,f(x)=log2(x+1),所以f(1)=log2(1+1)=1,则f(2021)=1.故选:A.10.已知函数,且f(a2)+f(3a﹣4)>2,则实数a的取值范围是()A.(﹣4,1)B.(﹣∞,﹣4)∪(1,+∞)C.(﹣∞,﹣1)∪(4,+∞)D.(﹣1,4)解:令g(x)=,则f(x)=g(x)+1,∵f(a2)+f(3a﹣4)>2,∴g(a2)+g(3a﹣4)>0,∵g(﹣x)==﹣(),∴g(x)是R上的奇函数,∴g(a2)+g(3a﹣4)>0可化为g(a2)>g(4﹣3a),又∵g(x)==1﹣+3x,g′(x)=,所以g(x)在R上是增函数,∴a2>4﹣3a,解得,a<﹣4或a>1,故选:B.11.已知f(x)=(x2+ax+b)•lnx,(a,b∈R),当x>0时,f(x)≥0,则实数a的取值范围为()A.﹣2≤a<0B.a≥﹣1C.﹣1<a≤0D.0≤a≤1解:设g(x)=x2+ax+b,h(x)=lnx,则h(x)在(0,+∞)上为增函数,且h(1)=0,若当x>0时f(x)≥0,则满足当x>1时,g(x)≥0,当0<x<1时,g(x)≤0,即g(x)必需过点(1,0)点,则g(1)=1+a+b=0,即b=﹣1﹣a,此时函数g(x)与h(x)满足如图所示:此时g(x)=x2+ax﹣1﹣a=(x﹣1)[x+(a+1)],则满足函数g(0)=﹣a﹣1≤0,即a≥﹣1,故选:B.12.已知函数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围是()A.(﹣∞,﹣2]B.[1,+∞)C.[﹣2,1]D.(﹣∞,﹣2]∪[1,+∞)解:设m=f(x),作出函数f(x)的图象如图:则m≥1时,m=f(x)有两个根,当m<1时,m=f(x)有1个根,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则等价为m2+m+t=0有2个不同的实根,且m≥1或m<1,当m=1时,t=﹣2,此时由m2+m﹣2=0得m=1或m=﹣2,满足f(x)=1有两个根,f(x)=﹣2有1个根,满足条件当m≠1时,设h(m)=m2+m+t,则h(1)<0即可,即1+1+t<0,则t<﹣2,综上t≤﹣2,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A={x|2<x≤11},B={x|2x﹣a>0}.若A⊆B,则实数a的取值范围为(﹣∞,4].解:由已知可得,因为A⊆B,所以,即a≤4,故答案为:(﹣∞,4].14.若函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),则函数g(x)=log a(x+m)的单调增区间为(1,+∞).解:∵函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),∴m+2=1,且2α=4,求得m=﹣1,α=2,可得f(x)=x2,则函数g(x)=log a(x+m)=log2(x﹣1)的单调增区间为(1,+∞),故答案为:(1,+∞).15.已知f(x)=是(﹣∞,+∞)上的减函数,那么实数a的取值范围是[,).解:∵f(x)是减函数,∴函数在(﹣∞,1)和[1,+∞)上都是减函数,且满足条件,得,得≤a<,即实数a的取值范围是[,).故答案为:[,).16.在下列命题中,正确命题的序号为②③④(写出所有正确命题的序号).①函数的最小值为;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0;④已知函数f(x)=x﹣sin x,若a+b>0,则f(a)+f(b)>0.解:①,函数f(x)=x+(x>0)中,当a≤0时,在f(x)在(0,+∞)为单调递增函数,不存在最小值,故①错误;②,∵f(2﹣x)=f(2+x),∴f(4﹣x)=f(x),又f(x)为定义在R上周期为4的函数,∴f(x)=f(4﹣x)=f(﹣x),∴f(x)为偶函数,故②正确;③,∵定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,∴f(4)=f(0)=0;f(7)=f(8﹣1)=f(﹣1)=﹣f(1),∴f(1)+f(4)+f(7)=f(1)+0﹣f(1)=0,故③正确;④,∵f(x)=x﹣sin x,∴f′(x)=1﹣cos x≥0,∴f(x)=x﹣sin x为R上的增函数,又f(﹣x)=﹣x+sin x=﹣(x﹣sin x)=﹣f(x),∴f(x)=x﹣sin x为R上的奇函数;∴若a+b>0,即a>﹣b时,f(a)>f(﹣b=﹣f(b),∴f(a)+f(b)>0,故④正确.综上所述,正确的命题序号为:②③④.故答案为:②③④.三、解答题(本大题共6小题,共70分)17.已知集合A={x|﹣2<x+1<3},集合B为整数集,令C=A∩B.(1)求集合C;(2)若集合D={1,a},C∪D={﹣2,﹣1,0,1,2},求实数a的值.解:(1)∵A={x|﹣3<x<2},B=Z,∴C=A∩B={﹣2,﹣1,0,1};(2)∵C={﹣2,﹣1,0,1},D={1,a},C∪D={﹣2,﹣1,0,1,2},∴a=2.18.函数f(x)=lg(x2﹣2x﹣3)的定义域为集合A,函数g(x)=2x﹣a(x≤2)的值域为集合B.(Ⅰ)求集合A,B;(Ⅱ)已知命题p:m∈A,命题q:m∈B,若¬p是¬q的充分不必要条件,求实数a的取值范围.解:(Ⅰ)A={x|x2﹣2x﹣3>0}={x|(x﹣3)(x+1)>0}={x|x<﹣1,或x>3},B={y|y=2x﹣a,x≤2}={y|﹣a<y≤4﹣a}.(Ⅱ)∵¬p是¬q的充分不必要条件,∴q是p的充分不必要条件,∴B⊆A,∴4﹣a<﹣1或﹣a≥3,∴a≤﹣3或a>5,即a的取值范围是(﹣∞,﹣3]∪(5,+∞).19.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣x2+2x.(1)求函数f(x)在R上的解析式;(2)解关于x的不等式f(x)<3.解:(1)由题意,当x<0时,﹣x>0,则f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x,由f(x)是定义在R上的奇函数,得f(x)=﹣f(﹣x)=x2+2x,且f(0)=0,综上:.(2)(i)当x>0时,﹣x2+2x<3恒成立;(ii)当x=0时,0<3显然成立;(iii)当x<0时,x2+2x<3,即x2+2x﹣3<0,解得﹣3<x<1,此时﹣3<x<0,综上x>﹣3,综上:不等式的解集为(﹣3,+∞).20.设二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1).(1)求实数a的值;(2)若函数g(x)=f(e x)在x∈[0,1]的最大值是1,求实数c的值.解:(1)根据题意,二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1),则二次函数f(x)开口向下,其对称轴为x=1,则有﹣=1,解可得a=﹣1;(2)函数g(x)=f(e x),设t=e x,若x∈[0,1],则1≤t≤e,函数g(x)=f(e x)在x∈[0,1]的最大值是1,且∀x∈R,f(x)≤f(1).则x=0时,g(x)取得最大值1,即g(0)=f(1)=﹣1+2+c=1,解可得c=0;故c=0,21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4711).解:(1)函数y=ka x(k>0,a>1)与在(0,+∞)上都是增函数,随着x的增加,函数y=ka x(k>0,a>1)的值增加的越来越快,而函数的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型y=ka x(k>0,a>1)符合要求.根据题意可知x=2时,y=24;x=3时,y=36,∴,解得.故该函数模型的解析式为,1≤x≤12,x∈N*;(2)当x=0时,,元旦放入凤眼莲的覆盖面积是m2,由>10•,得>10,∴x>=≈5.9,∵x∈N*,∴x≥6,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.22.若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)•f(x2)=1成立,则称该函数为“依赖函数”.(1)判断函数g(x)=2x是否为“依赖函数”,并说明理由;(2)若函数在定义域[m,n](m,n∈N,且m>1)上为“依赖函数”,求m+n的取值范围.(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的t∈R,有不等式f(x)≥﹣t2+(s﹣t)x+8都成立,求实数s的取值范围.解:(1)对于函数g(x)=2x的定义域R内任意的x1,取x2=﹣x1,则g(x1)g(x2)=1,且由g(x)=2x在R上单调递增,可知x2的取值唯一,故g(x)=2x是“依赖函数”;(2)因为m>1,f(x)=(x﹣1)2在[m,n]递增,故f(m)f(n)=1,即(m﹣1)2•(n﹣1)2=1,由n>m>1,得(m﹣1)(n﹣1)=2,故n=,故m+n=m+=m﹣1++2≥2+2=2(+1),(当且仅当m=1+时“=”成立),故m+n的取值范围是[2(+1),+∞);(3)因a<,故f(x)=(x﹣a)2在[,4]上单调递增,从而f()•f(4)=1,即(﹣a)2(4﹣a)2=1,进而(﹣a)(4﹣a)=1,解得a=1或a=(舍),从而存在x∈[,4],使得对任意的t∈R,有不等式(x﹣1)2≥﹣t2+(s﹣t)x+8都成立,即t2+xt+x2﹣(2+s)x﹣7≥0恒成立,由△=x2﹣4(x2﹣(2+s)x﹣7)≤0恒成立,故2+s≤(x﹣)max,x∈[,4],由y=x﹣在[,4]递增,故x=4时,y取最大值,y的最大值是,故2+s≤,故s≤﹣,即s的取值范围是(﹣∞,﹣].。
江西省赣州市赣县第三中学2022届高三上学期10月月考数学(文)试题及答案
![江西省赣州市赣县第三中学2022届高三上学期10月月考数学(文)试题及答案](https://img.taocdn.com/s3/m/01726d3ad5bbfd0a785673ab.png)
赣县三中2021-2022学年上学期十月考高三文科数学试卷一、单选题1.设复数2021|3|z i i =+-,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.设平面向量()()1,2,2,a b y ==-,若//a b 则3a b +=( ) A .5B .6C .17D . 263.已知1sin cos 2αα+=,则2cos 4πα⎛⎫-= ⎪⎝⎭( )A .19B .18C .38D .294.设 2.10.231log 7,3,3a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a<b<cB .c<b<aC .b<a<cD .b<c<a5.命题p :0a b ⋅<,则,a b <>为钝角;q :()tan 4f x x π⎛⎫=+ ⎪⎝⎭图象的一个对称中心是,04π⎛⎫⎪⎝⎭,则以下真命题是( ) A .p q ∧ B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝6.()1cos xf x x=-的部分图象大致是( )A .B .C .D .7.实数x ,y 满足不等式组02601x y x y x -≤⎧⎪+-≤⎨⎪≥⎩,则y x 的最大值是( )A .4B .2C .1D .1-8.设n S 为等差数列{}n a 的前 n 项和,若5211S S a =+,且11a =,则8S =( ) A .42B .56C .64D .89.已知()()()32140,03f x x ax b x a b =++->>在1x =处取得极值,则21a b+的最小值为( )A 322+B .322+C .3D .2210.设函数()()π12sin sin 0532f x x x ωωω⎛⎫=--+<< ⎪⎝⎭图象的一条对称轴方程为π12x =,若12x x ≠时,()()120f x f x ==,则12x x -的最小值为( )A .π4B .π2C .π16D .π811.已知函数()2,01,0x xe x f x x x ⎧≤=⎨-+>⎩,要使函数()f x k =有三个解,则k 的取值范围是( )A .11k e -<<B .10k e -<≤C .10k e -≤< D .10-<<k12.已知锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c 3sin 3cos acB B =+.若ABC 的外43b c +的取值范围为( ) A .(2,4]B .(3,4]C .(23,4]D .(2,6)二、填空题13.已知函数()cos f x x x =+,则曲线()y f x =在0x =处的切线方程为___________.14.命题“x R ∃∈,2290x mx ++<”为假命题,则实数m 的最大值为___________.15.函数π()sin()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 图象上的所有点向右平移π12个单位长度得到函数()g x 图象,则关于函数()g x 有下列四个说法:①最小正周期为π;②图象的一条对称轴为直线π3x =; ③图象的一个对称中心坐标为π,06⎛⎫- ⎪⎝⎭;④在区间ππ,46⎡⎤-⎢⎥⎣⎦上单调递增.其中正确的是_______.(填序号)16.已知定义在R 上的奇函数()y f x =的图象关于直线1x =对称,当10x -≤<时,()2f x x =,则方程()102f x +=在[]2,6-内的所有根之和为______.三、解答题17.集合{}31,,2,2A xx R B x x a x R x ⎧⎫=<∈=-<∈⎨⎬+⎩⎭. (1)若2a =,求A B ;(2)若x A ∈R 是x B ∈的充分不必要条件,求a 的范围.18.已知等差数列{}n a 的前n 项和为n S ,22a =,410S =,数列{}n b 的前n 项和()1312nn T =-. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满足1n n n c a b =+,求数列{}n c 的前n 项和n P .19.已知(si ,n 3a x =,()2c s cos ,o x b x =,且()32f x a b =⋅-(1)求()y f x =的单调区间.(2)在ABC 中,A ,B ,C 的对边分别为a ,b ,c ,当1a =,2b =,12A f ⎛⎫= ⎪⎝⎭,求ABC 的面积.20.已知函数21()2ln 2f x ax x x =+-.(1)当0a =时,求()f x 的极值;(2)若()f x 在区间1,23⎡⎤⎢⎥⎣⎦上是增函数,求实数a 的取值范围21.如图所示,在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .满足()cos2cos22sin sin sin A B C B C -=-,且3BC =,D 在AC 上,AB AD =. (1)若2BD =,求sin ACB ∠; (2)若2BD CD =,求AC 的长.22.设函数()2xf x e ax =--. (Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()'10x k f x x -++>,求k 的最大值.高三文科数学参考答案1.D 2.A 3.B 4.B 5.B 6.A 7.A 8.C 9.C 10.A【详解】π1ππ1()2sin sin 2sin sin cos cos sin 32332f x x x x x x ωωωωω⎛⎫⎛⎫=--+=--+ ⎪ ⎪⎝⎭⎝⎭21sin 3cos 2x x x ωωω=-+13πcos 22sin 226x x x ωωω⎛⎫==+ ⎪⎝⎭,所以π()sin 23f x x ω⎛⎫=+ ⎪⎝⎭.令()πππ2πZ 1262k k ω⨯+=+∈,可得26(Z)k k ω=+∈,因为05ω<<,所以0k =,2ω=,所以()πsin 46f x x ⎛⎫=+ ⎪⎝⎭,若12x x ≠时,()()120f x f x ==,得到()12min 112ππ2244x x T -=⨯=⨯=. 故选:A .11.D 【详解】要使函数()f x k =有三个解,则()y f x =与y k =图象有三个交点, 因为当0x ≤时,()x f x xe =,所以()(1)x f x x e '=+, 可得()f x 在(,1)-∞-上递减,在(1,0)-递增,所以,()x f x xe =有最小值1(1)f e-=-,且0x <时,()0f x <,当x 趋向于负无穷时,()f x 趋向于0,但始终小于0,当0x >时,2()1f x x =-+单调递减,由图像可知:所以要使函数()f x k =有三个零点,则10e-<<k .故选:D .12.C3sin 3cos a c B B =+3sin sin sin 3cos AC B B=+, 3sin (sin 3)C A B B =+3)sin sin 3cos B A B A A B +=+,3sin sin sin A B A B =.sin 0B ≠,3sin A A =.即tan 3A =(0,)A π∈,3A π∴=. 又ABC 是锐角三角形,022032B B πππ⎧<<⎪⎪∴⎨⎪<-<⎪⎩,解得62B ππ<<,。
2021-2022年高三10月月考数学文试题含答案
![2021-2022年高三10月月考数学文试题含答案](https://img.taocdn.com/s3/m/c12e5b9c767f5acfa0c7cd0e.png)
2021年高三10月月考数学文试题含答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间:120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 化简A. B. C. D.2.“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.函数y=(x0)的反函数是A.(x0)B.(x0)C.(x0)D. (x0)4.设向量,,则下列结论中正确的是A. B. C.与垂直 D.5. 设曲线在点处的切线与直线平行,则A.-1 B. C. D.16. 设函数211 ()21x xf xxx⎧+≤⎪=⎨>⎪⎩,则()A.B.3 C.D.7. 若tanθ+1tanθ=4,则sin2θ=A.15B.14C.12D.138.函数是A.最小正周期为的奇函数B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数9.函数的图象大致是A.B.C.D.10.函数定义在实数集上有,且当时,,则有A. B.C. D.11. ,则的值等于A. B. C. D.12. 已知椭圆的离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为A.B.C.D.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中横线上.13.14. 已知3(,),sin,tan()254ππαπαα∈=+则的值为15. 命题“存在,使”是假命题,则实数的取值范围为16. 对于函数①f(x)=lg(|x-2|+1), ②f(x)=(x-2)2, ③f(x)=cos(x+2), 判断如下三个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;命题丙:f(x+2)-f(x)在(-∞,+∞)上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是 ______三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分10分)已知为等差数列,且,.(I)求的通项公式;(Ⅱ)若等比数列满足,,求的前n项和公式18. (本小题满分12分)已知为坐标原点,)1cos sin 32,1(1,sin 2(2+-==x x OB x ,. (Ⅰ)求的单调递增区间;(Ⅱ)若的定义域为,值域为[2,5],求的值.19.(本小题满分12分)在中,的对边分别是,已C B B C A cos sin cos sin 2sin 23+=,(Ⅰ)求的值; (Ⅱ)若332cos cos ,1=+=C B a ,求边的值.20. (本小题满分12分)质检部门将对12个厂家生产的婴幼儿奶粉进行质量抽检,若被抽检厂家的奶粉经检验合格,则该厂家的奶粉即可投放市场;若检验不合格,则该厂家的奶粉将不能投放市场且作废品处理。
高三数学10月月考试卷 文 试题
![高三数学10月月考试卷 文 试题](https://img.taocdn.com/s3/m/3e8583e6846a561252d380eb6294dd88d0d23de0.png)
HY 中学2021届高三数学10月月考试卷 文数学试题一共4页。
满分是150分。
考试时间是是120分钟. 考前须知:1.在答题之前,必须将本人的姓名、准考证号填写上在答题卡规定的位置上.2.答选择题时,必须使需要用2B 铅笔将答题卡上对应题目之答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上答题,在试题卷上答题无效.第一卷〔选择题,一共60分〕一、选择题:本大题一一共12小题,每一小题5分,一共60分.1.集合11A x ⎧⎫=>⎨⎬⎩⎭,11,0,2B ⎧⎫=-⎨⎬⎩⎭,那么=B A 〔 〕A. 11,0,2⎧⎫-⎨⎬⎩⎭B.12⎧⎫⎨⎬⎩⎭C. 11,2⎧⎫-⎨⎬⎩⎭D.φ2.函数()sin 2cos 2f x x x =+的最小正周期为〔 〕A .4πB .2πC .πD .2π 3.设a R ∈,那么“3a >〞是“函数log a y x =在定义域上为增函数〞的〔 〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.实数0,a b m R >>∈,那么以下不等式中成立的是〔 〕A .2211a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B .22a b -->C .m a b m >D .b m ba m a+>+ 5.sin 3sin()2πθθ=+,那么tan()4πθ+的值是〔 〕A .2B .2-C .12D .12- 6.存在实数x ,使得不等式210x ax -+<成立,那么实数a 的取值范围是〔 〕A .[2,2]-B .(,2][2,)-∞-+∞C .(2,2)-D .(,2)(2,)-∞-+∞7.数列{}n a 满足:1111,(,2),(1)n n a a a n N n n n *-==+∈≥+那么20a =〔 〕A.1920 B. 1942 C. 6142 D. 9208.,,220,a b R a b ∈-+=且那么124ab+的最小值为〔 〕 A. 2 B. 1 C.12 D. 149.在等差数列{}n a 中,n S 为前n 项和,7825a a =+,那么11S =〔 〕A. 55B. 11C. 50D. 60 10.函数()y f x =是定义在R 上的奇函数,假设(1)2f =且(2)f x +为偶函数,那么(8)(9)(2019)f f f ++=〔 〕A .2B .1C .6D .411.各项均为正数的数列{}n a 的前n 项和为n S ,且2212,21(),n n a a S n n N *+==++∈假设对任意的n ∈*N ,123111120nn a n a n a n a λ++++-≥++++恒成立,那么实数λ的取值范围为〔 〕A .(,2]-∞B .(,1]-∞C .1(,]4-∞D .1(,]2-∞ 12.函数()x x f x e=,关于x 的方程2()(2)()20f x m f x m -++-=有4个不相等实根,那么实数m 的取值 范围是( )A. 22(,2)e e e e -+B. 22(,)e e e e -+∞+C. 22221(,)e e e e -++∞+ D. 22221(,2)e e e e-++第二卷〔非选择题 一共90分〕二、填空题:本大题一一共4小题,每一小题5分,一共20分. 13.设向量(,1),(3,4),//a x b a b ==,那么实数x =__________.14.曲线(1)xy ax e =+在点(0,1)处的切线的斜率为2-,那么实数a =__________.15.点,A B 是圆22:4O x y +=上两个动点,||2,32,AB OC OA OB M ==-为线段AB 的中点,那么OC OM ⋅的值是__________.16.某小商品消费厂家方案每天消费A 型、B 型、C 型三种小商品一共100个,消费一个A 型小商品需5分钟,消费一个B 型小商品需7分钟,消费一个C 型小商品需4分钟,总消费时间是不超过10小时.假设消费一个A 型小商品可获利润8元,消费一个B 型小商品可获利润9元,消费一个C 型小商品可获利润6元.该厂家合理分配消费任务使每天的利润最大,那么最大日利润是__________元.三、解答题〔本大题一一共6小题,一共70分.解容许写出演算步骤或者证明过程〕 17.〔本小题满分是12分〕数列{}n a 为等比数列,24a =,32a +是2a 和4a 的等差中项. 〔1〕求数列{}n a 的通项公式;〔2〕设22log 1n n b a =-,求数列{}n n a b +的前n 项和n T .18.〔本小题满分是12分〕ABC ∆的内角C B A ,,所对边分别为c b a ,,,ABC ∆的面积为33,0cos 3sin =-A A ,13=a ,且b c >.〔1〕求边b ;〔2〕如图,延长BC 至点D ,使22=DC ,连接AD ,点E 为线段AD 中点,求ACEDCE∠∠sin sin 。
2021-2022年高三上学期10月月考数学试卷(文科) 含解析
![2021-2022年高三上学期10月月考数学试卷(文科) 含解析](https://img.taocdn.com/s3/m/167608f5a5e9856a5712601e.png)
2021-2022年高三上学期10月月考数学试卷(文科)含解析一、选择题:本大题共8小题,每小题5分,共40分.1.已知全集U={1,2,3,4,5,6},集合A={1,3,5},B={1,2},则A∩(∁B)()UA.∅B.{5} C.{3} D.{3,5}2.“α为第二象限角”是“为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知平面向量,满足=1, =2,且(+)⊥,则与的夹角为()A.B.C.D.4.函数f(x)=e x+4x﹣3的零点所在的大致区间是()A.(﹣,0)B.(0,)C.(,)D.(,)5.把函数的图象上所有点向右平移个单位,再把所有点的横坐标缩短到原来的一半,所得图象的表达式是()A.B.C.D.6.在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足,则的值为()A.﹣4 B.﹣2 C.2 D.47.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1] D.[﹣2,0]8.如图,|OA|=2(单位:m),OB=1(单位:m),OA与OB的夹角为,以A为圆心,AB为半径作圆弧与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m/s)沿线段OB行至点B,再以速度3(单位:m/s)沿圆弧行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.9.当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是.10.复数+的虚部是.11.已知,,则在方向上的射影长为.12.已知cos(α﹣)+sinα=,则sin(α+)的值为.13.已知函数y=f(x)满足:f(1)=a(0<a≤1),且则f(2)=(用a表示),若,则a=.14.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l ∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:①函数为R上的l高调函数;②函数f(x)=sin2x为R上的π高调函数;③如果定义域是[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);其中正确的命题是(填序号)三、解答题:本大题共6小题,共80分.解答题应写出文字说明,演算步骤或证明过程. 15.设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC=.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(C﹣A)的值.16.某工厂统计资料显示,一种产品次品率p与日产量x(x∈N*,80≤x≤100)件之间的关系如下表所示:日产量x 80 81 82 (x)…98 99 100次品率p …P(x)…(1)求出a,并将该厂的日盈利额y(元)表示为日生产量x(件)的函数;(2)为了获得最大盈利,该厂的日生产量应该定为多少件?17.函数f=(x)=Asin(ωx+φ)(A>0,φ>0,|φ|<)部分图象如图所示.(1)求的最小周期及解析式.(2)设g(x)=f(x)﹣2cos2x,求函数g(x)在区间[0,]上的最大值和最小值.18.设函数f(x)=x﹣ae x,a∈R.(Ⅰ)求函数f(x)单调区间;(Ⅱ)若∀x∈R,f(x)≤0成立,求a的取值范围.19.已知函数f(x)=lnx﹣ax+1,a∈R是常数.(Ⅰ)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(Ⅱ)证明:函数y=f(x)(x≠1)的图象在直线l的下方;(Ⅲ)讨论函数y=f(x)零点的个数.20.函数f(x)的定义域为R,且f(x)的值不恒为0,又对于任意的实数m,n,总有成立.(1)求f(0)的值;(2)求证:t•f(t)≥0对任意的t∈R成立;(3)求所有满足条件的函数f(x).xx北京首都师大附中育新学校高三(上)10月月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.1.已知全集U={1,2,3,4,5,6},集合A={1,3,5},B={1,2},则A∩(∁U B)()A.∅B.{5}C.{3}D.{3,5}【考点】交、并、补集的混合运算.【分析】先由补集的定义求出∁U B,再利用交集的定义求A∩∁U B.【解答】解:∵U={1,2,3,4,5,6},B={1,2},∴∁U B═{3,4,5,6},又集合A={1,3,5},∴A∩∁U B={3,5},故选D.2.“α为第二象限角”是“为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据象限角的定义,结合充要条件的定义,可得结论.【解答】解:“α为第二象限角”时,“为锐角”不一定成立,“为锐角”时,“α为第二象限角”一定成立,故“α为第二象限角”是“为锐角”的必要不充分条件,故选:B3.已知平面向量,满足=1,=2,且(+)⊥,则与的夹角为()A. B. C. D.【考点】数量积表示两个向量的夹角.【分析】利用向量的数量积公式,结合=1,=2,且(+)⊥,即可求得结论.【解答】解:∵=1,=2,且(+)⊥,∴(+)•=1+1×2×cos<,>=0∴cos<,>=﹣∵<,>∈[0,π]∴<,>=故选B.4.函数f(x)=e x+4x﹣3的零点所在的大致区间是()A.(﹣,0) B.(0,)C.(,) D.(,)【考点】函数零点的判定定理.【分析】确定f(0)=1﹣3=﹣2<0,f()=﹣1>0,f()=<0,f(1)=e+4﹣3=e+1>0,根据零点存在定理,可得结论.【解答】解:∵函数f(x)=e x+4x﹣3在R上是增函数,求解:f(0)=1﹣3=﹣2<0,f()=﹣1>0,f()=<0,f(1)=e+4﹣3=e+1>0,∴根据零点存在定理,可得函数f(x)=2x+3x﹣4的零点所在的大致区间是(,)故选:C.5.把函数的图象上所有点向右平移个单位,再把所有点的横坐标缩短到原来的一半,所得图象的表达式是()A. B. C. D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规则对函数的解析式进行变换即可,由题设条件知,本题的变换涉及到了平移变换,周期变换,振幅变换.【解答】解:由题意函数y=sin(2x﹣)的图象上各点向右平移个单位长度,得到y=sin(2x﹣﹣)=sin(2x﹣),再把横坐标缩短为原来的一半,所得图象的表达式是:y=sin(4x﹣).故选:D.6.在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足,则的值为()A.﹣4 B.﹣2 C.2 D.4【考点】平面向量数量积的运算.【分析】由题意可得,且,代入要求的式子化简可得答案.【解答】解:由题意可得:,且,∴===﹣4故选A7.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1] D.[﹣2,0]【考点】其他不等式的解法.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D8.如图,|OA|=2(单位:m),OB=1(单位:m),OA与OB的夹角为,以A为圆心,AB为半径作圆弧与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m/s)沿线段OB行至点B,再以速度3(单位:m/s)沿圆弧行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由题意,所围成的面积的变化可分为两段研究,一秒钟内与一秒钟后,由题设知第一秒内所围成的面积增加较快,一秒钟后的一段时间内匀速增加,一段时间后面积不再变化,由此规律可以选出正确选项【解答】解:由题设知,|OA|=2(单位:m),OB=1,两者行一秒后,甲行到B停止,乙此时行到A,故在第一秒内,甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)的值增加得越来越快,一秒钟后,随着甲的运动,所围成的面积增加值是扇形中AB所扫过的面积,由于点B是匀速运动,故一秒钟后,面积的增加是匀速的,且当甲行走到C后,即B与C重合后,面积不再随着时间的增加而改变,故函数y=S(t)随着时间t 的增加先是增加得越来越快,然后转化成匀速增加,然后面积不再变化,考察四个选项,只有A符合题意故选A二、填空题:本大题共6小题,每小题5分,共30分.9.当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是m≤﹣5.【考点】一元二次不等式的应用;函数恒成立问题.【分析】①构造函数:f(x)=x2+mx+4,x∈[1,2].②讨论对称轴x=﹣>或<时f(x)的单调性,得f(1),f(2)为两部分的最大值若满足f(1),f(2)都小于等于0即能满足x∈(1,2)时f(x)<0,由此则可求出m的取值范围【解答】解:法一:根据题意,构造函数:f(x)=x2+mx+4,x∈[1,2].由于当x∈(1,2)时,不等式x2+mx+4<0恒成立.则由开口向上的一元二次函数f(x)图象可知f(x)=0必有△>0,①当图象对称轴x=﹣≤时,f(2)为函数最大值当f(2)≤0,得m解集为空集.②同理当﹣>时,f(1)为函数最大值,当f(1)≤0可使x∈(1,2)时f(x)<0.由f(1)≤0解得m≤﹣5.综合①②得m范围m≤﹣5法二:根据题意,构造函数:f(x)=x2+mx+4,x∈[1,2].由于当x∈(1,2)时,不等式x2+mx+4<0恒成立即解得即m≤﹣5故答案为m≤﹣510.复数+的虚部是.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则和虚部的定义即可得出.【解答】解:复数+===.故其虚部为.故答案为.11.已知,,则在方向上的射影长为.【考点】平面向量数量积的运算.【分析】在方向上的射影长为:,代入计算可得答案.【解答】解:∵,,∴在方向上的射影长为:==,故答案为:12.已知cos(α﹣)+sinα=,则sin(α+)的值为﹣.【考点】两角和与差的正弦函数;运用诱导公式化简求值;两角和与差的余弦函数.【分析】利用两角和公式展开后求得cosα+sinα的值,进而利用诱导公式可知sin(α+)=﹣sin(α+),把cosα+sinα的值代入求得答案.【解答】解:∵cos(α﹣)+sinα=cosα+sinα=,∴cosα+sinα=,∴sin(α+)=﹣sin(α+)=﹣(sinα+cosα)=﹣.故答案为:﹣13.已知函数y=f(x)满足:f(1)=a(0<a≤1),且则f(2)=2a(用a表示),若,则a=1.【考点】函数的值.【分析】由函数y=f(x)满足:f(1)=a(0<a≤1),且,知f(2)=f(1+1)=2f(1)=2a;由=,知f(2)=2a=2,由此能求出a.【解答】解:∵函数y=f(x)满足:f(1)=a(0<a≤1),且,∴f(2)=f(1+1)=2f(1)=2a;∵=,∴f(2)=2a=2,∴a=1.故答案为:2a,1.14.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l ∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:①函数为R上的l高调函数;②函数f(x)=sin2x为R上的π高调函数;③如果定义域是[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);其中正确的命题是②③(填序号)【考点】命题的真假判断与应用.【分析】根据高调函数的定义证明条件f(x+1)≥f(x)是否成立即可.【解答】解:①∵函数f(x)=()x为R上的递减函数,故①不正确,②∵sin2(x+π)≥sin2x∴函数f(x)=sin2x为R上的π高调函数,故②正确,③如果定义域为[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上m高调函数,则,解得m ≥2,即实数m的取值范围[2,+∞),∴③正确.故答案为:②③.三、解答题:本大题共6小题,共80分.解答题应写出文字说明,演算步骤或证明过程. 15.设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC=.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(C﹣A)的值.【考点】解三角形;余弦定理的应用.【分析】(Ⅰ)利用同角三角函数的基本关系式求出sinC,然后求△ABC的面积;(Ⅱ)通过余弦定理求出c,利用正弦定理求出sinA,同角三角函数的基本关系式求出cosA,利用两角和的正弦函数求sin(C﹣A)的值.【解答】(本小题满分13分)解:(Ⅰ)在△ABC中,因为,所以.…所以,.…(Ⅱ)由余弦定理可得,c2=a2+b2﹣2ab•cosC==9所以,c=3.…又由正弦定理得,,所以,.…因为a<b,所以A为锐角,所以,.…所以,sin(C﹣A)=sinC•cosA﹣cosC•sinA=.…16.某工厂统计资料显示,一种产品次品率p与日产量x(x∈N*,80≤x≤100)件之间的关系如下表所示:日产量x 80 81 82 (x)…98 99 100次品率p …P(x)…其中P(x)=(a为常数).已知生产一件正品盈利k元,生产一件次品损失元(k为给定常数).(1)求出a,并将该厂的日盈利额y(元)表示为日生产量x(件)的函数;(2)为了获得最大盈利,该厂的日生产量应该定为多少件?【考点】根据实际问题选择函数类型.【分析】(1)首先根据列表求出a的值,然后列出P(x)的关系式,整理即可.(2)令108﹣x=t,t∈[8,28],t∈N*,把函数转化为关于t的等式,利用基本不等式求解【解答】解:(1)根据列表数据可得:a=108由题意,当日产量为x时,次品数为:正品数:∴y=整理得:(80≤x≤100,x∈N*)(2)令108﹣x=t,t∈[8,28],t∈N*==当且仅当t=即t=12时取得最大盈利,此时x=9617.函数f=(x)=Asin(ωx+φ)(A>0,φ>0,|φ|<)部分图象如图所示.(1)求的最小周期及解析式.(2)设g(x)=f(x)﹣2cos2x,求函数g(x)在区间[0,]上的最大值和最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;两角和与差的正弦函数.【分析】(1)利用函数的图象,求出A,T,然后求出ω,利用f()=2,求出φ,即可求出函数的解析式.(2)通过g(x)=f(x)﹣2cos2x,利用两角和与差的三角函数化简函数为一个角的一个三角函数的形式,通过[0,]求出相位的范围,然后求出函数的最大值和最小值.【解答】解:(1)由图可得A=2,,所以T=π.因为所以ω=2.…当时,f(x)=2,可得,因为,所以.…所以f(x)的解析式为.…(2)==…=.…因为,所以.当,即x=时,函数g(x)有最大值,最大值为:2 …当,即x=0时,函数g(x)有最小值,最小值为﹣1.…18.设函数f(x)=x﹣ae x,a∈R.(Ⅰ)求函数f(x)单调区间;(Ⅱ)若∀x∈R,f(x)≤0成立,求a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)已知函数f(x)=x﹣ae x,对其进行求导,利用导数研究其单调区间;(Ⅱ)若对∀x∈R,f(x)≤0成立,只要f(x)的最大值小于等于0即可,利用导数研究函数的最值问题,从而求解;【解答】解:(Ⅰ)f'(x)=1﹣ae x.…当a≤0时,f′(x)>0,f(x)在R上是增函数.…当a>0时,令f′(x)=0,得x=﹣lna.…若x<﹣lna则f′(x)>0,从而f(x)在区间(﹣∞,﹣lna)上是增函数;若x>﹣lna则f′(x)<0,从而f(x)在区间(﹣lna,+∞)上是减函数.综上可知:当a≤0时,f(x)在区间(﹣∞,+∞)上是增函数;当a>0时,f(x)在区间(﹣∞,﹣lna)上是增函数,在区间(﹣lna,+∞)上是减函数.…(Ⅱ)由(Ⅰ)可知:当a≤0时,f(x)≤0不恒成立.又因为当a>0时,f(x)在区间(﹣∞,﹣lna)上是增函数,在区间(﹣lna,+∞)上是减函数,所以f(x)在点x=﹣lna处取最大值,且f(﹣lna)=﹣lna﹣ae﹣lna=﹣lna﹣1.…令﹣lna﹣1≤0,得,故f(x)≤0对x∈R恒成立时,a的取值范围是.…19.已知函数f(x)=lnx﹣ax+1,a∈R是常数.(Ⅰ)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(Ⅱ)证明:函数y=f(x)(x≠1)的图象在直线l的下方;(Ⅲ)讨论函数y=f(x)零点的个数.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求函数的导数,利用导数的几何意义求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(Ⅱ)构造函数F(x)=f(x)﹣(1﹣a)x,利用导数求函数的最值,利用最值证明:函数y=f(x)(x≠1)的图象在直线l的下方;(Ⅲ)利用导数确定函数的取值情况,确定函数y=f(x)零点的个数.【解答】解:(Ⅰ)函数的定义域为(0,+∞),函数的导数为,…f(1)=﹣a+1,所以切线斜率k=f'(1)=1﹣a,所以切线l的方程为y﹣(1﹣a)=(1﹣a)(x﹣1),即y=(1﹣a)x.…(Ⅱ)令F(x)=f(x)﹣(1﹣a)x=lnx﹣x+1,x>0,则F'(x)==0,解得x=1.x (0,1) 1 (1,+∞)F'(x)+0 ﹣F(x)↗最大值↘…F(1)<0,所以∀x>0且x≠1,F(x)<0,所以f(x)<(1﹣a)x,即函数y=f(x)(x≠1)的图象在直线l的下方.…(Ⅲ)令f(x)=lnx﹣ax+1=0,则a=.令g(x)=,则g'(x)=,则g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,当x=1时,g(x)的最大值为g(1)=1.所以若a>1,则f(x)无零点;若f(x)有零点,则a≤1.…若a=1,f(x)=lnx﹣ax+1=0,由(Ⅰ)知f(x)有且仅有一个零点x=1.若a≤0,f(x)=lnx﹣ax+1单调递增,由幂函数与对数函数单调性比较,知f(x)有且仅有一个零点(或:直线y=ax﹣1与曲线y=lnx有一个交点).若0<a<1,解f'(x)=,得x=,由函数的单调性得知f(x)在x=处取最大值,f()=ln,由幂函数与对数函数单调性比较知,当x充分大时f(x)<0,即f(x)在单调递减区间(,+∞)有且仅有一个零点;又因为f(=﹣,所以f(x)在单调递增区间(0,)有且仅有一个零点.综上所述,当a>1时,f(x)无零点;当a=1或a≤0时,f(x)有且仅有一个零点;当0<a<1时,f(x)有两个零点.…20.函数f(x)的定义域为R,且f(x)的值不恒为0,又对于任意的实数m,n,总有成立.(1)求f(0)的值;(2)求证:t•f(t)≥0对任意的t∈R成立;(3)求所有满足条件的函数f(x).【考点】抽象函数及其应用;函数恒成立问题.【分析】(1)由已知中任意的实数m,n,总有成立,令m=n=0,易得f(0)的值;(2)由已知中任意的实数m,n,总有成立,令m=n,即可得到结论;(3)由已知中任意的实数m,n,总有成立,令m=2n=2x,即可得到结论.【解答】解:(1)令m=n=0∴f2(0)=0∴f(0)=0(2)令m=n∴∴对于任意的t∴即证(3)令m=2n=2x∴=f2(x)+xf(x)当f(x)=0时恒成立,当f(x)≠0时有,∴f2(2x)=[f(x)+x]2=4xf(x)∴f(x)=x.xx11月19日l20519 5027 倧31513 7B19 笙e38295 9597 閗39634 9AD2 髒30789 7845 硅24984 6198 憘-#}27048 69A8 榨36062 8CDE 賞f。
高三数学10月月考试题文试题 5
![高三数学10月月考试题文试题 5](https://img.taocdn.com/s3/m/eefd2208974bcf84b9d528ea81c758f5f61f2990.png)
攸县二中2021届高三10月月考数学试卷〔文科〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日姓名:___________班级:___________一、选择题:本大题一一共12小题,每一小题5分,一共60分. 在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.集合{}|13A x x =-≤<,{}2|4B x Z x =∈<,那么A B ⋂=〔 〕 A .{}0,1B .{}1,0,1-C .{}1,0,1,2-D .{}2,1,0,1,2-- 2.复数2iz i-=〔为虚数单位〕,那么复数的虚部为( ) A .2-B .2i -C .2D .2i3.命题:,sin 1p x R x ∀∈≤,那么p ⌝为〔 〕 A ., B ., C .,D .,4.向量()1,2a =,()3,4b =-,那么a 在b 方向上的投影为〔 〕A .13B .22C .1D .6555.假设变量,x y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩那么22x y +的最大值是〔 〕A .4B .9C .10D .126.某几何体的三视图如下图,那么该几何体的体积为 A .273B .276C .274D .2727.我国古代数学著作?孙子算经?中有这样一道算术题:“今有物不知其数,三三数之剩一,五五数之剩三,七七数之剩六,问物几何?〞人们把此类题目称为“中国剩余定理〞.假设正整数N 除以正整数m 后的余数为n ,那么记为N ≡n 〔modm 〕,例如10≡2〔mod4〕.现将该问题以程序框图给出,执行该程序框图,那么输出的n 等于〔 〕 A .13 B .11 C .15 D .88.,0a b >且1,1a b ≠≠.假设log 1a b >,那么〔〕 A .()()110a b --<B .()()10a a b --> C .()()10b b a --<D .()()10b b a --> 9.函数的局部图象如下图,那么1124f π⎛⎫⎪⎝⎭的值是〔 〕A .62-B .32-C .22-D .1-10.的内角的对边分别为,假设,且,那么〔 〕A .B .C .D .11.定义在上的函数()f x 满足条件:①对任意的x R ∈,都有()()4f x f x +=;②对任意的[]12,0,2x x ∈且12x x <,都有()()12f x f x <;③函数()2f x +的图象关于轴对称,那么以下结论正确的选项是〔〕A .()()()7 6.5 4.5f f f <<B .()()()7 4.5 6.5f f f <<C .()()()4.57 6.5f f f <<D .()()()4.5 6.57f f f <<12.函数()(),0,xe f x ax x x =-∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,那么实数a 的取值范围为〔〕 A .(],e -∞B .(),e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦ 二、填空题:本大题一一共4小题,每一小题5分,一共20分. 13.等比数列的各项均为正数,且,那么的值是_____14.()tan 32πα-=-,那么cos2α=___________.15.曲线ln y x x =的一条切线为2y x b =+,那么实数b 的值是_________.16.函数()()g x x R ∈的图象如下图,关于x 的方程()()2230g x m g x m ⎡⎤+⋅++=⎣⎦有三个不同的实数解,那么m 的取值范围是___________.三、解答题:本大题一一共6小题,一共60分. 解容许写出文字说明,证明过程或者演算步骤17.〔本小题满分是12分〕()222sin cos cos sin f x x x x x =⋅+-〔x R ∈〕,将()f x 的图像向右平移4π个单位后,再保持纵坐标不变,横坐标变为原来的2倍,得到函数()g x 的图像.〔1〕求函数()g x 的解析式;〔2〕假设()2g B =且22b =,1sin 2C =,求ABC 的面积.18.〔本小题满分是12分〕设数列{}n a 的前n 项和为n S ,且231n n S a =- (1)求数列{}n a 的通项公式; (2)设n nnb a =,求数列{}n b 的前n 项和n T .19.〔本小题满分是12分〕在三棱锥P ABE -中,PA ⊥底面ABE ,AB AE ⊥,122AB AP AE ===,D 是AE 的中点,C 是线段BE 上的一点,且5AC =,连接,,,PC PD CD PD〔Ⅰ〕求证:CD平面PAB ;〔Ⅱ〕求点E 到平面PCD 的间隔 .20.〔本小题满分是12分〕抛物线()220y px p =>上点()3,M m 到焦点F 的间隔 为4〔Ⅰ〕求抛物线方程;〔Ⅱ〕点P 为准线上任意一点,AB 为抛物线上过焦点的任意一条弦,设直线,PA ,PB PF 的斜率分别为123,,k k k ,问是否存在实数λ,使得123k k k λ+=恒成立.假设存在,求出λ的值;假设不存在,请说明理由.21.〔本小题满分是12分〕函数()()ln f x x x ax a R =-∈. 〔1〕求函数()f x 的单调区间;〔2〕探究:是否存在实数a ,使得()0f x a +≥恒成立?假设存在,求出a 的值;假设不存在,请说明理由.四.选答题:一共10分.请考生在第22,23题中任选一题答题.假如多做,那么按所做的第一题计分.22.在平面直角坐标系中,直线的参数方程为〔为参数〕.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.〔Ⅰ〕假设曲线关于直线对称,求的值; 〔Ⅱ〕假设为曲线上两点,且,求的最大值.23.选修4—5:不等式选讲 设函数()223f x x x =-++ 解不等式()6f x >;(2)假设关于x 的不等式()21f x a ≤-的解集不是空集,求a 的取值范围.10月月考参考答案BACCC DADDD CD 13.514.15.16.17.1〕,的图像向右平移个单位后,函数解析式变为,那么〔2〕∵,∴,∴,∴;由正弦定理得,即解得,,所以.18.(1)由231n n S a =-①,11231n n S a --=-②〔2n ≥〕①-②得1233n n n a a a -=-,∴13nn a a -=, 又当1n =时,11231S a =-,即11a =,(符合题意)∴{}n a 是首项为1,公比为3 的等比数列,∴13n n a -=.(2)由(Ⅰ1)得: 13n n n b -=∴01211233333n n nT -=++++,③ 121112133333n n n n nT --=++++,④ ③-④得:012121111333333n n nnT -=++++-1132331322313n n n n n -+=-=-⨯-,∴969443n nn T +=-⨯. 19解:〔1〕因为,所以.又,,所以在中,由勾股定理,得.因为,所以是的斜边上的中线.所以是的中点.又因为是的中点,所以直线是的中位线,所以.又因为平面,平面,所以平面〔2〕由〔1〕得,.又因为,.所以.又因为,所以.易知,且,所以.设点到平面的间隔为,那么由,得,即,解得.即点到平面的间隔为.20.〔I〕抛物线y2=2px〔p>0〕的焦点为〔,0〕,准线为x=,由抛物线的定义可知:4=3,p=2∴抛物线方程为y2=4x;〔II〕由于抛物线y2=4x的焦点F为〔1,0〕,准线为x=﹣1,设直线AB:x=my+1,与y2=4x联立,消去x,整理得:y2﹣4my﹣4=0,设A〔x1,y1〕,B〔x2,y2〕,P〔﹣1,t〕,有易知,而====2k 3∴存在实数λ=2,使得k 1+k 2=λk 3恒成立.21.1〕依题意,()'ln 1f x x a =+-,令()'0f x =,解得ln 1x a =-,故1a x e -=, 故当()10,a x e -∈时,函数()f x 单调递减,当()1,a x e -∈+∞时,函数()f x 单调递增; 故函数()f x 的单调减区间为()10,a e -,单调增区间为()1,a e -+∞ 〔2〕()()ln 1g x x x a x =--,其中0x >,由题意知()0g x ≥在()0,+∞上恒成立,()'ln 1g x x a =+-,由〔1〕可知,∴()()()1min a g x g x g e -==极小()()11111a a a a e a e a e ---=---=-, ∴10a a e --≥,记()1a G a a e-=-,那么()1'1a G a e-=-,令()'0G a =,得1a =.当a 变化时,()'G a ,()G a 的变化情况列表如下:∴()()()max 10G a G a G ===极大,故10a a e --≤,当且仅当1a =时取等号, 又10a a e --≥,从而得到1a =. 22.〔Ⅰ〕直线的参数方程为〔为参数〕,消去参数得直线普通方程为.由,得曲线的直角坐标方程为,即,因为圆关于直线对称,所以圆心在直线上,所以.〔Ⅱ〕由点在圆上,且,不妨设, 那么,当,即时取等号,所以的最大值为.23.试题解析:〔1〕()13,3223{5,3131,1x x f x x x x x x x --≤-=-++=--<<+≥由图象得()6f x >的解集为5{|1}3x x x-或 〔2〕()13,3223{5,3131,1x x f x x x x x x x --≤-=-++=--<<+≥因为()2234f x x x =-++≥所以假设不等式()21f x a ≤-的解集不是空集,有()min 214a f x -≥= 解得:52a ≥或者32a ≤- ;即a 的取值范围是52a ≥或者32a ≤- 点睛:处理此题时,要注意正确等价转化不等式()21f x a ≤-的解集不是空集,应是等价转化为()min 21a f x -≥,而不是()max 21a f x -≥.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。
山东省邹平双语学校二区2022届高三上学期第一次月考数学(文)试题 Word版含答案
![山东省邹平双语学校二区2022届高三上学期第一次月考数学(文)试题 Word版含答案](https://img.taocdn.com/s3/m/201272ea4bfe04a1b0717fd5360cba1aa8118c34.png)
邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三 班级 数学(文科)试题(时间:120分钟,分值:150分)一.选择题(每题5分,共12小题)1.设集合A={1,2,3},B={2,3,4},则A ∪B=( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4} 2.已知cosα=﹣,α是第三象限的角,则sinα=( ) A .﹣B .C .﹣D .3.命题p :“∃x 0∈R“,x 02﹣1≤0的否定¬p 为( ) A .∀x ∈R ,x 2﹣1≤0 B .∀x ∈R ,x 2﹣1>0 C .∃x 0∈R ,x 02﹣1>0 D .∃x 0∈R ,x 02﹣1<0 4.函数y=sin2x +cos2x 的最小正周期为( )A .B .C .πD .2π5.已知函数f (x )=a x (a >0,a ≠1)在[1,2]上的最大值和最小值的和为6,则a=( ) A .2B .3C .4D .56.设非零向量,满足|+|=|﹣|则( ) A .⊥B .||=||C .∥D .||>||7.已知函数f (x )=3x ﹣()x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 8.设函数f (x )=cos (x +),则下列结论错误的是( )A .f (x )的一个周期为﹣2πB .y=f (x )的图象关于直线x=对称C .f (x +π)的一个零点为x=D .f (x )在(,π)单调递减9.已知函数f (x )=sinx ﹣cosx ,且f′(x )=2f (x ),则tan2x 的值是( ) A .﹣B .C .﹣D .10.已知曲线C 1:y=cosx ,C 2:y=sin (2x +),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 211.函数y=f (x )的导函数y=f′(x )的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .12.函数y=的部分图象大致为( )A .B.C .D .二.填空题(每题5分,共4小题)13.已知集合A={1,2},B={a ,a 2+3}.若A ∩B={1},则实数a 的值为 . 14.设f (x )=xlnx ,若f′(x 0)=2,则x 0的值为 .15.函数f (x )=sin 2x +cosx ﹣(x ∈[0,])的最大值是 .班级:____________ 姓名:_____________ 考号:________________________16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的条件.三.解答题(共6小题,70分)17.(10分))已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.18.(12分))已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(12分)已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.20.(12分).在△ABC中,角A,B,C的对边分别是a、b、c,已知,,且.(Ⅰ)求角A 的大小;(Ⅱ)若b=3,△ABC的面积,求a的值.21.(12分))某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).22.(12分))已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三班级数学(文科)试题答案一.选择题(共12小题)1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}【分析】集合A={1,2,3},B={2,3,4},求A∪B,可并集的定义直接求出两集合的并集.【解答】解:∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}故选A.【点评】本题考查并集及其运算,解题的关系是正确理解并集的定义及求并集的运算规章,是集合中的基本概念型题.2.已知cosα=﹣,α是第三象限的角,则sinα=()A .﹣B .C .﹣D .【分析】利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值.【解答】解:∵cosα=﹣,α是第三象限的角,则sinα=﹣=﹣,故选:C.【点评】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.3.命题p:“∃x0∈R“,x02﹣1≤0的否定¬p为()A.∀x∈R,x2﹣1≤0 B.∀x∈R,x2﹣1>0C.∃x0∈R,x02﹣1>0 D.∃x0∈R,x02﹣1<0【分析】直接写出特称命题的否定得答案.【解答】解:命题p:“∃x0∈R“,x0﹣1≤0为特称命题,其否定为全称命题,∴¬p为∀x∈R,x2﹣1>0.故选:B.【点评】本题考查特称命题的否定,留意命题的否定的格式是关键,是基础题.4.函数y=sin2x+cos2x的最小正周期为()A .B .C.πD.2π【分析】利用帮助角公式,化简函数的解析式,进而依据ω值,可得函数的周期.【解答】解:∵函数y=sin2x+cos2x=2sin(2x +),∵ω=2,∴T=π,故选:C【点评】本题考查的学问点是三角函数的周期性及其求法,难度不大,属于基础题.5.已知函数f(x)=a x(a>0,a≠1)在[1,2]上的最大值和最小值的和为6,则a=()A.2 B.3 C.4 D.5【分析】依据指数函数的单调性在定义域是要么递增,要么递减,即看求解.【解答】解:依据指数函数的性质:当x=1时,f(x)取得最大值,那么x=2取得最小值,或者x=1时,f(x)取得最小值,那么x=2取得最大值.∴a+a2=6.∵a>0,a≠1,∴a=2.故选:A.【点评】本题考查了指数函数的性质的运用,属于基础题.6.设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.【点评】本题考查两个向量的关系的推断,是基础题,解题时要认真审题,留意向量的模的性质的合理运用.【点评】本题考查对数的运算法则,解题时要认真审题,认真解答.7.已知函数f(x)=3x ﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f (x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x ﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x ﹣()x为增函数,故选:A.【点评】本题考查的学问点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.8.设函数f(x)=cos(x +),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x )在(,π)单调递减【分析】依据三角函数的图象和性质分别进行推断即可.【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x +)=cos (+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f (+π)=cos (+π+)=cos=0,则f(x+π)的一个零点为x=,故C 正确,D .当<x<π时,<x +<,此时函数f(x)不是单调函数,故D错误,故选:D【点评】本题主要考查与三角函数有关的命题的真假推断,依据三角函数的图象和性质是解决本题的关键.9.已知函数f(x)=sinx﹣cosx,且f′(x)=2f(x),则tan2x的值是()A .﹣B .C .﹣D .【分析】求出f(x)的导函数,依据f′(x)=2f(x)列出关系式,计算即可求出tan2x的值.【解答】解:求导得:f′(x)=cosx+sinx,∵f′(x)=2f(x),∴cosx+sinx=2(sinx﹣cosx),即3cosx=sinx,∴tanx=3,则tan2x===﹣.故选C【点评】此题考查了三角函数的化简求值,以及导数的运算,娴熟把握求导公式是解本题的关键.10.已知曲线C1:y=cosx,C2:y=sin(2x +),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x +)=cos(2x +)=sin(2x +)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算力量.11.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A .B .C .D .【分析】依据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,依据函数图象,即可推断函数的单调性,然后依据函数极值的推断,即可推断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最终单调递增,排解A,C,且其次个拐点(即函数的极大值点)在x轴上的右侧,排解B,故选D【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的推断,考查数形结合思想,属于基础题.12.函数y=的部分图象大致为()A . B .C D .【分析】推断函数的奇偶性排解选项,利用特殊值推断即可.【解答】解:函数y=,可知函数是奇函数,排解选项B,当x=时,f ()==,排解A,x=π时,f(π)=0,排解D.故选:C.【点评】本题考查函数的图形的推断,三角函数化简,函数的奇偶性以及函数的特殊点是推断函数的图象的常用方法.二.填空题(共4小题)13.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,留意交集定义及性质的合理运用.14.设f(x)=xlnx,若f′(x0)=2,则x0的值为e.【分析】先依据乘积函数的导数公式求出函数f(x)的导数,然后将x0代入建立方程,解之即可.【解答】解:f(x)=xlnx∴f'(x)=lnx+1则f′(x0)=lnx0+1=2解得:x0=e故答案为:e【点评】本题主要考查了导数的运算,以及乘积函数的导数公式的运用,属于基础题之列.15.函数f(x)=sin2x +cosx ﹣(x∈[0,])的最大值是1.【分析】同角的三角函数的关系以及二次函数的性质即可求出.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:1【点评】本题考查了同角的三角函数的关系以及二次函数的性质,属于基础题16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的充分条件.【分析】A⇒B验证充分性x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,可推出x1+x2=﹣,而必要性不肯定成立,故得是充分条件【解答】解:由题意若x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由根与系数的关系肯定可以得出x1+x2=﹣,故A⇒B成立;若x1+x2=﹣,成立,不能得出x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由于此方程有根与否要用推断式进行推断,须考虑a,b,c三个字母,故B⇒A不肯定成立;故可得,A是B的充分条件故答案为充分【点评】本题考查必要条件充分条件充要条件的推断,求解的关键是正确理解充分条件与必要条件的定义,以及二次方程有根的条件.三.解答题(共6小题)17.已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.【分析】(Ⅰ)把集合B化简后,由A∩B=∅,A∪B=R,借助于数轴列方程组可解a的值;(Ⅱ)把p 是q的充分条件转化为集合A和集合B之间的关系,运用两集合端点值之间的关系列不等式组求解a的取值范围.【解答】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x <a+1},由A∩B=∅,A∪B=R ,得,得a=2,所以满足A∩B=∅,A∪B=R的实数a的值为2;(Ⅱ)因p 是q的充分条件,所以A ⊆B,且A ≠∅,所以结合数轴可知,a+1≤1或a﹣1≥3,解得a≤0,或a≥4,所以p是q的充分条件的实数a的取值范围是(﹣∞,0]∪[4,+∞).【点评】本题考查了充分条件,考查了集合关系的参数取值问题,集合关系的参数取值问题要转化为两集合端点值的大小比较,是易错题.18.已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及帮助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)依据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin(2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.【点评】本题考查的学问点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.【分析】(1)求出导数,求出切线的斜率,由点斜式方程,即可得到曲线在点P(1,1)处的切线方程;(2)y=0时,x=;x=2时,y=4,即可求直线l与x轴、直线x=2所围成的三角形的面积.【解答】解:(1)y=x3的导数为y′=3x2,则曲线在点P(1,1)处的切线斜率为3,即有曲线在点P(1,1)处的切线方程为y﹣1=3(x﹣1),即3x﹣y﹣2=0;(2)y=0时,x=;x=2时,y=4,∴直线l与x轴、直线x=2所围成的三角形的面积为=.【点评】本题考查导数的几何意义:曲线在该点处的切线的斜率,考查直线方程的求法,考查运算力量,属于基础题.20.在△ABC中,角A,B,C的对边分别是a、b、c ,已知,,且.(Ⅰ)求角A的大小;(Ⅱ)若b=3,△ABC 的面积,求a的值.【分析】(Ⅰ)利用向量平行,列出方程,通过两角和与差的三角函数,化简求解角A的大小;(Ⅱ)利用三角形的面积,求出c,然后利用余弦定理求解a即可.【解答】解:(Ⅰ)∵,∴(2c﹣b)•cosA﹣a•cosB=0,∴cosA•(2sinC﹣sinB)﹣sinA•cosB=0,即2cosAsinC﹣cosAsinB﹣sinA•cosB=0,∴2cosAsinC=cosAsinB+sinA•cosB,∴2cosAsinC=s in(A+B),即2cosAsinC=sinC,∵sinC≠0∴2cosA=1,即又0<A<π∴,(Ⅱ)∵b=3,由(Ⅰ)知∴,,∴c=4,由余弦定理有a2=b2+c2﹣2bccosA=,∴.【点评】本题考查向量与三角函数相结合求解三角形的几何量,考查余弦定理的应用,是基础题.21.某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).【分析】(1)由题可知生产100件这样的产品单价为50万元,所以把x=100,P=50代入到p2=中求出k的值确定出P的解析式,然后依据总利润=总销售额﹣总成本得出L(x)即可;(2)令L′(x)=0求出x的值,此时总利润最大,最大利润为L(25).【解答】解:(1)由题意有,解得k=25×104,∴,∴总利润=;(2)由(1)得,令,令,得,∴t=5,于是x=t2=25,则x=25,所以当产量定为25时,总利润最大.这时L(25)≈﹣416.7+2500﹣1200≈883.答:产量x定为25件时总利润L(x)最大,约为883万元.【点评】考查同学依据实际问题选择函数关系的力量,及利用导数求函数最值的方法的力量.22.已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.【分析】(I)将a的值代入f(x),求出f(x)的导函数;,将∃x0∈[1,e]使不等式f(x0)≤m 转化为f(x)的最小值小于等于m,利用[1,e]上的函数递增,求出f(x)的最小值,令最小值小于等于m即可.(II)将图象的位置关系转化为不等式恒成立;通过构造函数,对新函数求导,对导函数的根与区间的关系进行争辩,求出新函数的最值,求出a的范围.【解答】解:(I)当a=1时,,可知当x∈[1,e]时f(x)为增函数,最小值为,要使∃x0∈[1,e]使不等式f(x0)≤m,即f(x)的最小值小于等于m,故实数m 的取值范围是(2)已知函数.若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,等价于对任意x∈(1,+∞),f(x)<2ax,即恒成立.设.即g(x)的最大值小于0.(1)当时,,∴为减函数.∴g(1)=﹣a ﹣≤0∴a ≥﹣∴(2)a≥1时,.为增函数,g(x)无最大值,即最大值可无穷大,故此时不满足条件.(3)当时,g(x )在上为减函数,在上为增函数,同样最大值可无穷大,不满足题意.综上.实数a 的取值范围是.【点评】解决不等式恒成立及不等式有解问题一般都转化为函数的最值问题,通过导数求函数的最值,进一步求出参数的范围.第页,共页第页,共页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021-2022年高三10月月考数学试题(文科)
一、选择题:(本大题共12小题。
每小题5分。
共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1已知全集,集合1
1|20},|24x A x x B x -⎧
⎫
=
-≤∠=<⎨⎬⎩
⎭
{,则 A. B. C. D. 2.已知中,分别是角的对边,,则=
A. B. C.或 D.
3. 在△ABC 中,“”是“”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4、已知向量 , ,若∥,则= A.
B.4
C.
D.16
5.下列有关命题的说法正确的是 A .命题“若,则”的否命题为:“若,则” B .“若,则,互为相反数”的逆命题为真命题
C .命题“,使得”的否定是:“,均有”
D .命题“若,则”的逆否命题为真命题 6.函数的图象是
7.为了得到函数的图像,只需把函数的图像
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
8.如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”。
给出下列函数①;②;③;④ 其中“互为生成函数”的是( )
A .①②
B .①③
C .③④
D .②④ 9.已知为等差数列,为等比数列,其公比q ≠1且, 若,则 A. B. C. D. 10、给出下面的3个命题:(1)函数的最小正周期是(2)函数在区间上单调递增;
(3)是函数的图象的一条对称轴。
其中正确命题的个数是 ( ) A .0 B .1 C .2 D .3
C
11、设奇函数上是增函数,且,则不等式的解集为( ) A . B .
C .
D .{|10,01}x x x -<<<<或
12.定义在R 上的函数f (x )在(-∞,2)上是增函数,且f (x +2)的图象关于轴
对称,则
A.f (-1)<f (3)
B.f (0)>f (3)
C.f (-1)=f (3)
D.f (0)=f (3)
第II 卷(非选择题 共90分)
二、填空题:本大题共4个小题,每小题4分,共16分。
(将答案填在答题纸上) 13.已知等差数列,其中,,则n 的值为 ; 14.若α是锐角,且的值是 。
15.函数()sin()(0,0)f x A x A ωϕω=+>>的图象如图所示,
则(1)(2)(3)(2011)f f f f +++
+的值等于 。
16.关于平面向量,,.有下列三个命题: ①若,则. ②若=(1,k ),=(—2,6),//,则k=—3. ③非零向量和满足,则与+的夹角为60°.
其中真命题的序号为__________.(写出所有真命题的序号)
17.(本小题满分12分)已知函数
R x x x x x f ∈-+=,2
1cos cos sin 3)(2
(1)求函数的最小正周期和单调增区间;
(2)作出函数在一个周期内的图象。
18(本题满分12分)
设命题:实数满足,其中;命题:实数满足且的必要不充分条件,求实数的取值范围.
19.(本小题满分12分)
在中,分别为内角的对边,且
(Ⅰ)求的大小;(Ⅱ)若,试求内角B 、C 的大小.
20.(本小题满分12分)
某公司计划投资、两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图1,B 产品的利润与投资量的算术平方要成正比例,其关系如图2.(注:利润与投资量的单位:万元)
(1)分别将、两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入、两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元? 21、(本小题满分12分)已知函数
(1)若在区间[1,+)上是增函数,求实数的取值范围 (2)若是的极值点,求在[1,]上的最大值 22、(本小题满分14分)
在数列中,已知)(log 32,41
,41*4
111N n a b a a a n n n n ∈=+==+.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:数列是等差数列; (Ⅲ)设数列满足,求的前n 项和.
试题文答案:ABCCB CCBAC DA 13.50 14. 15.0 16.②
17解:(1)x x x x x x f 2cos 2
1
2sin 2321cos cos sin 3)(2+=-
+=
……2分 …………………………………………………………3分
∴最小正周期为 …………………………………………………………………4分 令Z k k x k ∈+≤
+
≤+-
,22
6
222
ππ
π
ππ
,
则,
所以函数的单调递增区间是)](6
,
3
[Z k k k ∈++-ππ
ππ
…………………………6分
(
画图略…………………………………………………………………………………12分 18. 解:设{
}{
}
22
430(0)3(0)A x x ax a a x a x a a =-+<<=<<<
{}
{}240822>-<=>-+=x x x x x x B 或. …………… 5分
是的必要不充分条件,必要不充分条件,
, ……………………8分 所以,又,
所以实数的取值范围是. …………………12分
19解:(Ⅰ)∵
由余弦定理得
故
-----------------5分
(Ⅱ)∴B+C=................................6分
∵,
∴, ----------------7分 ∴1sin 3
cos cos 3sin sin =-+B B B π
π
, ∴1sin 3
cos cos 3sin
=+B B π
π
,
∴ ----------------9分 ∴B+=……………………………………………10分
又∵为三角形内角, ---------------11分 故. ----------------12分
20
22解:(Ⅰ)∵
∴数列{}是首项为,公比为的等比数列,
∴ (4)
(Ⅱ)∵…………………………………………………………………… 5分 ∴131(32)3n n
b b n n +-=+--=.……………………………8分
∴数列是首项,公差的等差数列.…………………………………………9分 (Ⅲ)由(Ⅰ)知,,(n )
∴.………………………………………………………………10分
∴n n n n n S )4
1()23()41()53()41(7)41(4411132⨯-+⨯-+⋯+⨯+⨯+⨯=-, ①
于是1432)4
1()23()41()53()41(7)41(4)41(141
+⨯-+⨯-+⋯+⨯+⨯+⨯=n n n n n S ② …………………………………………………………………………………………… 9分 两式①-②相减得132)4
1
()23(])41()41()41[(3414
3+⨯--+⋯+++=
n n n n S =.………………………………………………………………………13分 ∴ )()4
1(381232*1N n n S n n ∈⨯+-=
+.………………………………………………………14分.(28577 6FA1 澡 s 32873 8069 聩 Uc520009 4E29 丩23135 5A5F 婟30363 769B 皛y。