新人教版六年级上册数学知识点分类汇总
数学人教版六年级上册知识点(汇总7篇)
数学人教版六年级上册知识点(汇总7篇)数学人教版六年级上册知识点第1篇第七单元扇形统计图的意义1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
数学人教版六年级上册知识点第2篇分数除法一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数– 1 ②求少几分之几: 1 - 小数÷大数或①求多几分之几(大数-小数)÷小数②求少几分之几:(大数-小数)÷大数数学人教版六年级上册知识点第3篇圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。
六年级上册数学人教版知识点归纳总结
六年级上册数学知识点归纳总结一、整数1. 整数的概念整数组成了正整数、负整数和0三部分。
整数的定义包括自然数和自然数的相反数。
2. 整数的比较与加减整数比较时,绝对值大的整数可能正也可能负,需要根据正负号进行判断。
整数的加减法根据正负数的规律进行计算,同号相加为同号,异号相加为取绝对值相减并确定正负号。
3. 整数的乘除整数的乘法和除法同样遵循正负数的规律,同号相乘和除得正,异号相乘和除得负。
二、分数1. 分数的概念分数由分子和分母组成,分子表示几等份中的几份,分母表示被分为几等份。
2. 分数的加减和乘除分数的加减需要先通分,再按照通分后的分母进行计算。
分数的乘除则可以将其转化为乘法或除法进行计算,最后将结果化成最简形式。
三、小数1. 小数的概念小数是分数的一种表示方法,是指在整数部分以外还有小数部分表示的数。
2. 小数的加减和乘除小数的加减需要对齐小数点,然后按照小学数学四则运算进行计算。
小数的乘除可以先将小数化成分数,再按照分数的乘除法进行计算。
四、时间1. 时间的基本单位时间的基本单位包括年、月、日、小时、分钟、秒等。
2. 时间的计算时间的计算分为同年处理和跨年处理两种情况,需要根据具体情况进行计算。
五、长方形、正方形与三角形1. 长方形、正方形和三角形的周长和面积计算长方形的周长和面积分别为2×(长+宽)和长×宽,正方形的周长和面积分别为4×边长和边长的平方,三角形的周长为三条边的和,面积为底边乘以高后再除以2。
六、平行线与相交线1. 平行线的特性平行线是指不相交的两条直线,它们之间的距离始终相等。
2. 相交线的特性相交线是指相交的两条直线,相交形成角的种类有直角、钝角和锐角等。
以上就是六年级上册数学人教版的知识点归纳总结,学生需要认真学习这些知识点,并且进行不同类型的练习,才能更好地掌握数学知识。
希望大家在学习过程中能够加强对这些知识点的理解和掌握,夯实基础,为学习更深层次的数学知识打下坚实的基础。
人教版六年级上册数学全册知识点归纳
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
人教版六年级数学上册教材的知识点重点梳理
人教版六年级数学上册教材的知识点重点梳理重点梳理:人教版六年级数学上册教材的知识点一、整数的认识与比较1. 整数的定义及表示方法2. 正整数、负整数、零的概念3. 整数的大小比较二、整数的加减运算1. 整数的加法运算2. 整数的减法运算3. 整数的加减法运算规则三、整数的乘法与除法运算1. 整数的乘法运算2. 整数的除法运算3. 乘法、除法的运算规则四、整数的应用1. 整数在坐标系中的表示与应用2. 整数的温度计表示法3. 整数在日常生活中的应用五、小数的认识与比较1. 小数的定义及表示方法2. 小数的大小比较3. 小数的整数部分与小数部分六、小数的加减运算1. 小数的加法运算2. 小数的减法运算3. 小数的加减法运算规则七、小数的乘法与除法运算1. 小数的乘法运算2. 小数的除法运算3. 乘法、除法的运算规则八、分数的认识与比较1. 分数的定义及表示方法2. 分数的大小比较3. 分数的整数部分与分数部分九、分数的加减运算1. 分数的加法运算2. 分数的减法运算3. 分数的加减法运算规则十、分数的乘法与除法运算1. 分数的乘法运算2. 分数的除法运算3. 乘法、除法的运算规则十一、分数的应用1. 分数在日常生活中的应用2. 分数在图形中的应用十二、单位换算1. 长度单位的换算2. 容量单位的换算3. 质量单位的换算十三、面积的认识与计算1. 长方形的面积计算2. 正方形的面积计算3. 三角形的面积计算十四、容量与质量的认识与计算1. 容量的认识与计算2. 质量的认识与计算十五、几何图形1. 图形的分类2. 平行线与垂直线的认识3. 常见几何图形的性质与应用以上是人教版六年级数学上册教材的知识点重点梳理。
通过对这些知识点的学习与掌握,学生将能够建立起整数、小数、分数等数学概念的基础,并能够进行相应的计算与运用。
这些知识点的理解与掌握对于学生进一步学习数学及日常生活中的应用都具有重要意义。
人教版六年级上册数学重点知识归纳
人教版六年级上册数学重点知识归纳一、整数1. 整数的概念:整数是正整数、零、负整数的统称。
2. 整数的比较:可以利用数轴上数的相对位置进行比较。
3. 整数的加减法:同号两数相加/减,异号两数相减/加,差的符号与绝对值大的数一致。
二、分数1. 分数的概念:分数是一个整数除以另一个整数的结果。
2. 分数的大小比较:通分后比较分子的大小。
3. 分数的加减法:通分,按照分子进行加减法计算。
三、小数1. 小数的概念:有限小数和无限循环小数的概念。
2. 小数的大小比较:补0后比较大小。
3. 小数的加减法:按位相加/减,注意进位和借位。
四、长度1. 厘米、分米、米、千米之间的换算:1米=100厘米,1米=10分米,1千米=1000米。
2. 分米、厘米转换:1分米=10厘米。
3. 毫米、厘米转换:1毫米=0.1厘米。
五、容积1. 升与毫升:1升=1000毫升。
2. 升、毫升之间的换算。
3. 升、毫升的加减法。
六、质量1. 千克与克之间的换算:1千克=1000克。
2. 公斤、克之间的换算。
3. 公斤、克的加减法。
七、图形1. 平行四边形的特点及应用。
2. 正方形、长方形的计算。
3. 三角形的计算和特点。
八、时、刻表1. 时、分、秒之间的换算:1小时=60分钟,1分钟=60秒。
2. 时、分、秒的加减法。
3. 用时、刻、表表示时间。
以上为人教版六年级上册数学的一些重点知识归纳,希望同学们能够加强练习,巩固这些知识,做到理论通联实际,灵活运用。
接下来我们将继续扩展上述数学知识的内容,并进一步加深对六年级上册数学重点知识的理解和掌握。
九、约数和倍数1. 约数的概念:对于整数a和b,如果存在一个整数c,使得a=bc,则称c是a的约数。
2. 倍数的概念:如果存在整数m,使得a=mb,则称a是b的倍数,b是a的约数。
3. 最大公约数和最小公倍数:对于两个整数a和b,它们公有的约数中最大的称为最大公约数,它们公有的倍数中最小的称为最小公倍数。
人教版六年级数学上册各单元知识点汇总
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
人教版六年级上册数学的主要知识点
人教版六年级上册数学的主要知识点涵盖了数的认识、数的运算、空间与几何、统计等内容。
一、数的认识1. 分数与小数的转化及基本概念,包括百分数、小数的换算与比较。
2. 分数的基本性质,如通分、约分等。
二、数的运算1. 整数四则运算及运算定律,如加法交换律、结合律等。
2. 分数四则运算,包括分数乘除法及运算顺序。
三、空间与几何1. 图形的基本认识,如点、线、面等。
2. 平面图形的认识,如长方形、正方形、平行四边形等的基本性质和面积计算。
3. 立体图形的认识,如长方体、正方体等的基本性质和体积计算。
四、统计1. 统计表和统计图的基本知识,如条形图、折线图等。
2. 数据的收集与整理,包括平均数、中位数等统计量的计算及其应用。
五、综合应用1. 实际问题中的数学应用,如比例尺的应用等。
2. 数学与生活的联系,如解决生活中常见的数学问题等。
具体来说,本册的数学学习过程中还包括有理数的基础知识、乘方的基础运算和运算顺序等内容的学习和掌握。
在学习过程中要能够通过解决实际问题和计算题目来检验学生对数学知识的理解和运用能力。
通过不断的学习和实践,培养学生的空间想象力、计算能力和数学逻辑思维,从而提升学生的综合素质。
六、实际问题与数学建模在六年级上册的数学学习中,学生将接触到更多实际问题与数学建模的结合。
例如,通过解决生活中的购物问题、行程问题等,学生将学习如何运用数学知识和方法去解决实际问题。
此外,学生还将学习如何利用比例、百分数等数学知识去解决实际问题,并理解数学在现实生活中的广泛应用。
七、几何图形的变换本册还将涉及几何图形的变换,如平移、旋转等。
学生将学习这些基本变换的概念和性质,并通过实践操作和思考,培养空间想象能力和几何思维。
八、解题技巧和思维能力在学习过程中,学生需要掌握一定的解题技巧和思维能力。
如:对数学题目的分析和理解能力、逻辑思维能力和创造性思维能力等。
这些能力将有助于学生更好地理解和掌握数学知识,并能够更好地解决实际问题。
人教版,六年级数学上册,概念与公式总结与整理汇总
人教版,六年级数学上册,概念与公式总结与整理汇总一、数字与计算1. 数的分类- 自然数:1、2、3、4、...- 整数:...、-3、-2、-1、0、1、2、3、...- 分数:两个整数的比,如1/2、2/3等- 小数:带有小数点的数,如0.5、3.14等2. 加法与减法- 加法:用"+"表示,求两个数的和- 减法:用"-"表示,求两个数的差3. 乘法与除法- 乘法:用"×"表示,求两个数的积- 除法:用"÷"表示,求两个数的商4. 概念与公式- 数字的位数:一个数使用的十进制数的个数- 十进制数:由0至9这10个数字组成的数- 进位和退位:个位数满10向高一位进位,高位数满10向低一位退位- 数根:将一个数的各个数字相加,直到得到个位数为止,所得数即为数根二、图形与空间1. 图形的分类- 点:没有长度、宽度、高度,只有位置- 线段:由两个端点确定的部分- 直线:无限延伸的线段- 射线:有一个起点,无限延伸的一部分- 角:由两条线共同围成的部分2. 长度与面积- 长度:用来度量线段的大小- 面积:用来度量二维图形的大小3. 概念与公式- 周长:封闭曲线的长度- 面积:二维图形所包围的空间的大小- 相似图形:形状相同,但大小可以不同的图形- 对称图形:存在中心轴,两边是相同的三、数据与统计1. 数据的收集- 调查法:通过问卷、访问等方式进行数据收集- 取样法:对整体数据进行抽样,以代表整体- 摸底法:逐一统计全部数据2. 数据的整理与处理- 统计表:将数据按照一定的顺序进行整理- 条形图:用长短不同的条形表示数据的大小- 折线图:用折线表示数据的变化情况3. 概念与公式- 数据集:所收集到的全部数据- 平均数:所有数据的和除以数据的个数- 极差:最大值与最小值之间的差距- 频数:某个数出现的次数。
新人教版六年级上册数学知识点总结
新人教版六年级上册数学知识点总结新人教版六年级上册数学知识点简单总结第一单元分数乘法分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:3/5 × 4 = 12/52.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:3/4 × 5/7 = 15/283.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
规律:(乘法中比较大小时)一个数(除外)乘小于1的数(除外),积小于这个数。
例如:3/6 × 3/5 = 9/30 < 3/6一个数(除外)乘1,积等于这个数。
例如:4/5 × 1 = 4/5 一个数(除外)乘大于1的数,积大于这个数。
例如:3/5 × 2 = 6/5分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a × (b × c)乘法分配律:(a + b) × c = a × c + b × c = (a + b) × c分数乘法的解决问题:如果单位1是已知的,要求它的几分之几,就用乘法。
1.找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面。
“是”前用乘,“是”后用除。
2.求一个数的几倍:一个数 ×几倍;3.求一个数的几分之几是多少:一个数 ×几分之几。
4.写数量关系式技巧:的”相当于“×”。
“占”、“是”、“比”相当于“=”。
分率前是“的”:单位“1”的量 ×分率 = 分率对应量。
分率前是“多或少”的意思:单位“1”的量 × (1 + -分率) = 分率对应量。
人教版小学六年级数学上册各单元知识点总结归纳整理(完整版)
人教版六年级上册知识点总结六年级上册数学知识点第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓竖排叫列 横排叫行(从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
12 3 4 0行号一、确定物体位置的方法: 1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
全册人教版数学六年级上册知识点总结1-8单元
第1单元分数乘法一、分数乘整数的意义及计算方法分数乘整数的意义与整数乘法的意义相同, 都是求几个相同加数的和的简便运算。
计算时用分数的分子和整数相乘的积作分子,分母不变,能约分的要先约分。
二、一个数乘分数的意义一个数乘分数的意义就是求这个数的几分之几是多少。
三、分数乘分数的计算方法分数乘分数,用分子相乘的积作分子,分母相乘的积作分母,能约分的要先约分。
四、小数乘分数的计算方法小数乘分数,可以把小数化成分数再计算,也可以把分数化成小数再计算,还可以直接将小数与分数的分母进行约分,再计算。
五、分数混合运算的运算顺序没有括号的,先算乘除法,再算加减法;有括号的,先算括号里面的,再算括号外面的。
六、整数乘法运算律推广到分数乘法整数乘法的运算律对于分数乘法同样适用。
应用乘法的运算律进行计算,可以使一些计算简便。
七、连续求一个数的几分之几是多少的实际问题解答这类实际问题的关键是弄清楚单位“1”是谁,要求的量是单位“1”的几分之几,再根据分数乘法的意义进行解答。
八、求比一个数多(或少)几分之几的数是多少的问题解题方法:①单位“1”的量±单位“1”的量×比单位“1”多(或少)的几分之几=另一个量;②单位“1”的量×(1±比单位“1”多(或少)的几分之几)=另一个量。
第2单元位置与方向(二)一、根据平面示意图确定某个点的位置在平面图上描述某个点的位置时,需要描述清楚方向和距离这两个条件。
二、在平面图上确定某个点的位置在平面图上确定某个点的位置时,先确定方向,再确定距离。
三、描述简单的路线图先按行走路线确定每一个观测点, 然后以每一个观测点为起点,再描述到下一个目标行走的方向和距离。
四、绘制简单的路线图根据描述,从起点出发,确定方向和距离,第一段以起点为观测点,后面每段都要以前一段的终点为观测点。
以谁为观测点,就以谁为中心画出“十”字方向标,然后判断下一段的方向和距离。
第3单元分数除法一、倒数的意义积是1的两个数互为倒数。
【人教版】小学数学六年级上册【知识点】归纳总结
六年级上册数学知识点 第一单元 位臵1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位臵。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?行号A ×61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
新人教版六年级数学上册知识点总结
新人教版六年级数学上册知识点总结
本文档旨在总结新人教版六年级数学上册的知识点,帮助学生更好地研究和复数学知识。
1. 数的认识和数的读写
- 数的认识:了解自然数、整数、小数的概念和特点。
- 数的读写:掌握数的正确读法和书写方法。
2. 万以内的数
- 比较大小:掌握比较大小的方法,能够正确比较万以内数的大小。
- 用途:了解万以内数的实际用途,能够运用数的概念解决实际问题。
3. 加法和减法
- 加法:掌握加法的基本概念和运算方法,能够进行简单的加法计算。
- 减法:掌握减法的基本概念和运算方法,能够进行简单的减法计算。
4. 乘法和除法
- 乘法:了解乘法的概念和运算方法,能够进行简单的乘法计算。
- 除法:了解除法的概念和运算方法,能够进行简单的除法计算。
5. 分数的认识
- 分数的概念:了解分数的基本概念和特点。
- 分数的读写:掌握分数的正确读法和书写方法。
6. 分数的加减法
- 分数的加法:了解分数的加法概念和运算方法,能够进行简单的分数加法计算。
- 分数的减法:了解分数的减法概念和运算方法,能够进行简单的分数减法计算。
7. 简便计算法
- 简便计算法:了解简便计算法的概念和运用方法。
以上是新人教版六年级数学上册的主要知识点总结。
希望本文档能对学生的研究和复有所帮助。
新人教版六年级上册数学知识点分类汇总
新人教版六年级上册数学知识点分类汇总第一单元 分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数, 积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1, 积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c常见乘法计算(敏感数字) :25×4=100 125×8=1000加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子0.875+23 +18 23 +14 +0.8 0.4×33×52 23×0.375×163=78 +23 +18 =23 +14 +45 =25 ×33×52 =23×38 ×163=78 +18 +23 =23 +(14 +45 ) =25 ×25 ×33 =23 ×(38 ×163) =1+23 =23+1 =1×3 =23×2 含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式0.875+23 +18 +13 0.375×297 ×163 ×729 35×536 101×910=78 +23 +18 +13 =38 ×297 ×163 ×729 = (36-1) ×536 = (100+1) ×910=78 +18 + 23 +13 =38 ×163 ×297 ×729 =36×536 -1×536 =100×910 +1×910= (78 +18 )+ (23 +13 ) = (38 ×163 )×(297 ×729 ) =5-536 =1+910=1+1 =2×1乘法分配律提取式 乘法分配律提取式 乘法分配律(添项) 乘法分配律(添项)101×0.9-910 ×1 95.5÷1.6-15.5÷1.6 101×0.9-910 52×58 +29×58-0.625 =101×910 -910 ×1 =(95.5-15.5)÷1.6 =101×910 -910 =52×58 +29×58 -58=101×910 -1×910 =80÷1.6 =101×910 -1×910 =52×58 +29×58 -1×58=(101-1) ×910 =800÷16 =(101-1) ×910 =(52+29-1)×58=100×910 =100×910 =80×58减法的性质简算例子 减法的性质简算例子 减法的性质简算例子 数字换乘法式18-58 -0.375 134 -716 -0.75 1225 -(716+0.4) 0.56×125 =18-58 -38 =134 -716 -34 =1225 -(716 +25) =0.7×0.8×125 =18-(58 +38 ) =134 -34 -716 =1225 -25 -716=0.7×(0.8×125) =18-1 =1-716 =12-716=0.7×100 除法的性质简算例子 除法的性质简算例子 除法的性质简算例子 数字换乘法式3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333=3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333=3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999同级运算中,第一个数不能动,后面的数可以带着符号搬家 =11111×(100000-1)123 +716 -23 250÷0.8×0.4 123 -716 +1329×0.25÷0.29 =123 -23 +716 =250×0.4÷0.8 =123 +13 -716=29÷0.29×0.25 =1+716 =100÷0.8 =2-716=100×0.25 二、分数乘法的解决问题(如果单位1是已知的, 要求它的几分之几,就用乘法)1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面2、求一个数的几倍: 一个数×几倍;求一个数的几分之几是多少: 一个数×几分之几 。
人教版六年级上册数学知识点归纳总结
目录第一单元负数 (2)第二单元百分数二 (4)第三单元圆柱和圆锥 (6)第四单元比例 (12)第五单元数学广角-鸽巢问题 (17)第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
新人教版六年级数学上册各单元知识点归纳
新人教版六年级数学上册各单元知识点归纳第一单元:整数1. 整数的概念整数是正整数、零、负整数的总称。
用于表示具有相反意义的数,其绝对值较大的数是正数,较小的数是负数。
2. 整数的比较整数的大小关系可通过数轴、绝对值、直接比较等形式进行判断。
3. 整数的加法和减法整数之间的加法和减法运算规则与非负整数相同,注意正数加负数和负数减正数的特殊情况。
4. 整数的乘法和除法整数之间的乘法和除法运算规则可通过实际问题、计算器等途径进行理解与计算。
第二单元:有理数1. 有理数的概念有理数包括整数和分数,是指可以表达为两个整数的比例的数。
2. 有理数的分类有理数可以分为正有理数、负有理数和零,需要注意有理数的绝对值和大小关系。
3. 有理数的加法和减法有理数的加法和减法运算规则与整数相似,需要注意同号和异号数的相加与相减。
4. 有理数的乘法和除法有理数的乘法和除法运算规则与整数相似,需要注意同号和异号数的相乘与相除。
第三单元:分数1. 分数的概念分数是指整数除以非零整数所得的数,由分子和分母两部分组成。
2. 分数的化简分数可通过约分化简,使分子和分母的最大公约数为1,从而得到最简分数。
3. 分数之间的关系分数可以通过比较分子和分母的大小关系进行大小比较。
4. 分数的加法和减法分数的加法和减法需要找到公共分母,并将分数转化为通分后再进行运算。
第四单元:小数1. 小数的概念小数是指除不尽的分数,可表示为有限小数或循环小数。
2. 小数的读法和写法小数的读法和写法要熟练掌握,包括整数部分、小数点、小数位数等。
3. 小数之间的关系小数的大小关系可通过比较小数位数、小数点后面的数字大小进行判断。
4. 小数的加法和减法小数的加法和减法运算规则与整数相同,需要注意小数位数对齐和进位借位的特点。
第五单元:相反数和绝对值1. 相反数的概念相反数是指绝对值相等、符号相反的两个数。
2. 相反数的性质相反数的加法和减法运算满足特定性质,即相反数相加等于零。
最全面人教版数学六年级上册知识点归纳总结
最全面人教版数学六年级上册知识点归纳总结人教版数学六年级上册知识点是学生在初中数学学习过程中的基本知识,需要学生认真掌握和理解。
下面是数学六年级上册知识点的详细归纳总结。
第一章分类整数知识点1.1 整数和自然数自然数:1, 2, 3, 4, 5,…….(不包括0)整数:…….-2, -1, 0, 1, 2, ……(自然数和负整数)知识点1.2 整数的相加法则同号两数相加,绝对值相加,符号不变;异号两数相加,绝对值相减,结果的符号与绝对值较大的数的符号相同。
知识点1.3 整数减法整数减法可以转化为加法,即a - b = a + (-b)知识点1.4 绝对值数轴上数a的绝对值,表示为|a|,表示a到0的距离。
知识点1.5 整数的大小比较两个整数比较大小,可以先比较绝对值,再根据符号确定大小。
知识点1.6 整数的拓展绝对值可以是小数或分数,小数或分数的绝对值用绝对值符号表示。
第二章十进制小数知识点2.1 小数的意义小数是指有小数点的数,小数点是整数位和小数位的分界线。
知识点2.2 小数的读法从小数点左起第一位到最后一位依次读出,小数点可以读作“点”.知识点2.3 小数的比较比较小数大小,可以先确定小数点后的整数大小,然后比较小数点后的小数位。
知识点2.4 小数的相加法则小数相加,先让小数点对齐,然后按位相加,最后把小数点写在和的下方。
知识点2.5 小数的减法法则小数相减,先让小数点对齐,然后按位相减,最后把小数点写在答案的下方。
知识点2.6 小数的乘法法则小数相乘,先把小数前的数乘起来,再把总位数相加,最后把小数点放到乘积中位数的位置。
知识点2.7 小数的除法法则小数相除,先把被除数和除数放大到整数,再按整数的除法法则计算,最后把小数点放在商中位数的位置。
第三章平面图形知识点3.1 分类平面图形可以分为点、线、面,其中面又可分为三角形、四边形等。
知识点3.2 三角形三角形是由三条边和三个角组成的图形,可以根据边长和角度分类。
最新人教版六年级(上册)数学知识点归纳与整理
最新人教版六年级(上册)数学知识点归纳与整理六年级数学上册知识点归纳与整理第一单元分数乘法一、分数乘法的意义1.分数乘整数的意义与整数乘法相同,都是求几个相同加数和的简便运算。
例如:3/4×6,表示6个3/4相加的和是多少,也表示6的3/4倍是多少。
2.一个数(小数、分数、整数)乘以分数的意义不同于整数乘法,它表示这个数的几分之几是多少。
例如:6×2/3,表示6的2/3是多少。
二、分数乘法的计算法则1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3.注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三、分数大小的比较1.一个数(除外)乘以一个真分数,所得的积小于它本身。
一个数(除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(除外)乘以一个带分数,所得的积大于它本身。
2.如果几个不相等的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
四、解决实际问题1.分数应用题一般解题步骤:1)找出含有分数的关键句。
2)找出单位“1”的量。
3)根据线段图写出等量关系式:单位“1”的量×对应分数=对应量。
4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念:1)乘法应用题的解题思路是:已知一个数,求这个数的几分之几是多少?2)找单位“1”的方法是:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少的数占乙的几分之几。
4)在应用题中,例如“小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?”题目中的“增产”是指多的意思,因此应该是“多比少多”。
即今年水稻的亩产量比去年水稻的亩产量多几分之几。
最新人教版六年级上册数学知识点归纳与整理-六年级数学上学期知识点
最新人教版六年级上册数学知识点归纳与整理-六年级数学上学期知识点亲爱的小伙伴们,今天我们来聊聊最新人教版六年级上册数学知识点归纳与整理-六年级数学上学期知识点。
我们要明白数学可是个很重要的学科哦,它就像我们的生活一样,充满了各种各样的数字和形状。
让我们一起来探索一下这个神奇的世界吧!一、认识图形1.1 长方形、正方形和平行四边形长方形、正方形和平行四边形是我们生活中最常见的图形。
长方形就像我们的课桌,有四条边,四个角;正方形就像我们家里的门,四条边相等,四个角都是直角;平行四边形就像我们的书本,对边平行。
1.2 三角形三角形是由三条边组成的图形。
我们可以把三角形分成等腰三角形、等边三角形和不等边三角形。
等腰三角形有两条相等的边,等边三角形的三条边都相等,而不等边三角形的三条边都不相等。
二、认识数字2.1 数字的大小比较我们要学会比较数字的大小,可以用大于、小于、等于符号表示。
例如:3 > 2,5 < 7,8 = 8。
2.2 分数和小数分数就是把一个整体平均分成若干份,取其中的一份或者几份。
例如:1/2表示把一个整体平均分成2份,取其中一份;0.5表示把一个整体平均分成10份,取其中5份。
三、认识时间和速度3.1 时钟的认识时钟上有12个数字,上面有三个指针,分别是时针、分针和秒针。
时针表示小时,分针表示分钟,秒针表示秒。
我们要学会看时钟,知道现在是几点几分几秒。
3.2 速度的认识速度是指物体在单位时间内移动的距离。
我们可以用“米/秒”来表示速度。
例如:小明跑得很快,他的速度是10米/秒。
四、认识面积和体积4.1 面积的认识面积是指一个平面区域所占的大小。
我们可以用“平方米”来表示面积。
例如:这个房间的面积是20平方米。
4.2 体积的认识体积是指一个立体空间所占的大小。
我们可以用“立方米”来表示体积。
例如:这个盒子的体积是0.5立方米。
五、认识加减乘除法5.1 加法和减法加法就是把两个或多个数合并在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元分数乘法一、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
二、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数(即除1以外的假分数),积大于这个数。
一个数(0除外)乘小于1的数(即真分数),积小于这个数。
三、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律:( a ×b )×c = a ×( b × c )乘法分配律:(a + b )×c = a c + b c a c + b c = (a + b )×c四、分数乘法的解决问题(如果单位1是已知的, 要求它的几分之几,就用乘法)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”(2)单位1×比率=比较量第二单元位置与方向一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
例如:小白家在小黑家的东偏南30度方向上,距离20km。
小黑家在小白家的西偏北30度方向上,距离20km第三单元分数除法倒数的意义:乘积是1的两个数互为倒数。
1的倒数是1;0没有倒数强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
一、分数除法1、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
2、“[ ]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、解决问题(单位“1”未知的,就用除法)1、谁是谁的几分之几单位1×比率=比较量2、比谁多比谁少单位1×比率=比较量(增加的量对应增加的比率,减少的量对应减少的比率,要求的量对应要求的量占单位一的比率)3、两个未知数用解方程或者比率的方法4、工程问题工作总量=工作总时间×工作效率部分工作量=部分工作时间×工作效率第四单元比一、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
二、比的基本性质1、求比值:直接除(15:12=15÷12=1.25)2、化简比:根据比的前项和后项同时乘以或除以同一个数零除外,比的大小不变3、路程一定,速度比和时间比成反比(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比第五单元圆一、圆的周长1、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π 表示。
(1)、圆周率π是一个无限不循环小数。
在计算时,一般取π≈3.14(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
2、圆的周长公式:C= πd C= 2πr二、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积,用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫扇形,顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:(1)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(2)、拼出的图形与圆的周长和半径的关系:长方形的宽=r长方形的长=C/2 =π r圆的面积= 圆周长的一半×圆的半径=π r×r=π r24、环形的面积:一个环形,外圆的半径是R,内圆的半径是r。
(R=r+环的宽度)S环=π R2- π r2或S环=π ×(R2- r2)三、常用各π值结果:π = 3.142π = 6.283π = 9.424π = 12.565π = 15.76π = 18.847π = 21.988π = 25.129π = 28.2610π = 31.4第六单元百分数(一)一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指两个数的比,因此也叫百分率或百分比。
2、百分数和分数的区别:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
二、百分数与小数的互化:1、小数化成百分数:把小数点向右移两位,同时添上百分号。
2、百分数化成小数:把小数点向左移两位,同时去掉百分号。
三、常见的百分率的计算方法:①合格率=合格产品数/产品总数×100% ②发芽率= 发芽种子数/种子总数×100% ③出勤率=出勤人数/总人数×100% ④达标率=达标人数/总人数×100%⑤成活率=成活数量/总数量×100% ⑥出粉率=粉的重量/出粉物的重量×100% ⑦出米率=米的数量/出米物的重量⑧出油率=油的重量/出油物的重量数×100%第七单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子0.875+23 +18 23 +14 +0.8 0.4×33×52 23×0.375×163=78 +23 +18 =23 +14 +45 =25 ×33×52 =23×38 ×163=78 +18 +23 =23 +(14 +45 ) =25 ×25 ×33 =23 ×(38 ×163) =1+23 =23+1 =1×3 =23×2 含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式0.875+23 +18 +13 0.375×297 ×163 ×729 35×536 101×910=78 +23 +18 +13 =38 ×297 ×163 ×729 = (36-1) ×536 = (100+1) ×910 =78 +18 + 23 +13 =38 ×163 ×297 ×729 =36×536 -1×536 =100×910 +1×910 = (78 +18 )+ (23 +13 ) = (38 ×163 )×(297 ×729 ) =5-536 =1+910=1+1 =2×1乘法分配律提取式 乘法分配律提取式 乘法分配律(添项) 乘法分配律(添项)101×0.9-910 ×1 95.5÷1.6-15.5÷1.6 101×0.9- 910 52×58 +29×58-0.625 =101×910 -910 ×1 =(95.5-15.5)÷1.6 =101×910 - 910 =52×58 +29×58 -58=101×910 -1×910 =80÷1.6 =101×910 -1×910 =52×58 +29×58 -1×58=(101-1) ×910 =800÷16 =(101-1) ×910 =(52+29-1)×58=100×910 =100×910 =80×58减法的性质简算例子 减法的性质简算例子 减法的性质简算例子 数字换乘法式18-58 -0.375 134 -716 -0.75 1225 -(716+0.4) 0.56×125 =18-58 -38 =134 -716 -34 =1225 -(716 +25) =0.7×0.8×125 =18-(58 +38 ) =134 -34 -716 =1225 -25 -716=0.7×(0.8×125) =18-1 =1-716 =12-716=0.7×100 除法的性质简算例子 除法的性质简算例子 除法的性质简算例子 数字换乘法式 3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333 =3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333 =3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999 同级运算中,第一个数不能动,后面的数可以带着符号搬家 =11111×(100000-1)123 +716 -23 250÷0.8×0.4 123 -716 +1329×0.25÷0.29 =123 -23 +716 =250×0.4÷0.8 =123 +13 -716=29÷0.29×0.25 =1+716 =100÷0.8 =2-716=100×0.25 高级单位化低级单位: 高级单位的数×进率低级单位聚高级单位: 低级单位的数÷进率长度单位换算 km m dm cm mm1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 km² m² dm² cm² mm²1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算 L mL m³ dm³ cm³1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升1立方米=1000升 1立方分米=1升 1立方厘米=1毫升质量单位换算 t k ɡ ɡ1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算 h min s1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒。