八年级数学上册期末模拟试题
【3套】八年级上册数学期末考试试题(答案)

八年级上册数学期末考试试题(答案)一、填空题:(每小题3分,共30分)1.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为米.2.当x时,分式有意义.3.分解因式:4m2﹣16n2=.4.计算:﹣=.5.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE =.6.x+=3,则x2+=.7.当x时,分式的值为正.8.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC =8,则四边形AFDE的面积是.9.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.10.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有个三角形.二、选择题:(每小题3分,共30分)11.下列运算正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+112.下列图形中,是轴对称图形的是()A.B.C.D.13.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣114.在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.515.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变16.下列二次根式中最简二次根式是()A.B.C.D.17.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣618.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20C.﹣=D.﹣=19.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A.B.2 C.D.20.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个三、简答题:(共60分21.(8分)计算(1)4(x+y)(x﹣y)﹣(2x﹣y)2(2)(+)﹣(﹣)22.(5分)解方程:=+23.(5分)先化简,再求值:,其中x=.24.(7分)△ABC在平面直角坐标系中的位置如图.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)在y轴上找点D,使得AD+BD最小,作出点D并写出点D的坐标.25.(7分)已知=3,求的值.26.(8分)已知a,b,c都是实数,且满足(2﹣a)2+=0,且ax2+bx+c =0,求代数式3x2+6x+1的值.27.(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?28.(10分)已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC 和CD的数量关系.参考答案一、填空题1.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 1.04×10﹣4米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000104=1.04×10﹣4,故答案为:1.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.当x≠﹣时,分式有意义.【分析】根据,分式有意义,可得答案.解:由题意,得3x+5≠0,解得x≠﹣,故答案为:≠﹣.【点评】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.3.分解因式:4m2﹣16n2=4(m+2n)(m﹣2n).【分析】原式提取4后,利用平方差公式分解即可.解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.计算:﹣=﹣.【分析】先化简,再进一步合并同类二次根式即可.解:原式=﹣=﹣【点评】此题考查二次根式的加减,注意先化简再合并.5.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE = 6 .【分析】因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE,即可得到结论.解:∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE=5;∵BD=CD=3,∴DE=CD+CE=2+4=6,故答案为6.【点评】本题主要考查线段的垂直平分线的性质等几何知识,利用线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.6.x+=3,则x2+=7 .【分析】直接利用完全平方公式将已知变形,进而求出答案.解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=7.故答案为:7.【点评】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.7.当x>且x≠0 时,分式的值为正.【分析】同号为正,异号为负.分母≠0.解:分式的值为正,即>0,解得x>,因为分母不为0,所以x≠0.故当x>且x≠0时,分式的值为正.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.8.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC =8,则四边形AFDE的面积是8 .【分析】连接AD,求出△DAE≌△DBF,得到四边形AFDE的面积=S△ABD=S△ABC,于是得到结论解:连接AD,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AB=AC,DB=CD,∴∠DAE=∠BAD=45°,∴∠BAD=∠B=45°,∴AD=BD,∠ADB=90°,在△DAE和△DBF中,,∴△DAE≌△DBF(SAS),∴四边形AFDE的面积=S△ABD=S△ABC,∵BC=8,∴AD=BC=4,∴四边形AFDE的面积=S△ABD=S△ABC=××8×4=8,故答案为:8.【点评】本题主要考查了全等三角形的判定和等腰三角形的判定.考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.9.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073 个三角形.【分析】根据题目中的图形,可以发现三角形个数的变化规律,从而可以解答本题.解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中的三角形个数的变化规律,利用数形结合的思想解答.二、选择题:(每小题3分,共30分)11.下列运算正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+1【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、完全平方公式分别计算得出答案.解:A、a2•a3=a5,故此选项错误;B、(2a)2=4a2,故此选项错误;C、(a2)3=a6,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算、幂的乘方运算、完全平方公式等知识,正确掌握运算法则是解题关键.12.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣1【分析】方程两边都乘以最简公分母(x﹣1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解.解:方程两边都乘以(x﹣1)得,m﹣1﹣x=0,∵分式方程无解,∴x﹣1=0,解得x=1,∴m﹣1﹣1=0,解得m=2.故选:B.【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值.14.在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:分式有:,,共2个.故选:A.【点评】本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.15.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变【分析】利用分式的基本性质求解即可判定.解:分式中的x和y都扩大2倍,得.故选:D.【点评】本题主要考查了分式的基本性质,解题的关键是熟记分式的基本性质.16.下列二次根式中最简二次根式是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.解:A、=2,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,故此选项正确;D、=|mn|,故此选项错误;故选:C.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.17.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣6【分析】本题是完全平方公式的应用,这里首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9乘积的2倍.解:∵x2+kx+9是一个完全平方式,∴这两个数是x和3,∴kx=±2×3x=±6x,解得k=±6.故选:D.【点评】本题考查的是完全平方公式,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积的2倍的符号,有正负两种情况,避免漏解.18.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20C.﹣=D.﹣=【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.解:由题意可得,﹣=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.19.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A.B.2 C.D.【分析】根据等边三角形性质得出AC=AB,∠BAC=∠B=60°,证△ABE≌△CAD,推出∠BAE=∠ACD求出∠AFD=∠BAC=60°求出∠FAG=30°,即可求出答案.证明:∵△ABC 是等边三角形, ∴AC =AB ,∠BAC =∠B =60°, 在△ABE 和△CAD 中∴△ABE ≌△CAD (SAS ), ∴∠BAE =∠ACD ,∴∠AFD =∠CAE +∠ACD =∠CAE +∠BAE =∠BAC =60°, ∵AG ⊥CD , ∴∠AGF =90°, ∴∠FAG =30°,∴sin30°==,即=.【点评】本题考查了全等三角形的性质和判定等边三角形性质,特殊角的三角函数值,含30度角的直角三角形性质的应用,主要考查学生的推理能力.20.如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .2个B .3个C .4个D .无数个【分析】如图在OA 、OB 上截取OE =OF =OP ,作∠MPN =60°,只要证明△PEM ≌△PON 即可推出△PMN 是等边三角形,由此即可得结论解:如图在OA 、OB 上截取OE =OF =OP ,作∠MPN =60°.∵OP 平分∠AOB ,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.三、简答题:(共60分21.(8分)计算(1)4(x+y)(x﹣y)﹣(2x﹣y)2(2)(+)﹣(﹣)【分析】(1)根据平方差和完全平方公式计算即可;(2)根据二次根式的加减法的法则计算即可.解:(1)4(x+y)(x﹣y)﹣(2x﹣y)2=4(x2﹣y2)﹣(4x2﹣4xy+y2)=4x2﹣4y2﹣4x2+4xy ﹣y2=4xy﹣5y2;(2)(+)﹣(﹣)=2+﹣+=3+.【点评】本题考查了二次根式的加减法,完全平方公式,平方差公式,熟记法则和乘法公式是解题的关键,22.(5分)解方程: =+【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:3x =2x ﹣4+6, 解得:x =2,经检验x =2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(5分)先化简,再求值:,其中x =.【分析】根据分式的运算法则即可求出答案.解:由于x ==﹣2原式=×﹣=﹣== =【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 24.(7分)△ABC 在平面直角坐标系中的位置如图.A 、B 、C 三点在格点上. (1)作出△AB C 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标 (3,﹣2) ; (2)在y 轴上找点D ,使得AD +BD 最小,作出点D 并写出点D 的坐标 (0,2) .【分析】(1)根据网格结构找出点A 、B 、C 关于x 轴的对称的A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;(2)确定出点B关于y轴的对称点B′,根据轴对称确定最短路线问题连接AB′,与y轴的交点即为所求的点D,然后求出OD的长度,再写出坐标即可.解:(1)△A1B1C1如图所示,C1(3,﹣2);(2)点D如图所示,OD=2,所以,点D的坐标为(0,2).故答案为:(3,﹣2);(0,2).【点评】本题考查了利用轴对称变换作图,利用轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(7分)已知=3,求的值.【分析】由题意可知:b﹣a=3ab,然后整体代入原式即可求出答案.解:由题意可知:b﹣a=3ab,∴a﹣b=﹣3ab∴原式===【点评】本题考查分式的值,解题的关键是由题意得出a﹣b=﹣3ab,本题属于基础题型.26.(8分)已知a,b,c都是实数,且满足(2﹣a)2+=0,且ax2+bx+c =0,求代数式3x2+6x+1的值.【分析】利用非负数的性质求出a,b,c的值,代入已知等式求出x2+2x的值,原式变形后代入计算即可求出值.解:∵(2﹣a)2++|c+8|=0,∴a=2,b=4,c=﹣8,代入ax2+bx+c=0得:2x2+4x﹣8=0,即x2+2x﹣4=0,∴x2+2x=4,则3x2+6x+1=3(x2+2x)+1=12+1=13.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.27.(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?【分析】(1)设乙工程队每天能完成的绿化面积为x平方米,则甲工程队每天能完成的绿化面积为2x平方米,根据工作时间=工作总量÷工作效率结合甲队比乙队少用2天,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设应安排甲工程队工作y天,则乙工程队工作(48﹣2y)天,根据总费用=0.4×甲工程队工作天数+0.25×乙工程队工作天数结合总费用不超过10万元,即可得出关于y 的一元一次不等式,解之即可得出y的取值范围,取其内的最小值即可.解:(1)设乙园林队每天能完成绿化的面积为x平方米,则甲园林队每天能完成绿化的面积为2x平方米,根据题意得:﹣=2,解得:x=200,经检验,x=200是原分式方程的解,∴当x=200时,2x=400;答:甲、乙两园林队每天能完成绿化的面积分别是400平方米和200平方米;(2)设欧城物业应安排甲园林队工作y天,则乙园林队工作=(48﹣2y)天,根据题意得:0.4y+0.25(48﹣2y)≤10,解得:y≥20,∴y的最小值为20.答:甲工程队至少应工作20天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列出一元一次不等式.28.(10分)已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC 和CD的数量关系.【分析】(1)在CD上截取CF=AE,连接EF.运用“AAS”证明△ECF≌△EDB得AE=BD,从而得证;(2)在BC的延长线上截取CF=AE,连接EF.同理可得AE、AC和CD的数量关系;(3)同(2)的探究过程可得AE、AC和CD的数量关系.(1)证明:在CD上截取CF=AE,连接EF.∵△ABC是等边三角形,∴∠ABC=60°,AB=BC.∴BF=BE,△BEF为等边三角形.∴∠EBD=∠EFC=120°.又∵ED=EC,∴∠D=∠ECF.∴△EDB≌△ECF(AAS)∴CF=BD.∴AE=BD.∵CD=BC+BD,BC=AC,∴AE+AC=C D;(2)解:在BC的延长线上截取CF=AE,连接EF.同(1)的证明过程可得AE=BD.∵CD=BC﹣BD,BC=AC,∴AC﹣AE=CD;(3)解:AE﹣AC=CD.(在BC的延长线上截取CF=AE,连接EF.证明过程类似(2)).【点评】此题考查全等三角形的判定与性质及等边三角形的性质,运用了类比的数学思想进行探究,有利于培养分散思维习惯和举一反三的能力.八年级上册数学期末考试试题及答案一、单选题(本题共12小题,每题只有一个正确选项,每小题3分,共36分)1.下面4个图案,其中不是轴对称图形的是()A. B. C. D.2.计算232a b -()的结果是( ) A . 636a b - B . 638a b - C . 638a b D .53 8a b - 3.在平面直角坐标系中,点P (3,﹣2)关于y 轴的对称点在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 4.一个三角形的两边长为3和7,第三边长为偶数,则第三边为( ) A . 6 B . 6或8 C . 4 D . 4或6 5.下列从左到右的变形,属于分解因式的是( )A . 2(3)(3)9a a a +--=B . 25(1)5x x x x +-=--C . 2 (1)a a a a =++D . 32x y x x y =⋅⋅ 6.如图,点A 在DE 上,AC =CE ,∠1=∠2=∠3,则DE 的长等于( ) A . DC B . BC C . AB D . AE +AC7.若分式2424x x --的值为零,则x 等于( )A. 0B. 2C. 2或-2D. -28.如图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A . 2abB . 2()a b +C . 2()a b -D . 22 a b - 9.如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( )A . 80°B . 100°C . 140°D . 160°10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则∠A 与∠1 和∠2之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是( ) A . 2∠A =∠1-∠2 B . 3∠A =2(∠1-∠2) C . 3∠A =2∠1-∠2 D . ∠A =∠1-∠2第8题图第9题图第10题图第6题图11.如图,在△ABC 中,∠A =20°,∠ABC 与∠ACB 的角平分线交于D 1, ∠ABD 1与∠ACD 1的角平分线交于点D 2,依此类推,∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( )A . 24°B . 25°C . 30°D . 36° 12.如图,点E 是BC 的中点,AB ⊥BC ,DC ⊥BC ,AE 平分∠BAD ,下列结论:①∠AED =90°②∠ADE =∠CDE ③DE =BE ④AD =AB +CD ,四个结论中成立的是( ) A . ①②④ B . ①②③ C . ②④ D . ①②③④二、填空题(本题共8小题,每小题3分,共24分) 13.(1)若要使分式34x+有意义,则x 的取值范围是________ (2)数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1=______(3)如图,在△ABC 中,D 是BC 边上的中点,∠BDE =∠CDF ,请你添加一个条件,使DE=DF 成立.你添加的条件是________.(不再添加辅助线和字母)(4)化简22244x xx x --+的结果是________(5)已知关于x 的分式方程112a x -=+无实数解,则a =________ (6)如图,AB=AC ,DB=DC ,若∠ABC 为60°,BE =3cm ,则AB =________cm .(7)如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =2,则S △OFE =________ (8)如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =45°, 当∠A =________时,△AOP 为等腰三角形.第12题图第11题图第13(7)题图 第13(6)题图 第13(3)题图第13(2)题图第13(8)题图三、解答题(共60分)14.(本题共3小题,每小题4分,共12分)(1)因式分解:244xyz xyz xy -+- (2)因式分解:229()()m n m n +--(3)解方程:2133x x x x-+=--15.(本小题6分)化简求值 已知113x y +=,求222x xy y x xy y-+-+的值16.(本小题9分)如图,(1)在网格中画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)写出△ABC 关于x 轴对称的△A 2B 2C 2的各顶点坐标;(3)在y 轴上确定一点P ,使△PAB 周长最短.(只需作图,保留作图痕迹)第16题图17.(本小题9分)已知等边三角形ABC ,延长BA 至E ,延长BC 至D ,使得AE =BD ,求证:EC =ED18.(本小题12分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?B第17题图19.(本小题12分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP 于点D,交直线BC于点Q.第19题图(1)如图1,当P在线段AC上时,求证:BP=AQ;(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?________(填“成立”或“不成立”)(3)在(2)的条件下,当∠DBA=________时,存在AQ=2BD,说明理由.2017—2018学年度上学期期末学业水平质量调研试题八年级数学参考答案2018.01说明:本答案仅供参考,阅卷时以小组统一答案为准13(1)x ≠﹣4 (2)60° (3)答案不唯一,如AB=AC 或∠B =∠C 或∠BED =∠CFD 或∠AED =∠AFD (4)2xx - (5) 1 (6) 6 (7) 4 (8) 45°或67.5°或90° 三、解答题14.(1)因式分解244xyz xyz xy -+-22(44)(2)xy z z xy z =--+=--……………4分(2)22()9m n m n +--() =223()m n m n +--⎡⎤⎣⎦() =33()()m n m n m n m n ⎡⎤⎡⎤⎣⎦+⎦+---⎣+()()=()422m n m n ++()……………4分(3)解:两边乘(3)x -得到(2)3x x x --=-, 23x x x -+=-,1x =-, 检验:当1x =-时,(3)0x -≠,故1x =-是分式方程的根……………4分 15.解:11222()653,3,3,52()232x y x xy y x y xy xy xy xy x y xy x y xy x xy y x y xy xy xy xy+-++--+==+=====-++-- ……………6分16.(1)解:如图所示:……………3分(2)解:A 2(﹣3,﹣2),B 2(﹣4,3),C 2(﹣1,1)……………6分(3)解:连结AB 1或BA 1交y 轴于点P ,则点P 即为所求……………9分17.证明:延长BD 到F ,使BF=BE ,连接EF .则BF-BC =BE-BA . 即CF=AE ;又AE=BD . 故CF=BD , DF=BC . ∵∠B =60°.∴△BEF 为等边三角形,BE=EF ;∠B =∠F =60°.∴△EBC ≌△EFD (SAS),EC=ED .……………9分 18.(1)解:设第一批购进书包的单价是x 元.则:2000630034x x ⨯=+ 解得:x =80.经检验:x =80是原方程的根.答:第一批购进书包的单价是80元 ……………7分 (2)解:20006300120801208437008084⨯+⨯=(﹣)(﹣)(元).答:商店共盈利3700元……………12分19.(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中∴△ACQ≌△BCP(ASA),∴BP=AQ ……………5分(2)成立……………7分(3)22.5°……………9分当∠DBA=22.5°时,存在AQ=2BD,理由:∵∠BAC=∠DBA+∠APB=45°,∴∠PBA=∠APB=22.5°,∴AP=AB,∵AD⊥BP,∴BP=2BD,在△PBC与△QAC中,,∴△PBC≌△ACQ,∴AQ=PB,∴AQ=2BD.故答案为:22.5°……………12分人教版八年级(上)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题3分,共48分)1.下列图形中,不是轴对称图形的是()2.下列根式中是最简二次根式的是()A. B. C. D.3.下列各数中,没有平方根的是()A. B. C. D.4.下列运算结果正确的是()A. B. C. D.5.若代数式在实数范围内有意义,则x的取值范围是()A. B. C. D.6.解分式方程,去分母得()A.B.C.D.7.已知等腰三角形的两边x,y满足,则等腰三角形的周长为()A.16 B.12 C.20 D.20或168.下列二次根式中,与可以合并的根式是()A. B. C. D.9.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°10.如图是一个以O为对称中心的中心对称图形,若∠A=30°,∠C=90°,OC=1,则AB的长为()A.2 B.4 C. D.11.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.1012.已知,,则的值为()A.10 B.8 C.6 D.413.如图,在△ABC中,AB=AC,∠A=20°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ADB=()A.100° B.160° C.80° D.20°14.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C’处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.1015.如图,△ABC的顶点A,B,C在连长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.16.如图,△ABC的面积为10,BP是∠ABC的平分线,AP⊥BP于P,则△PBC 的面积为()A.4 B.5 C.6 D.7二、填空(每小题3分,共12分)17.化简:的结果为 .18.已知的平方根是,则m= .19.若,则代数式的值是 .20.如图,Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,D点从A出发以每秒1cm 的速度向B点运动,当D点运动到AC的中垂线上时,运动时间为秒.三、(共12分)21.(1)化简,再求值:,其中.(2)计算:.四、(本题8分)22.如图,在△ABC中,AB=AC=8cm.(1)作AB的垂直平分线,交AC于点M,交AB于点N;(尺规作图,保留作图痕迹)(2)在(1)的条件下,连接MB,若△MBC的周长是14cm,求BC的长.五、(本题8分)23.某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买的笔记本比打折前多10本.(1)请利用分工方程求出每本笔记本原来的标价;(2)恰逢文具店周年庆典,每本笔记本可以按原价打8折,这样该校最多可购入多少笔记本?六、(8分)24.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.七、(12分)25.先阅读,再解答由可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:,请完成下列问题:(1)的有理化因式是;(2)化去式子分母中的根号:, .(3)(填或)(4)利用你发现的规律计算下列式子的值:八、(12分)26.已知:如图,Rt△ABC中,∠C=90°,AC=6,AB=10.(1)求BC的长;(2)有一动点P从点C开始沿C→B→A方向以1cm/s的速度运动到点A后停止运动,设运动时间为t秒;求:①当t为几秒时,AP平分∠CAB;②当t为几秒时,△ACP是等腰三角形(直接写答案).。
八年级上册期末数学模拟试卷6

16.如图,在平面直角坐标系中,点A,B的坐标分别是(1,5)、(5,1),若点C在x轴上,且A,B,C三点构成
的三角形是等腰三角形,则这样的C点共有个.
17.如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值等于.
18.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:
3.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
4.下列运算正确 是( )
A. B. C. D.
5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是( )
(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;
此时 =;
(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.
(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.
八年级上册数学期末模拟测试题6
人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。
2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年八年级上册期末数学模拟试卷一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm6.(3分)下列各式中,正确的是()A.B.C.D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x210.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或711.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a212.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为.14.(3分)计算:=.15.(3分)分解因式:3a3﹣12a=.16.(3分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.17.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 .18.(3分)约分:=.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = °.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .三、解答题:(本题共14分,第21题9分,第22题5分) 21.(9分)(1)因式分解:3m 2﹣24m +48. (2)计算:. (3)解关于x 的方程:.22.(5分)已知,y =﹣2,求代数式(x +2y )2﹣(x ﹣2y )(x +2y )的值.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F 、C 在BE 上,BF =CE ,AB =DE ,∠B =∠E .求证:∠A =∠D .24.(5分)列方程解应用题2014年11月,APEC (“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC 会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC 会议期间这路公交车每天运行多少车次? 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.(5分)已知:如图,△ABC ,射线AM 平分∠BAC .(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG . (2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 ; (2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1= ,x 2= ;(3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.2022-2023学年八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选:A.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.3.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.6.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A分母中的a没除以b,故A错误;B异分母分式不能直接相加,故B错误;C分式的分子分母没同乘或除以同一个不为零整式,故C错误;D分式的分子分母都乘以(a﹣2),故D正确;故选:D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∴∠FEB+∠EFC=360°﹣120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°﹣120°=120°,∵∠1=95°,∴∠2=120°﹣95°=25°,故选:B.9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x2【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选:B.10.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或7【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选:A.11.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为3.【解答】解:x﹣3=0,且x+2≠0,x=3,故答案为:3. 14.(3分)计算:= ﹣1.【解答】解:==﹣1.故答案为:﹣1.15.(3分)分解因式:3a 3﹣12a = 3a (a +2)(a ﹣2) . 【解答】解:3a 3﹣12a =3a (a 2﹣4), =3a (a +2)(a ﹣2).故答案为:3a (a +2)(a ﹣2).16.(3分)若关于x 的二次三项式x 2+kx +b 因式分解为(x ﹣1)(x ﹣3),则k +b 的值为 ﹣1 . 【解答】解:由题意得:x 2+kx +b =(x ﹣1)(x ﹣3)=x 2﹣4x +3, ∴k =﹣4,b =3, 则k +b =﹣4+3=﹣1. 故答案为:﹣117.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 70° .【解答】解:根据三角形内角和可得∠2=180°﹣50°﹣60°=70°, 因为两个全等三角形, 所以∠1=∠2=70°, 故答案为:70°.18.(3分)约分:=. 【解答】解:原式==.故答案为.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = 74 °.【解答】解:∵△ABC ≌△DEF , ∴∠E =∠B =37°, ∵PB =PF ,∴∠PFB =∠B =37°, ∴∠APF =37°+37°=74°, 故答案为:74.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 4 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 S =L ﹣1 .【解答】解:(1)由图形可知当内空格点多边形边上的格点数为10时,此多边形的面积=4个小正方形的面积=4×1=4,(2)当格点为3时,内空格点三边形的面积为=×3﹣1;当格点为4时,内空格点四边形的面积为1=×4﹣1; 当格点为5时,内空格点五边形的面积为=×5﹣1; …依此类推,当内空格点多边形边上的格点数为L ,面积为S =L ﹣1,故答案为:4;S=L﹣1.三、解答题:(本题共14分,第21题9分,第22题5分)21.(9分)(1)因式分解:3m2﹣24m+48.(2)计算:.(3)解关于x的方程:.【解答】解:(1)3m2﹣24m+48,=3(m2﹣8m+16),=3(m﹣4)2;(2)÷•,=••,=;(3)=1+,方程两边都乘(x﹣1)(x+3),得x(x﹣1)=(x﹣1)(x+3)+2(x+3),解得:x=﹣,检验,当x=﹣时,(x﹣1)(x+3)≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣.22.(5分)已知,y=﹣2,求代数式(x+2y)2﹣(x﹣2y)(x+2y)的值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4y2)=x2+4xy+4y2﹣x2+4y2=4xy+8y2,当x=,y=﹣2时,原式=4××(﹣2)+8×(﹣2)2=﹣4+32=28.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.24.(5分)列方程解应用题2014年11月,APEC(“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC会议期间这路公交车每天运行多少车次?【解答】解:设APEC会议期间这路公交车每天运行x车次,则原来的运行为(x﹣30)车次,由题意得,=,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:APEC会议期间这路公交车每天运行100车次.五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【解答】解:(1)如图1;(2)互补.证明:作GD ⊥AB ,GK ⊥AC , ∵AG 为∠BAC 的平分线, ∴GD =GK ,∵EF 为BC 的垂直平分线, ∴GB =GC ,在△GBD 与△GCK 中,,∴△GBD ≌△GCK (HL ), ∴∠BGC =∠DGK , ∵∠DGK +∠BAC =180°, ∴∠BGC +∠BAC =180°, ∴∠BAC 和∠BGC 互补. 故答案为:互补.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 4 ;(2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=,x 2= 2 ; (3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.【解答】解:(1)方程x +=6变形得:x +=2+4,根据题意得:x 1=2,x 2=4, 则方程较大的一个解为4;(2)方程变形得:x +=+2,由题中的结论得:方程有一根为2,另一根为, 则x 1=,x 2=2;故答案为:(1)4;(2);2(3)方程整理得:2x ﹣1+=n ﹣1+n +3,得2x ﹣1=n ﹣1或2x ﹣1=n +3,可得x 1=,x 2=,则原式==.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D 为边BC 上一点,并且CD =CA ,x =40,y =30时,则AB = AC (填“=”或“≠”); (2)如果把(1)中的条件“CD =CA ”变为“CD =AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.【解答】解:(1)∵CD =CA ,∠ABC =x °=40°,∠BAD =y °=30°,∴∠ADC=∠ABC+∠BAD=70°,∵CD=CA,∴∠CAD=∠CDA=70°,∴∠C=40°,∴∠C=∠ABC,∴AB=AC;故答案为:=;(2)成立.理由:在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°﹣40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°﹣70°=110°,∵BD=BE﹣DE,CE=CD﹣DE,∴BD=EC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.∴AB=AC=CD,由(1)可知,3x+2y=180.。
2022-2023学年上学期八年级数学期末模拟测试卷(01)

2022-2023学年上学期八年级数学期末模拟测试卷(01)一、选择题(本大题共8小题,每小题2分,共16分。
在每小题所给出的四个选项中,只有一项是正确的)1.下列图形是轴对称图形的是()A.B.C.D.2.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3)C.(3,﹣2)D.(﹣3,2)3.下列各数是无理数的是()A.0B.πC.D.4.如图,AB=AD,AC=AE,则能判定△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠B C.∠D=∠E D.BC=DE5.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=b,∠C=45°C.∠A:∠B:∠C=1:2:3D.a=9,b=40,c=416.某一次函数的图象经过点(1,5),且函数值y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+3B.y=3x﹣8C.y=﹣3x+8D.y=﹣2x+57.如图,在△ABC中,AD是∠BAC的平分线,延长AD至E,使AD=DE,连接BE,若AB=4AC,△BDE的面积为12,则△ABC的面积是()A.6B.9C.12D.158.如图,函数y=kx+b的图象与y轴、x轴分别相交于点A(0,2)和点B(4,0),则关于x的不等式kx+b≥2的解集为()A.x≤0B.x≤4C.x≥0D.x≥4二、填空题(本大题共8小题,每小题2分,共16分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.﹣的立方根是.10.用四舍五入法,对0.12964精确到千分位得到的近似数为.11.已知点P在第三象限,且P点的横坐标与纵坐标的积是4,试写出一个符合条件的点:.12.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.13.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使△ABC≌△EDF,只需添加一个条件,这个条件可以是.14.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面高度是尺.15.如图,小明将长方形纸片ABCD对折后展开,折痕为EF,再将点C翻折到EF上的点G处,折痕为BH,则∠GBH=°.16.如图,在等腰直角三角形ABC中,∠A=90°,P是△ABC内一点,P A=1,PB=3,PC=,那么∠CP A=度.三、解答题(本大题共9小题,共88分。
八年级上册数学期末测试模拟题AON[含答案]
![八年级上册数学期末测试模拟题AON[含答案]](https://img.taocdn.com/s3/m/b33e37172f60ddccda38a0a6.png)
八年级上册数学期末测试模拟题[含答案]一、选择题1.某青年排球队12名队员的年龄情况如下表:下列结论正确的是( )A .众数是20岁,中位数是19岁B .众数是19岁,中位数是20岁C .众数是20岁,中位数是19.5岁D .众数是19岁,中位数是19岁 答案:B2.如图,AB ∥CD ,AD ,BC 相交于0点,∠BAD=35°,∠BOD=76°,则∠C 的度数是( )A .31°B .35°C .41°D .76°答案:C3.如图,小明从点A 处出发,沿北偏东60°方向行走至点 B 处,又沿北偏西20°方向行走至点 C 处,此时把方向调整到与出发时一致,则调整的方向应是( )A .右转 80°B .左转 80°C .右转 100°D .左转 100° 答案:A4.下列命题不正确的是( )A .在同一三角形中,等边对等角B .在同一三角形中,等角对等边C .在等腰三角形中与顶角相邻的外角等于底角的2倍D .等腰三角形是等边三角形答案:D5.如图,直线1l 、2l 、3l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A .一处B .两处C .三处D .四处答案:D6.在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,若AB=3,BC=5,则DC 的长度是( )A .85B .45C .165D .225 答案:C 7.长方体的顶点数,棱数,面数分别是( ) A .8,10,6 B .6,12,8 C .6,8,10 D .8,12,6答案:D8.已知:如图,∠A0B 的两边 0A 、0B 均为平面反光镜,∠A0B=40.在0B 上有一点P,从P 点射出一束光线经0A 上的Q 点反射后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( )A .60°B .80°C .100 °D .120°答案:B9.如图,长方体的长为 15、为 10、高为 20,点B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .B .25C . 5D .35答案:B10.在下列图形中,折叠后可围成正方体的是( )A .B .C .D .答案:C11.对于数据:80,88,85,85,83,83,84.有下列说法:①这组数据的平均数是84;②这组数据的众数是85;③这组数据的中位数是84;④这组数据的方差是36.其中,错误的有( )A.1个 B .2个 C .3个 D . 4个答案:B12.不等式组5030x x -⎧⎨->⎩≤整数解的个数是( ) A .1个 B .2个 C .3个 D .4个答案:C13.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少..有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是( )A .3045300x -≥B .3045300x +≥C .3045300x -≤D .3045300x +≤解析:B14.在平面直角坐标系中,点P 的坐标为(0,-3),则点P 在( )A .x 轴上B .y 轴上C .坐标原点D .第一象限答案:B15.如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于( )A .7B .6C .5D .4解析:C16.已知a b <,则下列不等式一定成立的是( )A .33a b +>+B .22a b >C .a b -<-D .0a b -< 答案:D17.如图是由五个大小相同的正方体搭成的几何体,则关于它的视图,下列说法正确的是( )A .正视图的面积最小B .左视图的面积最小C .俯视图的面积最小D .三个视图的面积一样大答案:B解析:答案:B二、填空题18.方程48x =有 个解,不等式48x <的解集是 .解析:1,x<219.如图,若∠1+∠2 =180°,则1l ∥2l ,试说明理由(填空).∵∠2+∠3= ( )又∵∠1+∠2=180°( ),∴∠1= ( ),∴1l ∥2l ( )解析:180°;平角的定义;已知,∠3;同角的补角相等;同位角相等,两直线平行20.如图,若 ∠1 =∠2,则 ∥ ,理由是 ;若∠4=∠3,则 ∥ ,理由是 .解析:AB ;CD ;同位角相等,两直线平行;AE ;CF ;内错角相等,两直线平行21.在△ABC 中,∠A=120°,∠B=30°,AB=4 cm ,AC= cm .解析:422.如图,这个几何体的名称是 , 它是由 个面, 条棱, 个顶点组成.解析:五棱柱,7,15,1023.将图1可以折成一个正方体形状的盒子,折好后与“迎”字相对的字是 .解析:运;24.一个立方体各个面上分别都写有1,2,3,4,5,6中的一个数字,不同的面上写的数字各不相同,则三个图形中底面上各数之和是 .解析:1225.如图,∠1 = 120°,∠2= 60°,则直线 a 与b 的位置关系是 .解析:a ∥b26.李师傅随机抽查了某单位2009年4月份里6天的日用水量(单位:吨),结果如下:7,8,8,7,6,6.根据这些数据.估计4月份该单位的用水总量为 .解析:21027.已知 A ,B 的坐标分别为(-2,0),(4,0),点P 在直线2y x =+上,如果△ABP 为等腰三角形,这样的 P 点共有 个.解析:428.当y 时,代数式324y -的值至少为1. 解析:≤12-29.如图,△ABC 的三个顶点坐标分别是A(-5,0),B(4,5),c(3,0),则△ABC 的面积是 .解析:2030.某汽车每小时耗油6 kg ,该车在行驶t(h)后耗去了Q(kg)油,即Q=6t ,其中常量是 ,变量是 .解析:6;Q 、t31.一次函数y=kx+b 与y=-2x+3平行,且经过点(-3,4),则一次函数的表达式是 . 解析:y=-2x-232.已知一次函数y x a=+的图象相交于点(m,8),则a+b= .=-+与y x b解析:1633.某市居民用水的价格是2.2元/m3,设小煜家用水量为卫(m3),所付的水费为y元,则y关于x的函数解析式为;当x=15时,函数值y是,它的实际意义是.解析:y=2.2x,33,用水量为15吨时所付水费为33元34.洋洋有5位好朋友,他们的年龄(单位:岁)分别为15,l5,16,l7,17,其方差为0.8,则三年后,这五位好朋友年龄的方差为 .解析:0.8三、解答题35.如图,已知△ABC的三个顶点分别是A(-1,4),B(-4,-l.5),C(1,1).(1)小明在画好图后,发现BC边上有一点D(-1,0),请你帮助小明计算△ABC的面积;(2)小王将△ABC的图形向左平移1个单位,得到△A′B′C′,发现原点0在B′C′边上,请你帮助小王写出△A′B′C′的三个顶点的坐标并计算△A′B′C′的面积.解析:(1)10;(2)1036.如图,在等边△ABC中,点D、E分别是边AB,AC的中点,说明BC=2DE的理由.解析:说明△ADE是等边三角形37.如图,一根旗杆在离地面9 m 处的B 点断裂,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前有多高?解析:24 m38.如图,△ABC 中,∠ABC=100°,AM=AN ,CN=CP ,求∠MNP 的度数.解析:40°39.已知:如图,在△ABC 中,AD 是么BAC 的平分线,AD 的垂直平分线交BC 的延长线于F .试说明∠BAF=∠ACF 成立的理由.解析:略40.小语同学在求一组数据的方差时,觉得运用公式2222121[()()()]n S x x x x x x n=-+-++-求方差比较麻烦,善于动脑的小语发现求方差的简化公式22222121[())]n S x x x nx n =+++-,你认为小语的想法正确吗?请你就n=3时,帮助小语证明该简化公式.解析:略41.如图,AB∥CD,∠ABE=135°,∠EDC=30°,求∠BED的度数.解析:75°42.如图,用长为120 m 的铁丝一边靠墙围成一个长方形,墙的长度 AB =100 m,要使靠墙的一边不小于 42 m,那么不靠墙的一边(垂直于墙的边)应取多少?解析:不靠墙的一边应取不小于10 m且不大于39 m43.如图,AB∥CD,AE交CD干点C,DE⊥AE,垂足为点E,∠A=37°,求∠D的度数.解析:∵AB∥CD,∴∠ECD=∠A=37°,∵DE⊥AE,∴∠CED=90°.∴∠D=90°-∠ECD=90°-37°=53°.44.如图,将图中的△ABC作下列变换,画出相应的图形,指出三个顶点坐标发生的变化:(1)沿x轴向右平移1个单位;(2)关于y轴对称.解析:略45.某市的A县和B县春季育苗,分别急需化肥90 t和60 t,该市的C县和D县分别储化肥l00 t和50 t,全部调配给A县和B县,已知C、D两县化肥到A、B两县的运费(元/吨)如下表所示:(1)设C县运到A县的化肥为x(t),求总运费W(元)与x(t)的函数解析式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.解析:(1)W=10x+4800(40≤x≤90);(2)C县运到A县40 t,运到B县60 t;D县运到A县50 t46.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过20 m3时,按2元/m3计费;月用水量超过20 m3时,其中的20 m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭月用水量为x(m3)时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:小明家这个季度共用水多少m3?解析:(1)y=2x,y=2.6x-12;(2)53 m347.某块实验田里的农作物每天的需水量y(kg)与生长时间x(天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000 kg、3000 kg,在第40天后每天的需水量比前一天增加100 kg.(1)分别求出x≤40和x≥40时,y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000 kg时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?解析:(1)x≤40时,y=50x+1500;x>40时,y=lOOx-500;(2)第45天48.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.解析:∠2=100°49.已知:如图,△ABC为正三角形,D是BC延长线上一点,连结AD,以AD为边作等边△ADE,连结CE.(1)请你说明△ABD≌△ACE;(2)探索AC、CD、CE三条线段的长度有何关系?请说明理由.EC B A(1)略;(2)AC+CD=CE ,略解析:50.某服装商店出售一种优惠购物卡,花 200 元买这种卡后,凭卡可以在这家商店按 8 折购物,什么情况下买卡购物合算?解析:超过1000元。
2023-2024学年江西省南昌市南昌县八年级上册期末数学模拟试题(有答案)

....八年级数学试题答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分)1.C 2.A 3.D 4.B 5.C 6.A 7.D 8.B二、填空题(本大题共8小题,每小题3分,共24分)9.6;10.;62.510-⨯11.(写对1个给2分,全对给3分);8±12.39;13.7;14.①③④(写对1个给1分,写错酌情扣分).三、解答题(本大题共4小题,每小题6分,共24分)15.(1)解:;...3分24x y y -()24y x =-()()22=+-y x x (2)解:.()()2223423xy x y x y -⋅÷-()2423443x y x y x y =÷-⋅()453412x y x y =÷-12xy =-16.解:原式()()2252223x x x x x x ⎡⎤+--=-⋅⎢⎥--+⎣⎦245223x x x x ---=⋅-+()()33223x x x x x -+-=⋅-+.3x =-将x=1代入原式x -3=-217.解:,21111x x x +=--方程的两边同乘(x+1)(x -1),得,x (x+1)+1=x 2-1,解得x=-2.检验:当x=-2时,(x+1)(x -1)=3≠0.∴原方程的解为x=-2.18.(1)如图,△A'B'C'即为所求;(2)由图可得,,()3,3A '--(2,B '-故,.()3,3--()2,5-(3)P'的坐标为(a,-2-b ).四、解答题(本大题共3小题,每小题19.(1)证明:∵△ABC 是等边三角形,,AB AC ∴=20.解(1)设种图书的单价为元,则种图书的单价为元,B x A 1.5x 依题意,得:,30001600201.5x x -=解得:,20x =经检验,是所列分式方程的解,且符合题意,20x =∴.1.530x =答:种图书的单价为30元,种图书的单价为20元.A B (2)(元).300.820200.825880⨯⨯+⨯⨯=答:共花费880元.21.(1)解:图2中阴影部分的正方形的边长是,a b -故...2分a b -(2)图2中阴影部分面积可以表示为,还可以表示为,()2a b -()24a b ab +-∴之间的数量关系是,22(),(),a b a b ab +-()()224a b ab a b +-=-故.()()224a b ab a b +-=-(3)由(2)可知,,()()224x y xy x y +-=-当时,,32,4x y xy -==()223424x y +-⨯=∴,()27x y +=∴的值为;...8分x y +7±五、(本大题共1小题,每小题10分,共10分)22.(1),;...3分1115656=-⨯111(1)1n n n n =-⨯++(2)原式=;...6分111111111122334111n n n n n -+-+-++-=-=+++ (3)原方程可化为,11111111()2224485050x x x x x x x -+-++-=++++++ 即,1111()25050x x x -=++解得x=25,。
2024年最新人教版八年级数学(上册)模拟考卷及答案(各版本)

2024年最新人教版八年级数学(上册)模拟考卷一、选择题(每题5分,共20分)1. 下列哪个数是正数?A. 2B. 0C. 3D. 52. 下列哪个数是负数?A. 4B. 0C. 1D. 23. 下列哪个数是整数?A. 3.5B. 2C. 3.2D. 0.54. 下列哪个数是分数?A. 4B. 0C. 3D. 0.55. 下列哪个数是正整数?A. 2B. 0C. 3D. 5二、填空题(每题5分,共20分)1. 2的平方根是______。
2. 3的立方根是______。
3. 4的绝对值是______。
4. 0.25的倒数是______。
三、解答题(每题10分,共30分)1. 计算下列各式的值:(1)3 + (2) × 4(2)(1)³ × 2²(3)5 ÷ (3) + 22. 解方程:2x 3 = 73. 求下列不等式的解集:3x 4 < 2x + 5四、应用题(每题10分,共20分)1. 小明有5元钱,他想买3个苹果,每个苹果的价格是1.5元。
请问小明还有多少钱?2. 小红有8个橘子,她给了小明3个,然后又从小明那里得到了2个。
请问小红现在有多少个橘子?五、证明题(10分)证明:对于任意实数a,都有a² ≥ 0。
六、综合题(10分)1. 请用数学公式表示:一个数的平方等于这个数乘以它自己。
2. 请用数学公式表示:一个数的立方等于这个数乘以它自己再乘以它自己。
3. 请用数学公式表示:一个数的倒数等于1除以这个数。
七、附加题(10分)1. 请用数学公式表示:一个数的平方根等于这个数的正平方根。
2. 请用数学公式表示:一个数的立方根等于这个数的正立方根。
3. 请用数学公式表示:一个数的绝对值等于这个数的非负值。
一、选择题(每题5分,共20分)1. C2. D3. B4. D5. C二、填空题(每题5分,共20分)1. ±√22. ∛33. 44. 4三、解答题(每题10分,共30分)1. (1)5(2)8(3)1/32. x = 53. x < 9四、应用题(每题10分,共20分)1. 5 3 × 1.5 = 0.5元2. 8 3 + 2 = 7个橘子五、证明题(10分)证明:对于任意实数a,都有a² = a × a ≥ 0,因为a × a非负。
人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一.选择题(共8小题,满分24分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.x3•x3=2x3B.(2ab3)2=2a2b6C.(﹣1)﹣10=10D.(﹣)0=13.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD 折叠,使B点落在AC边上的E处,则∠ADE等于()A.25°B.30°C.35°D.40°4.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN5.已知a,b,c为△ABC的三边,且=0,|b﹣c|=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形6.某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为()A.=+6B.=﹣6C.=﹣6D.=+67.如图,Rt△ABC的两条直角边AC,BC分别经过正五边形的两个顶点,则∠1+∠2等于()A.126°B.130°C.136°D.140°8.如图,把△ABC沿平行于BC的直线DE折叠,使点A落在边BC上的点F处,若∠B =50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°二.填空题(共7小题,满分21分)9.测得某人的头发直径为0.0000635米,这个数据用科学记数法表示为.10.在平面直角坐标系中,点P(﹣5,2)关于x轴的对称点的坐标是.11.因式分解:3x﹣12x3=.12.若一个正多边形的内角是外角的3倍,则这个正多边形的边数为.13.若分式的值为零,则x的值为.14.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为.15.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,则DH是EF的线.三.解答题(共11小题,满分75分)16.化简:(x﹣2)2+(x+3)(x+1).17.如图,F A⊥EC,垂足为E,∠C=20°,∠F=40°.求∠FBC的度数.18.如图,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分线交于点E.求∠AEC的度数.19.如图,F,C是AD上的两点,且AB=DE,AB∥DE,AF=CD.求证:BC∥EF.20.如图,在△ABC中,∠ABC=2∠ACB,BD为△ABC的角平分线;(1)若AB=BD,则∠A的度数为°(直接写出结果);(2)如图1,若E为线段BC上一点,∠DEC=∠A;求证:AB=EC.(3)如图2,若E为线段BD上一点,∠DEC=∠A,求证:AB=EC.21.先化简,再求值:,试从0,1,2,3四个数中选取一个你喜欢的数代入求值.22.已知:M=,N=.(1)当x>0时,判断M与N的大小关系,并说明理由;(2)设y=+N.①当y=3时,求x的值;②若x是整数,求y的正整数值.23.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.设每个乙商品的进价为x元.(1)每个甲商品的进价为元(用含x的式子表示);(2)求每个甲、乙商品的进价分别是多少?24.如图,△ABC是等边三角形,AB=6,动点P沿折线AB﹣BC以每秒1个单位长度的速度向终点C运动;同时,动点Q沿折线CA﹣AB﹣BC以每秒2个单位长度的速度向终点C运动,连接PQ,设点P的运动时间为t(s)(0<t<12).(1)用含t的式子表示BP的长;(2)当△APQ是等边三角形时,求t的值;(3)当线段PQ在△ABC的某条边上时,求t的取值范围;(4)在(3)的条件下,当以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形时,直接写出t的值.25.如图,在△ABC中,AB=AC,点D在边BC上(点D不与点B、点C重合),作∠ADE =∠B,DE交边AC于点E.(1)求证:∠BAD=∠CDE;(2)若DC=AB,求证:△ABD≌△DCE;(3)当∠B=50°,且△ADE是等腰三角形时,直接写出∠BDA的度数.26.在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图1,当点D是BC边的中点时,S△ABD:S△ACD=;(2)如图2,当AD平分∠BAC时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m、n的式子表示);(3)如图3,AD平分∠BAC,延长AD到E.使得AD=DE,连接BE,若AC=3,AB =5,S△BDE=10,求S△ABC的值.参考答案一.选择题(共8小题,满分24分)1.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.解:∵x3•x3=x6≠2x3,∴选项A不符合题意;∵(2ab3)2=4a2b6≠2a2b6,∴选项B不符合题意;∵(﹣1)﹣10=1≠10,∴选项C不符合题意;∵(﹣)0=1,∴选项D符合题意;故选:D.3.解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED﹣∠A=65°﹣25°=40°.故选:D.4.解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.5.解:根据题意得,a2﹣2ab+b2=0,b﹣c=0,∴a=b,b=c,∴a=b=c,∴△ABC的形状是等边三角形.故选:B.6.解:∵每个B型纸箱比每个A型纸箱可多装15本,且每个A型纸箱可以装书x本,∴每个B型纸箱可以装书(x+15)本.依题意得:=﹣6.故选:C.7.解:如图:∵(5﹣2)×180°÷5×2=3×180°÷5×2=216°,∠3+∠4=180°﹣90°=90°,∴∠1+∠2=216°﹣90°=126°.故选:A.8.解:∵BC∥DE,∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.二.填空题(共7小题,满分21分)9.解:0.0000635米=6.35×10﹣5米.故答案为:6.35×10﹣5米.10.解:∵P(﹣5,2),∴点P关于x轴的对称点的坐标是(﹣5,﹣2).故答案为:(﹣5,﹣2).11.解:3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x),故答案为:3x(1+2x)(1﹣2x).12.解:设正多边形的边数为n,由题意得:(n﹣2)•180°=3×360°,解得:n=8,故答案为:8.13.解:依题意得:3﹣|x|=0且x+3≠0,解得x=3.故答案是:3.14.解:∵直线m是△ABC中BC边的垂直平分线,∴BP=CP,∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,∴当A、B、P三点共线时,△ACP的周长最小,∵AB=6,BC=7,AC=4,∴△ACP的周长6+4=10,∴△ACP的周长最小值为10,故答案为10.15.解:∵EH=FH,∴点H在EF的垂直平分线上;∵ED=FD,点D在EF的垂直平分线上,∴DH垂直平分EF.故答案为:垂直平分.三.解答题(共11小题,满分75分)16.解:原式=x2﹣4x+4+(x2+x+3x+3)=x2﹣4x+4+x2+x+3x+3=2x2+7.17.解:在△AEC中,F A⊥EC,∴∠AEC=90°,∴∠A=90°﹣∠C=70°.∴∠FBC=∠A+∠F=70°+40°=110°.18.解:∵∠B=48°,∴∠BAC+∠BCA=180°﹣48°=132°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣132=228°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=114°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣114°=66°.19.证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,∵AB∥DE,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.20.(1)解:如图1中,设∠C=x.∵∠ABC=2∠C,∴∠ABC=2x,∵BD平分∠ABC,∴∠ABD=∠CBD=x,∵AB=BD,∴∠A=∠ADB=∠DBC+∠C=2x,∵∠A+∠ABC+∠C=180°,∴2x+2x+x=180°,∴x=36°,∴∠A=2x=72°,故答案为:72.(2)证明:如图1中,∵∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC.(3)证明:如图2中,延长BD到T,使得CD=CT.∵CD=CT,∴∠T=∠CDT=∠ADB,∵BD=CD,∴BD=CT,在△ABD和△ECT中,,∴△ABD≌△ECT(AAS),∴AB=EC.21.解:=•=,当x=0时,原式==﹣.或者,当x=2时,原式==﹣1.22.解:(1)当x>0时,M≥N.理由如下:M﹣N=﹣=,∵x>0,∴(x﹣1)2≥0,2(x+1)>0,∴≥0,∴M≥N;(2)由题意得y=+=,①当y=3即=3时,∴x=1,经检验x=1是原分式方程的解,∴当y=3时,x的值是1.②y===2+.∵x,y是整数,∴是整数,∴x+1可以取±1,±2.当x+1=1,即x=0时,y=2+=4>0;当x+1=﹣1时,即x=﹣2时,y=2+=0(舍去);当x+1=2时,即x=1时,y=2+=3>0;当x+1=﹣2时,即x=﹣3时,y=2+=1>0;所以当x为整数时,y的正整数值是4或3或1.23.解:(1)设每个乙商品的进价为x元,则每个甲商品的进价为(x﹣2)元.故答案为:(x﹣2);(2)依题意得:=,解得x=10,经检验,x=10是原方程的解,且符合题意,∴x﹣2=8.答:每个甲商品的进价为8元,每个乙商品的进价为10元.24.解:(1)根据题意可得,①当0<t≤6时,点P在AB上运动,BP=6﹣t;②当6<t<12时,点P在BC上运动,BP=t﹣6;(2)当△APQ是等边三角形时,∵△APQ是等边三角形,∴AP=AQ,∴AQ=6﹣2t,AP=t∴6﹣2t=t,解得:t=2,∴当t=2s时,△APQ是等边三角形;(3)当点Q运动到点A时,2t=6,解得t=3;当点P到点B时,t=6,此时点Q与点B重合,∴当3≤t<12,且t≠6时,线段PQ在△ABC的某条边上;(4)根据题意有,如图①,当P、Q都在AB上时,满足AQ=BP时,△CPQ是等腰三角形,AQ=2t﹣6,BP=6﹣t,2t﹣6=6﹣t,j解得:t=4;如图②,当P、Q都在BC上时,满足BQ=CP时,△CPQ是等腰三角形,BQ=2t﹣12,CP=12﹣t,2t﹣12=12﹣t,解得:t=8;∴当t=4或t=8时,满足以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形.25.(1)证明:∠ADE=∠B,∠BAD+∠B=∠ADC,∠CDE+∠ADE=∠ADC,∴∠BAD=∠CDE;(2)证明:∵AB=AC,∴∠B=∠C,∵DC=AB,∠BAD=∠CDE;在△ABD和△DCE中,,∴△ABD≌△DCE(SAS);(3)解:∵∠B=∠C=50°,∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,分三种情况讨论:①当DA=DE时,∠DAE=∠DEA,∵∠ADE=∠B=50°,∠ADE+∠DAE+∠DEA=180°,∴∠DAE=(180°﹣50°)÷2=65°,∴∠BAD=∠BAC﹣∠DAE=80°﹣65°=15°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣15°=115°;②当AD=AE时,∠AED=∠ADE=50°,∵∠ADE+∠AED+∠DAE=180°,∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣50°﹣50°=80°,∵∠BAC=80°,∴∠DAE=∠BAE,∴点D与点B重合,不合题意.③当EA=ED时,∠DAE=∠ADE=50°,∴∠BAD=∠BAC﹣∠DAE=80°﹣50°=30°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°,综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形.26.解:(1)过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(BD•AE):(CD•AE)=1:1,故答案为:1:1;(2)过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(AB•DE):(AC•DF)=m:n;(3)∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=10,∴S△ABD=10,∵AC=3,AB=5,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=5:3,∴S△ACD=6,∴S△ABC=10+6=16,故答案为:16.。
八年级上册数学期末测试模拟题BSD[含答案]
![八年级上册数学期末测试模拟题BSD[含答案]](https://img.taocdn.com/s3/m/73314648dd36a32d737581fd.png)
八年级上册数学期末测试模拟题[含答案]一、选择题1.已知点P (1,2)与点Q (x ,y )在同一条平行于x 轴的直线上,且Q 点到y 轴的距离等于2,那么点Q 的坐标是( ) A .(2,2)B .(-2,2)C .(-2,2)和(2,2)D .(-2,-2)和(2,-2)1.确定平面上一个点的位置,一般需要的数据个数为( ) A .无法确定B .l 个C .2个D .3个答案:C解析:C C2.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于( )A .65 B .95C .125D .165答案:C3.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有( ) A . 1个 B .2个 C .3个D .4个答案:C4.如图,已知直线AB ∥CD ,∠C=72°,且BE=EF ,则∠E 等于( ) A . 18°B .36°C .54°D . 72°答案:B5.如图,桌面上放着一个圆锥和一个长方体,其中俯视图是( )AMNC B答案:A6.一个包装箱的表面展开图如图,则这个包装箱的立体示意图是()A.B.C.D.答案:B7.直三棱柱、多面体和棱柱之间的包含关系,可以用图形表示为()A.B.C. D.答案:A8.今年某市有800名八年级学生参加了省数学竞赛,为了了解这800名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是()A.800名学生是总体B.每个学生是个体C.100名学生的数学成绩是一个样本D.800名学生是样本容量答案:C9.能够刻画一组数据离散程度的统计量是()A.平均数B.众数C.中位数D.方差答案:D10.晨晨准备用自己节省的零花钱买一台英语复读机,她现在已有 65 元,计划从现在起以后每个月节省 25 元,直到她至少有 320元钱,设x个月她至少有 320 元,则可以用于计算她所需要的月数x的不等式是()A.2565320x+≤x-≤D.2565320 x-≥B.2565320x+≥C.2565320答案:B11.已知等腰三角形的一个底角为80,则这个等腰三角形的顶角为()A.20B.40C.50D.80答案:A12.已知坐标平面内三点A(5,4),B(2,4),C(4,2),那么△ABC的面积为()A.3 B.5 C.6 D.7答案:A13.根据下列表述,能确定位置的是()A.某电影院2排B.北京北海南路C.北偏东 30°D.东经 118°,北纬40°答案:D14.如图,P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,若x,y都是整数,则这样的点共有()A.4个B.8个C.12个D.16个答案:C15.坐标平面内的一个点的横坐标是数据6,3,6,5,5,6,9的中位数,纵坐标是这组数据的众数,那么这个点的坐标是()A.(5,5)B. 6,5)C.(6,6)D.(5,6)答案:C16.王京从点O出发.先向西走40米,再向南走30米,到达点M.如果点M的位置用(-40,-30)表示,从点M继续向东走50米,再向北走50米,到达点N,那么点N的坐标是()A.(-l0,10)B.(10,-l0)C.(10,-20)D.(10,20)答案:D17.在△ABC中,它的底边为a,底边上的高为h,则三角形的面积12S ah,若h为定长,则此式中( ) A .S 、a 是变量,12、h 是常量 B .S 、h 、a 是变量,12是常量 C .S 、12是常量,a,h 是变量D .以上答案均不对答案:A18.下列解析式中,不是函数关系的是( )A .y =(x ≥-2)B .y =(x ≥-2)C .y =(x ≤一2)D .y =z ≤-2)答案:D19.当x=3时,函数y=px-1与函数y=x+p 的值相等,则p 的值为( ) A .1B .2C .3D .4答案:B20.某工厂去年积压产品a 件(a>0),今年预计每月销售产品2b 件(b>O ),同时每月可生产出产品b 件,若产品积压量y (件)是今年开工时间x (月)的函数,则其图象只能是( )答案:B21.将直线2y x =向右平移 2个单位所得的直线的解析式是( ) A .22y x =+B .22y x =-C .2(2)y x =-D .2(2)y x =+答案:C22.下列图形中,不是正方形的表面展开图的是( ) A .B .C .D .答案:D23.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( ) A .34224x ⨯+<B .34224x ⨯+≤C .32424x +⨯≤D .32424x +⨯≥答案:B 二、填空题24.直线2y x b =-+经过点M(3,2),则b 的值是 . 解析:825.已知y 是x 的一次函数,下表列出了部分对应值,则m = .解析:126.如果y-1与x-3成正比例,且当x=4时,y=-1,那么y关于x 的函数解析式是 . 解析:y=2x+727.直线y=kx+b 经过点A(-2,0)和y 轴正半轴上的一点B ,若△ABO(0为坐标原点)的面积为2,则b 的值为 . 解析:228.不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解有 个.解析:429.一个不等式的解集如图所示,则这个不等式的正整数解是____________.解析:1,230.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 . 解析:3y x =31.当x时,有意义. 解析:≥232.某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本 容量是 . 解析:2033.八年级学生小方的数学平时成绩为84分,期中成绩为80分,学校按平时、期中、期末 之比为3:3:4的比例计算学期的总评成绩,他计划总评成绩要达到85分,则期末考试他应得 分. 解析:89.534.给出下列几个几何体:圆柱、四棱柱、直五棱柱、球、立方体.请选出其中是多面体的几何体是 .解析:四棱柱、直五棱柱、立方体35.在等腰三角形ABC 中,腰AB 的长为l2cm ,底边BC 的长为6cm ,D 为BC 边的中点,动点P 从点B 出发,以每钞 lcm 的速度沿B A C →→的方向运动,当动点P 重新回到点B 位置时,停止运动. 设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中的一部分是另一部分的 2倍. 解答题 解析:7或l736.满足222a b c +=的三个正整数,称为 .常用的几组勾股数是:(1)3,4, (2)6,8, (3)5,12, (4)8,15, . 解析:勾股数(1)5(2)(2)10(3)13(4)1737.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A 、B 、C 、D 的面积的和为 cm 2.解析:4938.如图,直线1a ∥2a ,点A 在直线1a 上,点B 、C 在直线2a 上,BC=5,△ABC 的面积为10,则直线1a 与直线2a 之间的距离是 .解析:4cm三、解答题39.如图,已知△ABC 是等边三角形,D 为边AC 的中点,AE ⊥EC 于点E ,BD=CE . (1)说明△BDC 与△CEA 全等的理由; (2)请判断△ADE 的形状.并说明理由.解析:(1)∵△ABC 是等边三角形,∴AB=BC=CA ,∠ACB=60°, ∵D 为边AC 的中点,∴BD ⊥AC , 又∵AE ⊥EC ,∴∠BDC=∠CEA=90°, 又∵BD=CE ,∴△BDC ≌△CEA . (2)△ADE 是等边三角形.理由:∵△BDC ≌△CEA ,∴∠EAC=∠ACB=60°,AE=CD . ∵△ABC 是等边三角形,D 为边AC 的中点,∴AD=CD ,∴AD=AE , ∴△ADE 是等边三角形.40.小敏暑假到某一名山旅游,从科学课上知道山区气温随着海拔高度的增加而下降,沿途她利用随身所带的登山表检测气温,气温y (℃)与海拔高度x (m)存在着下列关系:(1)现以海拔高度为x 轴,气温为y 轴建立平面直角坐标系(如图),根据提供的数据,请通过描点画图探究y 与x 之间的函数关系,并求出函数解析式;(2)若小敏到达山巅时,测得当时气温为19.4℃,请求出这里的海拔高度.解析:(1)描点画图略,图象是直线,所以此函数为一次函数,此一次函数解析式为334.4500y x =-+ (2)2500m41.如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF ,∠1=40°,求∠2的度数.解析:∠2=100°42.某工厂有甲、乙两个相邻的长方体的水池,甲池的水均匀地流人乙池;如图,是甲、乙两个水池水的深度y(m)与水流动时间t(h)的函数关系的图象.(1)分别求两个水池水的深度y(m)与水流动时间x(h)的函数解析式,并指出变量x 的取值范围;(2)求水流动几小时后,两个水池的水深度相同.解析:(1)243y x =-+甲(0≤x ≤6),123y x =+乙(0≤x ≤6);(2)2小时43.设关于x 的一次函数11y a x b =+与22y a x b =+,则称函数1122()()y m a x b n a x b =+++ (其中m+n=1)为此两个函数的生成函数.(1)当x=1时,求函数y=x+1与y=2x 的生成函数的值;(2)若函数11y a x b =+与22y a x b =+的图象的交点为P ,判断点P 是否在这两个函数的生成函数的图象上,并说明理由.解析:(1)2;(2)在44.如图,写出将腰长为2的等腰直角三角形A08先向右平移1个单位长度,再向下平移2个单位长度后各顶点的坐标.解析:A′(1,O),B′(3,-2),O′(1,-2)45.如图,五个儿童正在做游戏,建立适当的直角坐标系,写出这五个儿童所在位置的坐标.解析:略(答案不唯一)46.已知2+-+-=中,y的值不大于2-,求a 的取值范围.x y a x(43)|2|0a≤2解析:2a≤47.将如图所示的几何体分类,并说明理由.(1)立方体 (2)圆柱 (3)长方体 4)球 (5)圆锥 (6)三棱锥解析:答案不唯一,如:(1)按平面分:立方体、长方体、三棱锥;(2)按曲面分:圆柱、球、圆锥48.如图,在△ABC中,AB =AC,D 为 BC边上的一点,∠BAD = ∠CAD,BD = 6cm,求BC的长.解析:∵∠BAD=∠CAD,∴AD是∠BAC的平分线.∵AB=AC,∴△ABC是等腰三角形.∴AD是△ABC的BC边上的中线,∴BD=CD=12 BC.∵BD=6cm,∴BC=12(cm)49.如图,∠1 =∠2,∠1+∠3 =180,问CD、EF平行吗?为什么?解析:平行,说明∠CDF+∠3=180°50.如图,折线ABC是一片农田中的道路,现需把它改成一条直路,并便道路两边的农用面积保持不变,道路的一个端点为A,问应该怎样改?请画出示意图,并说明理由.解析:连结AC,过B作BD∥AC交对边于D点,连结AD,AD即为所求的直路。
2022年秋八年级上册期末数学考试模拟题(共5套)【含答案】

2022年秋八年级上册期末模拟题(一)一、选择题1.下列一组数:﹣8,2.6,0,﹣π,﹣,0.…(每两个2中逐次增加一个0)中,无理数有( )A.0个B.1个C.2个D.3个2.下列实数中,最大的是( )A.﹣1B.﹣2C.﹣0.5D.﹣3.下列说法正确的是( )A.(﹣3)2的平方根是3B.=±4C.1的平方根是1D.4的算术平方根是24.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r之间的关系B.某地一天的温度T与时间t的关系C.某班学生的身高y与这个班学生的学号x的关系D.一个正数b的平方根a与这个正数b之间的关系5.下列函数:①y=2x+1 ②y=③y=x2﹣1 ④y=﹣8x中,是一次函数的有( )A.1个B.2个C.3个D.4个6.在Rt△ABC中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,则BD的长为( )A.5cm B.6cm C.7cm D.8cm7.如图,△EFG≌NMH,△EFG的周长为15cm,HM=6cm,EF=4cm,EH=1cm,则HG等于( )A.4 cm B.5cm C.6cm D.8cm8.下列不是无理数的一项是( )A.π的相反数B.π的倒数C.π的平方根D.9.点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是( )A.a=1,b=﹣3B.a=1,b=﹣1C.a=5,b=﹣3D.a=5,b=﹣1 10.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是( )A.B.C.D.11.函数y=ax+b(a,b为常数,a≠0)的图象如图所示,则关于x的不等式ax+b>0的解集是( )A.x>4B.x<0C.x<3D.x>312.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依次法继续作下去,S1,S2,S3…分别表示各个三角形的面积,那么S12+S22+S32+…+S92的值是( )A.B.C.D.55二.填空题13.计算:﹣()﹣1+(π﹣2018)0﹣|﹣1|= .14.如果+(2y+1)2=0,那么x2018y2017= 15.如果+3是一次函数,则m的值是 .16.若3,4,a和5,b,13是两组勾股数,则a+b的值是 .17.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简﹣|a+b|的结果是 .三.解答题18.在平面直角坐标系中,点P(m,n)在第一象限,且在直线y=﹣x+6上,点A的坐标为(5,0),O是坐标原点,△PAO的面积是S.(1)求S与m的函数关系式,并画出函数S的图象;(2)小杰认为△PAO的面积可以为15,你认为呢?19.求值:(1)|﹣2|﹣+(﹣1)×(﹣3)(2)(﹣1)2018+|1﹣|﹣20.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC.求证:BD=DF.21.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD 于点E,交BC于F,CM⊥AF于M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.22.如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.23.“交通管理条例第三十五条”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪间距离为130米,这辆小汽车超速了吗?24.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租一本书,租书金额y(元)与租书时间x(天)之间的关系如图所示:(1)用租书卡每天租书的收费为 元,用会员卡每天租书的收费是 元;(2)分别写出用租书卡和会员卡租书的金额y1、y2与租书时间x之间的函数关系式;(3)如果租书50天,选择哪种租书方式比较划算?如果花费80元租书,选择哪种租书方式比较划算?答案一.选择题1.解:无理数有﹣π,0.…(每两个2中逐次增加一个0),故选:C.2.解:∵﹣2<﹣<﹣1<﹣0.5,∴最大的数是﹣0.5,故选:C.3.解:A、(﹣3)2=9的平方根是±3,故此选项错误;B、=4,故此选项错误;C、1的平方根是±1,故此选项错误;D、4的算术平方根是2,正确.故选:D.4.解:A、圆的面积S和半径r之间的关系是S=πr2,符合函数的定义,不符合题意;B、某地一天的温度T与时间t的关系符合函数的定义,不符合题意;C、每一个学生对应一个身高,y是x的函数,不符合题意;D、一个正数b的平方根a与这个正数b之间的关系为a=±,b每取一个正数,a都有两个值与之对应,不符合函数的定义,符合题意;故选:D.5.解:①y=2x+1是一次函数,②y=是反比例函数,不是一次函数,③y=x2﹣1是二次函数,不是一次函数,④y=﹣8x是一次函数,故选:B.6.解:∵∠ACB=90°,CE⊥AB,∴∠ACE=∠B,∵CE所在直线垂直平分线段AD,∴CD=CA=5,∠ACE=∠DCE,∵CD平分∠BCE,∴∠DCE=∠BCD,∴∠BCD=∠B,∴BD=CD=5((cm),故选:A.7.解:∵△EFG≌△NMH,∴MN=EF=4cm,FG=MH,△HMN的周长=△EFG的周长=15cm,∴FG﹣HG=MH﹣HG,即FH=GM=1cm,∵△EFG的周长为15cm,∴HM=15﹣6﹣4=5cm,∴HG=5﹣1=4cm,故选:A.8.解:A、B、C都是无理数;D、=9,是有理数.故选:D.9.解:(2,b+2)与点(a﹣3,﹣1)关于x轴对称,得a﹣3=2,b+2=1.解得a=5,b=﹣1,故选:D.10.解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.11.解:关于x的不等式ax+b>0的解集为x<3.故选:C.12.解:由勾股定理得:OP1=,OP2=;OP3=2;OP4==;依此类推可得OP n=,∴S12=,S22=,S32=,…,S92=,∴S12+S22+S32+…+S92=.故选:C.二.填空题13.解:原式=3﹣5+1﹣(﹣1)=3﹣5+1﹣+1=2﹣3.故2﹣3.14.解:∵+(2y+1)2=0,∴x﹣2=0且2y+1=0,解得x=2,y=﹣,则原式=x•x2017y2017=x•(xy)2017=2×(﹣×2)2017=2×(﹣1)2017=2×(﹣1)=﹣2,故﹣2.15.解:∵+3是一次函数,∴2﹣m2=1且m﹣1≠0,解得m=﹣1.故答案是:﹣1.16.解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故17.17.解:由图可得,a+b=0,b<0,∴a>0,a﹣b>0,∴﹣|a+b|=a﹣b﹣0=a﹣b,故a﹣b.三.解答题18.解:(1)∵P(m,n)在直线y=﹣x+6上,且在第一象限∴n=﹣m+6,即:点P到x轴距离为﹣m+6.∵点A坐标为(5,0),(2)△PAO的面积不可能为15.理由:若S=15,即,解得m=0,此时点P的坐标为(0,6),点P在第一象限不符合题意,故△PAO的面积不可能为15.19.解:(1)|﹣2|﹣+(﹣1)×(﹣3)=2﹣2+3=3;(2)(﹣1)2018+|1﹣|﹣=1+﹣1﹣2=﹣2.20.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.21.(1)证明:∵∠ACB=90°,CD⊥AB,∴∠ADC=90°,∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,又∵∠BAC的平分线AF交CD于E,∴∠DAE=∠CAE,∴∠AED=∠CFE,又∵∠AED=∠CEF,∴∠CEF=∠CFE,又∵CM⊥AF,∴EM=FM.(2)证明:∵CN⊥AF,∴∠AMC=∠AMN=90°,在△AMN和△AMC中,,∴△AMN≌△AMC(SAS),∴AC=AN.22.解:①延长BE与CD相交于点F,则EF=BE,证明:∵AB∥CD,∴∠A=∠D,∠ABE=∠DFE,∵E是AD的中点,∴AE=DE,在△AEB与△DEF中,,∴△AEB≌△△DEF(AAS),∴BE=EF;②∵△AEB≌△△DEF,∴DF=AB=6,BE=EF=BF,∴CF=CD﹣DF=6,∵BC⊥CD,∴BF==10,∴BE=BF=5.23.解:由勾股定理得,BC===120米,v=120÷6=20米/秒,∵20×3.6=72,∴20米/秒=72千米/小时,72>70,∴这辆小汽车超速了.24.解:(1)租书卡每天租书花费:50÷100=0.5(元),设会员卡每天租书花费x元,则20+100x=50,得x=0.3;故0.5;0.3;(2)设用租书卡的函数关系式为:y=kx,∴100k=50,解得:k=0.5,∴用租书卡的关系为:y=0.5x,设用会员卡的关系为:y=ax+b,∴,解得:,∴用会员卡的关系式为:y=0.3x+20;(3)租书50天,租书卡花费0.5×50=25(元),会员卡花费0.3×50+20=35(元),说明使用会员卡比租书卡划算.花费80元租书,租书卡花费0.5×x=80(元),解得:x=160,会员卡花费0.3×x+20=80(元),解得:x=200,说明使用会员卡比租书卡划算.2022年秋八年级上册期末模拟题(二)一、选择题(每题3分,共30分)1.实数,0,-π,,,0.101 001 000 1…(相邻两个1之间依次多一个0),其中3271613无理数有( )A .1个B .2个C .3个D .4个2.下列各式运算正确的是( )A .3a +2b =5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 63.下列长度的四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1,,324.下列因式分解中,正确的个数为( )①x 3+2xy +x =x(x 2+2y);②x 2+4x +4=(x +2)2;③-x 2+y 2=(x +y)(x -y).A .3个B .2个C .1个D .0个5.已知(a -2)2+|b -8|=0,则的平方根为( )ab A .± B .- C .±2 D .212126.下列命题中,正确的是( )A .如果|a|=|b|,那么a =bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角7.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD 的条件是( )A .BD =CDB .AB =AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)8.如图所示,所提供的信息正确的是( )A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN =NP ,MQ⊥PN,垂足为Q ,延长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 的周长是( )A .8+2aB .8+aC .6+aD .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连12接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1 200名女生的身高进行测量,身高在1.58 m ~1.63 m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示的是________.7(第14题)(第16题)(第18题)(第19题)15.已知(a -b)m =3,(b -a)n =2,则(a -b)3m -2n =________16.将一副三角尺如图所示叠放在一起,若AC =14 cm ,则阴影部分的面积是________ cm 2.17.若x <y ,x 2+y 2=3,xy =1,则x -y =________.18.如图,在△ABC 中,AB =AC =3 cm ,AB 的垂直平分线分别交AB ,AC 于点M ,N ,△BCN 的周长是5 cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于C ,D 两点;12(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)+++(-1)2 014; (2)a 3-a 2b +ab 2.3-27(-2)21422.先化简,再求值:(x +y)(x -y)+(4xy 3-8x 2y 2)÷4xy ,其中x =1,y =.1223.如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图). 频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4 200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6 000,1 请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.(第27题)答案:1.B1.B2.B3.B4.C5.A6.C7.B8.B9.D10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.4 12.300 13.x 2y 2(y +x)(y -x) 14.点P15. 点拨:(a -b)3m -2n =(a -b)3m ÷(a -b)2n =[(a -b)m ]3÷[(a -b)n ]2=[(a -b)m ]2743÷[(b -a)n ]2=33÷22=.27416.9817.-1 点拨:(x -y)2=x 2+y 2-2xy =3-2×1=1,∵x<y ,∴x-y <0,∴x-y =-=-1.118.219. 点拨:在Rt △ABC 中,∠B=90°,AB =3,BC =4,∴AC=5,设BE =B′E=x ,则32EC =4-x ,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x =.3220.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=-3+2+1=;1919(2)原式=a =a .2 22.解:原式=x 2-y 2+y 2-2xy =x 2-2xy ,当x =1,y =时,原式=1-2×1×=0.121223.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB =AC ,AD =AE ,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD =AE ,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1) 20°(2)设AD =x ,则BD = x ,DC = 8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =.∴AD 的长为.254254(3)由题意知:AC 2+BC 2=m 2,AC ·BC =m +1,12∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF =AF =EF ,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC 互余,∴∠DCF=∠AMF.在△DFC 和△AFM 中,∴△DFC≌△AFM(A .A .S .),∴CF=MF ,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD =EF ,FM =FC ,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC =2时,△ABD≌△DCE.理由如下:∵AB=AC ,∴∠C=∠B=40°,∴∠DEC+∠EDC=140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC =2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022年秋八年级上册期末模拟题(三)一.选择题1.下列代数式中,属于分式的是( )A .﹣3B .﹣a﹣bC .D .﹣4a 3b2.若分式的值为零,则m 的取值为( )A .m=±1B .m=﹣1C .m=1D .m 的值不存在3.已知a﹣1=20172+20182,则=( )A .4033B .4034C .4035D .40364.下列各数中:,3.,0.2020020002…(每两个2之间0的个数逐次增加1个),,0,3.,﹣,,无理数有( )个.A.3B.4C.5D.65.若有意义,则x满足条件是( )A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣36.下列根式中属于最简二次根式的是( )A.B.C.D.7.如图,在Rt△ABC中,∠C=90°,点D为AB边中点,DE⊥AB,并与AC边交于点E.如果∠A=15°,BC=1,那么AC等于( )A.2B.C.D.8.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于( )A.6B.8C.9D.189.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是( )A.10B.8C.6D.410.在Rt△ABC中,∠ACB=90°,CD是高,AC=4m,BC=3m,则线段CD的长为( )A.5m B.m C.m D.m11.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )A.BC=EC B.EC=BE C.BC=BE D.AE=EC12.计算(1+)÷的结果是( )A.x+1B.C.D.二.填空题13.分式与的最简公分母是 .14.|1﹣|= .1﹣的相反数是 .15.如图,四边形OABC为长方形,OA=1,则点P表示的数为 .16.化简:(a>0)= .17.若3,4,a和5,b,13是两组勾股数,则a+b的值是 .18.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为 cm2.三.解答题19.解方程:=20.(1)已知a、b为实数,且+(1﹣b)=0,求a2017﹣b2018的值;(2)若x满足2(x2﹣2)3﹣16=0,求x的值.21.已知x=﹣1,求x2+3x﹣1的值.22.如图,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=,MB=2MC,求AB的长.23.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE 于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.24.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.25.一项旧城区改造工程,如果由甲工程队单独做,需要60天可以完成;如果由甲乙两队合作12天后,剩下的工程由乙工程队单独做,还需20天才能完成.求乙工程队单独完成这项工程需要多少天?答案一.选择题1.解:A、﹣3是整式;B、﹣a﹣b是多项式,属于整式;C、是分式;D、﹣4a3b是单项式,属于整式;故选:C.2.解:∵分式的值为零,∴|m|﹣1=0,m﹣1≠0,解得:m=﹣1.故选:B.3.解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴2a﹣3=2(20172+20182+1)﹣3=2×20172+2×20182﹣1=2×20172+2017+2×20182﹣2018=2017×(2×2017+1)+2018×(2×2018﹣1)=2017×4035+2018×4035=4035×(2017+2018)=4035×4035=40352,∴=4035,故选:C.4.解:在所列8个数中,无理数有,0.2020020002…(每两个2之间0的个数逐次增加1个),﹣这3个数,故选:A.5.解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、是最简二次根式,正确;故选:D.7.解:∵点D为AB边中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=15°,∴∠BEC=∠A+∠ABE=30°,∵∠C=90°,∴BE=AE=2BC=2,CE=BC=,∴AC=AE+CE=2+,故选:C.8.解:作EH⊥BC于H,∵BE平分∠ABC,CD是AB边上的高线,EH⊥BC,∴EH=DE=3,∴△BCE的面积=×BC×EH=9,故选:C.9.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6,故选:C.10.解:在Rt△ABC中,AB===5,△ABC的面积=×AB×CD=×AC×BC,即×5×CD=×4×3,解得,CD=,故选:B.11.解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.12.解:原式=(+)÷=•=,故选:B.二.填空题13.解:分式与的最简公分母是6a3b4c,故6a3b4c.14.解:|1﹣|=﹣1,1﹣的相反数是:﹣(1﹣)=﹣1.故﹣1,﹣1.15.解:∵OA=1,OC=3,∴OB==,故点P表示的数为,故.16.解:∵a>0,∴==2a,故2a.17.解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故17.18.解:设三边长为9xcm,12xcm,15xcm,∵(9x)2+(12x)2=(15x)2,∴AC2+BC2=AB2,∴∠C=90°,∵周长为72cm,∴9x+12x+15x=72,解得:x=2,∴9x=18,12x=24,∴它的面积为:×18×24=216(cm2),故216.三.解答题19.解:方程两边都乘以(1+x)(1﹣x),得:6=1+x,解得:x=5,检验:当x=5时,(1+x)(1﹣x)=﹣24≠0,所以分式方程的解为x=﹣5.20.解:(1)∵a,b为实数,且+(1﹣b)=0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2017﹣b2018=(﹣1)2017﹣12018=(﹣1)﹣1=﹣2;(2)2(x2﹣2)3﹣16=0,2(x2﹣2)3=16,(x2﹣2)3=8,x2﹣2=2,x2=4,x=±2.21.解:∵x=﹣1,∴x2+3x﹣1==2﹣2+1+3﹣3﹣1=﹣1+.22.解:如图,连接MA,∵M在线段AB的垂直平分线上,∴MA=MB=2MC,∵∠C=90°,∴AC2+CM2=MA2,即3+MC2=4MC2,解得MC=1,∴MB=2MC=2,∴BC=3,在Rt△ABC中,由勾股定理可得AB===2,即AB的长为2.23.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.24.解:在Rt△ABD中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC 2=BD 2+CD 2,∴∠BDC=90°,∴S 四边形ABCD =S △ABD +S △DCB =×2×2+×4×4=4+8.25.解:设乙工程队单独完成这项工程需要x 天,根据题意,得:(+)×12+=1,解得:x=40,经检验:x=40是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要40天.2022年秋八年级上册期末模拟题(四)一、选择题(本大题共10小题,共40分)1. 点 关于y 轴对称的点的坐标是( ),1(P )2- A. (1,2) B. (-1,2) C. (-1,-2) D. (-2,1)2. 有一个角是的等腰三角形,其它两个角的度数是( )A. 36°,108°B. 36°,72°C. 72°,72°D. 36°,108°或72°,°72°3. 点P 在x 轴的下方,且距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标 为( )A. (4,-3)B. (3,-4)C. (-3,-4)或(3,-4)D. (-4,-3)或(4,-3)4. 若三条线段中,,为奇数,那么由a 、b 、c 为边组成的三角形共有( )3=a 5=b cA. 1个B. 3个C. 无数多个D. 无法确定5. 在同一直角坐标系中,若直线与直线平行,则( )3+=kx y b x y +-=2A., B., C., D.,2-=k 3≠b 2-=k 3=b 2-≠k 3≠b 2-≠k 3=b 6. 当,时,函数的图象大致是( )0>k 0<b b kx y += A. B. C. D.7. 有以下四个其中正确的个数为( )(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是矩形;(3)两条对角线互相垂直的平行四边形是菱形;(4)有一组邻边相等且有一个角是直角的四边形是正方形;A. 1B. 2C. 3D. 48. 如图,OP 是∠的平分线,点P 到OA 的距离为3,点AOB N 是OB 上的任意一点,则线段PN 的取值范围为( )A. B. C. D. 3<PN 3>PN 3≥PN 3≤PN 9. 如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C落在处,折痕为EF ,若,,则△C '1=AB 2=BC ABE和的周长之和为( )F C B 'A. 3 B. 4 C. 6 D. 810.有下列四个①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离第8题图第9题图其中是真命题的个数有( )A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,共18分)11. 如图,把“”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“” 笑脸右眼B 的坐标_______________ .12. 如图,在平面直角坐标系xOy 中,△由△绕点P 旋转得到,则点P 的C B A '''ABC 坐标为_______________.13. 已知函数是正比例函数,则 _________2)1(+--=n x m y =n 14. 如图,,请补充一个条件:_________________使△≌△(填其DC AB =ABC DCB 中一种即可)第12题图15. 已知:如图,,,,若,则的度数为AE AC =21∠=∠AD AB =︒=∠25D B ∠_____________________ .16. 如图,已知OC 平分,,若AOB ∠OB CD ∥,则CD 的长等于____________ .cm OD 6=三、计算题(本大题共5小题,共30分)17. 在直角坐标平面内,已点(3,0)、A (-5,3),将点A 向左平移6个单B 位到达C 点,将点B 向下平移6个单位到达D 点.(1)写出C 点、D 点的坐标:C __________,D ____________ ;(2)把这些点按顺次连A D CB A ----接起来,这个图形的面积是__________.18. 已知点关于x 轴的对称点在第一象限,求a 的取值范围.)12,1(-+a aP 题图第15题图19. 如图是屋架设计图的一部分,其中,点D 是斜梁AB 的中点,BC 、DE 垂直于︒=∠30A 横梁,,则立柱,要多长?AC cm AB 8=BC DE20. 我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费元与用水量吨之间的函数关系.y x (1) 小明家五月份用水8吨,应交水费______ 元;(2) 按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?21.设一次函数的图象经过(1,3)、(0,-2)两点,求此函数的)0(≠+=k b kx y A B 解析式.四、解答题(本大题共3小题,共32分)22.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图(10分).根据图中提供的信息回答下列问题:(1)小明家到学校的路程是________米(2)小明在书店停留了___________分钟.(3)本次上学途中,小明一共行驶了________ 米,一共用了______ 分钟.(4)在整个上学的途中_________(哪个时间段)小明骑车速度最快,最快的速度是___________________米/分.23.已知是关于的一次函数,且当时,;当时,.(10分)y x 3=x 2-=y 2=x 3-=y (1)求这个一次函数的表达式;(2)求当时,函数的值;3-=x y (3)求当时,自变量的值;2=y x (4)当时,自变量的取值范围.1>y x 24.种植草莓大户小华现有22吨草莓等待出售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,受客观因素影响,小华每天只能采用一种销售渠道,而且草莓必须在10天内售出(含10天)经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见右表:(12分)(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润(元)与运往省城直接批发零售商的草莓量(吨)之间的函数关y x 系式;(2)怎样安排这22吨草莓的销售渠道,才使小华所获纯利润最大?并求出最大纯利润.答案1. C2. D3. D4. B5. A6. D7. B8. C9.C10. A11.12.13. 214.15.16. 6cm17. ;;1818. 解:依题意得p点在第四象限,,解得:,即a的取值范围是.19. 解:,,、DE垂直于横梁AC,,又D是AB的中点,,答:立柱BC要要2m.20. 解:根据图象可知,10吨以内每吨水应缴元所以元.解法一:由图可得用水10吨内每吨2元,10吨以上每吨元三月份交水费26元元所以用水:吨四月份交水费18元元,所以用水:吨四月份比三月份节约用水:吨解法二:由图可得10吨内每吨2元,当时,知当时,可设y与x的关系为:由图可知,当时,时,可解得与x之间的函数关系式为:,当时,知,有,解得,四月份比三月份节约用水:吨.直接根据图象先求得10吨以内每吨水应缴元,再求小明家的水费;根据图象求得10吨以上每吨3元,3月份交水费26元元,故水费按照超过10吨,每吨3元计算;四月份交水费18元元,故水费按照每吨2元计算,分别计算用水量做差即可求出节约的水量.主要考查了一次函数的实际应用和读图的基本能力解题的关键是能根据函数图象得到函数类型,并根据函数图象上点的实际意义求解.21. 解:把、代入得,解得,所以此函数解析式为.22. 1500;4;2700;14;12分钟至14分钟;45023.. 解:设一次函数的表达式为由题意,得,解得.所以,该一次函数解析式为:;当时,;当时,,解得.当时,,解得24. 解:由题意可得,,即销售22吨草莓所获纯利润元与运往省城直接批发零售商的草莓量吨之间的函数关系式是;草莓必须在10天内售出含10天,,解得,,,在函数中,y随x的增大而减小,当时,y取得最大值,此时,,即用4天时间运往省城批发,6天在本地零售,可以使小华所获纯利润最大,最大利润为31200元.当时,,解得2022年秋八年级上册期末模拟题(五)一、选择题(每小题3分,共10小题,满分30分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)下列代数式①,②,③,④中,分式有()A.1个B.2个C.3个D.4个2.(3分)根据分式的基本性质填空:=,括号内应填()A.x2﹣3x B.x3﹣3C.x2﹣3D.x4﹣3x3.(3分)下列计算正确的是()A.30=0B.3﹣2=﹣6C.3﹣2=﹣D.3﹣2=4.(3分)若代数式有意义,则x必须满足条件()A.x≥﹣1B.x≠﹣1C.x≥1D.x≤﹣15.(3分)已知一个等腰三角形的两边长分别是5cm与6cm,则这个等腰三角形的周长为()A.16cm B.17cm C.16cm或17cm D.无法确定6.(3分)下列命题是真命题的是()A.如果a是整数,那么a是有理数B.内错角相等C.任何实数的绝对值都是正数D.两边一角对应相等的两个三角形全等7.(3分)不等式组的解集在数轴上表示如图所示,则该不等式组可能为()A.B.C.D.8.(3分)(﹣4)2的平方根是()A.4B.±4C.2D.±29.(3分)已知a,b均为有理数,且a+b=(2﹣)2,则a、b的值为()A.a=4,b=3B.a=4,b=4C.a=7,b=﹣4D.a=7,b=410.(3分)方程的解是x等于()A.2B.﹣2C.±2D.无解二、填空题(每小题3分,共8小题,满分24分)11.(3分)科学实验发现有一种新型可入肺颗粒物的直径约为2.5μm(1μm=0.000001m),用科学记数法表示这种颗粒物的直径约为 m.12.(3分)在实数范围内分解因式:x2﹣3=.13.(3分)实数﹣4的绝对值等于.14.(3分)如图,在△BCD中,∠C=30°,∠D=40°,点A为CB的延长线上一点,BE为∠ABD的角平分线,则∠ABE= °.15.(3分)如图,已知AD=BC,则再添加一个条件(只填一种),可证出△ABC≌△BAD.16.(3分)计算:()2015()2016= .17.(3分)巳知等腰三角形一底角为30°,则这个等腰三角形顶角的大小是度.18.(3分)如图,已知在△ABC中,BC=10cm,AB的垂直平分线EF交BC与点F,AC的垂直平分线MN交BC于点N,则△AFN的周长为 cm.三、解答题(19题每小题8分,20题6分,满分14分)19.(8分)①化简:②计算:.20.(6分)求当x取何值时,代数式﹣的值不小于1?四、分析与说理(每小题8分,共2小题,满分16分)21.(8分)已知:如图所示,在△ABC中,∠ABC=∠ACB,BD⊥AC,垂足为点D,CE⊥AB,垂足为点E.求证:BD=CE.22.(8分)已知:如图所示,点D、E分别在等边△ABC的边BC、AC上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.五、实践与应用(每小题8分,共2小题,满分16分)23.(8分)娄底到长沙的距离约为120km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发15分钟,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?(列方程解答)24.(8分)某校组织开展了“娄底是我家,建设娄底靠大家”的环保知识竞赛,共25道竞赛题,选对一题得4分,不选或选错每题扣2分,大赛组委会规定总得分不低于80分获奖,那么至少应选对多少道题才能获奖?(列不等式解答)六、阅读与探究(每小题10分,共2小题,满分20分)25.(10分)阅读下列材料,并解决问题:①已知方程x2+3x+2=0的两根分别为x1=﹣1,x2=﹣2,计算:x1+x2= ,x1•x2=②已知方程x2﹣3x﹣4=0的两根分别为x1=4,x2=﹣1,计算:x1+x2= ,x1•x2=③已知关于x的方程x2+px+q=0有两根分别记作x1,x2,且x1=,x2=,请通过计算x1+x2及x1•x2,探究出它们与p、q的关系.26.(10分)在长方形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板的两直角边分别与AB、BC分别相交于点M,N时,观察或测量BM与CN的长度,你能得到什么结论?并证明你的结论.答案:一、选择题(每小题3分,共10小题,满分30分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)下列代数式①,②,③,④中,分式有()A.1个B.2个C.3个D.4个【分析】根据分式的定义看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出答案.解:①是分式;②分母中不含字母,不是分式;③分母中不含字母,不是分式;④分母中含有字母是分式.故选:B.2.(3分)根据分式的基本性质填空:=,括号内应填()A.x2﹣3x B.x3﹣3C.x2﹣3D.x4﹣3x【分析】把分式的分母与分子同时除以x即可得出结论.解:∵分式的分母与分子同时除以x得,=.∴括号内应填x2﹣3.故选C.3.(3分)下列计算正确的是()A.30=0B.3﹣2=﹣6C.3﹣2=﹣D.3﹣2=【分析】根据零指数幂:a0=1(a≠0),负整数指数幂:a﹣p=(a≠0,p为正整数)进行计算.解:30=1,3﹣2=,故选:D.4.(3分)若代数式有意义,则x必须满足条件()A.x≥﹣1B.x≠﹣1C.x≥1D.x≤﹣1【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.解:由题意得,x+1≥0,解得,x≥﹣1,故选:A.5.(3分)已知一个等腰三角形的两边长分别是5cm与6cm,则这个等腰三角形的周长为()A.16cm B.17cm C.16cm或17cm D.无法确定【分析】分腰为6cm和腰为5cm两种情况,再求其周长.解:当腰为6cm时,则三角形的三边长分别为6cm、6cm、5cm,满足三角形的三边关系,周长为17cm;当腰为5时,则三角形的三边长分别为5cm、5cm、6cm,满足三角形的三边关系,周长为16cm;综上可知,等腰三角形的周长为16cm或17cm.故选C.6.(3分)下列命题是真命题的是()A.如果a是整数,那么a是有理数B.内错角相等C.任何实数的绝对值都是正数D.两边一角对应相等的两个三角形全等【分析】根据有理数的分类对A进行判断;根据平行线的性质对B进行判断;根据绝对值的意义对C进行判断;根据全等三角形的判定方法对D进行判断.。
2022-2023学年人教版八年级上册数学期末模拟试卷(含答案)

八年级上数学期末模拟试卷一、单选题(每题3分,共30分)1.下面图案是轴对称图形的是()A.B.C.D.2.下列各组线段,能组成三角形的是()A.2,3,4B.1,2,3C.3,4,9D.15,12,2 3.下列式子中,是因式分解的()A.a+b=b+a B.4x2y−8xy2+1=4xy(x−y)+1 C.a(a−b)=a2−ab D.a2−2ab+b2=(a−b)24.无论a取何值,下列分式总有意义的是()A.a−1a2+1B.a+1a2C.1a2−1D.1a+15.如图,将直尺和三角板按如图的样子叠放在一起,则∠1+∠2=()A.270°B.200°C.180°D.90°6.若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为()A.2a2﹣12B.4a2﹣4a+1C.4a2+4a+1D.4a2﹣17.小李用7块长为8cm,宽为3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AB=BC,∠ABC=90°),点B在DE上,点A和C分别与木墙的顶端重合,则两堵木墙之间的距离为()A.36B.32C.28D.218.如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB ,能得出∠A′O′B ,=∠AOB 的依据是( )A .SASB .ASAC .AASD .SSS9.一辆汽车沿A 地北偏东50方向行驶6千米到达B 地,再沿B 地南偏东10°方向行驶6千米到达C 地,则此时A 、C 两地相距( )千米。
A .12B .6√3C .6D .310.如果 a , b , c 是正数,且满足 a +b +c =1 ,1a+b +1b+c +1a+c =5 ,那么 c a+b +a b+c +b a+c的值为( ) A .-1 B .1 C .2 D .12二、填空题(每题3分,共15分)11.已知一个包装盒的底面是内角和为720°的多边形,它是由另一个多边形纸片剪掉一个角以后得到的,则原多边形是 边形.12.已知 x −1x =4 ,则 x 2+1x 2= . 13.如图,AB =AC =5,∠BAC =110°,AD 是∠BAC 内的一条射线,且∠BAD =25°,P 为AD 上一动点,则|PB −PC|的最大值是 .14.照相机成像应用了一个重要原理,用公式1f=1u +1v (v ≠f)来表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离,已知f ,u ,则v = . 15.如图,∠ABC 中,AD 、BD 、CD 分别平分∠ABC 的外角∠CAE 、内角∠ABC 、外角∠ACF ,AD∠BC .以下结论:①∠ABC=∠ACB ;②∠ADC+∠ABD=90°;③BD 平分∠ADC ;④2∠BDC=∠BAC .其中正确的结论有 .(填序号)三、解答题(共8题,共75分)16.因式分解:(1)xy−9x(2)m2−12m+3617.计算(1)(5x)2⋅x7−(3x3)3+2(x3)2+x3(2)(x+2y)(x−2y)−2x(x+3y)+(x+y)218.解方程:xx+1=23x+3.19.先化简,再求值:2x2−xx2−2x+1÷2x−1x−1−1,其中x=3.20.如图,在△ABC中,∠BAC=95°,∠B=25°,∠CAD=75°,求∠ADC的度数.21.如图,△ACD和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,请判断AE=BD是否成立,并说明理由.22.为了做好防疫工作,保障员工安全健康,某公司用4000元购进一批某种型号的口罩.由于质量较好,公司又用6400元购进第二批同一型号的口罩,已知第二批口罩的数量是第一批的2倍,且每包便宜5元.问第一批口罩每包的价格是多少元?23.(2022八上·杭州期中)如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.答案与解析1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】A6.【答案】A7.【答案】A8.【答案】D9.【答案】C10.【答案】C11.【答案】五或六或七12.【答案】1813.【答案】514.【答案】fuu−f15.【答案】①②④16.【答案】(1)解:xy−9x=x(y−9);(2)解:m2−12m+36=m2−2×6m+62=(m−6)2.17.【答案】(1)解:(5x)2⋅x7−(3x3)3+2(x3)2+x3=25x2⋅x7−27x9+2x6+x3=25x9−27x9+2x6+x3=−2x9+2x6+x3(2)解:(x+2y)(x−2y)−2x(x+3y)+(x+y)2=x2−4y2−(2x2+6xy)+(x2+2xy+y2)=x2−4y2−2x2−6xy+x2+2xy+y2=−3y2−4xy18.【答案】解:方程两边同时乘以3(x+1)得:3x=2,解得:x=2 3,经检验x=23是分式方程的解.19.【答案】解:原式=x(2x−1)(x−1)2⋅x−12x−1−1,=x x−1−x−1x−1,=1x−1.当x=3时.原式=1 2 .20.【答案】解:∵∠BAC=95°,∠CAD=75°,∴∠BAD=∠BAC−∠CAD=20°,∵∠B=25°,∴∠ADC=∠ABC+∠BAD=25°+20°=45°.∴∠ADC=45°.21.【答案】证明:∵△ACD和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,AC=BC,EC=ED,∵∠ECD=∠ECA+∠ACD,∠ACB=∠BCD+∠ACD,∴∠ECA=∠BCD,在△ACE和△BCD中,{AC=BC∠ECA=∠BCDEC=ED∴△ACE≌△BCD(SAS),∴AE=BD.22.【答案】解:设第一批口罩每包x元,则第二批口罩每包(x-5)元,根据题意得:6400 x−5=4000x×2,解得:x=25,经检验x=25是所列方程的根,答:第一批口罩每包的价格是25元.23.【答案】(1)解:①120°②∵点C和点P关于OA对称,∴∠AOC=∠AOP.∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2α.(2)4∴∠AOC=∠AOP.∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2×60°=120°.故答案为:120°.(2)根据轴对称的性质,可知CM=PM,DN=PN,所以∠PMN的周长为:PM+PN+MN=CM+DN+MN=CD=4.故答案为:4.。
八年级上册数学期末模拟试卷【含答案】

八年级上册数学期末模拟试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 28B. 29C. 30D. 315. 若一个圆的半径为5cm,则它的面积是多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)6. 任何一个等边三角形的三个角都是60°。
()7. 两个质数的和一定是偶数。
()8. 一个数的立方根只有一个。
()9. 任何一个正数都有两个平方根,它们互为相反数。
()10. 若两个角的和为180°,则这两个角互补。
()三、填空题(每题1分,共5分)11. 若一个数的算术平方根为4,则这个数为______。
12. 若一个等边三角形的周长为18cm,则其边长为______cm。
13. 若一个等差数列的第3项为7,第7项为19,则其公差为______。
14. 若一个圆的直径为14cm,则其周长为______cm。
15. 若一个数的立方为27,则这个数的算术平方根为______。
四、简答题(每题2分,共10分)16. 简述等差数列的定义。
17. 什么是算术平方根?一个正数的算术平方根有几个?18. 简述圆的周长公式。
19. 什么是等边三角形?它的三个角都是多少度?20. 简述勾股定理。
五、应用题(每题2分,共10分)21. 一个长方体的长、宽、高分别为10cm、6cm、4cm,求它的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上期期末数学测试卷
一、选择题:(本题共10小题,每小题2分,共20分.下列各题都有代号为A ,B ,C ,D 的四个结论供选择,其中只有一个结论是正确的)
1.若4x 2+kx +25=(2x -5)2,那么k 的值是 ( )
A .10
B .-10
C .20
D .-20
2.已知一次函数y =32x +m 和y =-12
x +n 的图象都经过点(-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是 ( )
A .2
B .3
C .4
D .6
3.下列多项式中,能因式分解的是 ( )
A .x 2-y
B .x 2+1
C .x 2+xy +y 2
D .x 2-4x +4
4.下列说法中,正确的个数为 ( )
①扇形统计图是用圆代表总体,圆中的各个扇形分别代表总体中的不同部分
②要清楚的表示出各部分在总体中所占的百分比应选择条形统计图
③要反映某日气温的变化情况,应选择折线统计图
A. 0个 B .1个 C. 2个 D .3个
5.等腰三角形一边长等于4,一边长等于9,它的周长是 ( )
A .17
B .22
C .17或22
D .13
6.使两个直角三角形全等的条件是 ( )
A. 斜边相等;B .两直角边对应相等; C .一锐角对应相等;D .两锐角对应相等
7.如图所示,在下列条件中,不能作为判断△ABD ≌△BAC 的条件是 ( )
A. ∠D =∠C ,∠BAD =∠ABC B .∠BAD =∠ABC ,∠ABD =∠BAC
C .B
D =AC ,∠BAD =∠ABC D .AD =BC ,BD =AC
8.如图,已知BE ,CF 分别为△ABC 的两条高,BE 和CF 相交于点H ,若∠BAC =50°,则∠BHC 为 ( )
A .160°
B .150°
C .140°
D .130°
9.下列命题中,假命题是 ( )
A .线段是轴对称图形;
B .等腰三角形底边的中点到两腰的距离相等
C. 斜三角形就是钝角三角形; D .角的对称轴是角的平分线所在的直线
10.如图,是一个改造后的台球桌面的示意图,图中四个角上的
阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击中(球可以经过多次反射),那么该球最后将落入的球袋是
( )
A .1号袋
B .2号袋
C .3号袋
D .4号袋
二、填空题:(每空2分,共22分.把最后结果填在题中横线上)
11.如果A(-1,2),B(2,-1),C(m,m)三点在同一条直线上,则m的值等于______.
12.若一次函数y=(m-3)x+m+1的图象经过第一、二、四象限,则m的取值范围是______
13.多项式5a-2a2b-b3+a3b的三次项是____________,按a的升幂排列为____________.
14.如图,已知∠ACB=∠DBC,要使△ABC≌△DCB,只需增加一个条件是______.
15.等腰三角形的顶角是120°,底边上的高是3cm,则腰长为______cm.
16.如图,已知△ABC≌△BAD,A和B、C和D是对应顶点.如果AB=6,BD=5,AD=4,那么BC的长度是______.
17.当x=2时,多项式ax5+bx2+cx-5的值为7,当x=-2,这个多项式的值为______.
18.一个直角三角形中,它的锐角的外角为135°,则这个三角形有对称轴______条.
19.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;
根据规律(x-1)(x n+x n-1+…+x+1)=____________.
20.如图,AD是△ABC是角平分线,DE⊥AB于点E,DE⊥AC于点F,连结EF交AD于点G,则AD与EF的关系是____________.
三、解答题:(第21题12分,第22题14分,其他题各6分,共56分)
21.因式分解: (1)x2-xy-12y2;(2) a2-6a+9-b2.
22.先化简,再求值:2x(3x2-4x+1)-3x2(2x-3),其中x=-3.
23.已知:线段a,∠α。
求作:等腰三角形ABC,使其腰长AB为a、底角∠B为∠α,
要求:用尺规作图,不写作法和证明,但要清楚地保留作图痕迹.
24.为了保护学生的视力,课桌的高度)ycm 与椅子的高度xcm(不含靠背)都是按y 是x 的一次函数关系配套设计的,下表列出了两套课桌椅的高度:
(1)请确定)y 与x 的函数关系式(不要求写出x 的取值范围);
(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配
套?请通过计算说明理由。
25.一条大河两岸的A 、B 处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案
)
26.已知:如图,AB =AE ,BC =ED ,AF 是CD 的垂直平分线,
求证:∠B =∠E .
27.如图,在△ABD 和△ACD 中,已知AB =AC ,∠B =∠C ,求证:AD 是∠BAC 的平分线.
答案:。