双向板有图
双向板(有图)完整版.ppt
(2)确定转动轴和塑性铰线的准则
1)塑性铰线是直线,因为它是 两块板的交线; 2)塑性铰线起转动轴的作用;
⑦含钢率相同时,较细的钢筋较为有利。在钢筋数量 相同时,板中间部分钢筋排列较密的比均匀排列的有 利(刚度略好,中间部分裂缝宽度略小,但靠近角部, 则裂缝宽度略大)。
1.3.2 双向板按弹性理论的分析方法
按弹性薄板的弯曲问题求解。忽略了板厚方向的应 力应变,板的位移ω仅为平面坐标(x,y)的函数,将应力 应变均以ω表达,则当ω确定后,求得板的应力及应变。
跨中最大正弯矩 活荷载棋盘式布置; 实用计算方法——满布 荷载g+q/2与间隔布置 ±q/2之和
g+q/2
跨中最大正弯矩 活荷载棋盘式布置; 实用计算方法——满布 荷载g+q/2与间隔布置 ±q/2之和
q/2
1.3.3 双向板按塑性理论的分析方法 1、极限平衡法(塑性铰线法)
(1)塑性铰线法的基本假定:
④两个方向配筋相同的四边简支正方形板,板的第 一批裂缝出现在底面中间部分;随后由于主弯矩M 作用,沿着对角线方向向四角发展,随着荷载不断 增加,板底裂缝继续向四角扩展,直至板的底部钢 筋屈服而破坏。当接近破坏时,由于主弯矩M的作 用,板顶面靠近四角附近,出现了垂直于对角线方 向的、大体上呈圆形的裂缝。
m
x
m
x
Asx
f y
hox
Ax
f y
hox
m
y
m
y
单向板与双向板
一.单向板与双向板
单向板:主要在一个方向弯曲;
双向板:两个方向弯曲。
如图12-1:某四边支撑板,受均布荷载作用。
有关系: q q1 q2
(a)
沿两个方向划分条带后,板中间挠度应相等,即有关系:
5q1l041
5q
l4
2 02
384EI 384EI
(b)
化简上式得:q1l041
q
l4
2 02
,即
q1
q2
l4 02
l4 01
(c)
将(c)代入(a)式可得:q2
q
/(1
l4 02
l4 01
)
(d);同理由(a)式可得:
q1
q
/(Hale Waihona Puke l4 01l4 02
)
(e)
1
第1页/共51页
讨论:当l02 2l01 时,由(d)和(e)式可求得:
q2 0.059q q1 0.941q
3.计算跨度 (见附图)次梁的间距就是板的跨长;
主梁的间距就是次梁的跨长; 跨长不一定等于计算跨度; 计算跨度是指用于内力计算的长度。 计算跨度的取值原则: (1)中间跨取支承中心线之间的距离; (2)边跨与支承情况有关,参见图12-7。 4.荷载取值 (1)楼盖荷载类型:恒载(自重)和活载(人群、设备)
由此带来的误差通过“折算荷载”加以消除。
8
第8页/共51页
对于(2):由于支座约束作用将在板内产生轴向压力,称为薄膜 见图12-5 力或薄膜效应,它将减少竖向荷载产生的弯矩,这种
有利作用在计算内力时忽略,但在配筋计算时通过折 减计算弯矩加以调整。 对于(3):主要为计算简单。 对于(4):方便查表计算,可由结构力学证明。 2.计算单元和从属面积 (1)计算单元:板—取1米宽板带; (见附图) 次梁和主梁—取具有代表性的一根梁。 (2)从属面积:板—取1米宽板带的矩形计算均布荷载; (见附图) 次梁和主梁—第取9页相/共5应1页的矩形计算均布和集中荷9 载。
单向、双向板-配筋全图
(2) 试验表明,塑性铰的转ቤተ መጻሕፍቲ ባይዱ能力主要取决于纵向 钢筋的配筋率、钢筋的品种和混凝土的极限压应变。
(3) 考虑内力重分布后,结构构件必须有足够的抗 剪能力,否则构件将会在充分的内力重分布之前,由 于抗剪能力不足而发生斜截面的破坏。
图2.2 单向板与双向板的弯曲 (a) 单向板;(b) 双向板
2.2.1 单向板肋形楼盖的结构平面布置
对结构平面进行合理的布置,即根据使用要求, 在经济合理、施工方便前提下,合理地布置板与梁的 位置、方向和尺寸,布置柱的位置和柱网尺寸等。
柱的布置:柱的间距决定了主、次梁的跨度,因 此柱与承重墙的布置不仅要满足使用要求,还应考虑 到梁格布置尺寸的合理与整齐,一般应尽可能不设或 少设内柱,柱网尺寸宜尽可能大些。根据经验,柱的 合理间距即梁的跨度最好为:次梁4~6m,主梁5~8m。 另外柱网的平面应布置成矩形或正方形为好。
• (5) 各控制截面的剪力设计值按荷载 最不利布置和调幅后的支座弯矩,由静力 平衡条件计算确定。
5.承受均布荷载的等跨连续梁、板的计算 在均布荷载作用下,等跨连续梁、板的内力可用
由弯矩调幅法求得的弯矩系数和剪力系数按下式计算 M=αM(g+q)l02 V=αV(g+q)ln
当等跨连续梁上作用有间距相同、大小相等的集 中荷载时,各跨跨中和支座截面的弯矩设计值可按下
第三章 钢筋混凝土梁板结构
本章提要
梁板结构即建筑结构中的水平构件,也即由竖 向构件支撑的部分。包括楼盖、屋盖、楼梯、雨篷 等构件。本章主要介绍这几类构件的基本受力和计 算,构造要求和识图要点。
双向板(有图)-PPT
1.2.4 双向板支承梁的设计 双向板上荷载的传递——路径最短原则
1.3.4 双向板支承梁的设计 双向板上荷载的传递——路径最短原则 支承梁上三角形、梯形荷载的换算——支座弯矩相等 原则
1.3.5 双向板楼盖的截面设计与构造 1.截面设计
1)弯矩折减(穹顶作用) 2)截面的有效高度 3)配筋计算
lxmy
l
x
m
y
p lx 2
l
x
1 3
lx 2
p
l
3 x
24
1、双向板的塑性设计
(1)双向板的一般配筋形式
1、双向板的塑性设计
(2)双向板的其它破坏形式
1、双向板的塑性设计
(3)单区格双向板计算
四面简支板:
考虑节约钢材和配筋方便, 宜取 :
1.5 ~ 2.5
通常取: 2.0
2
通常取: = m y
④两个方向配筋相同的四边简支正方形板,板的第 一批裂缝出现在底面中间部分;随后由于主弯矩M 作用,沿着对角线方向向四角发展,随着荷载不断 增加,板底裂缝继续向四角扩展,直至板的底部钢 筋屈服而破坏。当接近破坏时,由于主弯矩M的作 用,板顶面靠近四角附近,出现了垂直于对角线方 向的、大体上呈圆形的裂缝。
p
2
1 2
lx 2
2
1 3
lx 2
pl
2 x
ly 8
lx 12
(3)双向板的极限荷载
lxmy
l
x
m
y
p lx 2
l
x
1 3
lx 2
p
l
3 x
24
lymx
l
y
m
x
p
单向、双向板 配筋全图
图2.1 楼盖的主要结构形式
(a) 单向板肋形楼盖;(b) 双向板肋形楼盖;(c) 井式楼盖;(d) 无梁楼盖
2.2 钢筋混凝土现浇单向板肋形楼盖
肋形楼盖是由板、次梁、主梁等构件组成的, 板的四周可支承于次梁、主梁或砖墙上。
这种弯曲后短向曲率比长向曲率大很多的板叫 单向板。
当板的长边与短边相差不大时,由于沿长向传 递的荷载也较大,不可忽略,板弯曲后长向曲率与 短向曲率相差不大,这种板叫双向板。
两种板的弯曲如图2.2所示。 《混凝土结构设计规范》(GB 50010—2002) 以下简称规范)中规定了这两种板的界定条件:
(1) 两对边支承的板应按单向板计算。
为了提高装配式楼盖的整体性,可采用装配整 体式楼盖。这种楼盖是将各种预制构件吊装就位后, 通过整结方法,使之构成整体。
由于现浇式楼盖整体刚性好,抗震性强,防水 性能好,故目前应用较多。
现浇式楼盖按楼板受力和支承条件不同,可分 为肋形楼盖和无梁楼盖。
肋形楼盖又可分为单向板肋形楼盖、双向板肋 形楼盖和井式楼盖。
(2)计算跨度。该值与支座反力的分布有关, 即与构件的搁置长度a和构件刚度有关(图2.5 )。
(3) 跨Байду номын сангаас。
(4) 荷载。楼面荷载包括永久荷载g和可变荷 载q。永久荷载包括板、梁自重、隔墙重和固定设备 重等。可变荷载包括人和临时性设备重、作用位置 和方向随时间变化的其它荷载。
(5) 折算荷载。如图2.6所示
连续梁上的恒荷载应按实际情况布置。
根据上述法则,可以确定出活荷载的最不利布 置,然后通过查附表15,按照下述公式求出跨中或
G101图集施工常见问题 课件:05板构造
5.4框支剪力墙结构中,转换层楼板在边支座处楼板的上、下层钢筋有何锚固 要求?当此层有较大洞口设置边梁时,边梁的加强钢筋是否可以搭接?
• 带有转换层的高层建筑结构体系,由于竖向抗侧力构件不连续,其框 支剪力墙中的剪力在转换层处要通过楼板才能传递给落地剪力墙,因 此转换层楼板除满足承截力外还必须保证有足够的刚度,以保证传力 直接和可靠。除强度计算外还需要有效的构造措施来保证。
• ①分布钢筋的直径不宜小于6mm,间距不宜大于25mm。板上有较大集中荷截时不宜大于200mm。 • ②在单位长度上,分布钢筋截面面积不宜小于其受力钢筋截面面积的15%,且不宜小于该方向板截面
面积的0.15%。 • 4)抗温度、收缩应力构造钢筋,设计人员需在施工图文件中给出规格、间距以及需要布置的位置。 • ①构造温度收缩钢筋与板中受力钢筋可采用搭接,搭接长度为ll。 • ②温度钢筋间距为150~200mm;板表面沿纵、横两个正交方向的配筋率均不宜小于0.1%。 • ③温度收缩构造钢筋可以在同一区段范围内搭接连接。 • 3双向板、单向板配筋示意见图5.2-1~4。
• 2弯)折当,支直座段为长中度间≥0层.4剪la力b,墙弯采折用段弯长锚度时1,5d板,上见部图纵5.3筋-2伸。至竖向钢筋内侧 • 3生 情)弯况当矩同支时支座,座为板为顶上梁层郁 ,剪纵 按力筋 图墙5与时.3墙-,3外处当侧理板钢。跨筋实度在际及转工厚角程度处中比搭采较接用大,何、见种会图做使5法墙.3应-平4由。面设其外计他产
• 5抗震设防烈度为8、9度及以上的长悬挑板,设计明确需要考虑竖向地震作 用时,锚固长度应满足抗震设防锚固长度的要求。
单向板双向板板筋识图通用课件
分布筋构造要求
要点一
总结词
分布筋是板筋构造中的辅助钢筋,其构造要求包括分布筋 的直径、间距以及与受力钢筋的绑扎要求等。
要点二
详细描述
分布筋的直径通常与受力钢筋相同,其间距根据板的跨度 和荷载情况而定。在受力钢筋的上面布置分布筋可以增加 板的刚度和稳定性,同时还可以固定受力钢筋的位置。分 布筋与受力钢筋的绑扎要求通常采用隔一拉一的方式进行 固定,以保证钢筋网的稳定性和整体性。
单向板在荷载作用下,只在短向 产生弯拉作用,长向受弯矩作用 。
单向板的配筋及构造要求
配筋
单向板通常采用布置分布钢筋。
构造要求
钢筋直径、间距应符合规范要求,保 护层厚度不应小于受力钢筋直径的1.5 倍。
单向板的设计计算实例
设计步骤
根据荷载情况、结构体系及构造要求,进行单向板的设计计算。
计算实例
以某工程为例,介绍单向板的设计计算过程。
03
CATALOGUE
双向板
双向板的定义与受力特点
双向板的定义
双向板是指板在两个方向上同时受力,并且两个方向的力矩 均相等。这种板在建筑结构中经常被使用。
双向板的受力特点
双向板在两个方向上的力矩是相互影响的,当一个方向上的 力矩发生变化时,另一个方向的力矩也会相应地改变。因此 ,在设计和计算时需要考虑这种相互影响。
下部钢筋构造要求
总结词
下部钢筋同样是板筋构造中的重要组成部分 ,其构造要求包括基础梁上或承台上梁的下 部纵向钢筋以及板上部纵向钢筋的布置和锚 固。
详细描述
基础梁上或承台上梁的下部纵向钢筋通常采 用直锚式进行固定,其锚固长度根据梁的混 凝土强度等级和抗震等级的不同而有所差异 。板上部纵向钢筋通常采用直锚式或弯锚式 进行固定,其锚固长度同样根据板厚和混凝
单向板与双向板
E.剪力设计值按荷载最不利布置和调整后的支座弯矩由静力平衡条 件确定。
2.用调幅法计算等跨连续梁、板
(1)等跨连续梁
计算条件:各跨均布荷载相等、集中荷载的大小和间距相等。
计算方法:查表并用下式计算
A.弯矩:均布荷载时: M m (g q)l02 集中荷载时: M m (G Q)l0
置; B.求某跨跨内最大负弯矩时,应在该跨不布置活荷载,而在该跨左
右邻跨布置,然后隔跨布置;
13
C.求某支座最大负弯矩或该支座左右截面最大剪力时,应在该支座 左右两跨布置活荷载,然后隔跨布置。
2.内力计算 (1)对于相应的荷载及其布置,当等跨或跨差小于等于10%时, 可直接查表用相应公式计算(如查附录7,P.519); (2)公式(12-3)和(12-4)中的荷载应为折算荷载,其他相同。 3.内力包络图 (1)意义:确定非控制截面的内力,以便布置这些截面的钢筋。 (2)内力包络图的作法:见附图,以五跨连续梁为例加以说明。 步骤1:由于对称性,取梁的一半作图;
;在弹塑性阶段钢筋与混凝土承担的应力是按各自的变形模量分配
的,例如,钢筋承担的应力仍然为 s Es ,混凝土承担的应力 为 : c Ec' 。由于 Ec' Ec,混凝土分配到的应力发生了变化,
这种现象称为“应力重分布”。
应力重分布在静定结构和超静定结构中都可能发生。
16
(2)斜截面承载力:在出现足够的塑性铰之前不能产生斜截面破 坏,否则不能形成充分的内力重分布;
(3)正常使用条件:控制内力重分布的幅度,一般要求在正常使 用条件下不应出现塑性铰,以防止出现裂缝过宽或挠度过大。
5.考虑内力重分布的意义和适用范围
问题:目前的内力计算方法与配筋计算方法不相协调
单向、双向板配筋全图
要点二
楼板跨度
楼板的跨度是指楼板两对边之间的距离,根据跨度的不同 ,楼板的厚度也会有所不同。一般来说,单向板跨度在 2.5-3.0m之间,双向板跨度在3.0-4.0m之间。
钢筋的直径和间距要求
钢筋直径
根据楼板的跨度和荷载的不同,钢筋的直径 也有所不同。一般来说,单向板的主筋直径 在8-12mm之间,双向板的主筋直径在1016mm之间。
单向、双向板配筋全 图
目录
CONTENTS
• 单向板配筋图解 • 双向板配筋图解 • 配筋计算方法 • 钢筋混凝土楼板的构造要求 • 实际工程中的单向、双向板配筋示例
01 单向板配筋图解
板顶筋
总结词
板顶筋是单向板中位于板顶面的钢筋,主要承受板顶面的负弯矩。
详细描述
板顶筋通常采用直径较小的钢筋,如直径为8-12mm的钢筋,以节约成本。在 单向板中,板顶筋通常垂直于长跨方向布置,以承受负弯矩产生的拉力。
板底筋
总结词
板底筋是单向板中位于板底面的钢筋,主要承受板底面的正 弯矩。
详细描述
板底筋通常采用直径较大的钢筋,如直径为12-18mm的钢筋 ,以提高承载能力。在单向板中,板底筋通常垂直于短跨方 向布置,以承受正弯矩产生的压力。
悬挑板配筋
总结词
悬挑板是一种特殊类型的单向板,其配筋方式与普通单向板有所不同。
大跨度结构的单向、双向板配筋
总结词:特殊设计
详细描述:大跨度结构的楼板需要承受较大的荷载和变形,因此需要进行特殊设计。单向板和双向板 的配筋都需要根据具体情况进行计算和配置,以确保结构的安全性和稳定性。
感谢您的观看
THANKS
详细描述
极限状态设计法根据结构的两个极限状态: 承载能力极限状态和正常使用极限状态,分 别计算出板所需的钢筋面积。该方法考虑了 结构的可靠性和安全性,适用于各种类型的 板。
双向板有图资料讲解
(3)双向板的极限荷载
My
My
p
lx3 24
My
My
p
lx3 24
lxmy lxmy
p lx 2
lx
1 lx 32
p lx3 24
Mx
Mx
plx2
ly
8
1l2x
Mx Mx plx2l8y 1l2x
2 M x 2 M y M x M x M y M y p 1 l 2 x 23 ly lx
⑦含钢率相同时,较细的钢筋较为有利。在钢筋数量 相同时,板中间部分钢筋排列较密的比均匀排列的有 利(刚度略好,中间部分裂缝宽度略小,但靠近角部, 则裂缝宽度略大)。
1.3.2 双向板按ห้องสมุดไป่ตู้性理论的分析方法
按弹性薄板的弯曲问题求解。忽略了板厚方向的应 力应变,板的位移ω仅为平面坐标(x,y)的函数,将应力 应变均以ω表达,则当ω确定后,求得板的应力及应变。
板即将破坏时,塑性铰线发生在弯矩最大; 分布荷载下,塑性铰线是直线; 节板为刚性板,板的变形集中在塑性铰线上; 在所有可能的破坏图式中必有一个是最危险的,其极限荷 载为最小; 塑性铰线上只有一定值的极限弯矩,无其它内力。
(2)确定转动轴和塑性铰线的准则
1)塑性铰线是直线,因为它是 两块板的交线; 2)塑性铰线起转动轴的作用;
2、双向板主要实验结果
③板的四角有翘起的趋势,板传给四边支座的压力 是不均匀分布的,中部大、两端小,大致按正弦曲 线分布。
2、双向板主要实验结果
③板的四角有翘起的趋势,板传给四边支座的压力 是不均匀分布的,中部大、两端小,大致按正弦曲 线分布。
④两个方向配筋相同的四边简支正方形板,板的第 一批裂缝出现在底面中间部分;随后由于主弯矩M 作用,沿着对角线方向向四角发展,随着荷载不断 增加,板底裂缝继续向四角扩展,直至板的底部钢 筋屈服而破坏。当接近破坏时,由于主弯矩M的作 用,板顶面靠近四角附近,出现了垂直于对角线方 向的、大体上呈圆形的裂缝。
单向板双向板的图解
单向板双向板的图解+cad单向板:(dan xiang ban) one-way slab楼板一般是四边支承,根据其受力特点和支承情况,又可分为单向板和双向板。
在板的受力和传力过程中,板的长边尺寸L2与短边尺寸L1的比值大小,决定了板的受力情况。
双向板:(shuang xiang ban) two-way slab四边支承的长方形的板,如长跨与短跨之比相差不大,其比值小于二时称之为双向板。
在荷载作用下,将在纵横两个方向产生弯矩,沿两个垂直方向配置受力钢筋。
1单向板one-way slab楼板一般是四边支承,根据其受力特点和支承情况,又可分为单向板和双向板。
在板的受力和传力过程中,板的长边尺寸L2与短边尺寸L1的比值大小,决定了板的受力情况。
根据弹性薄板理论的分析结果,当区格板的长边与短边之比超过一定数值时,荷载主要是通过沿板的短边方向的弯曲(及剪切)作用传递的,沿长边方向传递的荷载可以忽略不计,这时可称其为“单向板”。
《混凝土结构设计规范》GB50010规定:沿两对边支承的板应按单向板计算;对于四边支承的板,当长边与短边比值大于3时,可按沿短边方向的单向板计算,但应沿长边方向布置足够数量的构造钢筋;当长边与短边比值介于2与3之间时,宜按双向板计算;当长边与短边比值小于2时,应按双向板计算。
2双向板two-way slab四边支承的长方形的板,如长跨与短跨之比相差不大,其比值小于二时称之为双向板。
在荷载作用下,将在纵横两个方向产生弯矩,沿两个垂直方向配置受力钢筋。
天津大学出版的<钢筋混凝土房屋结构>(第三版),即本科生教材. 第一页"单向板肋梁楼盖"上写着边长比值大于3的时候,可按照单向板计算,然后是计算原理和假设,包括荷载折算,不利布置影响和考虑塑性内力重分布的计算方法. 在第21页的"1.4 截面设计与构造要求" 中有一段话提到了:对于四边支承板,边长比2-3时,板仍显示出一定程度的双向受力特征,宜按照双向板计算....当边长比值大于3时,沿长边方向的钢筋可按构造要求配制.".本书第二章,第38页,前言提到当边长比<=2时,这种四边支承板称为双向板,由双向板和支承梁组成的楼盖称为双向板肋梁楼盖. 总之,天大这本教材的思想和混凝土规范是一致的,一般也一直以3.0,而不是2.0作为单向板判断的标准.。
梁板结构——整体式双向板梁板结构(课件)
1.3 整体式双向板梁板结构由两个方向板带共同承受荷载,在纵横两个方向上发生弯曲且都不能忽略的四边支承板,称为双向板。
双向板的支承形式:四边支承、三边支承、两边支承或四点支承。
双向板的平面形状:正方形、矩形、圆形、三角形或其他形状。
双向板梁板结构。
又称为双向板肋形楼盖。
图1.3.1。
双重井式楼盖或井式楼盖。
我国《混凝土结构设计规范》(GB50010-2002)规定:对于四边支承的板,●当长边与短边长度之比小于或等于2时,应按双向板计算;●当长边与短边长度之比大于2,但小于3时,宜按双向板计算;若按沿短边方向受力的单向板计算时,应沿长边方向布置足够数量的构造钢筋;●当长边与短边长度之比大于或等于3时,可按沿短边方向受力的单向板计算。
1.3.1 双向板的受力特点1、四边支承双向板弹性工作阶段的受力特点整体式双向梁板结构中的四边支承板,在荷载作用下,板的荷载由短边和长边两个方向板带共同承受,各个板带分配的荷载,与长跨和短跨的跨度比值()0201l l 相关。
当跨度比值()0201l l 接近时,两个方向板带的弯矩值较为接近。
随着()0201l l 的增大,短向板带弯矩值逐渐增大,最大正弯矩出现在中点;长向板带弯矩值逐渐减小。
而且,最大弯矩值不发生在跨中截面,而是偏离跨中截面,图1.3.2。
这是因为,短向板带对长向板带具有一定的支承作用。
2、四边支承双向板的主要实验结果位移与变形双向板在荷载作用下,板的竖向位移呈碟形,板的四角处有向上翘起的趋势。
●裂缝与破坏对于均布荷载作用下的正方形平面四边简支双向板:●在裂缝出现之前,基本处于弹性工作阶段;●随着荷载的增加,由于两个方向配筋相同(正方形板),第一批裂缝出现在板底中央部位,该裂缝沿对角线方向向板的四角扩展,直至因板底部钢筋屈服而破坏。
●当接近破坏时,板顶面靠近四角附近,出现垂直于对角线方向、大体呈圆弧形的环状裂缝。
这些裂缝的出现,又促进了板底对角线方向裂缝的发展。
梁板结构:双向板
l01
l02
如何确定塑性 铰线的位置?
如何确定塑性铰线的位置?
确定塑性铰线位置的原则:
1)对称结构具有对称的塑性铰 线分布; 2)正弯矩部位出现正塑性铰线, 负塑性铰线则出现在负弯矩区域; 3)塑性铰线应满足转动要求。 每条塑性铰线都是两相邻刚性板 块的公共边界,应能随两相邻板 块一起转动,因而塑性铰线必须 通过相邻板块转动轴的交点;
11.3 双向板肋梁楼盖
当板厚远小于板短边边长的1/30,且板的挠度远小 于板的厚度时,双向板内力可按弹性薄板理论计算。 为了工程应用,对六种支承情况的矩形板根据弹性 薄板理论,制成表格见附录8。计算时,只须根据实际 支承情况、荷载情况及短长跨的比值,查出弯矩系数, 便可按下式算得有关弯矩。
m=表中系数×pl012
为了能利用单区格双向板的内力计算表格,将棋盘形布置的活 荷载分解为分解成对称与反对称荷载情况,每种情况的荷载为: 对称情况: g q
2
反对称情况: q
2
l01 l01 l01 l01
Ⅱ 然后,利用单区格双向板的相应表格求得对称荷载和反对称荷 载下当ν=0时的各区格的最大弯矩值; Ⅰ Ⅰ 最后按公式计算出两种荷载情况的实际弯矩,并进行叠加,即 可求的各区格板跨中最大正弯矩。
4/l01
l0 1 /2
l5单位长度负塑性铰线的受 x l6 x 0, , l5 y l6 y l01 弯承载力:
' m1 M1'u / l02 " m1 M1"u / l02 " " ' ' m M m2 M2 / l 2 2u / l01 u 01
l01/2
m 5x 6x 5y M / l0, ,m
(整理)单向板双向板
二.计算简图墙体基础1.计算模型及简化假定主梁一般传力路径(见附图):板次梁柱基础墙体基础计算模型(简图):板:以次梁为中间支座和以墙体为边支座的多跨连续梁(梁宽为1米);次梁:以主梁为中间支座和以墙体为边支座的多跨连续梁;主梁:以柱为中间支座和以墙体为边支座的多跨连续梁;小结:单向板楼盖结构可简化为三种不同的多跨连续梁.简化假定:(1)梁在支座处可以自由转动,支座无竖向位移;(2)不考虑薄膜效应(即假定为薄板);(3)按简支构件计算支座竖向反力;(4)实际跨数小于和等于五跨时,按实际跨数计算;实际跨数大于五跨且跨差小于10%时,按五跨计算.上述假定的物理意义:对于(1):忽略了次梁对板,主梁对次梁和柱对主梁的扭转刚见图12-4 度;忽略了次梁,主梁和柱的相对竖向变形;由此带来的误差通过"折算荷载"加以消除.对于(2):由于支座约束作用将在板内产生轴向压力,称为薄膜见图12-5 力或薄膜效应,它将减少竖向荷载产生的弯矩,这种有利作用在计算内力时忽略,但在配筋计算时通过折减计算弯矩加以调整.对于(3):主要为计算简单.对于(4):方便查表计算,可由结构力学证明.2.计算单元和从属面积(1)计算单元:板—取1米宽板带;(见附图) 次梁和主梁—取具有代表性的一根梁.(2)从属面积:板—取1米宽板带的矩形计算均布荷载;(见附图) 次梁和主梁—取相应的矩形计算均布和集中荷载.3.计算跨度(见附图)次梁的间距就是板的跨长;主梁的间距就是次梁的跨长;跨长不一定等于计算跨度;计算跨度是指用于内力计算的长度.计算跨度的取值原则:(1)中间跨取支承中心线之间的距离;(2)边跨与支承情况有关,参见图12-7.4.荷载取值(1)楼盖荷载类型:恒载(自重)和活载(人群,设备)(2)荷载分项系数恒载一般取1.2;活载取1.4;特殊情况下查阅规范.(3)折算荷载A.折算意义:消除由于前述假定(1)所带来的计算误差;B.折算原则:保持总的荷载大小不变,增大恒载,减小活载;板或梁搁置在砖墙或钢结构上时不折算;C.折算方法:见书上P.7公式(12-1)和(12-2)及其符号说明.注意:主梁不作折减三.连续梁,板按弹性理论的内力计算(方法)1.活荷载的最不利布置(1)原则:A.活荷载按满布一跨考虑,即不考虑某一跨中作用有部分荷载的情况;B.在此布置下,相应内力最大(绝对值).(2)活荷载最不利布置规律由结构力学可证明(参见图12-8):A.求某跨跨内最大正弯矩时,应在该跨布置活荷载,然后隔跨布置;B.求某跨跨内最大负弯矩时,应在该跨不布置活荷载,而在该跨左右邻跨布置,然后隔跨布置;C.求某支座最大负弯矩或该支座左右截面最大剪力时,应在该支座左右两跨布置活荷载,然后隔跨布置.2.内力计算(1)对于相应的荷载及其布置,当等跨或跨差小于等于10%时,可直接查表用相应公式计算(如查附录7,P.519);(2)公式(12-3)和(12-4)中的荷载应为折算荷载,其他相同.3.内力包络图(1)意义:确定非控制截面的内力,以便布置这些截面的钢筋.(2)内力包络图的作法:见附图,以五跨连续梁为例加以说明.步骤1:由于对称性,取梁的一半作图;步骤2:分别作组合A~D情况下的弯矩图;步骤3:取上述弯矩图的外包线即为所求弯矩包络图.(3)剪力包络图的作法同理.4.支座弯矩和剪力设计值(计算值)(1)问题的提出:由于将实际结构简化为直线,故所求得的支座弯矩和剪力是支座中心线处的数值,实际最危险的截面应该在支座边缘,所以应将所求得的数值加以调整,见附图.(2)具体作法:P.9公式(12-5)~(12-7)及其说明.讨论:关于弹性法的缺陷四.超静定结构塑性内力重分布的概念1.应力重分布与内力重分布应力为 : .由于,混凝土分配到的应力发生了变化,这种现象称为"应力重分布".应力重分布在静定结构和超静定结构中都可能发生.(2)内力重分布:超静定结构存在多余联系,其内力是按刚度分配的.在多余联系处,由于应力较大,材料进入弹塑性,产生塑性铰,改变了结构的刚度,内力不再按原有刚度分配,这种现象称为"内力重分布"."内力重分布" 只会在超静定结构中发生且内力不符合结构力学的规律.2.混凝土受弯构件的塑性铰12-10.(2)塑性铰的特点:通过与理想铰比较可看出如下几点塑性铰理想铰A:能承受(基本不变的)弯矩不能承受弯矩B:具有一定长度集中于一点C:只能沿弯矩方向转动任意转动(3)塑性铰的分类动小,脆性).(4)塑性铰对结构的影响A:使超静定结构超静定次数减少,产生内力重分布;B:塑性铰出现时,只要结构不产生机动,仍可承受荷载;或者说,当出现足够的塑性铰,使结构产生机动时,结构才失效.3.内力重分布的过程P.12的两跨连续梁的情况自学.为进一步了解,现补充两端固定梁说明.由于MA>MC,所以将会在A或B处先产生塑性饺,使原有两端固定梁变成两端简支梁.假定当g作用时,恰好支座出现塑性铰,此时支座和跨中弯矩分别为:A B L此时若在梁上再作用q,此时支座弯矩不增加,跨中弯矩增加为:4.影响内力重分布的因素充分的内力重分布:出现足够的塑性铰使结构成为机动.主要影响因素(2)斜截面承载力:在出现足够的塑性铰之前不能产生斜截面破坏,否则不能形成充分的内力重分布;(3)正常使用条件:控制内力重分布的幅度,一般要求在正常使用条件下不应出现塑性铰,以防止出现裂缝过宽或挠度过大.5.考虑内力重分布的意义和适用范围问题:目前的内力计算方法与配筋计算方法不相协调解决办法(之一):考虑塑性内力重分布考虑结构内力重分布的计算方法具有如下优点:(1)能正确估计结构的裂缝和变形;(3)可人为控制弯矩分布,简化结构计算;(4)充分发挥材料的作用,提高经济性.下列情况不宜考虑塑性内力重分布的方法:(1)裂缝宽度和挠度要求较严格的构件;(2)直接承受动荷载和重复荷载的构件;(3)预应力和二次受力构件;(4)重要的或可靠性要求较高的构件.五.连续梁,板按调幅法的内力计算1.调幅法的概念和原则(1)调幅法的概念:对按结构力学方法计算得出的内力(人为)进行调整,然后按调整后的内力进行配筋计算,是一种实用计算方法,为大多数国家采用.(2)弯矩调幅法的做法:引入弯矩调幅系数,其计算公式为为结构力学计算的弯矩; 为调幅后的弯矩;因为,所以有关系: ,即有结论:调幅弯矩值小于等于结构力学计算值.例P.15一两跨连梁(图12-14)(3)调幅法的原则A.应验算调幅后的内力(即平衡)和正常使用状态,并有相应构造措施;B.不宜采用高强材料,且相对受压区高度应满足下列条件:(4)调幅法的计算步骤A.用结构力学方法计算荷载最不利布置下若干控制截面(通常为支座截面)的弯矩最大值;B.采用调幅系数(不超过0.2)降低该弯矩值,采用公式(12-11);C.跨中弯矩值取结力计算值和(12-12)式计算值的较大者;D.调整后的各弯矩值应大于等于简支梁跨中弯矩的1/3;E.剪力设计值按荷载最不利布置和调整后的支座弯矩由静力平衡条件确定.2.用调幅法计算等跨连续梁,板(1)等跨连续梁计算条件:各跨均布荷载相等,集中荷载的大小和间距相等.计算方法:查表并用下式计算A.弯矩:均布荷载时:集中荷载时:B.剪力:均布荷载时: ;集中荷载时:上述公式中各符号的物理意义见P.16-17的说明.为方便记忆,将表12-1中各系数的位置表示在附图中.(2)等跨连续板表12-1中系数的推导,见P.18(自学)3.用调幅法计算不等跨连续梁,板采用前述原则和步骤进行,但不能直接使用上述表格,各内力的调幅值应根据实际情况计算. 例(12-1)自学.六.单向板肋梁楼盖的截面设计与构造1.单向板的截面设计与构造(1)设计要点:A.板厚的要求;B.区分端区格单向板和中间区格单向板,前者的内支座弯矩和中间跨的跨中弯矩可折减20%(解释P.21及图12-24或附图).C.板一般不进行抗剪计算,因混凝土的能力足够且板上仅考虑均布荷载;D.一般采用考虑塑性内力重分布的方法计算.(2)配筋构造1)受力筋:与板的短边平行,直径在6到12毫米之间,直径不一多于两种;布置形式有弯起式和分离式,见图12-18;满足一定条件时(等跨,等厚度,活载与恒载之比小于3等),可直接按该图进行钢筋的弯起或截断,否则应作包络图.2)板中构造钢筋:A.分布筋,平行于长跨,布置于板底部,受力筋之上,如下图: 受力筋分布筋B.与主梁垂直的附加负筋:如下图:C.与墙体垂直的附加负筋:见图12-20;D.板角附加短钢筋:见图12-20.2.次梁(1)设计要点1)可采用考虑塑性内力重分布的方法计算;2)配筋时,支座按矩形,跨中按T形截面计算;3)当考虑塑性内力重分布时,为防止过早出现斜截面破坏,可将计算得到的箍筋用量提高20%.(2)配筋构造当等跨,等截面和活载与恒载之比小于等于3时,纵筋的弯起和截断可按图12-21布置,否则按包络图布置.3.主梁(1)设计要点1)内力计算时,一般不考虑塑性内力重分布;2)配筋计算时,支座按矩形,跨中按T形截面计算.(2)构造特点1)主梁与次梁相交处上部钢筋布置按下图:2)对于主梁与次梁相交处的主梁上,由于间接加载,为防止主梁腹部产生局部破坏,应设置附加横向钢筋,如下图:附加横向钢筋具体计算方法和布置范围P.26,一般情况下优先考虑箍筋加密以方便施工.介绍例题P.27.§12.3 双向板肋梁楼盖一.双向板的受力特点和主要试验结果1.四边支承板弹性工作阶段的受力特点(见图12-33和12-34)(1)理论依据:弹性力学薄板理论;(2)主要结论:相邻板带之间存在剪力,构成扭矩;主弯矩作用下板底部将产生45度方向的裂缝.2.四边支承板的主要试验结果(见图12-35)特点:板底部裂缝沿45度方向;板顶裂缝沿支承边发展呈椭圆形.二.双向板按弹性理论的内力计算对于非规则的双向板,一般按薄板理论直接计算内力;对于规则的双向板,根据薄板理论制成表格后,查表计算.现加以讨论.1.单跨(单区格)双向板计算公式:几点说明(强调):(1)上式中各符号的意义见P.40;(2)表中系数的数值与板的四边支承条件和所求弯矩的位置有关,见附录8,P.527;(3)上式未考虑泊松比的影响,实际计算时必须考虑,此时混凝土的泊松比近似取0.2;(4)上式所求弯矩是单位长度的弯矩.2.多跨(多区格)双向板实际工程中单区格较少,一般为多区格楼盖.实用做法:将多区格楼盖简化为单区格板,然后按单区格查表计算.(1)跨中最大弯矩由薄板理论可知,跨中产生最大弯矩时,荷载为棋盘布置,可将多跨双向板楼盖分解为单跨板查表计算,将荷载重新组合,如附图所示.显然,产生的内力= 产生的内力+ 产生的内力.对于,中间的板块,按四边固定荷载为g+q/2的情况查表;端部的板块,按三边固定一边简支荷载为g+q/2的情况查表;对于,按四边简支荷载为q/2的情况查表;设按查表求得的x方向的弯矩为 (未考虑泊松比 );y方向的弯矩为 (未考虑泊松比 );则考虑(泊松比时),产生的x方向的弯矩为 :产生的y方向的弯矩为 :设按查表求得的x方向的弯矩为 (未考虑泊松比 );y方向的弯矩为 (未考虑泊松比 );则考虑(泊松比时),产生的x方向的弯矩为 :产生的y方向的弯矩为 :将,分别产生的x及y方向的弯矩叠加,即得跨中最大弯矩为:按上述计算值进行配筋计算.(2)支座最大负弯矩最不利活荷载的布置形式为全部楼盖满布.中间板块按四边固定的情况查表;端部板块按三边固定一边简支(若搁置在砖墙上)查表;角部板块按二边固定二边简支(若搁置在砖墙上)查表;相邻支承边上的负弯矩取绝对值较大者.三.双向板按塑性铰线法的计算(自学)四.双向板的截面设计与构造要求1.截面设计由于板四周受到梁的约束,将使实际弯矩有所减少.所以规范允许将计算弯矩值折减.(1)中间跨的跨中弯矩,中间支座弯矩可减少20%;(2)其余部位视情况确定;(3)角部板块不折减.2.构造要求配筋形式:弯起式和分离式;如图12-42,中间板带按计算配筋;边缘板带取一半;其余构造筋同单向板.五.双向板支承梁的设计1.支承梁承担的荷载板上作用的均布荷载按就近原则传递给支承梁,见附图.2.支承梁的结构模型:多跨连续梁3.设计步骤(1)荷载简化:采用支座弯矩等效的原则将T形和三角形荷载分布简化为均布分布.现以三角形分布为例加以说明.均布荷载下两端固定梁的支座弯矩为:(a)假定三角形荷载下两端固定梁的支座弯矩:采用结构力学解出,再令,即可解得等效荷载: (b)对于T形分布的均布荷载作类似的计算,也可求得相应等效荷载.于是,求解三角形荷载下两端固定梁的内力时,不须解超静定结构.先根据(b)式求等效荷载,再代入(a)式求支座弯矩;原超静定结构转化为三角形荷载和支座弯矩作用下的静定结构.各种类型分布荷载下两端固定梁的等效弯矩可查有关计算手册.(2)按最不利活荷载求控制截面的内力,原则同单向板楼盖梁.(3)作包络图进行配筋计算.六.双向板设计例题(简介)§12.4 无梁楼盖(自学)§12.5装配式与装配整体式楼盖一.概述1.装配式:所有构件均在工厂或现场预制,然后起吊安装;整体性差,不利与抗震,仅适用于混合结构的多层房屋.2.装配整体式:部分构件(板)在工厂或现场预制,部分构件(柱)现浇,整体性强于装配式,适用于框架等小高层结构.3.一般采用标准化构件生产.二.预制板与预制梁1.预制板的形式:普通混凝土预制板,预应力混凝土预制板,轻质混凝土预制板和其他新型材料预制板(墙体).各种形状的预制板见图12-54.2.预制板的尺寸:标准化,一般根据开间或进深,柱距和施工方便确定,可查表准图选用.3.预制梁:普通混凝土预制梁,预应力混凝土预制梁;简支梁,连-------------续梁,矩形截面,T形截面和花篮梁,见图12-55.三.预制构件的计算特点1.使用阶段承载力计算;2.正常使用极限状态验算;3.吊装验算(自重乘以1.5,吊环验算).四.铺板式楼盖的连接1.连接的目的:加强各构件的联系,确保结构的整体性.2.连接的方法:见P.65-67的标准图.-------------。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ly m x ly m x p ly lxl 2 x l 4 x p 2 1 2 l 2 x 2 1 3 l 2 x p lx 2 l 8 y 1 l2 x
(3)双向板的极限荷载
板即将破坏时,塑性铰线发生在弯矩最大; 分布荷载下,塑性铰线是直线; 节板为刚性板,板的变形集中在塑性铰线上; 在所有可能的破坏图式中必有一个是最危险的,其极限荷 载为最小; 塑性铰线上只有一定值的极限弯矩,无其它内力。
(2)确定转动轴和塑性铰线的准则
1)塑性铰线是直线,因为它是 两块板的交线; 2)塑性铰线起转动轴的作用;
1.3.2 双向板按弹性理论的分析方法 1、单跨双向板的内力及变形计算
弯 矩表 中 系数 ql2
表中系(gq)l02x
Bc
mx mx my my my mx
2、多跨连续双向板的实用计算方法
1、假定:(1)支承梁不产生竖向位移且不受扭
(2)同一方向相邻跨 lmi/nlmax0.75
2、支座最大负弯矩 近似按满布活荷载计算
(3)双向板的极限荷载
My
My
p
lx3 24
My
My
p
lx3 24
lxmy lxmy
p lx 2
lx
1 lx 32
p lx3 24
Mx Mx plx2l8y 1l2x
Mx Mx plx2l8y 1l2x
2 M x 2 M y M x M x M y M y p 1 l 2 x 23 ly lx
2、双向板主要实验结果
四边简支双向板在均布荷载作用下的试验研究表明:
① 在裂缝出现之前,双向板基本上处于弹性工作阶段。
②竖向位移曲面呈碟形。矩形双向板沿长跨最大正弯 矩并不发生的跨中截面上,因为沿长跨的挠度曲线弯曲 最大处不在跨中而在离板边约1/2短跨长度处。
2、双向板主要实验结果
③板的四角有翘起的趋势,板传给四边支座的压力 是不均匀分布的,中部大、两端小,大致按正弦曲 线分布。
1.3 整体式双向板梁板结构
1.3.1 双向板的受力特点
四边支承板; 两向跨长比
l01/l022
四边支承的板应按下列规定计算:
1)当长边与短边长度之比小于或等于2.0时,按双向板计算;
2)当长边与短边长度之比大于2.0,但小于3.0时,宜按双向板 计算;当按沿短边方向受力的单向板计算时,应沿长边方向布 置足够数量的构造钢筋;
3)板的支承边也形成转动轴;
4)转动轴必定通过角,其方 向取决于其它条件;
5)集中载下的塑性铰线呈放 射状;
6)两个板块之间的塑性铰线 必定通过此相邻板块转动轴 的交点
(2)确定转动轴和塑性铰线的准则
(3)双向板的极限荷载
(3)双向板的极限荷载
mx Asx f y shox my Asy f y shoy
⑤两个方向配筋相同的四边简支矩形板板底的第一批 裂缝,出现在板的中部,平行于长边方向。随着荷载 进一步加大,由于主弯矩MⅠ的作用,板底的跨中裂 缝逐渐延长,并沿45度角向板的四角扩展,同时板顶 四角也出现大体呈圆形的裂缝,如图所示。最终因板 底裂缝处受力钢筋屈服而破坏。
⑥板中钢筋的布置方向对破坏荷载影响不大,但平行 于四边配置钢筋的板,其开裂荷载比平行于对角线方 向配筋的板要大些。
2、双向板主要实验结果
③板的四角有翘起的趋势,板传给四边支座的压力 是不均匀分布的,中部大、两端小,大致按正弦曲 线分布。
④两个方向配筋相同的四边简支正方形板,板的第 一批裂缝出现在底面中间部分;随后由于主弯矩M 作用,沿着对角线方向向四角发展,随着荷载不断 增加,板底裂缝继续向四角扩展,直至板的底部钢 筋屈服而破坏。当接近破坏时,由于主弯矩M的作 用,板顶面靠近四角附近,出现了垂直于对角线方 向的、大体上呈圆形的裂缝。
1、双向板的塑性设计ห้องสมุดไป่ตู้
(1)双向板的一般配筋形式
1、双向板的塑性设计
3)当长边与短边长度之比大于或等于3.0时,可按沿短边方向 受力的单向板计算。
单向板
双向板
1、双向板受力特点
➢剪力、扭矩和主弯矩
M ,
Mx My 2
Mx
2
My
2
Mx2y
tan2 2Mxy
Mx My
1、双向板受力特点
➢板角上翘
1、双向板受力特点
因此,双向板配筋应为: 板底平行板边的正钢筋; 板顶沿支座布置的负钢筋; 角部板面斜钢筋——角部板面正交钢筋网
My
My
p
lx3 24
My
My
p
lx3 24
lxmy lxmy
p lx 2
lx
1 lx 32
p lx3 24
Mx Mx plx2l8y 1l2x
Mx Mx plx2l8y 1l2x
ly m x ly m x p ly lxl 2 x l 4 x p 2 1 2 l 2 x 2 1 3 l 2 x p lx 2 l 8 y 1 l2 x
3、跨中最大正弯矩——活荷载棋盘式布置; 实用计算方法——满布荷载g+q/2与间隔布置±q/2之和。
2、多跨连续双向板的实用计算方法
1、假定:(1)支承梁不产生竖向位移且不受扭
(2)同一方向相邻跨 lmi/nlmax0.75
2、支座最大负弯矩 近似按满布活荷载计算
3、跨中最大正弯矩——活荷载棋盘式布置; 实用计算方法——满布荷载g+q/2与间隔布置±q/2之和。
⑦含钢率相同时,较细的钢筋较为有利。在钢筋数量 相同时,板中间部分钢筋排列较密的比均匀排列的有 利(刚度略好,中间部分裂缝宽度略小,但靠近角部, 则裂缝宽度略大)。
1.3.2 双向板按弹性理论的分析方法
按弹性薄板的弯曲问题求解。忽略了板厚方向的应 力应变,板的位移ω仅为平面坐标(x,y)的函数,将应力 应变均以ω表达,则当ω确定后,求得板的应力及应变。
跨中最大正弯矩 活荷载棋盘式布置; 实用计算方法——满布 荷载g+q/2与间隔布置 ±q/2之和
g+q/2
跨中最大正弯矩 活荷载棋盘式布置; 实用计算方法——满布 荷载g+q/2与间隔布置 ±q/2之和
q/2
1.3.3 双向板按塑性理论的分析方法 1、极限平衡法(塑性铰线法)
(1)塑性铰线法的基本假定: