【高教版】4.4《对数函数》 优秀教案

合集下载

4.4对数函数-人教A版高中数学必修第一册(2019版)教案

4.4对数函数-人教A版高中数学必修第一册(2019版)教案

4.4 对数函数-人教A版高中数学必修第一册(2019版)教案教学目标1.了解对数函数的定义与性质;2.掌握对数函数与指数函数的互逆关系;3.掌握对数函数的常用计算方法;4.能够运用对数函数解决实际问题。

教学重点1.对数函数与指数函数的互逆关系;2.对数函数的计算方法;3.运用对数函数解决实际问题。

教学难点1.运用对数函数解决实际问题。

教学过程导入环节1.老师介绍对数函数的概念,引入大家对对数函数的初步认识;2.引导学生思考指数函数与对数函数的关系。

讲解环节1.带领学生探究对数函数的定义与性质;2.利用白板和课件展示对数函数与指数函数的互逆关系;3.讲解对数函数的计算方法。

拓展训练1.练习题。

课堂上对对数函数的计算方法进行拓展训练;2.实际问题运用。

引导学生解决一些实际问题,如:瓶子里有几颗芝麻?数颗芝麻太麻烦,现在我把这些芝麻放在一个桶里,顺手拧了几下,芝麻就乱了,这时候你就不得不手动数了,如果用各种技巧将芝麻分成若干堆,让每堆的芝麻颗数尽量相等,这时就需要运用对数函数了。

教学方式1.讲授和讲解相结合;2.以教师讲解引导为主,学生自主思考为辅助;3.在讲解中引导学生进行课堂练习和实际问题讨论。

教学措施1.制定教案,并准备好教学资料及课件;2.定时提问,引导学生思考;3.给予课堂练习和讨论的机会。

教学效果评估1.课堂发言的积极性及准确性;2.课堂练习的完成情况;3.讨论的理解度和深度;4.在实际问题中应用对数函数解决问题的能力。

教学反思本节课的设计在引导学生对对数函数的认识上有一定效果,但是在实际问题应用中学生的思考深度不够,需要引导学生多思考。

在下一节课中需对实际问题运用进行更多的训练和引导。

《对数函数》教学设计完美版

《对数函数》教学设计完美版

《对数函数》教学设计完美版【教学目标】1. 了解对数函数的定义、性质及其在数学和实际中的作用;2. 能够准确地表示对数函数及其反函数的图像;4. 培养学生逻辑思维能力、分析问题的能力和解决问题的能力。

1. 对数函数的定义及基本性质。

3. 对数函数的反函数的图像、定义域、值域以及单调性。

4. 指数函数与对数函数的关系。

5. 利用对数函数解决实际问题。

2. 对数函数图像的绘制。

1. 前置知识启发法借助生活实例及数学实例,引出对数函数的产生背景和基本意义,使学生从熟悉的生活现象及数学运算中获得对对数函数的初步理解。

2. 形象化教学法通过图像或示例说明对数函数的性质,图像生动形象,有利于学生直观的理解对数函数的性质。

3. 探究式教学法在教学中,通过引导学生对例题进行讨论,探究对数函数的问题,发现问题,解决问题,从而培养学生的分析问题、解决问题的能力。

4. 实践教学法通过解决实际问题,让学生主动参与到教学中,根据所学到的知识解决生活中遇到的实际问题,不仅能够增加学生的学习兴趣和动力,同时还能够让学生了解到对数函数对实际问题的解决具有重要作用。

引导学生了解对数函数的定义,并让学生理解对数函数的基本性质,包括定义域、值域、单调性等。

通过讨论,让学生掌握对数函数图像的特点,并通过绘制对数函数的图像,让学生加深对数函数图像的记忆和了解。

通过引导学生思考,让学生初步理解反函数的概念及性质,并用图像和示例进行说明,让学生了解反函数的图像及性质。

通过对指数函数和对数函数的定义、性质及其在数学和实际中的作用的讨论,让学生理解指数函数与对数函数之间的关系。

6. 总结回顾1. 每节课结束后进行问题的测试,检查学生是否掌握了主要内容。

2. 每节课结束后,通过讨论和笔记的方式,让学生对所学内容进行总结和回顾。

3. 通过布置作业,检查学生是否能够巩固和应用所学知识。

4. 通过考试进行评估,检查学生是否对对数函数的定义、性质、图像及其应用有所了解。

对数函数(优质课)教案

对数函数(优质课)教案

对数函数(优质课)教案教学目标:1、体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点.2、掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数 y =a x 与对数函数y =log a x 互为反函数. (a >0,a ≠1)教学过程:一、对数函数的定义:函数x y a log =)10(≠>a a 且叫做对数函数。

二、对数函数的图像和性质:a >1 01a <<图 像性 质定义域:()0,+∞值域:R过点()1,0,即当1x =时,0y =)1,0(∈x 时,0<y ;),1(+∞∈x 时, 0>y)1,0(∈x 时,0>y ;),1(+∞∈x 时,0<y在()0,+∞上是增函数在()0,+∞上是减函数三、比较对数值的大小,常见题型有以下几类:1、比较同底数对数值的大小:利用函数的单调性;当底数是同一参数时,要对对参数进行分类讨论;2、比较同真数对数值的大小:可利用函数图像进行比较;3、比较底数和真数都不相同的对数值的大小:可选取中间量如:“1”、“0”等进行比较。

四、对数不等式的解法:()()()()()()()()()()1 log log 0 01log log 0a a a a f x g x a f x g x f x f x g x a f x g x f x >⎧>>⎨>⎩<⎧<<>⎨>⎩当时,与同解。

当时,与同解。

五、对数方程常见的可解类型有:形如()()()()()log log 01,0,0a a f x g x a a f x g x =>≠>>且的方程,化成()()f x g x =求解;形如()log 0a F x =的方程,用换元法解;形如()()log f x g x c =的方程,化成指数式()()cf xg x =⎡⎤⎣⎦求解 指数、底数都不同:可利用中间量进行比较。

对数函数优秀教案

对数函数优秀教案

对数函数优秀教案《对数函数》优秀教案一、教材分析对数函数是在学习指数函数、对数的基础上引入的,由此我制定了这样的教学目标。

1通过指数与对数的联系,掌握对数函数的概念、图象、性质并能简单应用。

2、在教学过程中,通过数形结合、分类讨论等数学思想方法,发展学生的逻辑思维能力,提高他们的信息检查和整合能力。

教学重点:对数函数的概念、图象和性质.教学难点:由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。

二、指导思想和教学方法利用多媒体辅助教学,通过讨论启发学生归纳对数函数的概念图像及性质,同时在教学中渗透“类比联想”、“数形结合”及“分类讨论”的数学思想方法。

三、教学过程1、提出问题我们来看下上节课的2.1.2的例8:截止到1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%那么经过20年后,我国人口数最多为多少?1999年底,我国人口约13亿;经过1 年(即2000年),人口数为13+13*1%=13*(1+1%)(亿)经过2 年(即2001 年),人口数为13* (1+1% +13* (1+1% *1%=13* (1+1% 2(亿)2 2 a经过3 年(即2002 年),人口数为13* (1+1% +13* (1+1% *1%=13*(1+1%)(亿)00 000000 000000 00000所以经过x年,人口数为y=13*(1 1%)x=13*1.01x(亿)当x=20 时,y 13*1.012016 (亿)所以经过20年后我国人口数最多为16亿。

咱们上节课的例题,我们能从关系式y 13*1.01x中,算出任意一个年头x的人口总数,那反之,如果问,哪一年的人口数可达到18亿,20亿,30亿,该如何解决?上述问题实际上就是从18 1.01x,20 1.01x,^° 1.01x,...中分别求出x,即已知底13 13 13数和幕的值,求指数这是我们这节课将要学习的对数函数问题,通过我们学习的对数表示方法,咱们可以把上面的式子表示成:log 1.01 y x,其中y=人口数/13,y是自变量,x是y的函数,但习惯上,用x表示自变量,y表示它的函数,对数函数优秀教案因此对上式进行改写:y log1.01 x。

对数函数 优秀教案

对数函数 优秀教案

对数函数优秀教案对数函数优秀教案目标本教案的目标是通过教授对数函数的基本概念和性质,帮助学生掌握对数函数的基本概念和解题方法。

教学内容1. 对数函数的定义对数函数是指满足一定条件的函数,其定义如下:$$y = \log_b{x}$$其中,$y$ 表示对数函数的值,$b$ 表示底数,$x$ 表示真数。

2. 对数函数的性质对数函数具有以下性质:- 对数函数与指数函数是互逆的关系;- 对数函数的图像与指数函数的图像关于直线 $y = x$ 对称;- 对数函数的定义域为正实数集,值域为实数集;- 对数函数在 $x$ 轴右侧单调递增,在 $x$ 轴左侧单调递减;- ...3. 对数函数的应用对数函数在实际问题中有广泛的应用,例如:- 指数增长和衰减问题;- 求解复利问题;- 求解相关系数问题;- ...教学步骤1. 引入对数函数的定义,通过实例和图像展示对数函数的基本特点;2. 讲解对数函数的性质,通过练题加深理解;3. 引入对数函数的应用,并通过实际问题进行演示和练;4. 总结对数函数的重要性和应用领域,鼓励学生多加练和思考。

教学评估为了评估学生对对数函数的掌握程度,可以采用以下评估方式:1. 练题:布置一些关于对数函数的练题,以检验学生对于对数函数的掌握和运用能力;2. 实际问题解答:给学生提供一些实际问题,并要求他们利用对数函数进行求解;3. 小组讨论:组织学生进行小组讨论,让他们就对数函数的应用提出自己的见解和观点。

通过以上评估方式,可以全面了解学生对对数函数的掌握程度,并及时进行教学调整和辅导。

参考资料- XXX教材第X章以上是本教案对数函数的基本内容和教学步骤,希望能对您有所帮助。

如果有任何问题,请随时与我联系。

《对数函数》教学设计(精品)

《对数函数》教学设计(精品)

《对数函数》教学设计(精品)对数函数教学设计(精品)1. 引言对数函数是高中数学教学中重要的内容之一。

它不仅在数学领域有广泛的应用,而且在其他学科中也扮演着重要的角色。

本教学设计旨在帮助学生全面理解和掌握对数函数的基本概念、性质和应用。

2. 研究目标- 了解对数函数的定义和基本性质- 掌握对数函数的图像、变换和反函数- 熟练运用对数函数解决实际问题3. 教学内容3.1 对数函数的定义和基本性质- 介绍对数函数的定义和符号表示方法- 阐述对数函数的基本性质,如对数函数的定义域、值域和增减性质等3.2 对数函数的图像和变换- 绘制对数函数的基本图像,解释图像的特点和变化规律- 引导学生分析对数函数的平移、伸缩、翻转等变换方式3.3 对数函数的反函数- 介绍对数函数与指数函数的关系- 推导对数函数的反函数,并解释反函数的性质和图像3.4 对数函数的应用- 阐述对数函数在实际问题中的应用,如指数增长、财务管理和科学计算等- 引导学生运用对数函数解决实际问题,并进行相关练和讨论4. 教学策略- 采用启发式教学方法,引导学生积极思考和发现对数函数的性质和规律- 结合具体实例和案例分析,加深学生对对数函数的理解和应用能力- 利用多媒体技术辅助教学,展示对数函数的图像和实际应用场景- 组织小组活动和讨论,促进学生合作研究和问题解决能力5. 教学评估- 设计对数函数的练和测验,测试学生对于对数函数概念和性质的理解程度- 观察学生在实际问题中运用对数函数解决能力的表现- 利用小组合作评价学生在讨论和合作研究中的参与和贡献程度6. 教学资源- 教科书:XXX- 多媒体教学软件:XXX- 实际应用案例:XXX7. 教学总结通过本次教学,学生将全面了解对数函数的定义、性质和应用,提升对数函数的理解和解决实际问题的能力。

同时,学生将培养合作研究和问题解决的能力,为后续数学研究打下良好基础。

以上为《对数函数》教学设计(精品)的纲要,具体教学细节可以根据实际情况进行调整和补充。

高中优秀教案高一数学教案:《对数函数》教学设计

高中优秀教案高一数学教案:《对数函数》教学设计

高一数学教案:《对数函数》教学设计高一数学教案:《对数函数》教学设计教学目标1.把握对数函数的概念,图象和性质,且在把握性质的基础上能进行初步的应用.(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.(2) 能把握指数函数与对数函数的实质去讨论熟悉对数函数的性质,初步学会用对数函数的性质解决简洁的问题.2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类商量等思想,注意培育同学的观查,分析,归纳等规律思维力量.3.通过指数函数与对数函数在图象与性质上的对比,对同学进行对称美,简洁美等审美训练,调动同学学习数学的主动性.教学建议教材分析(1) 对数函数又是函数中一类重要的基本初等函数,它是在同学已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述学问的应用,也是对函数这一重要数学思想的进一步熟悉与理解.对数函数的概念,图象与性质的学习使同学的学问体系更加完整,系统,同时又是对数和函数学问的拓展与延长.它是解决有关自然科学领域中实际问题的重要工具,是同学今后学习对数方程,对数不等式的基础.(2) 本节的教学重点是理解对数函数的定义,把握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,同学不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.(3) 本节课的主线是对数函数是指数函数的反函数,全部的问题都应围围着这条主线绽开.而通过互为反函数的两个函数的关系由已知函数讨论未知函数的性质,这种方法是第一次使用,同学不适应,把握不住关键,所以应是本节课的难点.教法建议(1) 对数函数在引入时,就应从同学熟识的指数问题动身,通过对指数函数的熟悉逐步转化为对对数函数的熟悉,而且画对数函数图象时,既要考虑到对底数的分类商量而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观查图象的特征,找出共性,归纳性质.(2) 在本节课中结合对数函数教学的特点,肯定要让同学动手做,动脑想,大胆猜,要以同学的讨论为主,老师只是不断地反函数这条主线引导同学思索的方向.这样既增加了同学的参加意识又教给他们思索问题的方法,获取学问的途径,使同学学有所思,思有所得,练有所获,,从而提高学习爱好.教学设计示例对数函数教学目标1. 在指数函数及反函数概念的基础上,使同学把握对数函数的概念,能正确描绘对数函数的图像,把握对数函数的性质,并初步应用性质解决简洁问题.2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类商量的思想.3. 通过对数函数有关性质的讨论,培育同学观查,分析,归纳的思维力量,调动同学学习的主动性.教学重点,难点重点是理解对数函数的定义,把握图像和性质.难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.教学方法启发研讨式教学用具投影仪教学过程让同学先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最终让同学以其中一组为例写出具体的比较过程.三.巩固练习练习:若,求的取值范围.四.小结五.作业略板书设计2.8对数函数一. 概念1.定义2.熟悉二.图像与性质1.作图方法2.草图图1 图23.性质(1) 定义域(2)值域(3)截距(4)奇偶性(5)单调性三.应用1.相关函数的讨论例1 例2练习探究活动。

高中数学必修一 《4 4 对数函数》公开课优秀教案教学设计

高中数学必修一 《4 4 对数函数》公开课优秀教案教学设计

【新教材】4.4.2 对数函数的图像和性质(人教A 版)本节课在已学对数函数的概念,接着研究对数函数的图像和性质,从而深化学生对对数函数的理解,并且了解较为全面的研究函数的方法,为以后在研究函数增长类型打下基础。

另外,我们日常生活中的很多方面都涉及到了对数函数的知识,例如溶液酸碱度的测量,所以学习这一节具有很大的现实价值。

课程目标1、掌握对数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结对数函数的性质;3、在对数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯.数学学科素养1.数学抽象:对数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用对数函数的性质比较两个函数值的大小及解对数不等式;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.重点:对数函数的图象和性质;难点:对底数的分类,如何由图象、解析式归纳对数函数的性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、 情景导入请学生用三点画图法画212log ,log y x y x ==图像,观察两个函数图像猜测对数函数有哪些性质?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本132-133页,思考并完成以下问题1. 对数函数的图象是什么,通过图象可观察到对数函数具有哪些性质?2. 反函数的概念是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.对数函数的图象及性质a的范围0<a<1a>1图象a的范围0<a<1a>1性质定义域(0,+∞)值域R定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数[点睛]底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.2.反函数指数函数y=a x和对数函数y=log a x(a>0且a≠1)互为反函数.四、典例分析、举一反三题型一对数函数的图象例1函数y=log2x,y=log5x,y=lg x的图象如图所示.(1)说明哪个函数对应于哪个图象,并说明理由;(2)在如图的平面直角坐标系中分别画出y=lo g12x,y=lo g15x,y=lo g110x的图象;(3)从(2)的图中你发现了什么?【答案】见解析【解析】(1)①对应函数y=lg x,②对应函数y=log5x,③对应函数y=log2x.这是因为当底数全大于1时,在x=1的右侧,底数越大的函数图象越靠近x轴.(2)在题图中的平面直角坐标系中分别画出y=lo g12x,y=lo g15x,y=lo g110x的图象如图所示.(3)从(2)的图中可以发现:y=lg x与y=lo g110x,y=log5x与y=lo g15x,y=log2x与y=lo g12x的图象分别关于x轴对称.解题技巧:(对数函数图象的变化规律)1.对于几个底数都大于1的对数函数,底数越大,函数图象向右的方向越接近x轴;对于几个底数都大于0且小于1的对数函数,底数越大,函数图象向右的方向越远离x轴.以上规律可总结成x>1时“底大图低”.实际上,作出直线y=1,它与各图象交点的横坐标即为各函数的底数的大小,如图所示.2.牢记特殊点:对数函数y=log a x(a>0,且a≠1)的图象经过(1,0),(a,1),(1a,-1).跟踪训练一1、作出函数y=|lg(x-1)|的图象,并根据图象写出函数的定义域、值域以及单调区间.【答案】其定义域为(1,+∞),值域为[0,+∞),单调递减区间为(1,2],单调递增区间为(2,+∞).【解析】先画出函数y=lg x的图象(如图①).再将该函数图象向右平移1个单位长度得到函数y=lg(x-1)的图象(如图②).图①图②图③最后把y=lg(x-1)的图象在x轴下方的部分对称翻折到x轴上方(原来在x轴上方的部分不变),即得出函数y=|lg(x-1)|的图象(如图③).由图易知其定义域为(1,+∞),值域为[0,+∞),单调递减区间为(1,2],单调递增区间为(2,+∞).题型二 比较对数值的大小例2 比较下列各组数中两个值的大小:(1)log 23.4,log 28.5;(2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(a >0,且a ≠1).【答案】(1) log 23.4<log 28.5 (2) log 0.31.8>log 0.32.7 (3)当a >1时,log a 5.1<log a 5.9;当0<a <1时,log a 5.1>log a 5.9.【解析】(1)考察对数函数y =log 2x ,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log 23.4<log 28.5.(2)考察对数函数y =log 0.3x ,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log 0.31.8>log 0.32.7.(3)当a >1时,y =log a x 在(0,+∞)上是增函数,于是log a 5.1<log a 5.9;当0<a <1时,y =log a x 在(0,+∞)上是减函数,于是log a 5.1>log a 5.9.解题技巧:(比较对数值大小时常用的4种方法)(1)同底的利用对数函数的单调性.(2) 同真的利用对数函数的图象或用换底公式转化.(3) 底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论. 跟踪训练二1.比较下列各题中两个值的大小:(1)lg 6,lg 8;(2)log 0.56,log 0.54; (3)log 132与log 152;(4)log 23与log 54.【答案】(1)lg 6<lg 8(2)log 0.56<log 0.54(3)log 132<log 152(4)log 23>log 54.【解析】(1)因为函数y =lg x 在(0,+∞)上是增函数,且6<8,所以lg 6<lg 8.(2)因为函数y =log 0.5x 在(0,+∞)上是减函数,且6>4,所以log 0.56<log 0.54.(3)由于log 132=1log 213,log 152=1log 215. 又∵对数函数y =log 2x 在(0,+∞)上是增函数,且13>15, ∴0>log 2 13>log 2 15,∴1log 213<1log 215. ∴log 132<log 152.(4)取中间值1,∵log 23>log 22=1=log 55>log 54,∴log 23>log 54.题型三 比较对数值的大小例3 (1)已知log a 12>1,求a 的取值范围; (2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围.【答案】(1)⎝⎛⎭⎫12,1; (2) (1,+∞).【解析】(1)由log a 12>1得log a 12>log a a . ①当a >1时,有a <12,此时无解. ②当0<a <1时,有12<a ,从而12<a <1. ∴a 的取值范围是⎝⎛⎭⎫12,1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数,∴由log 0.72x <log 0.7(x -1)得⎩⎪⎨⎪⎧ 2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围是(1,+∞).解题技巧:(常见对数不等式的2种解法)(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解. 跟踪训练三1.已知log a (3a -1)恒为正,求a 的取值范围.【答案】⎝⎛⎭⎫13,23∪(1,+∞)【解析】由题意知log a (3a -1)>0=log a 1.当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a >23,∴a >1; 当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧ 3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).题型四 有关对数型函数的值域与最值问题例4 求下列函数的值域.(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).【答案】(1) [2,+∞); (2)[-2,+∞).【解析】(1)y =log 2(x 2+4)的定义域是R.因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2,所以y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2=-(x -1)2+4≤4.因为u >0,所以0<u ≤4.又y =log 12u 在(0,+∞)上为减函数,所以log 12u ≥log 124=-2,所以y =log 12(3+2x -x 2)的值域为[-2,+∞).解题技巧:(对数型函数的值域与最值)(1)求对数型函数的值域,一般需根据对数函数的单调性及真数的取值范围求解.(2)求函数的值域时,一定要注意定义域对它的影响,结合函数的单调性求解,当函数中含有参数时,有时需讨论参数的取值.跟踪训练四1.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及此时x 的值.【答案】当x =3时,y 取得最大值,为13.【解析】y =[f (x )]2+f (x 2)=(2+log 3x )2+log 3x 2+2=(log 3x )2+6log 3x +6=(log 3x +3)2-3.∵f (x )的定义域为[1,9],∴y =[f (x )]2+f (x 2)中,x 必须满足⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9, ∴1≤x ≤3,∴0≤log 3x ≤1,∴6≤y ≤13.∴当x =3时,y 取得最大值,为13.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本140页习题4.4本节通过运用对数函数的图像及应用解决相关问题,侧重用实操,培养学生的逻辑思维能力,提高学生的数学素养.。

教案 高教版《数学》(基础模块)——4.4对数函数

教案  高教版《数学》(基础模块)——4.4对数函数

4.4 对数函数【教学目标】知识目标:掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

1、能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

2、能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

能力目标:1、通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

2、通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

【教学重点】理解对数函数的定义,掌握对数函数的图象性质。

【教学难点】利用指数函数的图象和性质得到对数函数的图象和性质和对数函数的应用中实际问题的题意分析。

【教学设计】1、实例引入知识,提升学生的求知欲;2、复习:指数函数的定义、图象、性质3、知识的巩固与练习,培养学生的思维能力;4、实际问题的解决,培养学生分析与解决问题能力;5、小组的形式进行讨论、探究、交流,培养团队精神。

【课时安排】2课时。

(90分钟)【教学过程】一、对数函数的概念1、问题某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,……,那么,知道分裂得到的细胞个数如何求得分裂次数呢?2、解决设1个细胞经过y 次分裂后得到x 个细胞,则x 与y 的函数关系是2y x =,写成对数 2log y x =,此时自变量x 位于真数位置。

3、概念一般地,形如log a y x =的函数叫以a 为底的对数函数,其中a >0且a ≠1。

对数函数的定义域为(0,)+∞+R ,值域为R 。

例如3log y x =、lg y x =、12log y x =都是对数函数。

4、性质:一般地,对数函数log a y x =( a >0且a ≠1)具有下列性质:(1)函数的定义域是(0,)+∞,值域为R ;(2)当1x =时,函数值0y =;(3)当a >1时,函数在(0,)+∞内是增函数;当0<a <1时,函数在(0,)+∞内是减函数。

高中数学教案《对数函数》

高中数学教案《对数函数》

教学计划:《对数函数》一、教学目标1.知识与技能:o学生能够理解对数函数的概念,掌握对数函数的一般形式及其性质。

o学生能够识别并绘制对数函数的图像,理解图像与函数性质之间的关系。

o学生能够运用对数函数解决简单的实际问题,如计算复利、对数增长等。

2.过程与方法:o通过与指数函数的对比,引导学生理解对数函数的概念和必要性。

o通过观察、分析对数函数图像,培养学生的数形结合能力和逻辑推理能力。

o通过小组合作探究,培养学生的协作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。

o培养学生的耐心和细心,提高解决复杂问题的毅力。

o引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。

二、教学重点和难点●重点:对数函数的概念、一般形式、性质及其图像特征。

●难点:理解对数函数图像与函数性质之间的关系,以及运用对数函数解决实际问题。

三、教学过程1. 复习旧知,引入新课(5分钟)●复习指数函数:简要回顾指数函数的概念、性质和图像特征,为学习对数函数做好铺垫。

●生活实例引入:通过介绍天文学中的星等计算、地震震级等实例,引导学生思考这些实例中隐藏的数学规律,从而引出对数函数的概念。

●明确学习目标:阐述本节课将要学习的内容——对数函数,并明确学习目标。

2. 对数函数概念与性质讲解(15分钟)●定义讲解:详细讲解对数函数的概念,强调其与指数函数的互逆关系,并给出对数函数的一般形式(如y=log a x,其中a>0且a≠1,x>0)。

●性质探讨:引导学生根据对数函数的定义,探讨其定义域、值域、单调性、奇偶性等基本性质。

●对比分析:将对数函数与指数函数进行对比分析,帮助学生更好地理解两者的联系与区别。

3. 对数函数图像分析(10分钟)●图像绘制:利用多媒体设备展示不同底数下对数函数的图像,引导学生观察图像特征。

●特征归纳:引导学生根据图像特征归纳出对数函数的图像特征,如底数大于1时图像上升缓慢,底数在0和1之间时图像下降迅速等。

高中必修第一册《4.4 对数函数》优质课教案教学设计

高中必修第一册《4.4 对数函数》优质课教案教学设计

第四章指数函数与对数函数4.4.1对数函数的概念本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。

对数函数是高中数学在指数函数之后的重要初等函数之一。

对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。

相较于指数函数,对数函数的图象亦有其独特的美感。

学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。

为之后学习数学提供了更多角度的分析方法。

培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。

教学重点:对数函数的概念、求对数函数的定义域教学难点:对数函数与指数函数的关系。

多媒体所以⎩⎪⎨⎪⎧2a-1>0,2a-1≠1,a2-5a+4=0,解得a=4.(3)设对数函数为f(x)=log a x(a>0且a≠1),由f(16)=4可知log a16=4,∴a=2,∴f(x)=log2x,∴f⎝⎛⎭⎫12=log212=-1.][规律方法]判断一个函数是对数函数的方法跟踪训练1.若函数f(x)=(a2+a-5)log a x是对数函数,则a=________.答案:2[由a2+a-5=1得a=-3或a=2.又a>0且a≠1,所以a=2.]题型2 对数函数的定义域例2 求下列函数的定义域.(1)f(x)=1log12x+1;(2)f(x)=12-x+ln(x+1);(3)f(x)=log(2x-1)(-4x+8).[解](1)要使函数f(x)有意义,则log12x+1>0,即log12x>-1,解得0<x<2,即函数f(x)的定义域为(0,2).(2)函数式若有意义,需满足⎩⎪⎨⎪⎧x+1>0,2-x≥0,2-x≠0即⎩⎪⎨⎪⎧x>-1,x<2,解得-1<x<2,故函数的定义域为(-1,2).(3)由题意得⎩⎪⎨⎪⎧-4x+8>0,2x-1>0,2x-1≠1,解得⎩⎪⎨⎪⎧x<2,x>12,x≠1.故函数y=log(2x-1)(-4x+8)的定义域为⎩⎨⎧⎭⎬⎫x⎪⎪12<x<2,且x≠1.[规律方法]求对数型函数的定义域时应遵循的原则(1)分母不能为;(2)根指数为偶数时,被开方数非负;求解对数函数的定义域,发展学生数学运算、逻辑推理的核心素养;(3)对数的真数大于0,底数大于0且不为1提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1. 跟踪训练2.求下列函数的定义域: (1)f(x)=lg(x -2)+1x -3; (2)f (x )=log x +1(16-4x ).[解] (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解得x >2且x ≠3,所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解得-1<x <0或0<x <4,所以函数定义域为(-1,0)∪(0,4). 题型3 对数函数的应用例3 假设某地初始物价为1,每年以5%的增长率递增,经过y 年后的物价为x .(1)该地的物价经过几年后会翻一番?(2)填写下表,并根据表中的数据,说明该地物价的变化规律.解:(1)由题意可知,经过y 年后物价x 为x =(1+5%)y , 即x =1.05y ( y ∈[0,+∞)).由对数与指数间的关系,可得y=log 1.05x, x ∈[1,+∞). 由计算工具可得,当x =2时,y ≈14. 所以,该地区的物价大约经过14年后会翻一番.(2)根据函数y=log 1.05x, x ∈[1,+∞).利用计算工具,可得下表:由表中的数据可以发现,该地区的物价随时间的增长而增长, 但大约每增加1倍所需要的时间在逐渐缩小.()∞+,01.下列函数是对数函数的是( )A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1)D .y =ln x 【答案】D[结合对数函数的形式y =log a x (a >0且a ≠1)可知D 正确.] 2.函数f (x )=lg x +lg(5-3x )的定义域是( ) A.⎣⎡⎭⎫0,53 B.⎣⎡⎦⎤0,53 C.⎣⎡⎭⎫1,53 D.⎣⎡⎦⎤1,53 【答案】C [由⎩⎪⎨⎪⎧lg x ≥0,5-3x >0,得⎩⎪⎨⎪⎧x ≥1,x <53,即1≤x <53.]3.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围. 【答案】(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由图象知:当0<a <2时,恒有f (a )<f (2). 所以所求a 的取值范围为0<a <2.通过练习巩固本节所学知识,巩固对数函数的概念,增强学生的数学抽象、数学运算、逻辑推理的核心素养。

高教版中职数学(基础模块)上册4

高教版中职数学(基础模块)上册4

高教版中职数学(基础模块)上册4.4《对数函数》word教案教学内容:对数函数及其图像与性质授课类型:新授课教学时间:2课时班级日期:知识目标:掌握对数函数的概念、图像和性质,并能简单应用。

能力目标:观察对数函数的图像,总结对数函数的性质,培养观察能力。

情感目标:体味对数函数的认知过程,树立严谨的思维惯。

教学重点:对数函数的图像及性质。

教学难点:对数函数图像和性质的发现过程,培养数形结合的思想。

本节课主要采用启发式和引导发现式的教学方法。

教师通过实例引入知识,提升学生的求知欲;采用“描点法”作图与软件的应用相结合,有助于观察得到对数函数的性质;并通过知识的巩固与练,培养学生的思维能力。

通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

教学过程:一、学情动员教师引导学生联系上面“情景体会对数函数的特点”的表达式,请同学们思考讨论对数函数的概念。

二、问题诊断教师解释对数函数的定义,即形如y=loga x的函数叫做以a为底的对数函数,其中a>0且a≠1.对数函数的定义域为(0.+∞),值域为R。

三、任务分配任务一:利用“描点法”作函数1 y=log2 x和y=log1/2 x的图像。

任务二:同学们通过观察函数图像,总结对数函数的性质。

四、任务完成学生完成任务后,教师引导学生总结对数函数的性质,如对数函数的图像是一条拟直线,且在x轴正半轴上单调递增,在y轴上有一个渐近线等。

五、练巩固教师布置练题,帮助学生巩固对数函数的概念和性质。

通过本节课的教学,学生能够掌握对数函数的概念、图像和性质,并能简单应用。

同时,培养了学生的观察能力和数形结合的思想,树立了严谨的思维惯。

2.y=lnx.To determine the domain of the n。

we need to use the property that the base of a logarithm must be greater than 0.XXX: (1) From x+4>0.we get x>-4.Therefore。

《对数函数》教师教学设计

《对数函数》教师教学设计

题目:对数函数教学设计一、内容和内容解析内容:对数函数的图象和性质内容解析:本节课是高中数学(必修1)第三章基本初等函数第二单元的第二课时,对数函数是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.本节课的主要任务是抓住对数函数是由指数函数经过变换得到的,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

二、学生学习特征分析(一)本节是在学生已经学过对数,与常用对数以及指数函数的基础上,借助生活中典型实例引出对数函数的概念,借助多媒体辅助手段,创设问题的情境,让学生通过分析、推理、归纳、类比等活动过程,从中了解和体验对数函数图象和性质。

因而让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

(二)对数函数的概念是通过一个关于细胞分裂次数的确定的实际问题引入的,既说明对数函数的概念来自实践,又便于学生接受。

在教学中,学生往往容易忽略对数函数的定义域,因此在进行定义教学时,要结合指数式强调说明对数函数的定义域,加强对对数函数定义域的理解。

在理解对数函数概念的基础上掌握对数函数的图象和性质,是本节的教学重点,而理解底数的值对于函数值变化的影响(即对对数函数单调性的影响)是教学的一个难点,教学时要充分利用图象,数形结合,帮助学生理解。

三、教学目标分析目标:(一)知识与技能通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,理解研究对数函数定义域的必要性,理解函数单调性与特殊点;(二)过程与方法能借助计算器或计算机画出具体对数函数的图象,探索并理解对数函数的定义域、单调性与特殊点,会运用对数函数的定义域求一般相关对数函数的定义域,会利用对数函数的单调性比较两个对数值的大小; (三)情感、态度与价值观让学生体会在处理国民经济数据等大型统计数据的过程中,对数函数是一类重要的函数变换模型,学好数学知识对我们的生活生产实际有很大的帮助,进一步激发学生学习数学的热情。

高一数学对数函数教案3篇(高一数学对数函数课件)

高一数学对数函数教案3篇(高一数学对数函数课件)

高一数学对数函数教案3篇(高一数学对数函数课件)下面是整理的高一数学对数函数教案3篇(高一数学对数函数课件),欢迎参阅。

高一数学对数函数教案1教学目标:(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.教学重点:对数函数的'图象和性质教学难点:对数函数与指数函数的关系教学方法:联想、类比、发现、探索教学辅助:多媒体教学过程:一、引入对数函数的概念由学生的预习,可以直接回答“对数函数的概念”由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:问题:1.指数函数是否存在反函数?2.求指数函数的反函数.3.结论所以函数与指数函数互为反函数.这节课我们所要研究的便是指数函数的反函数——对数函数.二、讲授新课1.对数函数的定义:定义域:(0,+∞);值域:(-∞,+∞)2.对数函数的图象和性质:因为对数函数与指数函数互为反函数.所以与图象关于直线对称.因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.研究指数函数时,我们分别研究了底数和两种情形.那么我们可以画出与图象关于直线对称的曲线得到的图象.还可以画出与图象关于直线对称的曲线得到的图象.请同学们作出与的草图,并观察它们具有一些什么特征?对数函数的图象与性质:(1)定义域:(2)值域:(3)过定点,即当时,(4)上的增函数(4)上的减函数3.练习:(1)比较下列各组数中两个值的大小:(2)解关于x的不等式:思考:(1)比较大小:(2)解关于x的不等式:三、小结这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.四、课后作业课本P85,习题2.8,1、3高一数学对数函数教案2本文题目:高一数学教案:对数函数及其性质2.2.2 对数函数及其性质(二)内容与解析(一) 内容:对数函数及其性质(二)。

《对数函数》公开课教案

《对数函数》公开课教案

《对数函数》公开课教案对数函数公开课教案一、教学目标- 了解对数函数的概念和基本性质- 掌握对数函数的图像和常用性质- 能够灵活运用对数函数解决实际问题二、教学重点和难点重点- 对数函数的定义和基本性质- 对数函数的图像和变换- 对数函数在实际问题中的应用难点- 对数函数的解析表达式的推导- 自然对数函数和常用对数函数的区别三、教学内容和步骤内容1. 对数函数的引入和概念解释2. 对数函数的定义和基本性质的讲解3. 对数函数的图像和常用性质的展示和分析4. 对数函数的变换和图像的绘制5. 对数函数在实际问题中的应用举例步骤1. 导入:通过引入一个实际问题,引起学生对对数函数的兴趣2. 概念解释:简明扼要地介绍对数函数的概念和基本性质3. 示范分析:通过几个简单的例子,演示对数函数的计算和性质的验证4. 图像展示:展示对数函数的图像,并解析图像的特点和常用性质5. 变换绘制:教授对数函数的平移、伸缩和翻转等变换方法,并指导学生绘制变换后的图像6. 实际应用:给出一些实际问题,引导学生运用对数函数解决问题,并进行讨论和总结四、教学评价与反馈1. 教师评价:通过学生的课堂表现、作业完成情况和课堂互动等多方面进行评价2. 学生评价:鼓励学生积极参与,提供机会让学生表达对教学内容的理解和意见3. 教学反馈:根据学生的研究情况和反馈,及时调整教学方法,提升教学效果五、教学资源和参考书目1. 教学资源:投影仪、计算器、白板、教材、参考课件等2. 参考书目:《高中数学课程标准实验教科书》、《高中数学学科教学大纲解读与教案解析》等六、教学延伸1. 给学生布置相关的题,巩固对对数函数的理解和应用能力2. 提供拓展性的研究资源,鼓励有兴趣的学生进一步探究对数函数的高级性质。

高中优秀教案高一数学教案:《对数函数》优秀教学设计(一)

高中优秀教案高一数学教案:《对数函数》优秀教学设计(一)

高一数学教案:《对数函数》优秀教学设计(一)高一数学教案:《对数函数》优秀教学设计(一)教学目标:1.把握对数函数的概念,熟识对数函数的图象和性质;2.通过观查对数函数的图象,发觉并归纳对数函数的性质;3.培育同学数形结合的思想以及分析推理的力量.教学重点:理解对数函数的定义,初步把握对数函数的图象和性质.教学难点:底数a对图象的影响及对对数函数性质的作用.教学过程:一、问题情境在细胞分裂问题中,细胞个数y是分裂次数 x的指数函数y=2x.因此,知道x的值(输入值是分裂的次数),就能求出y的值(输出值是细胞个数).反之,知道了细胞个数y,如何确定分裂次数 x? x=log2 y.在这里,x与y之间是否存在函数的关系呢?同样地,前面提到的放射性物质,经过的时间x(年)与物质的剩余量y的关系为y=0.84 x.反之,写成对数式为x=log0.84 y.二、同学活动1.回顾指数与对数的关系;引出对数函数的定义,给出对数函数的定义域2.通过观查对数函数的图象,发觉并归纳对数函数的性质.3.类比指数函数的定义、图象、性质得到对数函数的定义、图象、性质.三、建构数学1.对数函数的定义:一般地,当a>0且a1时,函数y=logax 叫做对数函数,自变量是x;函数的定义域是(0,+).值域:R.2.对数函数y = logax (a>0且a1)的图像特征和性质.aa>10<a<1图像定义域值域性质(1)恒过定点:(2)当x>1时,当0<x<1时,当x>1时,当0<x<1时,(3)在上是函数在上是函数3.对数函数y = logax (a>0且a1)与指数函数y =ax (a>0且a1)的关系——互为反函数.四、数学运用例2 比较大小:(1);(2);(3).2.练习:课本P85-1,2,3,4.五、要点归纳与方法小结(1)对数函数的概念、图象和性质;(2)求定义域;(3)利用单调性比较大小.六、作业课本 P87习题2,3,4.。

高一数学教案范文:对数函数教案6篇

高一数学教案范文:对数函数教案6篇

高一数学教案范文:对数函数教案高一数学教案范文:对数函数教案精选6篇(一)教案主题:对数函数教学目标:1. 理解对数的定义和性质;2. 熟练掌握对数函数的图像和性质;3. 能够解决与对数函数相关的实际问题。

教学重点:1. 对数的定义和性质;2. 对数函数的图像和性质。

教学难点:对数函数的应用和解决实际问题。

教学过程:Step 1:导入通过一幅图片展示一张单调递增函数的图像,并引导学生思考这个函数的性质。

Step 2:激发兴趣提问:上述的函数图像中,这个函数的自变量是否能取任意实数?为什么?这个函数的值域是否有限制?存在哪些特殊的点,比如零点、极值点等?Step 3:引入概念引导学生思考自然对数的定义和性质,然后介绍对数的定义和常见的特殊情况。

Step 4:讲解对数函数的基本性质1. 对数函数的图像特点:单调递增、定义域、值域;2. 对数函数的零点和极值点;3. 对数函数的性质关系式:ln(xy) = ln(x) + ln(y),ln(x/y) = ln(x) - ln(y)。

Step 5:示例演练结合具体的实例,让学生通过计算和图像分析的方法,熟悉对数函数的表达式和性质。

Step 6:拓展应用通过一些实际问题的展示,引导学生运用对数函数解决实际问题,如指数增长问题、物质衰减问题等。

Step 7:总结提高总结对数函数的定义、性质和应用,并引导学生思考对数函数与指数函数的关系。

Step 8:作业布置要求学生完成与对数函数相关的习题,巩固所学内容。

评价与反馈:通过学生作业的批改和讲解,及时反馈学生对对数函数概念和应用的掌握程度。

教学资源:1. PPT;2. 教科书;3. 白板、彩色粉笔;4. 实际问题的案例材料。

教学延伸:对数函数在科学和工程领域中具有广泛的应用,可以通过提供更多实际问题的案例,培养学生运用对数函数分析和解决问题的能力。

高一数学教案范文:对数函数教案精选6篇(二)教学目标:1. 理解对数函数的概念及性质。

高教版数学教案——对数函数

高教版数学教案——对数函数

对数函数教学目标:1.理解对数函数的概念、对数函数的图象与性质,了解反函数的概念,并能应用性质解决一些实际问题.2.培养学生观察、比较、抽象,归纳,概括的能力,培养学生的数形结合的思想.3.培养学生对立统一,相互转化的观点,数学源于实践又反过来作用于实践的观点.教学重点:对数函数(>0且≠1)的性质.教学难点:对数函数性质.教学方法:观察、归纳法.教学手段:投影仪、胶片、计算机.教学过程:一、复习旧知1.在平面上几种常见的对称点.(屏幕显示.)(1)与关于轴对称(图1).(2)与关于轴对称(图2).(3)与关于原点成中心对称(图3).(4)与关于=对称(图4).若(,),(,),(,),||=||,若将两点的横纵坐标互换,则这两点关于直线=对称.2.复习指数函数图象与性质:(先填指数部分图象,使图象一个性质,一个性质出现在屏幕上.)依次逐项将部分投到投影仪上,关于部分,待课后小结时,逐项补上.二、课授新课1.对数函数定义:函数(>0且≠1),叫做对数函数.定义域:∈,值域∈.2.指数函数与对数函数的关系:指数函数对数函数(>0且≠1), (>0且≠1).指数函数与对数函数互为反函数.3.对数函数的图象根据指数函数与对数函数互为反函数,它们的图象关于直线=对称.故利用对称性,可由指数函数图象得到对数函数图象(图5)例1 求下列函数的定义域:(1)=; (2); (3); (4)=.解:(1)>0≠0∴=的定义域为{|≠0}.(2)4->0<4.∴的定义域为{|<4}.(3)(图6)∴的定义域为{|>1,且≠2}.(4)(图7)∴=的定义域为{|≥1}.图7例2 比较下列各组中两个值的大小:(1)与; (2)与; (3)与.解:(1)考察,它在区间(0,+∞)为增函数(图8),∴<.(2)考察,它在区间(0,+∞)为减函数(图9)∴>.(3)分析:因为它们的底不相同,构造一个函数已不能解此题.可作草图(图10),依图可知:>.三、课堂练习:1.求下列函数的定义域:2.比较下列各题中两个值的大小:(1)6与8; (2)6与4;(3)0.5与0.6; (4) 1.6与 1.4.3.根据下列各式,确定的取值范围:四、小结1.利用图象记忆性质.补全前面复习时关于(>0,且≠1)的性质.2.当>1时,指数函数与对数函数均为增函数;当0<<1时,指数函数与对数函数均为减函数.五、作业:第122页练习第2题,第123页习题第4题.。

《对数函数》优秀教案

《对数函数》优秀教案

学案主人模块函数制作人白极批准人郑敏越制作时间2021年5月25日使用时间课时数 2 课题27 对数与对数函数要求1理解对数的概念及其运算性质,知道用换底公式能将一般对数函数化成自然对数或常用函数;了解对数在简化中的作用;2理解对数函数的概念及其单调性,掌握对数函数的图像通过的特殊点;3知道对数函数是一类重要的函数模型;重点对数函数及指数函数的性质题型小题分值 5 难度中知识体系自主构建反思高考主线典型题考类型特点描述对数运算评价点化简:11.0lg10lg5lg2lg125lg8lg--+22lg5lg4ln e++ 3662log3log4+1考类型特点描述定义域、值域评价点1.已知函数f的定义域为[3,6],则函数=()()122log2f xx-的定义域为_____________ 2.函数f()=og2(31)的值域为_____________3.函数=13log-2+6的值域为_____________2考类型特点描述性质及应用评价点1.函数22log(23)y x x=+-的单调递减区间为______________2.已知()()()34,1log,1aa x a xf xx x--<⎧⎪=-∞+∞⎨≥⎪⎩是,上的增函数,那么a的取值范围是______________ 3.若在区间-∞,1]上递减,则a的取值范围为________________3考类型特点描述图像及应用评价点1.已知函数12log,0,()2,0,xx xf xx>⎧⎪=⎨⎪≤⎩若关于x的方程()f x k=有两个不等的实根,则实数k的取值范围是4,3 ⎝⎭ln ,0x a <<),1(2r = )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】4.4 对数函数
【教学目标】
知识目标:
⑴了解对数函数的图像及性质特征;
⑵了解对数函数的实际应用.
能力目标:
⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;
⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力.【教学重点】
对数函数的图像及性质.
【教学难点】
对数函数的应用中实际问题的题意分析.
【教学设计】
⑴实例引入知识,提升学生的求知欲;
⑵“描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;
⑶知识的巩固与练习,培养学生的思维能力;
⑷实际问题的解决,培养学生分析与解决问题能力;
⑸小组的形式进行讨论、探究、交流,培养团队精神.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】。

相关文档
最新文档