双曲线》典型例题12例(含标准答案)
双曲线及其标准方程练习题答案及详解
![双曲线及其标准方程练习题答案及详解](https://img.taocdn.com/s3/m/0410a972336c1eb91a375d96.png)
双曲线及其标准方程练习题高二一部数学组刘苏文2017年5月2日一、选择题1.平面内到两定点E、F的距离之差的绝对值等于|EF|的点的轨迹是()A.双曲线B.一条直线C.一条线段D.两条射线2.已知方程-=1表示双曲线,则k的取值范围是()A.-1<k<1 B.k>0C.k≥0 D.k>1或k<-13.动圆与圆x2+y2=1和x2+y2-8x+12=0都相外切,则动圆圆心的轨迹为()A.双曲线的一支B.圆C.抛物线D.双曲线4.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是A.-y2=1 B.y2-=1C.-=1 D.-=15.“ab<0”是“曲线ax2+by2=1为双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知双曲线的两个焦点为F1(-,0)、F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|·|PF2|=2,则该双曲线的方程是()A.-=1B.-=1C.-y2=1 D.x2-=17.椭圆+=1与双曲线-=1有相同的焦点,则m的值是() A.±1 B.1C.-1 D.不存在8.已知点F1(-4,0)和F2(4,0),曲线上的动点P到F1、F2距离之差为6,则曲线方程为()A.-=1B.-=1(y>0)C.-=1或-=1D.-=1(x>0)9.已知双曲线的左、右焦点分别为F1、F2,在左支上过F1的弦AB的长为5,若2a=8,那么△ABF2的周长是()A.16 B.18C.21 D.2610.若椭圆+=1(m>n>0)和双曲线-=1(a>0,b>0)有相同的焦点,P 是两曲线的一个交点,则|PF1|·|PF2|的值为()A.m-a B.m-b C.m2-a2 D.-二、填空题11.双曲线的焦点在x轴上,且经过点M(3,2)、N(-2,-1),则双曲线标准方程是________.12.过双曲线-=1的焦点且与x轴垂直的弦的长度为________.13.如果椭圆+=1与双曲线-=1的焦点相同,那么a=________. 14.一动圆过定点A(-4,0),且与定圆B:(x-4)2+y2=16相外切,则动圆圆心的轨迹方程为________.三、解答题15.设双曲线与椭圆+=1有共同的焦点,且与椭圆相交,在第一象限的交点A的纵坐标为4,求此双曲线的方程.16.已知双曲线x2-=1的焦点为F1、F2,点M在双曲线上且·=0,求点M到x轴的距离.答案及详解1、D2、A由题意得(1+k)(1-k)>0,∴(k-1)(k+1)<0,∴-1<k<1.3、A设动圆半径为r,圆心为O,x2+y2=1的圆心为O1,圆x2+y2-8x+12=0的圆心为O2,由题意得|OO1|=r+1,|OO2|=r+2,∴|OO2|-|OO1|=r+2-r-1=1<|O1O2|=4,由双曲线的定义知,动圆圆心O的轨迹是双曲线的一支.4、B由题意知双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,双曲线方程为y2-=1.5、C ab<0?曲线ax2+by2=1是双曲线,曲线ax2+by2=1是双曲线?ab<0.6、C∵c=,|PF1|2+|PF2|2=|F1F2|2=4c2,∴(|PF1|-|PF2|)2+2|PF1|·|PF2|=4c2,∴4a2=4c2-4=16,∴a2=4,b2=1.7、A验证法:当m=±1时,m2=1,对椭圆来说,a2=4,b2=1,c2=3.对双曲线来说,a2=1,b2=2,c2=3,故当m=±1时,它们有相同的焦点.直接法:显然双曲线焦点在x轴上,故4-m2=m2+2.∴m2=1,即m=±1.8、D由双曲线的定义知,点P的轨迹是以F1、F2为焦点,实轴长为6的双曲线的右支,其方程为:-=1(x>0)9、D|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF2|+|BF2|-(|AF1|+|BF1|)=16,∴|AF2|+|BF2|=16+5=21,∴△ABF2的周长为|AF2|+|BF2|+|AB|=21+5=26.10、A设点P为双曲线右支上的点,由椭圆定义得|PF1|+|PF2|=2,由双曲线定义得|PF1|-|PF2|=2.∴|PF1|=+,|PF2|=-,∴|PF1|·|PF2|=m-a.11、-=112、∵a2=3,b2=4,∴c2=7,∴c=,该弦所在直线方程为x=,由得y2=,∴|y|=,弦长为.13、1由题意得a>0,且4-a2=a+2,∴a=1.14、-=1(x≤-2)设动圆圆心为P(x,y),由题意得|PB|-|P A|=4<|AB|=8,由双曲线定义知,点P的轨迹是以A、B为焦点,且2a=4,a=2的双曲线的左支.其方程为:-=1(x≤-2).15、椭圆+=1的焦点为(0,±3),由题意,设双曲线方程为:-=1(a>0,b>0),又点A(x0,4)在椭圆+=1上,∴x=15,又点A在双曲线-=1上,∴-=1,又a2+b2=c2=9,∴a2=4,b2=5,所求的双曲线方程为:-=1.16、解法一:设M(x M,y M),F1(-,0),F2(,0),=(--x M,-y M),=(-x M,-y M)∵·=0,∴(--x M)·(-x M)+y=0,又M(x M,y M)在双曲线x2-=1上,∴x-=1,解得y M=±,∴M到x轴的距离是|y M|=.解法二:连结OM,设M(x M,y M),∵·=0,∴∠F1MF2=90°,∴|OM|=|F1F2|=,∴=①又x-=1②由①②解得y M=±,∴M到x轴的距离是|y M|=.。
双曲线经典练习题总结(带答案)
![双曲线经典练习题总结(带答案)](https://img.taocdn.com/s3/m/599be8ae52d380eb63946dab.png)
双曲线经典练习题总结(带答案)一、选择题1.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程为( C )A .x 216-y 248=1B .y 29-x 227=1C .x 216-y 248=1或y 29-x 227=1D .以上都不对[解析] 当顶点为(±4,0)时,a =4,c =8,b =43,双曲线方程为x 216-y 248=1;当顶点为(0,±3)时,a =3,c =6,b =33,双曲线方程为y 29-x 227=1.2.双曲线2x 2-y 2=8的实轴长是( C ) A .2 B .22 C .4 D .42[解析] 双曲线2x 2-y 2=8化为标准形式为x 24-y 28=1,∴a =2,∴实轴长为2a =4.3.(全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( C )A .(2,+∞)B .(2,2 )C .(1,2)D .(1,2)[解析] 由题意得双曲线的离心率e =a 2+1a. ∴c 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C .4.(2018·全国Ⅲ文,10)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( D ) A .2 B .2 C .322D .22[解析] 由题意,得e =ca=2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近线方程为x ±y =0,点(4,0)到渐近线的距离为42=22, 故选D .5.(2019·全国Ⅲ卷理,10)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( A ) A .324B .322C .22D .32[解析] 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 6.若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( A ) A .2 B .3 C .2D .233[解析] 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3.根据点到直线的距离公式得2b a 2+b 2=3,解得b 2=3a 2. 所以C 的离心率e =ca =c 2a 2=1+b 2a2=2.故选A . 二、填空题7.(2019·江苏卷,7)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是 [解析] 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1(b >0),解得b =2,即双曲线方程为x 2-y 22=1,其渐近线方程为y =±2x .8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是__-12<k <0__.[解析] 双曲线方程可变形为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k2.又因为e ∈(1,2),即1<4-k2<2,解得-12<k <0. 三、解答题9.(1)求与椭圆x 29+y 24=1有公共焦点,且离心率e =52的双曲线的方程;(2)求实轴长为12,离心率为54的双曲线的标准方程.[解析] (1)设双曲线的方程为x 29-λ-y 2λ-4=1(4<λ<9),则a 2=9-λ,b 2=λ-4,∴c 2=a 2+b 2=5,∵e =52,∴e 2=c 2a 2=59-λ=54,解得λ=5, ∴所求双曲线的方程为x 24-y 2=1.(2)由于无法确定双曲线的焦点在x 轴上还是在y 轴上,所以可设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0).由题设知2a =12,c a =54且c 2=a 2+b 2,∴a =6,c =152,b 2=814.∴双曲线的标准方程为x 236-y 2814=1或y 236-x 2814=1.B 级 素养提升一、选择题1.如果椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,那么双曲线x 2a 2-y 2b 2=1的离心率为( A )A .52B .54C .2D .2[解析] 由已知椭圆的离心率为32,得a 2-b 2a 2=34,∴a 2=4b 2.∴a 2+b 2a 2=5b 24b 2=54.∴双曲线的离心率e =52. 2.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( C )A .m >12B .m ≥1C .m >1D .m >2[解析] 本题考查双曲线离心率的概念,充分必要条件的理解. 双曲线离心率e =1+m >2,所以m >1,选C .3.(多选题)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1、F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值可能是( BC ) A .-1 B .0 C .12D .1[解析] 由双曲线方程可知F 1(-3,0)、F 2(3,0), ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+(-y 0)(-y 0)<0, 即x 20+y 20-3<0,∴2+2y 20+y 20-3<0,y 20<13, ∴-33<y 0<33,故选BC . 4.(多选题)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( BD ) A .对任意的a ,b ,e 1>e 2 B .当a <b 时,e 1>e 2 C .对任意的a ,b ,e 1<e 2 D .当a >b 时,e 1<e 2[解析] 由条件知e 21=c 2a 2=1+b 2a2,e 22=1+⎝ ⎛⎭⎪⎫b +m a +m 2,当a >b 时,b +m a +m >ba ,∴e 21<e 22.∴e 1<e 2.当a <b 时,b +m a +m <ba ,∴e 21>e 22.∴e 1>e 2.所以,当a >b 时,e 1<e 2;当a <b 时,e 1>e 2. 二、填空题5.(2019·课标全国Ⅰ理,16)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__2__.[解析] 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,∵F 1B →·F 2B →=0,∴F 1B ⊥F 2B ,∴点B 在⊙O :x 2+y 2=c 2上,如图所示,不妨设点B 在第一象限,由⎩⎪⎨⎪⎧y =b ax x 2+y 2=c2a 2+b 2=c 2x >0,得点B (a ,b ),∵F 1A →=AB →,∴点A 为线段F 1B 的中点,∴A ⎝⎛⎭⎪⎫a -c 2,b 2,将其代入y =-b a x 得b 2=⎝⎛⎭⎫-b a ×a -c 2.解得c =2a ,故e =ca=2.6.已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为__y =±23x __.[解析] 由已知得9+a =13,即a =4,故所求双曲线的渐近线为y =±23x .三、解答题7.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),F 1(-c,0)、F 2(c,0).因为双曲线过点P (42,-3), 所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 所以c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1. 8.(2020·云南元谋一中期中)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,其斜率为-3,求双曲线的离心率.[解析] (1)由题意,ba =1,c =2,a 2+b 2=c 2,∴a 2=b 2=2,∴双曲线方程为x 22-y 22=1.(2)由题意,设A (m ,n ),则k OA =33,从而n =33m ,m 2+n 2=c 2,∴A (32c ,c 2), 将A (32c ,c 2)代入双曲线x 2a 2-y 2b 2=1得:3c 24a 2-c 24b 2=1,∴c 2(3b 2-a 2)=4a 2b 2,且c 2=a 2+b 2,∴(a 2+b 2)(3b 2-a 2)=4a 2b 2, ∴3b 4-2a 2b 2-a 4=0,∴3(b a )4-2(ba )2-1=0,∴b 2a 2=1从而e 2=1+b 2a 2=2,∴e = 2.。
双曲线直线题(含答案)
![双曲线直线题(含答案)](https://img.taocdn.com/s3/m/517efd7aa26925c52cc5bfcd.png)
中考专题复习:双曲线,直线班级 姓名1. 已知:如图,直线13y x =与双曲线ky x=交于A 、B(1)求双曲线ky x=的解析式;(2)点C (,4n )在双曲线ky x=上,求△AOC (3)在(2)的条件下,在x 轴上找出一点P, 使△AOC 的面积等于△AOP 的面积的三倍。
请直接写出....所有符 合条件的点P 的坐标.1.解:(1)∵点A (6,)m 在直线13y x =上,∴1623m =⨯=. ∵点A (6,2)在双曲线y =∴26k=, 12k =.∴双曲线的解析式为12y x=.(2)分别过点C ,A 作CD ⊥x 轴,AE ⊥x 轴,垂足分别为点D ,E .(如图5) ∵点C (,4)n 在双曲线12y x =上, ∴124n=,3n =,即点C 的坐标为(3,4). ∵点A ,C 都在双曲线12y x=上, ∴11262AOE COD S S ∆∆==⨯=. ∴AOC S ∆=COEA S 四边形AOE S ∆-=COEA S 四边形COD S ∆-=CDEA S 梯形,∴AOC S ∆=DE AE CD ⋅+)(21=)36()24(21-⨯+⨯=9.(3)P(3,0)或P(-3,0).2.已知一次函数y kx b =+的图象与直线y = 平行且经过点()3,2-,与x 轴、y 轴分别交于 A 、 B 两点.(1)求此一次函数的解析式;(2)点C 是坐标轴上一点,若△ABC 是底角为︒30的 等腰三角形,求点C 的坐标.2.解:(1)∵一次函数y kx b =+的图象与直线y =平行且经过点()3,2-∴⎩⎨⎧-=+-=323b k k 解得⎩⎨⎧=-=33b k∴一次函数解析式为33+-=x y (2)令0=y ,则1=x ;令0=x 则3=y ∴()()3,0,0,1B A ∵1=OA ,3=OB ∴2=AB ∴︒=∠30ABO若AC AB =,可求得点C 的坐标为()0,31C 或()3,02-C 若CA CB =如图︒=︒-︒=∠3030603OAC ,3330tan 3=︒=OA OC ∴⎪⎪⎭⎫⎝⎛33,03C ∴()0,31C ,()3,02-C ,⎪⎪⎭⎫⎝⎛33,03C3.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y (万吨)随着时间x (年)逐年成直线上升,y 与x 之间的关系如图所示.(1)求y 与x 之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?3.解:(1)设y 与x 之间的关系式为y=kx+b .由题意,得20084,2010 6.k b k b +=⎧⎨+=⎩ 解得1,2004.k b =⎧⎨=-⎩∴y 与x 之间的关系式为y =x -2004(2008≤x ≤2012).(2)当x =2012时,y =2012-2004=8.∴该市2012年因“限塑令”而减少的塑料消耗量约为8万吨.4. 如图,已知反比例函数y =x6(x >0)的图象与一次函数y =kx +b 的图象交于点A (1,m ),B (n ,2)两点. (1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x 的取值范围.4.解:(1)由题意得,m=6,n=3. ∴A (1,6),B (3,2)由题意得,⎩⎨⎧=+=+236b k b k解得,⎩⎨⎧=-=82b k∴一次函数解析式为y=-2x+8(2)反比例函数的值大于一次函数的值的x 的取值范围是0<x<1或x>3.5.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.5.解:(1) 反比例函数ky x=的图象经过点A (-1,1) , ∴-11-1k =⨯=.…………1分(2)P 1(0、 P 2(0,、P 3(0,2)、 P 4(0,-2) ……5分6.点C 在反比例函数xky =的图象上,过点C 作CD ⊥y 轴, 交y 轴负半轴于点D ,且△ODC 的面积是3.(1)求反比例函数xky =的解析式; (2)若CD =1,求直线OC 的解析式.6. 解:(1)∵△ODC 的面积是3, ∴6=⋅DC OD∵点C 在xky =的图象上, ∴x y=k . ∴(- y) x = 6. ∴ k = x y = -6.∴所求反比例函数解析式为x6y -=. (2)∵ CD =1,即点C ( 1, y ),7.如图,A 、B 两点在反比例函数ky x=(x >0)的图象上. (1)求该反比例函数的解析式;(2)连结AO 、BO 和AB ,请直接写出△AOB 的面积.7.解:(1)∵点A (1,6)在反比例函数(0)my x x=>的图象上,∴166m xy ==⨯= .∴反比例函数解析式为6(0)y x x= . (2)△AOB 的面积是352.8. 如图,一次函数的图象与x 轴、y 轴分别交于 点A (-2, 0)、B (0, 2).(1)求一次函数的解析式;(2)若点C 在x 轴上,且OC =23, 请直接写出 ∠ABC 的度数.8.解:(1)依题意设一次函数解析式为2y kx =+.∵ 点A (2,0-)在一次函数图象上,∴022k =-+.∴ k =1.∴ 一次函数的解析式为2y x =+. (2)ABC ∠的度数为15︒或105︒.9.如图,已知:反比例函数ky x=(x <0)的图象经过 点A (-2,4)、B (m ,2),过点A 作AF ⊥x 轴于点F , 过点B 作BE ⊥y 轴于点E ,交AF 于点C ,连结OA . (1)求反比例函数的解析式及m 的值;(2)若直线l 过点O 且平分△AFO 的面积,求直线l 的解析式.9.解:∵ ky x=(x <0)的图象经过点A (-2,4)、B (m ,2), ∴ 8k =-.∴ 8y x=-. ∴ 4m =-.∵ 直线l 过点O ,∴ 设直线l 的解析式为:y kx =,其中0k ≠. ∵ 直线l 平分△AFO 的面积, ∴ 直线l 过AF 的中点C (-2,2). ∴ 1k =-.∴ 直线l 的解析式为:y x =-.10.如图,在平面直角坐标系xOy 中,一次函数2y x =-的图象与反比例函数ky x=的图象的一个交点为A (-1,n ).(1)求反比例函数ky x=的解析式;(2)若P 是坐标轴上一点(点P 不与点O 重合),且P A=OA ,试写出点P 的坐标.10.解:(1)∵ 点A (1,)n -在一次函数2y x =-的图象上, ∴ 2(1)2n =-⨯-=.∴ 点A 的坐标为12-(,).∵ 点A 在反比例函数ky x=的图象上,∴ 2k =-.∴ 反比例函数的解析式为2y x=-.(2)点P 的坐标为(2,0)(0,4)-或.11. 已知:在某个一次函数中,当自变量x=2时,对应的函数值是1;当自变量x= -4时,对应的函数值是10. 求自变量x=2012时,该函数对应的函数值是多少?11. 设这个一次函数是y=kx+b ,把⎩⎨⎧==1;y 2,x ⎩⎨⎧=-=10y 4,x 分别代入,得 ⎩⎨⎧=+=+10;b 4k -1,b 2k解得,k=-23,b=4.∴ y= -23x+4.∴当x=2012时,y= -23×2012+4= -3014.12.已知:正比例函数111(0)y k x k =≠和反比例函数222(0)k y k x=≠的图象都经过点A().(1) 求满足条件的正比例函数和反比例函数的解析式;(2) 设点P 是反比例函数图象上的点,且点P 到x 轴和正比例函数图象的距离相等,求点P 的坐标.12.解:(1) 因为111(0)y k x k =≠和222(0)k y k x=≠的 图象都经过点A().所以12k k ==所以12y y ==,. (2) 依题意(如图所示),可知,点P 在∠AOx 的平分线上. 作PB ⊥x 轴,由A(AOB=60°, 所以 ∠POB=30°.设(,)P x y ,可得tan 30y x =︒=所以 直线'PP 的解析式为y x =把y x =代入y =,解得x =所以 '(1)P P -和.('P 点的坐标也可由双曲线的对称性得到)13.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0), 与y 轴交于点B ,点D 在直线AB 上. ⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式.y 3DB13.解:⑴依题意可知,⎩⎨⎧=+=+302b k b k ⎪⎩⎪⎨⎧=-=323b k 解得 所以,直线AB 的解析式为323+-=x y⑵ A (2,0)B ()32,032,2==∴OB OA 可求得060=∠BAO当直线AB 绕点A 逆时针旋转30°交y 轴于点C ,可得030=∠CAO 在Rt ∆AOC 中OC =o30tan OA =332)332,0(C ∴设所得直线为1y =mx+332, A (2,0)33220+=∴m解得33-=m 所以y 1=-33x + 33214.如图,在平面直角坐标系xOy 中,反比例函数4y x=(0x >)的图象与一次函数y x b =-+的图象的一个交点为(4,)A m .(1)求一次函数的解析式;(2)设一次函数y x b =-+的图象与y 轴交于点B ,P 为一次函数y x b =-+的图象上一点,若OBP △的面积为5,求点P 的坐标.14.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. ∴(4,1)A . 将(4,1)A 代入一次函数y x b =-+中,得 5b =. ∴一次函数的解析式为5y x =-+.(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯= . ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7).15.已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象 和反比例函数y=xm的图象的两个交点,直线AB 与y 轴 交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).15.解:(1)将B (1,4)代入m y x =中,得m=4,∴4y x=. 将A (n,-2)代入my x=中,得n=-2. 将A (-2,-2)、B (1,4)代入y kx b =+, 得224k b k b -+=-⎧⎨+=⎩.-----2分 解得22k b =⎧⎨=⎩,∴22y x =+.-----------3分(2)当x=0时,y=2,∴(3)2x <-或01x <<.16.如图,点C (1,0)是x 交于点P ,且∠PCB =30°,PC 如果BC =4,(1)求双曲线和直线PC 的解析式;(2)设'P 点是直线PC 直接写出点'P 的坐标.16.解:作P A ⊥x 轴于A .∵ 点B 在PC 的垂直平分线上,∴ BC =BP =4. ∵ ∠PCB =30°,∴ ∠BPC =∠PCB =30°. ∴ ∠ABP =60°. 在Rt △P AB 中,sin 604PA PB =⋅︒==. 1cos 604 2.2AB PB =⋅︒=⨯=∴(5P - ∴k =-∴y =. 设直线PC 的解析式为y kx b =+ ∵ 直线PC 经过点C (1,0),(52)P -,∴0,5k b k b +=⎧⎪⎨-+=⎪⎩k b ⎧=⎪⎪∴⎨⎪=⎪⎩∴y x =+(2)P’(7,-)17.已知反比例函数ky x=的图象与一次函数y kx b =+的图象交于点M (-2,1). (1)试确定一次函数和反比例函数的解析式; (2)求一次函数图象与x 轴、y 轴的交点坐标.17.解:(1)∵ 反比例函数ky x=与一次函数y kx b =+的图象经过点M (-2,1). ∴ (2)12k =-⨯=-.1(2)(2)3b =---=-.∴反比例函数的解析式为2y x=-. 一次函数的解析式为23y x =--.(2)令0y =,可得32x =-. ∴ 一次函数的图象与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,. 令0x =,可得3y =-.∴一次函数的图象与y 轴的交点坐标为(03)-,.18.已知:反比例函数xk y 1=(01≠k )的图象与一次函数b x k y +=2(02≠k )的图象交于点A (1,n )和点B (-2,-1). ⑴求反比例函数和一次函数解析式;⑵若一次函数b x k y +=2的图象与x 轴交于点C ,P 是x 轴上的一点,当△ACP 的面积为3时,求P 点坐标. 解:18. 解:⑴∵点B (-2,-1)在反比例函数()011≠=k xk y 的图象上 ∴21=k ∴反比例函数的解析式为xy 2= ∵点A (1,n )在反比例函数xy 2=的图象上 ∴n =2∴点A 坐标是(1,2)∵点A (1,2)和点B (-2,-1)在函数)0(22≠+=k b x k y 的图象上∴⎩⎨⎧=+-=+-212b k b k ∴ ⎩⎨⎧==11b k∴一次函数的解析式为1+=x y⑵∵一次函数的解析式为1+=x y∴点C 的坐标为(-1,0)∵点P 在x 轴上,且△ACP 的面积是3 ∴PC=3∴P 点坐标为(-4,0)或(2,0)19. 某周六上午8:O0小明从家出发,乘车1小时到郊外某 基地参加社会实践活动.在基地活动2.2小时后,因家里 有急事,他立即按原路以4千米/时的平均速度步行返回, 同时爸爸开车从家出发沿同一路线接他,在离家28千米处与 小明相遇.接到小明后保持车速不变,立即按原路返回. 设小明离开家的时间为x 小时,小明离家的路程y (千米) 与x (小时)之间的函数图象如图所示.(1)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时;(2)求线段CD 所表示的函数关系式,不用写出自变量x 的取值范围;(3)问小明能否在中午12:00前回到家?若能,请说明理由;若不能,请算出中午12:00时他离家的路程.19. 解:(1) 30 , 56 ;(2) y =-56x +235.2 (3.7≤x ≤4.2)(3)不能.小明从家出发到回家一共需要时间:1+2.2+2÷4×2=4.2(小时),从8:00经过4.2小时已经过了12:00,∴ 不能再12:00前回家,此时离家的距离:56×0.2=11.2(千米).20. 如图,A 、B 为反比例函数xk y =(0<x )图象上的两个点. (1)求k 的值及直线AB 的解析式;(2)若点P 为x 轴上一点,且满足△OAP 的面积为3,求出P 点坐标.20.解:(1)由题意得,21-=k ∴k= -2.设AB 的解析式为y=ax+b.由题意得,⎩⎨⎧=+-=+-212b a b a 解得,⎩⎨⎧==31b a AB 的解析式为y= x+3(2)设点P (x ,0)由题意得,S △OAP =121⋅⋅OP =3 OP=6点P 坐标为(-6,0)或(6,0)21. 如图,在平面直角坐标系xOy 中,已知一次函数y=kx b+的图象经过点A (1,0),与反比例函数m y x =(x >0)的图象相交于点B (2,1).(1)求m 的值和一次函数的解析式;(2)结合图象直接写出:当x >0时,不等式m kx b x +>的解集; 21.解:(1) 反比例函数m y x= (x >0)的图象经过点B (2,1) , ∴122m =⨯=.一次函数y kx b =+的图象经过点A (1,0)、 B (2,1)两点,∴0,2 1.k b k b +=⎧⎨+=⎩ 解得1,-1.k b =⎧⎨=⎩∴一次函数的解析式为=-1y x . (2)x >2.22.如图,一次函数1y k x b =+的图象与反比例函数2k y x =(0)x > 的图象交于()1,3A ,(3,)B a 两点.(1)求12k k 、的值;(2)求△ABO 的面积.22. 解: (1) 反比例函数2k y x=(0)x >的图象过()3,1A ),3(a B 两点. 3312=⨯=∴k ,133==a . ∴)1,3(B 一次函数b x k y +=1的图象过()3,1A ,)1,3(B 两点梯形S ∴⎩⎨⎧=+=+13311b k b k 解得:4,11=-=b k(2)设一次函数4+-=x y 与y 轴交于C 点,则C 点坐标为)4,0( 63421=⨯⨯=∴∆BOC S , 21421=⨯⨯=∴∆AOCS 426=-=-=∴∆∆∆AO C BO C ABO S S S .23.已知一次函数b kx y +=的图像经过点A (1,0)和B ()a a -,3(0>a ),且点B 在反比例函数xy 3-=的图像上. (1)求一次函数的解析式;(2)若点M 是y 轴上一点,且满足△ABM 是直角三角形,请直接写出点M 的坐标.23.解:(1)∵点B ()a a -,3在反比例函数x y 3-=的图像上, ∴aa 33--=,1±=a , ∵0>a ,∴1=a ,∴)1-3(,B∵A(1,0)和)1-3(,B 在一次函数b kx y +=的图像上 ∴⎩⎨⎧-=+=+130b k b k 解得 ⎪⎪⎩⎪⎪⎨⎧=-=2121b k ∴一次函数的解析式为2121+-=x y (2)()7-0M 1,()2-0M 2,.24. 已知:关于x 的一元二次方程kx 2-(4k+1)x+3k+3=0 (k 是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x 1,x 2(其中x 1<x 2),设y= x 2-x 1,判断y 是否为变量k 的函数?如果是,请写出函数解析式;若不是,请说明理由.24. ⑴证明:Δ= (4k+1)2-4k(3k+3)=(2k-1)2∵k 是整数,∴k≠21,2k-1≠0. ∴Δ= (2k -1)2 >0 ∴方程有两个不相等的实数根.⑵ y 是k 的函数;解方程得,x=2k)12k ()14k (2-±+. ∴x=3,或x=1+k1. ∵k 是整数, ∴k 1≤1,1+k1≤2<3. 又∵x 1< x 2, ∴x 1=1+k1, x 2=3. ∴ y=3-(1+k 1)=2-k1.25.已知一次函数2y x =+与反比例函数k y x=交于P 、Q 两点, 其中一次函数2y x =+的图象经过点(k ,5).(1)求反比例函数的解析式;(2)设点Q 在第三象限内,求点Q 的坐标;(3)设直线2y x =+与x 轴交于点B ,O 为坐标原点,直接写出△BOQ 的面积= .25. 解:(1)因一次函数2y x =+的图象经过点(k ,5), 所以得52k =+,解得3k =所以反比例函数的表达式为3y x=(2)依题意, 列方程组23y x y x =+⎧⎪⎨=⎪⎩解得13x y =⎧⎨=⎩ 或31x y =-⎧⎨=-⎩ 故第三象限的交点Q 的坐标为(-3,-1)(3)△BOQ 面积为126.如图,直线x y l 2:1=与直线3:2+=kx y l 在同一平面直角 坐标系内交于点P ,且直线2l 与x 轴交于点A . 求直线2l 的解析式 及△OAP 的面积.26.解:把1=x 代入x y 2=,得2=y .∴点P (1,2).∵点P 在直线3+=kx y 上,∴32+=k . 解得 1-=k∴3+-=x y .当0=y 时,由30+-=x 得3=x .∴点A (3,0). ∴32321=⨯⨯=∆OAP S .。
《双曲线》练习题经典(含答案)
![《双曲线》练习题经典(含答案)](https://img.taocdn.com/s3/m/7bd87575fe4733687f21aa07.png)
2, 1.
消去
y
得:(λ+2)x2-4
2x+4-λ=0.
∵方程组有两解,∴λ+2≠0 且 Δ>0,
4-λ ∴λ>2 或 λ<0 且 λ≠-2,x1·x2=λ+2,
3(4-λ)
uuur uuur 而 MAgMB =x1x2+(y1+2)·(y2+2)=x1x2+ 2x1· 2x2=3x1x2= λ+2 ,
4-λ 3
y2
∴λ+2=-2,解得 λ=-14.∴曲线 C 的方程是 x2-14=1.
31.(本题满分 12 分) 已知中心在原点的双曲线 C 的右焦点为 2, 0,右顶点为 3, 0 .
(Ⅰ)求双曲线 C 的方程
uuur uuur (Ⅱ)若直线 l : y kx 2 与双曲线恒有两个不同的交点 A 和 B 且 OA OB 2 (其中 O 为原点),求 k 的
3.在平面直角坐标系中,双曲线 C 过点 P(1,1),且其两条渐近线的方程分别为 2x+y=0 和 2x﹣y=0,则双曲 线 C 的标准方程为( B )
A.
B.
C.
或
D.
x2
y2
x2 y2
4.已知椭圆 2a 2 + 2b 2 =1(a>b>0)与双曲线 a 2 - b 2 =1 有相同的焦点,则椭圆的离心率为( A )
为 ,则双曲线的离心率为( A )
A.2 B.
C.
D.
7.已知双曲线
y2 a2
x2 9
1 的两条渐近线与以椭圆 x2 25
y2 9
1
的左焦点为圆心、半径为
16 5
的圆相切,则双曲
线的离心率为( A )
A. 5 B. 5 C. 4 D. 6
高中数学双曲线习题及答案解析
![高中数学双曲线习题及答案解析](https://img.taocdn.com/s3/m/dc87ca2af02d2af90242a8956bec0975f465a4cf.png)
双曲线习题练习及答案解析1、已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 因为双曲线的一条渐近线方程为2y x =,则b a =.① 又因为椭圆221123x y +=与双曲线有公共焦点,双曲线的焦距26c =,即c =3,则a 2+b 2=c 2=9.②.由①②解得a =2,b =,则双曲线C 的方程为22145x y -=.故选:B.2已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-围成的三)A.B. C. D. 2【答案】D解:双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2b AB a =,所以12AOBA S AB x =⋅=AB ∴=,即2b a =b a =2c e a ===;故选:D3已知双曲线C 的中心为坐标原点,一条渐近线方程为2y x =,点()22,2P -在C 上,则C 的方程为A. 22124x y -=B. 221714x y -=C. 22142x y -=D. 221147y x -=【答案】B由于C 选项的中双曲线的渐近线方程为22y x =±,不符合题意,排除C 选项.将点()22,2P -代入A,B,D 三个选项,只有B 选项符合,故本题选B.4已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( )A .B .C .D .【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F ,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y =所以12PF F △面积121201||||2PF F SF F y =⋅=故选:C 5已知双曲线C :()22102y x m m m -=>+,则C 的离心率的取值范围为( )A .(B .()1,2C .)+∞D .()2,+∞【答案】C双曲线()22102y x m m m -=>+的离心率为e ===,因为0m >,所以e =>C的离心率的取值范围为)+∞.故选:C.6若双曲线2288ky x -=的焦距为6,则该双曲线的离心率为( )A.4B.32C. 3D.103因为2288ky x -=为双曲线,所以0k ≠,化为标准方程为:22181y x k -=. 由焦距为6可得:3c ==,解得:k =1.所以双曲线为22181y x -=.所以双曲线的离心率为4c e a ===.故选:A7已知1F ,2F 分别是双曲线22124y x -=的左,右焦点,若P 是双曲线左支上的点,且1248PF PF ⋅=.则12F PF △的面积为( ) A. 8B. 16C. 24D. 【答案】C 因为P 是双曲线左支上的点,所以2122PF PF a -==,22124100F F c ==. 在12F PF △中,()22221212121212121212cos 22cos F F PF PF PF PF F PF PF PF PF PF PF PF F PF=+-∠=-+-∠,即110049696cos F PF=+-∠,所以1cos 0F PF ∠=,12in 1s P F F =∠,故12F PF △的面积为121242PF PF ⋅=.故选:C .8已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F ,2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF = A.1B.9C.1或9D.3或93.B 由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点Р在双曲线C 的左支上,所以214PF PF -=,所以29PF =.故选B9如图,F 1,F 2分别是双曲线22221x y a b-=(a >0,b >0)的两个焦点,以坐标原点O为圆心,|OF 1|为半径的圆与该双曲线左支交于A ,B 两点,若△F 2AB 是等边三角形,则双曲线的离心率为( )B. 211【答案】D 连接1AF ,依题意知:21AF =,12122c F F AF ==,所以21121)a AF AF AF =-=1c e a ===. 10已知双曲线22214x y b-=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( ) A.83+ B.)41C.83+ D.)22【答案】A双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF =所以8)m =+,解得:m =1ABF ∆的周长为: 11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A11已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( ) A.B.C. D.【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y = 所以12PF F △面积121201||||2PF F S F F y =⋅=故选:C12双曲线22221x y a b-=与22221x y a b -=-的离心率分别为12,e e ,则必有( )A. 12e e =B. 121e e ⋅=C.12111e e += D. 2212111e e += 【答案】D13多选以已知双曲线的虚轴为实轴、实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,则以下说法,正确的有( ) A. 双曲线与它的共轭双曲线有相同的准线 B. 双曲线与它的共轭双曲线的焦距相等 C. 双曲线与它的共轭双曲线的离心率相等 D. 双曲线与它的共轭双曲线有相同的渐近线 【答案】BD由双曲线对称性不妨令双曲线C 的方程为:22221(0,0)x y a b a b-=>>,则其共轭双曲线C '的方程为22221y x b a-=,对于A ,双曲线C 的准线垂直于x 轴,双曲线C '的准线垂直于y 轴,A 不正确;对于B ,双曲线C 和双曲线C '的半焦距均为:c =,所以焦距相同,B 正确;对于C ,由B 选项知,双曲线C 的离心率为1ce a=,而双曲线C '的离心率为2c e b =,而a ,b 不一定等,C 不正确;对于D ,双曲线C 和双曲线C '的渐近线均为by x a=±,D 正确. 故选:BD13多选已知双曲线C :()222104x y b b-=>的离心率为72,1F ,2F 分别为C 的左右焦点,点P 在C 上,且26PF =,则( )A .7b =B .110PF =C .OP =D .122π3F PF ∠=【答案】BCD72=,可得b =A 不正确,而7c ==,因为27||6c PF =>=,所以点P 在C 的右支上,由双曲线的定义有:121||||||624PF PF PF a -=-==,解得1||10PF =,故选项B 正确,在12PF F △中,有2222221271076cos cos 02727OP OP POF POF OP OP +-+-∠+∠=+=⨯⨯⨯⨯,解得||OP =,22212106141cos 21062F PF +-∠==-⨯⨯,所以1223F PF π∠=,故选项C ,D 正确. 故选:BCD.多选若方程22151x y t t +=--所表示的曲线为C ,则下面四个命题中正确的是A .若1<t <5,则C 为椭图B .若t <1.则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <5 【答案】BD 14多选已知双曲线C 1:)0,0(12222>>=-b a b y a x 的实轴长是2,右焦点与抛物线C 2:y 2=8x 的焦点F 重合,双曲线C 1与抛物线C 2交于A 、B 两点,则下列结论正确的是 ( ▲ )A .双曲线C 1的离心率为2 3B .抛物线C 2的准线方程是x =-2 C .双曲线C 1的渐近线方程为y =±3x D. |AF |+|BF |=320 【答案】BC【解析】由题意可知对于C 1:()0012222>>=-b a by a x ,,实轴长为2a =2,即a =1,而C 2:y 2=8x 的焦点F 为(2,0),所以c =2,则双曲线C 1的方程为1322=-yx ,则对于选项A ,双曲线C 1的离心率为212==a c ,所以选项A 错误;对于选项B ,抛物线C 2的准线方程是x =-2,所以选项B 正确;对于选项C ,双曲线C 1的渐近线方程为y =±abx =±3x ,所以选项C 正确;对于选项D ,由y 2=8x 与1322=-y x 联立可得A (3,62),B (3,62-),所以由抛物线的定义可得 |AF |+|BF |=10433=++=++p x x B A ,所以选项D 错误,综上答案选BC.14多选12,F F 分别是双曲线2221(0)y x b b-=>的左右焦点,过2F 作x 轴的垂线与双曲线交于,A B 两点,若1ABF 为正三角形,则( )A.b = B.C. 双曲线的焦距为D.1ABF 的面积为【答案】ABD在正三角形1ABF 中,由双曲线的对称性知,12F F AB ⊥,12||2||AF AF =, 由双曲线定义有:12||||2AF AF -=,因此,1||4AF =,2||2AF =,12||F F ==即半焦距c =b =,A 正确;双曲线的离心率1ce ==B 正确;双曲线的焦距12F F =C 不正确;1ABF 的面积为21||4AF =D 正确.故选:ABD15多选已知双曲线C 的左、右焦点分别为1F 、2F ,过2F 的直线与双曲线的右支交于A 、B 两点,若122||||2||AF BF AF ==,则( )A. 11AF B F AB ∠=∠B. 双曲线的离心率e =C. 直线的AB 斜率为±D. 原点O 在以2F 为圆心,2AF 为半径的圆上 【答案】ABC 如图:设122||||2||2(0)AF BF AF m m ===>,则22||||||3AB AF BF m =+=,由双曲线的定义知,12||||22AF AF m m a -=-=,即2m a =;12||||2BF BF a -=, 即1||22BF m a -=,∴1||3||BF m AB ==,即有11AF B F AB ∠=∠,故选项A 正确;由余弦定理知,在1ABF 中,22222211111||||||4991cos 2||||2233AF BF AB m m m AF B AF BF m m +-+-∠===⋅⋅,在△12AF F 中,22222212121112||||||441cos cos 2||||223AF AF F F m m c F AB AF B AF AF m m +-+-∠===∠=⋅⋅, 化简整理得,222121144c m a ==,∴离心率ce a ==,故选项B 正确; 在△21AF F中,2222222211134443cos 224m m c m m c m AF F c m cm -+--∠===⋅⋅,21sin AF F ∠==,∴212121sin tan cos AF F AF F AF F ∠∠==∠ ∴根据双曲线的对称性可知,直线AB的斜率为±,故选项C 正确; 若原点O 在以2F 为圆心,2AF 为半径的圆上,则2c m a ==,与3c a =不符,故选项D 错误.故选:ABC .16多选已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F,一条渐近线过点(,则下列结论正确的是( )A. 双曲线CB. 双曲线C 与双曲线22124y x -=有相同的渐近线C. 若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D. 若直线2:a l x c=与渐近线围成的三角形面积为则焦距为【答案】BCD 渐近线的方程为by x a=±,因为一条渐近线过点(,故b a ⨯=a ===,故A 错误.又渐近线的方程为2y x =±,而双曲线22124y x -=的渐近线的方程为2y x =±, 故B 正确.若F 到渐近线的距离为2,则2b =,故a =C 的方程为22184x y -=,故C 正确. 直线2:a l x c =与渐近线的两个交点的坐标分别为:2,a ab c c ⎛⎫ ⎪⎝⎭及2,a ab cc ⎛⎫- ⎪⎝⎭,故2122a ab c c =⨯⨯⨯即23a b =,而a =,故b =,a =,所以23=,所以c =,故焦距为D 正确.故选:B CD.16多选已知点P 在双曲线221169x y -=上,1F ,2F 分别是左、右焦点,若12PF F △的面积为20,则下列判断正确的有( ) A. 点P 到x 轴的距离为203B. 12503PF PF += C. 12PF F △为钝角三角形 D. 123F PF π∠=【答案】BC由双曲线方程得4a =,3b =,则5c =,由△12PF F 的面积为20,得112||10||2022P P c y y ⨯⨯=⨯=,得||4P y =,即点P 到x 轴的距离为4,故A 错误, 将||4P y =代入双曲线方程得20||3P x =,根据对称性不妨设20(3P ,4),则213||3PF =, 由双曲线的定义知12||||28PF PF a -==,则11337||833PF =+=, 则12133750||||333PF PF +=+=,故B 正确,在△12PF F 中,113713||210||33PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则△12PF F 为钝角三角形,故C 正确, 2222121212121212121337641002||||||(||||)2||||10033cos 13372||||2||||233PF PF F F PF PF PF PF F PF PF PF PF PF -+⨯⨯+--+-∠===⨯⨯3618911121337133729⨯=-=-≠⨯⨯⨯,则123F PF π∠=错误,故正确的是BC ,故选16双曲线:C 2214x y -=的渐近线方程为__________,设双曲线1:C 22221(0,0)x y a b a b -=>>经过点(4,1),且与双曲线C 具有相同渐近线,则双曲线1C 的标准方程为__________.【答案】12y x =± 221123y x -=【解析】(1)双曲线:C 2214x y -=的焦点在y 轴上,且1,2a b ==,渐近线方程为ay x b=±, 故渐近线方程为12y x =±;(2)由双曲线1C 与双曲线C 具有相同渐近线,可设221:4y C x λ-=,代入(4,1)有224134λλ-=⇒=-,故212:34x C y -=-,化简得221123y x -=.17已知O 为坐标原点,抛物线C :()220y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则PF =______. 【答案】3抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0)2pQ +,(6,)PQ p =-,因为PQ OP ⊥,所以2602pPQ OP p ⋅=⨯-=, 0,3p p >∴=,所以PF =3故答案为△3.若双曲线1C :()2230y x λλ-=≠的右焦点与抛物线2C :28y x =的焦点重合,则实数λ=( ) A. 3±B.C. 3D. -3【答案】D双曲线1C 的右焦点与抛物线的焦点(2,0)重合,所以双曲线1C 方程化:()22103y x λλλ-=≠,再转化为:()22103x y λλλ-=<--,所以23a λ=-, 2b λ=-,所以222433c a b λλλ=+=--=-,所以c =2=平方得 3.λ=-故选:D.17设双曲线:的右焦点为,点,已知点在双曲线的左支上,若的周长的最小值是,则双曲线的标准方程是__________,此时,点的坐标为__________.【答案】【解析】如下图,设为双曲线的左焦点,连接,,则,,故的周长, 因为,所以的周长, 因为的周长的最小值是,,,所以,的方程为, 当的周长取最小值时,点在直线上,因为,,所以直线的方程为,联立,解得,或(舍去), 故的坐标为.故答案为:,.C 2221(0)y x b b-=>F ()0,Q b P CPQF △8C P 2214y x -=⎛⎫ ⎪ ⎪⎝⎭D C PD QD QD QF =2PFPD =+PQF△2l PQ PF QF PQ PD QD =++=+++PQ PD QD +≥=PQF△2l ≥PQF △82228,9c b +=+=22221cbab2b =c =C 2214y x -=PQF △P QD ()0,2Q ()D QD 25y x =+222514y x y x ⎧=+⎪⎪⎨⎪-=⎪⎩1x y ⎧=⎪⎨⎪=⎩4x y ⎧=⎪⎨=⎪⎩P 2⎛⎫- ⎪ ⎪⎝⎭2214y x -=,12⎛⎫- ⎪ ⎪⎝⎭18已知双曲线()221112211:10,0x y C a b a b -=>>与()222222222:10,0y x C a b a b -=>>有相同的渐近线,若1C 的离心率为2,则2C 的离心率为__________.双曲线()221112211:10,0x y C a b a b -=>>的渐近线方程为11b y x a =± ,()222222222:10,0y x C a b a b -=>>的渐近线方程为22a y x b =±,由题意可得1212b a a b =,由1C 的离心率为2得:22211121()b e a ==+ ,则222()3a b = , 所以设2C 的离心率为2e ,则22222141()133b e a =+=+=,故2=e ,故答案为:19知双曲线()222210,0x y a b a b-=>>,焦点()()()12,0,00F c F c c ->,,左顶点(),0A a -,若过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切,与双曲线在第一象限交于点P ,且2PF x ⊥轴,则直线的斜率是 _____, 双曲线的离心率是 _________. 【答案】如图,设圆22224a a x y ⎛⎫-+= ⎪⎝⎭的圆心为B ,则圆心坐标(,0)2a B ,半径为2a ,则32a AB =,设过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切于点C ,连接BC ,则2a BC =,所以AC ==,得tan aBC BAC AC ∠===;2PF x ⊥轴,由双曲线的通径可得,22b PF a=,又2AF a c =+,所以222tan PF AF b a BAC a c ∠===+,化简得24(40e -=,求解得e =.已知双曲线C :﹣y 2=1.(Ⅰ)求以C 的焦点为顶点、以C 的顶点为焦点的椭圆的标准方程; (Ⅱ)求与C 有公共的焦点,且过点(2,﹣)的双曲线的标准方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:(Ⅰ)双曲线C :﹣y 2=1的焦点为(±,0),顶点为(±2,0),设椭圆的标准方程为+=1(a >b >0),可得c =2,a =,b ==1,则椭圆的方程为+y 2=1;(Ⅱ)设所求双曲线的方程为﹣=1(m .n>0),由题意可得m 2+n 2=5,﹣=1,解得m =,n =,即所求双曲线的方程为﹣=1,则这条双曲线的实轴长为2、焦距为2、离心率为以及渐近线方程为y=±x .20已知双曲线C :﹣=1(a >0,b >0)与双曲线﹣=1有相同的渐近线,且经过点M (,﹣).(Ⅰ)求双曲线C 的方程;(Ⅱ)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.:(Ⅰ)∵双曲线C 与双曲线﹣=1有相同的渐近线,∴设双曲线的方程为(λ≠0),代入M (,﹣).得λ=,故双曲线的方程为:.(Ⅱ)由方程得a =1,b =,c =,故离心率e =. 其渐近线方程为y =±x ;实轴长为2, 焦点坐标F (,0),解得到渐近线的距离为:=.21已知双曲线C :22221(0,0)x y a b a b-=>>,点)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求AB .(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b =,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪=-⎪⎩得256270x x +-=,设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以5AB ==. 22已知双曲线()2222:10,0x y C a b a b -=>>与双曲线22162y x -=的渐近线相同,且经过点()2,3.(1)求双曲线C 的方程;(2)已知双曲线C 的左右焦点分别为12,F F ,直线l 经过2F ,倾斜角为3,4l π与双曲线C 交于,A B 两点,求1F AB 的面积.(1)设所求双曲线C 方程为2262y x λ-=,代入点()2,3得:223262λ-=,即12λ=-, 所以双曲线C 方程为221622y x -=-,即2213y x -=.(2)由(1)知:()()122,0,2,0F F -,即直线AB 的方程为()2y x =--.设()()1122,,,A x y B x y ,联立()22213y x y x ⎧=--⎪⎨-=⎪⎩得22470x x +-=,满足>0∆且122x x +=-,1272x x =-,由弦长公式得12||AB x x =-=6==,点()12,0F -到直线:20AB x y +-=的距离d ===所以111622F ABS AB d =⋅=⋅⋅=。
高三数学双曲线试题答案及解析
![高三数学双曲线试题答案及解析](https://img.taocdn.com/s3/m/526a50c009a1284ac850ad02de80d4d8d15a0195.png)
高三数学双曲线试题答案及解析1.已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1【答案】A【解析】由x2+y2-6x+5=0知圆心C(3,0),半径r=2.又-=1的渐近线为bx±ay=0,且与圆C相切.由直线与圆相切,得=2,即5b2=4a2,①因为双曲线右焦点为圆C的圆心,所以c=3,从而9=a2+b2,②由①②联立,得a2=5,b2=4,故所求双曲线方程为-=1,选A.2.若实数满足,则曲线与曲线的()A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等【答案】D【解析】,则,,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,因此,两双曲线的焦距相等,故选D.【考点】本题考查双曲线的方程与基本几何性质,属于中等题.3.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.4.设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为A.B.C.D.3【答案】B【解析】因为是双曲线上一点,所以,又所以,,所以又因为,所以有,,即解得:(舍去),或;所以,所以故选B.【考点】1、双曲线的定义和标准方程;2、双曲线的简单几何性质.5.已知A1,A2双曲线的顶点,B为双曲线C的虚轴一个端点.若△A1BA2是等边三角形,则双曲线的离心率e等于.【答案】2【解析】由题意可知,解得,即,所以.则.【考点】双曲线的简单几何性质.6.已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离为()A.B.C.D.【答案】A【解析】抛物线的焦点坐标为,因此双曲线的右焦点的坐标也为,所以,解得,故双曲线的渐近线的方程为,即,因此双曲线的焦点到其渐近线的距离为,故选A.【考点】1.双曲线的几何性质;2.点到直线的距离7.已知双曲线="1" 的两个焦点为、,P是双曲线上的一点,且满足,(1)求的值;(2)抛物线的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.【答案】(1) (2)16【解析】(1)根据题意,又,,,又|P F|•|PF|="|" F F|=, |P F|<4,得在区间(0,4)上有解,所以因此,又,所以(2)双曲线方程为=1,右顶点坐标为(2,0),即所以抛物线方程为直线方程为由(1)(2)两式联立,解得和所以弦长|AB|==168.设F是抛物线的焦点,点A是抛物线与双曲线的一条渐近线的一个公共点,且轴,则双曲线的离心率为_______.【答案】【解析】由抛物线方程,可得焦点为,不妨设点在第一象限,则有,代入双曲线渐近线方程,得,则,所以双曲线离率为.故正确答案为.【考点】1.抛物线;2.双曲线.9.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为()A.B.C.D.【答案】A【解析】由于M(1,m)在抛物线上,∴m2=2p,而M到抛物线的焦点的距离为5,根据抛物线的定义知点M到抛物线的准线x=-的距离也为5,∴1+=5,∴p=8,由此可以求得m=4,=,而双曲线的渐近线方程为y=±,根据题意得,双曲线的左顶点为A(-,0),∴kAM=,∴a=.10.设双曲线的渐近线方程为,则的值为()A.4B.3C.2D.1【答案】C【解析】由双曲线方程可知渐近线方程为,故可知。
双曲线经典练习题总结(带答案)
![双曲线经典练习题总结(带答案)](https://img.taocdn.com/s3/m/599be8ae52d380eb63946dab.png)
双曲线经典练习题总结(带答案)一、选择题1.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程为( C )A .x 216-y 248=1B .y 29-x 227=1C .x 216-y 248=1或y 29-x 227=1D .以上都不对[解析] 当顶点为(±4,0)时,a =4,c =8,b =43,双曲线方程为x 216-y 248=1;当顶点为(0,±3)时,a =3,c =6,b =33,双曲线方程为y 29-x 227=1.2.双曲线2x 2-y 2=8的实轴长是( C ) A .2 B .22 C .4 D .42[解析] 双曲线2x 2-y 2=8化为标准形式为x 24-y 28=1,∴a =2,∴实轴长为2a =4.3.(全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( C )A .(2,+∞)B .(2,2 )C .(1,2)D .(1,2)[解析] 由题意得双曲线的离心率e =a 2+1a. ∴c 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C .4.(2018·全国Ⅲ文,10)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( D ) A .2 B .2 C .322D .22[解析] 由题意,得e =ca=2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近线方程为x ±y =0,点(4,0)到渐近线的距离为42=22, 故选D .5.(2019·全国Ⅲ卷理,10)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( A ) A .324B .322C .22D .32[解析] 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 6.若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( A ) A .2 B .3 C .2D .233[解析] 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3.根据点到直线的距离公式得2b a 2+b 2=3,解得b 2=3a 2. 所以C 的离心率e =ca =c 2a 2=1+b 2a2=2.故选A . 二、填空题7.(2019·江苏卷,7)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是 [解析] 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1(b >0),解得b =2,即双曲线方程为x 2-y 22=1,其渐近线方程为y =±2x .8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是__-12<k <0__.[解析] 双曲线方程可变形为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k2.又因为e ∈(1,2),即1<4-k2<2,解得-12<k <0. 三、解答题9.(1)求与椭圆x 29+y 24=1有公共焦点,且离心率e =52的双曲线的方程;(2)求实轴长为12,离心率为54的双曲线的标准方程.[解析] (1)设双曲线的方程为x 29-λ-y 2λ-4=1(4<λ<9),则a 2=9-λ,b 2=λ-4,∴c 2=a 2+b 2=5,∵e =52,∴e 2=c 2a 2=59-λ=54,解得λ=5, ∴所求双曲线的方程为x 24-y 2=1.(2)由于无法确定双曲线的焦点在x 轴上还是在y 轴上,所以可设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0).由题设知2a =12,c a =54且c 2=a 2+b 2,∴a =6,c =152,b 2=814.∴双曲线的标准方程为x 236-y 2814=1或y 236-x 2814=1.B 级 素养提升一、选择题1.如果椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,那么双曲线x 2a 2-y 2b 2=1的离心率为( A )A .52B .54C .2D .2[解析] 由已知椭圆的离心率为32,得a 2-b 2a 2=34,∴a 2=4b 2.∴a 2+b 2a 2=5b 24b 2=54.∴双曲线的离心率e =52. 2.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( C )A .m >12B .m ≥1C .m >1D .m >2[解析] 本题考查双曲线离心率的概念,充分必要条件的理解. 双曲线离心率e =1+m >2,所以m >1,选C .3.(多选题)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1、F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值可能是( BC ) A .-1 B .0 C .12D .1[解析] 由双曲线方程可知F 1(-3,0)、F 2(3,0), ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+(-y 0)(-y 0)<0, 即x 20+y 20-3<0,∴2+2y 20+y 20-3<0,y 20<13, ∴-33<y 0<33,故选BC . 4.(多选题)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( BD ) A .对任意的a ,b ,e 1>e 2 B .当a <b 时,e 1>e 2 C .对任意的a ,b ,e 1<e 2 D .当a >b 时,e 1<e 2[解析] 由条件知e 21=c 2a 2=1+b 2a2,e 22=1+⎝ ⎛⎭⎪⎫b +m a +m 2,当a >b 时,b +m a +m >ba ,∴e 21<e 22.∴e 1<e 2.当a <b 时,b +m a +m <ba ,∴e 21>e 22.∴e 1>e 2.所以,当a >b 时,e 1<e 2;当a <b 时,e 1>e 2. 二、填空题5.(2019·课标全国Ⅰ理,16)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__2__.[解析] 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,∵F 1B →·F 2B →=0,∴F 1B ⊥F 2B ,∴点B 在⊙O :x 2+y 2=c 2上,如图所示,不妨设点B 在第一象限,由⎩⎪⎨⎪⎧y =b ax x 2+y 2=c2a 2+b 2=c 2x >0,得点B (a ,b ),∵F 1A →=AB →,∴点A 为线段F 1B 的中点,∴A ⎝⎛⎭⎪⎫a -c 2,b 2,将其代入y =-b a x 得b 2=⎝⎛⎭⎫-b a ×a -c 2.解得c =2a ,故e =ca=2.6.已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为__y =±23x __.[解析] 由已知得9+a =13,即a =4,故所求双曲线的渐近线为y =±23x .三、解答题7.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),F 1(-c,0)、F 2(c,0).因为双曲线过点P (42,-3), 所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 所以c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1. 8.(2020·云南元谋一中期中)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,其斜率为-3,求双曲线的离心率.[解析] (1)由题意,ba =1,c =2,a 2+b 2=c 2,∴a 2=b 2=2,∴双曲线方程为x 22-y 22=1.(2)由题意,设A (m ,n ),则k OA =33,从而n =33m ,m 2+n 2=c 2,∴A (32c ,c 2), 将A (32c ,c 2)代入双曲线x 2a 2-y 2b 2=1得:3c 24a 2-c 24b 2=1,∴c 2(3b 2-a 2)=4a 2b 2,且c 2=a 2+b 2,∴(a 2+b 2)(3b 2-a 2)=4a 2b 2, ∴3b 4-2a 2b 2-a 4=0,∴3(b a )4-2(ba )2-1=0,∴b 2a 2=1从而e 2=1+b 2a 2=2,∴e = 2.。
高二数学双曲线试题(有答案)
![高二数学双曲线试题(有答案)](https://img.taocdn.com/s3/m/b4f93609700abb68a882fbf4.png)
高二数学双曲线试题一:选择题1.双曲线()2210x y mn m n -=≠的离心率为2,有一个焦点与椭圆2211625x y +=的焦点重合,那么m 的值为〔 〕 A . B .C .D .【答案】A2.以112422-=-y x 的焦点为顶点,顶点为焦点的椭圆方程为〔 〕 A .1121622=+y x B .1161222=+y x C .141622=+y x D .116422=+y x 【答案】A3.设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且123||4||PF PF =,那么12PF F ∆的面积等于〔 〕 〔A 〕45〔B 〕315〔C 〕53 〔D 〕210【答案】B4.双曲线的中心在坐标原点,两个焦点为F 1〔﹣,0〕,F 2〔,0〕,点P 是此双曲线上的一点,且•=0,||•||=4,该双曲线的标准方程是〔 〕A .B .C .D .解:设双曲线的方程为:﹣=1, ∵两焦点F 1〔﹣,0〕,F 2〔,0〕,且•=0,∴⊥,∴△F 1PF 2为直角三角形,∠P 为直角; ∴+===28;①又点P 是此双曲线上的一点,∴||PF1|﹣|PF2||=2a,∴+﹣2|PF1|•|PF2|=4a2,由||•||=4得|PF1|•|PF2|=4,∴+﹣8=4a2,②由①②得:a2=5,又c2==7,∴b2=c2﹣a2=2.∴双曲线的方程为:﹣=1,应选C.5.双曲线E的中心为原点,P〔3,0〕是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N〔﹣12,﹣15〕,那么E的方程式为〔〕A.B.C.D.解:由条件易得直线l的斜率为k=k FN=1,设双曲线方程为,A〔x1,y1〕,B〔x2,y2〕,那么有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,应选B.6.椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是〔〕A.x=±B.y=C.x=D.y=解:∵椭圆和双曲线有公共焦点∴3m2﹣5n2=2m2+3n2,整理得m2=8n2,∴=2双曲线的渐近线方程为y=±=±x应选D7.中心在原点,焦点在x轴上的双曲线的离心率,其焦点到渐近线的距离为1,那么此双曲线的方程为〔〕A.﹣y2=1 B.﹣=1C.﹣y2=1D.x2﹣y2=1解:设双曲线的方程为,渐近线方程为∵双曲线的离心率,其焦点到渐近线的距离为1,∴,=1∴b=1,a=∴双曲线的方程为﹣y2=1应选A.8.抛物线y 2=8x 的准线与双曲线相交于A ,B 两点,点F 是抛物线的焦点,假设双曲线的一条渐近线方程是,且△FAB 是直角三角形,那么双曲线的标准方程是〔 〕 A .B .C .D .解:依题意知抛物线的准线x=﹣2.代入双曲线方程得 y=±.双曲线的一条渐近线方程是,∴那么不妨设A 〔﹣2,〕,F 〔2,0〕∵△FAB 是等腰直角三角形, ∴=4,解得:a=,b=4∴c 2=a 2+b 2=2+16=20,∴双曲线的标准方程是应选C9..椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C有四个交点,以这四个焦点为顶点的四边形的面积为16,那么椭圆C 的方程为〔A 〕22182x y += 〔B 〕221126x y += 〔C 〕221164x y += 〔D 〕221205x y += 【答案】D【解析】因为椭圆的离心率为23,所以23==a c e ,2243a c =,222243b a a c -==,所以2241a b =,即224b a =,双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x ,所以b x b x 52,5422±==,2254b y =,b y 52±=,那么第一象限的交点坐标为)52,52(b b ,所以四边形的面积为16516525242==⨯⨯b b b ,所以52=b ,所以椭圆方程为152022=+y x ,选D. 10.设F 1,F 2分别是双曲线的左、右焦点.假设双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,那么双曲线离心率为〔 〕 A .B .C .D .解:设F 1,F 2分别是双曲线的左、右焦点.假设双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|, 设|AF 2|=1,|AF 1|=3,双曲线中2a=|AF 1|﹣|AF 2|=2,,∴离心率,应选B .11.设双曲线的﹣个焦点为F ;虚轴的﹣个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为〔 〕 A . B . C . D .解:设双曲线方程为,那么F 〔c ,0〕,B 〔0,b 〕 直线FB :bx+cy ﹣bc=0与渐近线y=垂直,所以,即b 2=ac所以c 2﹣a 2=ac ,即e 2﹣e ﹣1=0, 所以或〔舍去〕12.双曲线221124x y -=的右焦点为F ,假设过点F 的直线与双曲线的右支有且只有一个交点,那么此直线斜率的取值围是( C )A.33()B.(3,3)-C.33[D.[3,3]-【答案】C13.如图,F 1,F 2分别是双曲线C :22221x y a b-=〔a,b >0〕的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,假设|MF 2|=|F 1F 2|,那么C 的离心率是A.233 B 。
圆锥曲线专题二:双曲线(含详细答案)
![圆锥曲线专题二:双曲线(含详细答案)](https://img.taocdn.com/s3/m/127cb5026edb6f1aff001f5b.png)
基础知识:一 双曲线的定义:在平面内,到两个定点21F F 、的距离之差的绝对值等于常数a 2(a 大于0且212F F a <)的动点P 的轨迹叫作双曲线.这两个定点21F F 、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数a 2应当满足的约束条件:21212F F a PF PF <=-,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:21212F F a PF PF <=-)0(>a ,则动点轨迹仅表示双曲线中靠焦点2F 的一支;若21122F F a PF PF <=-()0(>a ),则动点轨迹仅表示双曲线中靠焦点1F 的一支;3. 若常数满足约束条件:21212F F a PF PF ==-,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);4.若常数满足约束条件:21212F F a PF PF >=-,则动点轨迹不存在; 5.若常数0=a ,则动点轨迹为线段21F F 的垂直平分线。
二 双曲线的标准方程:1.当焦点在轴上时,双曲线的标准方程:)0,0(12222>>=-b a b y a x ,其中222b a c +=;2.当焦点在y 轴上时,双曲线的标准方程:)0,0(12222>>=-b a bx a y ,其中222b a c +=;3.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x ;如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x ;4. 共焦点的双曲线系方程12222=--+k b y k a x 或 12222=--+kb x k a y三 双曲线的几何性质:双曲线)0,0(12222>>=-b a by a x 的几何性质1.对称性:对于双曲线标准方程)0,0(12222>>=-b a by a x ,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以双曲线)0,0(12222>>=-b a by a x 是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
双曲线练习题(含答案)
![双曲线练习题(含答案)](https://img.taocdn.com/s3/m/44cd9344844769eae009ed62.png)
双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
高考数学专题《双曲线》习题含答案解析
![高考数学专题《双曲线》习题含答案解析](https://img.taocdn.com/s3/m/bfb925459a6648d7c1c708a1284ac850ad0204db.png)
专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。
双曲线经典练习题总结(带答案)
![双曲线经典练习题总结(带答案)](https://img.taocdn.com/s3/m/a229da2f5e0e7cd184254b35eefdc8d376ee1421.png)
双曲线经典练习题总结(带答案)1.选择题1.以椭圆x^2/169 + y^2/64 = 1的顶点为顶点,离心率为2的双曲线方程为C,当顶点为(±4,0)时,a=4,c=8,b=√(a^2+c^2)=4√5,双曲线方程为x^2/16 - y^2/20 = 1;当顶点为(0,±3)时,a=3,c=6,b=√(a^2+c^2)=3√5,双曲线方程为y^2/9 - x^2/5 = 1,所以答案为C。
2.双曲线2x^2 - y^2 = 8化为标准形式为x^2/4 - y^2/8 = 1,所以实轴长为2a = 4,答案为C。
3.若a>1,则双曲线2x^2/a^2 - y^2 = 1的离心率的取值范围是C。
由双曲线方程得离心率e = √(a^2+1)/a,所以c^2 =a^2+b^2 = a^2(a^2+1)/(a^2-1),代入离心率公式得√(a^2+1)/a = 2,解得a = 2,所以答案为C。
4.已知双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为D。
由双曲线方程得离心率e = √(a^2+b^2)/a = 2,所以b^2 = 3a^2,又因为点(4,0)到渐近线的距离为c/a,所以c^2 = a^2+b^2 = 4a^2,代入双曲线方程得4x^2/a^2 - 2y^2/3a^2 = 1,化简得y^2 = 6x^2/5,所以渐近线方程为y = ±√(6/5)x,代入点(4,0)得距离为2√5,所以答案为D。
5.双曲线C:x^2/4 - y^2/16 = 1的右焦点坐标为F(6,0),一条渐近线的方程为y = x,设点P在第一象限,由于|PO| = |PF|,则点P的横坐标为4,纵坐标为3,所以△PFO的底边长为6,高为3,面积为9,所以答案为A。
6.若双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的一条渐近线被圆(x-2)^2 + y^2 = 4所截得的弦长为2,则b^2 = a^2-4,圆心为(2,0),半径为2,设截弦的两个交点为P和Q,则PQ = 2,所以PQ的中点M在圆上,即M为(5/2,±√(3)/2),所以PM = √(a^2-25/4)±√(3)/2,由于PM = PQ/2 = 1,所以(a^2-25/4)+(3/4) = 1,解得a = √(29)/2,所以答案为B。
双曲线习题及答案
![双曲线习题及答案](https://img.taocdn.com/s3/m/98f3b69764ce0508763231126edb6f1aff0071fb.png)
双曲线习题及答案圆锥曲线习题——双曲线1. 如果双曲线2422yx -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是() (A)364 (B)362 (C)62 (D)322. 以双曲线221916xy-=的右焦点为圆心,且与其渐近线相切的圆的方程是()A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=3. 过双曲线221916xy-=的右顶点为A ,右焦点为F 。
过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为_______ 4. 已知双曲线22221(0,0)x y a b ab-=>>的左、右焦点分别为12(,0),(,0)F c F c -,若双曲线上存在一点P 使1221sin sin PF F a PF F c=,则该双曲线的离心率的取值范围是.5. 过双曲线22221(0,0)x y a b ab-=>>的左焦点且垂直于x 轴的直线与双曲线相交于,M N 两点,以M N 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为______6. 已知P 是双曲线22221x y ab-=上除顶点外任意一点,12,F F 为左右焦点,c 为半焦距,21F PF ?内切圆与12F F 切于点M ,则12||||F M F M ?的值为__________7. 已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.(I )若动点M 满足1111F M F A F B F O =++(其中O 为坐标原点),求点M 的轨迹方程;(II )在x 轴上是否存在定点C ,使C A ·C B为常数?若存在,求出点C 的坐标;若不存在,请说明理由.8. 已知双曲线C 的方程为22221(0,0)y x a b ab-=>>,离心率2e =,顶点到渐近线的距5(1)求双曲线C 的方程;(2)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,若1,[,2]3A P PB λλ=∈ ,求A OB ?面积的取值范围双曲线习题解答题详细答案选择题:1. A2. B3. A4. B5. B6. D7. C8. C 填空题:9.321510. (1,1+ 11. 212. 645-13. 1614.221(3)927xyx -=<-15. ||||3F P F Q ?=16. 212||||F M F M b ?=17. 如图,在以点O 为圆心,||4AB =为直径的半圆AD B中,O D AB ⊥,P 是半圆弧上一点,30P O B ∠=?,曲线C 是满足||||||MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程;(Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F . 若△O EF 的面积不小于...,求直线l 斜率的取值范围.解:(Ⅰ)以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|P A |-|PB |=221321)32(2222=)(+--++<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实半轴长为a ,虚半轴长为b ,半焦距为c ,则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为1222=-yx.解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设双曲线的方程为a by ax (12222=->0,b >0).则由 ??=+=-411322222b a ba )(解得a 2=b 2=2, ∴曲线C 的方程为.12222=-y(Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0.∵直线l 与双曲线C 相交于不同的两点E 、F ,∴ -?+-=?≠0)1(64)4(01222k k k -?1k k ≠±<<??∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=kx x kk --=-16,14212,于是|EF |=2212221221))(1()()(x x k x y x x -+=++-=.132214)(122212212kkkx x x x k--?+=-+?+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk kkkkEF d --=--?+?+?=若△OEF 面积不小于22,即S △OEF 22≥,则有解得.22,022213222422≤≤-≤--?≥--k kkkk③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F ,∴ 22210(4)46(1)0k k k ?≠=-+?->??-?1k k ≠±<<??.∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得|x 1-x 2|=.132214)(22221221kkkx x x x --=-?=-+ ③当E 、F 在同一去上时(如图1所示),S △OEF =;2 1212121x x OD x x OD S S ODE ODF -?=-?=-??当E 、F 在不同支上时(如图2所示).+=??ODF OEF S S S △ODE =.21)(212121x x OD x x OD -?=+?综上得S △OEF =,2121x x OD -?于是由|OD |=2及③式,得S △OEF =.132222kk--若△OEF 面积不小于2则有即,22,2≥?OEF S.22,02213222422≤≤-≤-?≥--k kkkk解得④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).18. (Ⅰ)设O A m d =-,AB m =,O B m d =+由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b A O F a∠=,4tan tan 23A B A O B A O F O A∠=∠==由倍角公式∴22431b ab a =- ?,解得12b a=,则离心率2e =.(Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y ab-=联立将2a b =,c =代入,化简有22152104x x bb-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369xy-=。
高三数学双曲线试题答案及解析
![高三数学双曲线试题答案及解析](https://img.taocdn.com/s3/m/2e8881611fd9ad51f01dc281e53a580216fc5094.png)
高三数学双曲线试题答案及解析1.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为________.【答案】-2【解析】由题可知A1(-1,0),F2(2,0),设P(x,y)(x≥1),则=(-1-x,-y),=(2-x,-y),·=(-1-x)(2-x)+y2=x2-x-2+y2=x2-x-2+3(x2-1)=4x2-x-5.∵x≥1,函数f(x)=4x2-x-5的图象的对称轴为x=,∴当x=1时,·取得最小值-2.2.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A.B.C.D.【答案】D【解析】取,则,直线为,,即,∴,∴,∴,由,∴.【考点】双曲线的标准方程、两直线垂直的充要条件.3. [2014·大同模拟]设双曲线-=1(a>0)的渐近线方程为3x±2y=0,则a的值为() A.4B.3C.2D.1【答案】C【解析】双曲线的渐近线y=±x,所以a=2,选C项.4.双曲线-y2=1的顶点到其渐近线的距离等于________.【答案】【解析】由-y2=1知顶点(2,0),渐近线x±2y=0,∴顶点到渐近线的距离d==.5.若抛物线的焦点是双曲线的一个焦点,则实数等于()A.B.C.D.【答案】C【解析】双曲线的焦点坐标是,,抛物线的焦点坐标是所以,或得故选【考点】抛物线和双曲线的焦点.6.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()A.B.C.D.【答案】C【解析】设等轴双曲线方程为,抛物线的准线为,由|AB|=,则,把坐标代入双曲线方程得,所以双曲线方程为,即,所以a2=4,a=2,所以实轴长2a=4,选C.7.已知双曲线(),与抛物线的准线交于两点,为坐标原点,若的面积等于,则A.B.C.D.【答案】C【解析】抛物线的准线是,代入双曲线方程得,,所以,解得.【考点】曲线的交点,三角形的面积.8.已知圆:和圆:,动圆M同时与圆及圆相外切,则动圆圆心M的轨迹方程是().A.B.C.D.【答案】A【解析】如图所示,设动圆M与圆及圆分别外切于点A和点B,根据两圆外切的充要条件,得,.因为,所以.这表明动点M到两定点、的距离的差是常数2,且小于.根据双曲线的定义,动点M的轨迹为双曲线的左支(点M到的距离大,到的距离小),这里a=1,c=3,则,设点M的坐标为(x,y),其轨迹方程为.9.已知,则双曲线的离心率为()A.B.2C.D.【答案】C【解析】双曲线方程可化为,即,因此双曲线的半实轴长为2,半虚轴长为1,所以半焦距为,所以离心率为.【考点】双曲线的标准方程及几何性质.10.的右焦点到直线的距离是()A.B.C.D.【答案】D【解析】双曲线的右焦点为,由点到直线的距离公式得右焦点到直线的距离为.【考点】双曲线的焦点及点到直线的距离.11.已知双曲线上一点,过双曲线中心的直线交双曲线于两点,记直线的斜率分别为,当最小时,双曲线离心率为( )A. B. C D【答案】B【解析】由题得,设点,由于点A,B为过原点的直线与双曲线的焦点,所以根据双曲线的对称性可得A,B关于原点对称,即.则,由于点A,C都在双曲线上,故有,两式相减得.则,对于函数利用导数法可以得到当时,函数取得最小值.故当取得最小值时, ,所以,故选B【考点】导数最值双曲线离心率12.过双曲线上任意一点P,作与实轴平行的直线,交两渐近线M,N两点,若,则该双曲线的离心率为____.【答案】【解析】依题意设,则.所以由.可得.即.所以离心率.【考点】1.圆锥曲线的性质.2.向量的数量积.3.方程的思想.13.已知抛物线的准线过双曲线的左焦点且与双曲线交于A、B两点,O 为坐标原点,且△AOB的面积为,则双曲线的离心率为()A.B.4C.3D.2【答案】D【解析】解:抛物线的准线方程为:,由题意知,双曲线的左焦点坐标为,即且,因为△AOB的面积为,所以,,即:所以,,解得:,故应选D.【考点】1、抛物线的标准方程;2、双曲线的标准方程及简单几何性质.14.双曲线=1上一点P到右焦点的距离是实轴两端点到右焦点距离的等差中项,则P点到左焦点的距离为________.【答案】13【解析】由a=4,b=3,得c=5.设左焦点为F1,右焦点为F2,则|PF2|=(a+c+c-a)=c=5,由双曲线的定义,得|PF1|=2a+|PF2|=8+5=1315.已知双曲线的一个焦点与抛物线的焦点重合,且其渐近线的方程为,则该双曲线的标准方程为A.B.C.D.【答案】C【解析】由题可知双曲线的一个焦点坐标是(0,5),可设双曲线方程为,利用表示坐标,建立方程,解方程即可.【考点】(1)共渐近线的双曲线方程;(2)抛物线的几何性质.16.设F是双曲线的右焦点,双曲线两渐近线分另。
高二数学双曲线试题答案及解析
![高二数学双曲线试题答案及解析](https://img.taocdn.com/s3/m/7e54657600f69e3143323968011ca300a6c3f60a.png)
高二数学双曲线试题答案及解析1.以双曲线的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .【答案】【解析】设抛物线方程为,由已知可得双曲线的右焦点坐标为(3,0),所以,抛物线方程为.【考点】双曲线的性质与抛物线的方程2.已知中心在原点的双曲线的渐近线方程是,且双曲线过点(Ⅰ)求双曲线的方程;(Ⅱ)过双曲线右焦点作倾斜角为的直线交双曲线于,求.【答案】(1);(2)6【解析】(1)设双曲线的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与双曲线的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)设双曲线方程为:,点代入得:,所以所求双曲线方程为:(2)直线的方程为:,由得:,.【考点】(1)双曲线的方程;(2)直线与双曲线的综合问题.3.设双曲线的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.B.5C.D.【答案】C【解析】将双曲线的渐进线方程代如抛物线方程y=x2+1中化简得,由只有一公共点可知即,所以即,答案选C.【考点】1.双曲线的渐进线方程;2.直线与抛物线的位置关系4.已知抛物线的准线与双曲线交于两点,点为抛物线的焦点,若为直角三角形,则双曲线的离心率是()A.B.C.2D.3【答案】B【解析】抛物线的准线为,它与双曲线交于两点,则坐标为,抛物线的焦点,因为为直角三角形,则有,从而有,,因此,故选择B.【考点】圆锥曲线的性质.5.若双曲线的左、右焦点分别为F1,F2,线段F1F2被抛物线的焦点分成5:3两段,则此双曲线的离心率为______.【答案】【解析】由已知设已知双曲线的焦半径为c,则且左右两焦点的坐标分别为:,又抛物线的焦点坐标为,由已知有即:,故应填入:.【考点】双曲线的离心率.6.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.7.若双曲线的离心率为2,则等于()A.B.C.D.1【答案】D.【解析】由,又∵.【考点】双曲线的标准方程.8.与双曲线有共同的渐近线,并且过点A(6,8)的双曲线的标准方程为__________.【答案】【解析】设所求双曲线为,把点(6,8)代入,得,解得λ=-4,∴所求的双曲线的标准方程为.故答案为:.【考点】双曲线的性质和应用.9.若双曲线的渐近线与方程为的圆相切,则此双曲线的离心率为.【答案】【解析】先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离为圆的半径求得和的关系,进而利用求得和的关系,则双曲线的离心率可求.【考点】双曲线的简单性质.10.已知中心在坐标原点,焦点在轴上的双曲线的渐近线方程为,则此双曲线的离心率为()A.B.C.D.5【答案】B【解析】由题意,得,所以离心率=,故选B.【考点】双曲线的几何意义.11.设F1,F2分别是双曲线的左、右焦点.若点P在双曲线上,且·=0,则|+|=( )A.B.C.D.【答案】B【解析】因为·=0,所以,则|+|==|2|=|2|=,故选B.【考点】1.双曲线的性质;2.向量加法和数量积的几何意义.12.双曲线的渐近线方程为( )A.B.C.D.【答案】C【解析】令,解得【考点】双曲线渐近线的求法.13.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程14.已知F1、F2为双曲线的左、右焦点,点P在C上,,则P到x轴的距离为()A.B.C.D.【答案】B【解析】由余弦定理得,所以即由三角形面积得解得,因此P到x轴的距离为.【考点】双曲线定义15.我们把离心率为e=的双曲线(a>0,b>0)称为黄金双曲线.如图,是双曲线的实轴顶点,是虚轴的顶点,是左右焦点,在双曲线上且过右焦点,并且轴,给出以下几个说法:①双曲线x2-=1是黄金双曲线;②若b2=ac,则该双曲线是黄金双曲线;③如图,若∠F1B1A2=90°,则该双曲线是黄金双曲线;④如图,若∠MON=90°,则该双曲线是黄金双曲线.其中正确的是()A.①②④B.①②③C.②③④D.①②③④【答案】D【解析】①由双曲线x2-=1,可得离心率e=,即可判断出该双曲线是否是黄金双曲线;②由b2=ac,可得c2-a2-ac=0,化为e2-e-1=0,又e>1,解得e,即可判断出该双曲线是否是黄金双曲线;③如图,由∠F1B1A2=90°,可得|B1F1|2+|B1A2|2=|F1A2|2,可得b2+c2+b2+a2=(a+c)2,化为c2-ac-a2=0,即可判断出该双曲线是否是黄金双曲线;④如图,由∠MON=90°,可得MN⊥x轴,|MF2|=,可得△MOF2是等腰直角三角形,得到c=,即可判断出该双曲线是否是黄金双曲线.【考点】圆锥曲线的综合应用.16.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1(-c,0)、F2(c,0).若双曲线上存在点P,使,则该双曲线的离心率的取值范围是________.【答案】【解析】根据正弦定理与题中等式,算出=e(e是椭圆的离心率).作出椭圆的左准线l,作PQ⊥l于Q,根据椭圆的第二定义得=e,所以|PQ|=|PF2|=.设P(x,y),将|PF1|、|PF2|表示为关于a、c、e、x的式子,利用|PF2|+|PF1|=2a解出x=.最后根据椭圆上点的横坐标满足-a≤x≤a,建立关于e的不等式并解之,即可得到该椭圆离心率的取值范围.【考点】(1)正弦定理;(2)椭圆的定义;(3)椭圆的几何性质.17.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于 ( )A.2B.18C.2或18D.16【答案】C【解析】因为双曲线渐近线方程是,所以又因为,所以等于2或18【考点】双曲线定义,渐近线方程18.已知,,,则动点的轨迹是()A.双曲线B.圆C.椭圆D.抛物线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.19.过点的双曲线的渐近线方程为为双曲线右支上一点,为双曲线的左焦点,点则的最小值为 .【答案】8【解析】由题可设双曲线方程为:,把代入得=1,所以双曲线方程为:,设双曲线右焦点为,∵P在双曲线右支上及由双曲线定义可知,∴,当点P为线段与双曲线交点时.【考点】1.双曲线的定义;2.双曲线的标准方程;3.双曲线的几何性质.20.已知,,,则动点的轨迹是()A.圆B.椭圆C.抛物线D.双曲线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.21.双曲线的渐近线方程为()A.B.C.D.【答案】D【解析】因为双曲线的方程为,故,所以该双曲线的渐近线方程为,故选D.【考点】双曲线的性质.22.已知动点的坐标满足方程,则的轨迹方程是()A.B.C.D.【答案】C【解析】这个方程相信读者一定可以化简出最终结论(无非就是移项平方去根号),但如果考虑到方程中各式子的几何意义的话,可能解法更好,此方程表示点与到点的距离比到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线,只不过是右支。
圆锥曲线之双曲线题库 含详解 高考必备
![圆锥曲线之双曲线题库 含详解 高考必备](https://img.taocdn.com/s3/m/fc1a4b01b52acfc789ebc9da.png)
1 设双曲线2222by a x -=1( a > 0, b > 0 )的右顶点为A ,P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP 分别交于Q 和R 两点.(1) 证明:无论P 点在什么位置,总有|→--OP |2= |→-OQ ·→--OR | ( O 为坐标原点); (2) 若以OP 为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围;解:(1) 设OP :y = k x, 又条件可设AR: y =ab(x – a ), 解得:→--OR = (b ak ab --,b ak kab --), 同理可得→-OQ = (b ak ab +,bak kab+),∴|→-OQ ·→--OR | =|b ak ab --b ak ab ++b ak kab --b ak kab+| =|b k a |)k 1(b a 222222-+. 设→--OP = ( m, n ) , 则由双曲线方程与OP 方程联立解得:m 2=22222k a b b a -, n 2= 222222k a b b a k -,∴ |→--OP |2 = :m 2 + n 2= 22222k a b b a -+ 222222k a b b a k -=222222ka b )k 1(b a -+ , ∵点P 在双曲线上,∴b 2 – a 2k 2 > 0 .∴无论P 点在什么位置,总有|→--OP |2= |→-OQ ·→--OR | .(2)由条件得:222222ka b )k 1(b a -+= 4ab, 即k 2= 22a 4ab abb 4+-> 0 , ∴ 4b > a, 得e >4173、(江苏省启东中学高三综合测试三)(1)在双曲线xy=1上任取不同三点A 、B 、C ,证明:⊿ABC 的垂心H 也在该双曲线上;(2)若正三角形ABC 的一个顶点为C(―1,―1),另两个顶点A 、B 在双曲线xy=1另一支上,求顶点A 、B 的坐标。
整理《双曲线》典型例题12例(含标准答案)
![整理《双曲线》典型例题12例(含标准答案)](https://img.taocdn.com/s3/m/7e38688e804d2b160b4ec0e7.png)
带教日志、《阶段考核表》、单位考勤原始记录
II-6
独立临床/实践
5分
继承人独立从事所继承专业的实践天数
得分=10×(实际独立实践天数/420)
同II-5
续表
教
学
实
绩
30
分
III-7
带教日志4分
(1)计算带教日志篇数;(2)专家抽查一定数量日志;(3)专家评议记录质量差者,酌情扣
(2)全国统编《中药鉴定学》
附
加
分
15
分
I学历3分
研究生3分本科生2分
大专生1.5分中专生1分
毕业证书原件并提供复印件。
著作3分
查阅参加导师经验整理并已出版著作,时间在1990.12----1993.12
主编3分,副主编2分,编辑1分
参加章节编写每2万字1分,最多计至3分。
著作原件,并提供复印件
科研4分
得分=5×(实际从事专业年限/25)
继承人所在单位人事部门提供人事档案,学历证书原件及复印件
继
承
表
现
25
分
II-3
职业道德
5分
A5分
B4分
C3分
D2分
职业道德高尚,有突出事例,曾获单位表彰或系统通报表扬。
职业道德良好,有典型事例,获锦旗或感谢信。
职业道德良好,未受过病人举报和批评。
职业道德较差,受到病人举报和批评一次。
D:立、法、方、药合乎辩证理论和导师一致;
E:医嘱符合理、法、方、药要求和导师一致;
符合一以上五条都具备;基本符合一具备C、D二条;大体符合C、D二条中具备一条;不符合C、D、E无一条具备
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《双曲线》典型例题12例典型例题一例1 讨论192522=-+-ky k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9<k ,259<<k ,25<k ,分别进行讨论.解:(1)当9<k 时,025>-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0).(2)当259<<k 时,025>-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0).(3)25<k ,9=k ,25=k 时,所给方程没有轨迹.说明:将具有共同焦点的一系列圆锥曲线,称为同焦点圆锥曲线系,不妨取一些k 值,画出其图形,体会一下几何图形所带给人们的美感.典型例题二例2 根据下列条件,求双曲线的标准方程.(1)过点⎪⎭⎫⎝⎛4153,P ,⎪⎭⎫ ⎝⎛-5316,Q 且焦点在坐标轴上. (2)6=c ,经过点(-5,2),焦点在x 轴上.(3)与双曲线141622=-y x 有相同焦点,且经过点()223, 解:(1)设双曲线方程为122=+ny m x ∵ P 、Q 两点在双曲线上,∴⎪⎪⎩⎪⎪⎨⎧=+=+12592561162259nm n m 解得⎩⎨⎧=-=916n m∴所求双曲线方程为191622=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c ,∴设所求双曲线方程为:1622=--λλy x (其中60<<λ) ∵双曲线经过点(-5,2),∴16425=--λλ∴5=λ或30=λ(舍去)∴所求双曲线方程是1522=-y x说明:以上简单易行的方法给我们以明快、简捷的感觉.(3)设所求双曲线方程为:()160141622<<=+--λλλy x ∵双曲线过点()223,,∴1441618=++-λλ ∴4=λ或14-=λ(舍)∴所求双曲线方程为181222=-y x 说明:(1)注意到了与双曲线141622=-y x 有公共焦点的双曲线系方程为141622=+--λλy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面.典型例题三例3 已知双曲线116922=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F∠的大小.分析:一般地,求一个角的大小,通常要解这个角所在的三角形. 解:∵点P 在双曲线的左支上 ∴621=-PF PF∴362212221=-+PF PF PF PF ∴1002221=+PF PF ∵()100441222221=+==b a c F F ∴ο9021=∠PF F说明:(1)巧妙地将双曲线的定义应用于解题当中,使问题得以简单化. (2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢请读者试探索.典型例题四例 4 已知1F 、2F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足ο9021=∠PF F ,求21PF F ∆的面积.分析:利用双曲线的定义及21PF F ∆中的勾股定理可求21PF F ∆的面积.解:∵P 为双曲线1422=-y x 上的一个点且1F 、2F 为焦点.∴4221==-a PF PF ,52221==c F F ∵ο9021=∠PF F∴在21F PF Rt ∆中,202212221==+F F PF PF ∵()162212221221=-+=-PF PF PF PF PF PF∴1622021=-PF PF ∴221=⋅PF PF ∴1212121=⋅=∆PF PF S PF F说明:双曲线定义的应用在解题中起了关键性的作用.典型例题五例5 已知两点()051,-F 、()052,F ,求与它们的距离差的绝对值是6的点的轨迹.分析:问题的条件符合双曲线的定义,可利用双曲线定义直接求出动点轨迹. 解:根据双曲线定义,可知所求点的轨迹是双曲线. ∵5=c ,3=a∴16435222222==-=-=a c b∴所求方程116922=-y x 为动点的轨迹方程,且轨迹是双曲线. 说明:(1)若清楚了轨迹类型,则用定义直接求出其轨迹方程可避免用坐标法所带来的繁琐运算.(2)如遇到动点到两个定点距离之差的问题,一般可采用定义去解.典型例题六例6 在ABC ∆中,2=BC ,且A B C sin 21sin sin =-,求点A 的轨迹.分析:要求点A 的轨迹,需借助其轨迹方程,这就要涉及建立坐标系问题,如何建系呢解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,则()01,-B ,()01,C .设()y x A ,,由A B C sin 21sin sin =-及正弦定理可得:121==-BC AC AB ∵2=BC∴点A 在以B 、C 为焦点的双曲线右支上设双曲线方程为:()0012222>>=-b a b y a x , ∴12=a ,22=c ∴21=a ,1=c ∴43222=-=a c b ∴所求双曲线方程为134422=-y x ∵01>=-AC AB ∴21>x ∴点A 的轨迹是双曲线的一支上挖去了顶点的部分典型例题七例7 求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A (2)与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切.(3)与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切. 分析:这是圆与圆相切的问题,解题时要抓住关键点,即圆心与切点和关键线段,即半径与圆心距离.如果相切的⊙1C 、⊙2C 的半径为1r 、2r 且21r r >,则当它们外切时,2121r r O O +=;当它们内切时,2121r r O O -=.解题中要注意灵活运用双曲线的定义求出轨迹方程.解:设动圆M 的半径为r(1)∵⊙1C 与⊙M 内切,点A 在⊙C 外 ∴2-=r MC ,r MA =,2=-MC MA∴点M 的轨迹是以C 、A 为焦点的双曲线的左支,且有:22=a ,2=c ,27222=-=a c b ∴双曲线方程为()2172222-≤=-x y x (2)∵⊙M 与⊙1C 、⊙2C 都外切 ∴11+=r MC ,22+=r MC ,112=-MC MC∴点M 的轨迹是以2C 、1C 为焦点的双曲线的上支,且有:21=a ,1=c ,43222=-=a c b ∴所求的双曲线的方程为:⎪⎭⎫⎝⎛≥=-43134422y x y (3)∵⊙M 与⊙1C 外切,且与⊙2C 内切 ∴31+=r MC ,12-=r MC ,421=-MC MC∴点M 的轨迹是以1C 、2C 为焦点的双曲线的右支,且有:2=a ,3=c ,5222=-=a c b∴所求双曲线方程为:()215422≥=-x y x 说明:(1)“定义法”求动点轨迹是解析几何中解决点轨迹问题常用而重要的方法.(2)巧妙地应用“定义法”可使运算量大大减小,提高了解题的速度与质量. (3)通过以上题目的分析,我们体会到了,灵活准确地选择适当的方法解决问题是我们无休止的追求目标.典型例题八例8 在周长为48的直角三角形MPN 中,︒=∠90MPN ,43tan =∠PMN ,求以M 、N 为焦点,且过点P 的双曲线方程.分析:首先应建立适当的坐标系.由于M 、N 为焦点,所以如图建立直角坐标系,可知双曲线方程为标准方程.由双曲线定义可知a PN PM 2=-,c MN 2=,所以利用条件确定MPN ∆的边长是关键.解:∵MPN ∆的周长为48,且43tan =∠PMN , ∴设k PN 3=,k PM 4=,则k MN 5=. 由48543=++k k k ,得4=k . ∴12=PN ,16=PM ,20=MN .以MN 所在直线为x 轴,以∴MN 的中点为原点建立直角坐标系,设所求双曲线方程为12222=+by a x )0,0(>>b a .由4=-PN PM ,得42=a ,2=a ,42=a . 由20=MN ,得202=c ,10=c .由96222=-=a c b ,得所求双曲线方程为196422=-y x . 说明:坐标系的选取不同,则又曲线的方程不同,但双曲线的形状不会变.解题中,注意合理选取坐标系,这样能使求曲线的方程更简捷.典型例题九例9 P 是双曲线1366422=-y x 上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值.分析:利用双曲线的定义求解.解:在双曲线1366422=-y x 中,8=a ,6=b ,故10=c . 由P 是双曲线上一点,得1621=-PF PF . ∴12=PF 或332=PF . 又22=-≥a c PF ,得332=PF .说明:本题容易忽视a c PF -≥2这一条件,而得出错误的结论12=PF 或332=PF .典型例题十例10 若椭圆122=+n y m x )0(>>n m 和双曲线122=-ty s x )0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ⋅的值是( ) .A .s m -B .)(21s m - C .22s m - D .s m -分析:椭圆和双曲线有共同焦点,P 在椭圆上又在双曲线上,可根据定义得到1PF 和2PF 的关系式,再变形得结果.解:因为P 在椭圆上,所以m PF PF 221=+. 又P 在双曲线上,所以s PF PF 221=-.两式平方相减,得)(4421s m PF PF -=⋅,故s m PF PF -=⋅21.选(A). 说明:(1)本题的方法是根据定义找1PF 与2PF 的关系.(2)注意方程的形式,m ,s 是2a ,n ,t 是2b .典型例题十一例11 若一个动点),(y x P 到两个定点)0,1(-A 、)0,1(1A 的距离之差的绝对值为定值a )0(≥a ,讨论点P 的轨迹.分析:本题的关键在于讨论a .因21=AA ,讨论的依据是以0和2为分界点,应讨论以下四种情况:0=a ,)2,0(∈a ,2=a ,2>a .解:21=AA .(1)当0=a 时,轨迹是线段1AA 的垂直平分线,即y 轴,方程为0=x .(2)当20<<a 时,轨迹是以A 、1A 为焦点的双曲线,其方程为14142222=--a y a x .(3)当2=a 时,轨迹是两条射线)1(0≥=x y 或)1(0-≤=x y . (4)当2>a 时无轨迹. 说明:(1)本题容易出现的失误是对参变量a 的取值范围划分不准确,而造成讨论不全面.(2)轨迹和轨迹方程是不同的,轨迹是图形,因此应指出所求轨迹是何种曲线.典型例题十二例12 如图,圆422=+y x 与y 轴的两个交点分别为A 、B ,以A 、B 为焦点,坐标轴为对称轴的双曲线与圆在y 轴左方的交点分别为C 、D ,当梯形ABCD 的周长最大时,求此双曲线的方程.分析:求双曲线的方程,即需确定a 、b 的值,而42=c ,又222b a c +=,所以只需确定其中的一个量.由双曲线定义a BC AC 2=-,又BCA ∆为直角三角形,故只需在梯形ABCD 的周长最大时,确定BC 的值即可.解:设双曲线的方程为12222=-bx a y (0,0>>b a ),),(00y x C (00<x ,00>y ),t BC =(220<<t ).连结AC ,则︒=∠90ACB .作AB CE ⊥于E ,则有AB BE BC ⋅=2.∴4)2(02⨯-=y t ,即4220t y -=.∴梯形ABCD 的周长0224y t l ++=即10)2(21822122+--=++-=t t t l .当2=t 时,l 最大.此时,2=BC ,32=AC .又C 在双曲线的上支上,且B 、A 分别为上、下两焦点, ∴a BC AC 2=-,即2322-=a . ∴13-=a ,即3242-=a . ∴32222=-=a c b .∴所求双曲线方程为13232422=--x y . 说明:解答本题易忽视BC 的取值范围,应引起注意.。