2017第二十二届“华杯赛”决赛初一年级组A试题及答案
初中华杯赛试题及答案
初中华杯赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的因式分解?A. \(x^2 - 9 = (x + 3)(x - 3)\)B. \(x^2 - 9 = (x + 3)^2\)C. \(x^2 - 9 = (x - 3)^2\)D. \(x^2 - 9 = (x - 3)(x + 3)\)答案:A2. 如果一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 以上都不是答案:C3. 下列哪个方程的解是x=2?A. \(x + 2 = 4\)B. \(x - 2 = 0\)C. \(2x = 4\)D. \(x^2 = 4\)答案:C4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25B. 50C. 78.5D. 100答案:C5. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是多少立方厘米?A. 24B. 26C. 12D. 8答案:A6. 一个等腰三角形的两个底角相等,如果顶角是60度,那么底角是多少度?A. 30B. 60C. 90D. 120答案:B7. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 下列哪个分数是最简分数?A. \(\frac{4}{8}\)B. \(\frac{3}{9}\)C. \(\frac{5}{10}\)D. \(\frac{7}{14}\)答案:A9. 一个数的绝对值是5,那么这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 下列哪个选项是正确的比例关系?A. \(2:3 = 4:6\)B. \(3:4 = 6:8\)C. \(5:7 = 10:12\)D. \(1:2 = 3:6\)答案:D二、填空题(每题2分,共20分)1. 一个数的平方根是2,那么这个数是______。
答案:42. 一个数的立方是-8,那么这个数是______。
2017“华杯赛”初赛试卷小中组试卷
第二十二届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)第二十二届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)一、选择题1.两个小三角形不重叠放置可以拼成一个大三角形, 那么这个大三角形不可能由()拼成.(A)两个锐角三角形(B)两个直角三角形(C)两个钝角三角形(D)一个锐角三角形和一个钝角三角形2.从1至10这10个整数中, 至少取()个数, 才能保证其中有两个数的和等于10.(A)4 (B)5 (C)6 (D)73.小明行李箱锁的密码是由两个数字8与5构成的三位数. 某次旅行, 小明忘记了密码, 他最少要试()次, 才能确保打开箱子.(A)9(B)8(C)7(D)64.猎豹跑一步长为2米, 狐狸跑一步长为1米. 猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米, 则猎豹跑动()米可追上狐狸.(A)90(B)105(C)120(D)1355.图1中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度, 才可以计算出这个八边形的周长.(A)4(B)3(C)5 (D)10图1第二十二届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)6.一个数串219, 从第4个数字开始, 每个数字都是前面3个数字和的个位数.下面有4个四位数:1113, 2226, 2125, 2215, 其中共有()个不出现在该数串中.(A)1(B)2(C)3(D)4二、填空题(每小题 10 分, 满分40分.)7.计算=----1643842571000.8.已知动车的时速是普快的两倍, 动车的时速提高%25即达到高铁的时速, 高铁与普快的平均时速比特快快15千米/小时, 动车与普快的平均时速比特快慢10千米/小时, 则高铁和普快列车的时速分别是千米/小时和千米/小时.9.《火星救援》中, 马克不幸没有跟上其他5名航天员飞回地球, 独自留在了火星, 马克必须想办法生存, 等待救援. 马克的居住舱内留有每名航天员5天的食品和50千克的非饮用水, 还有一个足够大的菜园, 马克计划用来种植土豆, 30天后每平方米可以收获5.2千克,但是需要灌溉4千克的水.马克每天需要吃875.1千克土豆, 才可以维持生存, 则食品和土豆可供马克最多可以支撑天.10.图2五角星中, 位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字, 不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”, 则“华”代表的数字是或.奥数要从小学抓起,培养孩子的数学思维能力。
第二十二届“华杯赛”决赛初一组试题.pdf
第二十二届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组)(时间: 2017 年 3 月11 日10:00~11:30)一、填空题(每小题10 分, 共80 分)1.数轴上10个点所表示的数分别为a1, a2, , a10, 且当i 为奇数时,a i +1-ai=2 , 当i 为偶数时, ai +1-ai=1, 那么a10-a6= .2.如右图, △ABC, △AEF 和△BDF 均为正三角形, 且△ABC, △AEF 的边长分别为3和4, 则线段DF 长度的最大值等于.3.如下的代数和-1⨯2016+2⨯2015- + (-1)m m ⨯ (2016-m +1) + +1010⨯1007的个位数字是, 其中m 是正整数.4.已知2015<x <2016. 设[x]表示不大于x 的最大整数, 定义{x}=x -[x].如果{x}⨯[x]是整数, 则满足条件的所有x 的和等于.5.设x, y, z 是自然数, 则满足x2+y2+z2+xy =36的x, y, z 有组.6.设p , q , 3p-1,qq -1都是正整数, 则p2+q2的最大值等于.p7.右图是A, B, C, D, E 五个防区和连接这些防区的10条公路的示意图. 已知每一个防区驻有一支部队. 现在这五支部队都要换防, 且换防时, 每一支部队只能经过一条公路, 换防后每一个防区仍然只驻有一支部队, 则共有种不同的换防方式.8.下面两串单项式各有2017个单项式:(1)(2) xy2, x4y5, x7y8, , x3n-2y3n -1, , x6046y6047, x6049y6050; x2y3, x7y8, x12y13, , x5m-3y5m-2, , x10077y10078, x10082y10083,其中n, m 为正整数, 则这两串单项式中共有对同类项.二、解答下列各题(每题10 分, 共40 分, 要求写出简要过程)9.是否存在长方体, 其十二条棱的长度之和、体积、表面积的数值均相等?如果存在, 请给出一个例子; 如果不存在, 请说明理由.10.如右图, 已知正方形ABDF 的边长为6 厘米, △EBC 的面积为6 平方厘米, 点C 在线段FD 的延长线上, 点E 为线段BD 和线段AC 的交点. 求线段DC 的长度.11.如右图, 先将一个菱形纸片沿对角线AC 折叠,使顶点B 和D 重合. 再沿过A, B (D) 和C 其中一点的直线剪开折叠后的纸片, 然后将纸片展开. 这些纸片中菱形最多有几个? 请说明理由.12.证明: 任意5个整数中, 至少有两个整数的平方差是7的倍数.三、解答下列各题(每小题15 分,共30 分,要求写出详细过程)13.直线a 平行于直线b, a 上有10个点A1, A2, , A10, b 上有11个点B1, B2, ,B 11, 用线段连接Ai和Bj( i=1, ,10 , j=1, ,11), 所得到的图形中一条边在a 上或者在b 上的三角形有多少个?14.已知关于x, y 的方程x2-y2+k求k 的最大值.=2017有且只有六组正整数解, 且x ≥y ,。
(完整版)第二十二届华杯赛小高年级组决赛试题A解析
(完整版)第⼆⼗⼆届华杯赛⼩⾼年级组决赛试题A解析第⼆⼗⼆届华杯赛⼩⾼年级组决赛试题A 解析1. ⽤[x]表⽰不超过x 的最⼤整数,例如[3.14]=3,则:201732017420175201762017720178[][][][][][]111111111111+++++的值为。
【考点】取整运算【专题】计算【难度】☆【解析】直接计算即可⽐较⿇烦的简算⽅法:先看第⼀项20173(200215)361001454545[][][][691]691[]1111111111++===+=+ 第⼆项:20173(200215)481001606060[][][][891]891[]1111111111++===+=+ 所以原式=45607590105120691[]891[]1091[]1291[]1491[]1691[]111111111111+++++++++++=(6810121416)914568910+++++++++++ =60482. 从4个整数中任意选出3个, 求出它们的平均值, 然后再求这个平均值和余下1个数的和, 这样可以得到4个数:8,12,2103和193, 则原来给定的4个整数的和为。
【考点】平均数与求和【专题】计算【难度】☆【解析】假设这四个数为,,,a b c d每三个数的平均值为:()3,()3,()3,()3a b c a b d a c d b c d ++÷++÷++÷++÷ 分别与余下的数的和为:21()38,()312,()310,()3933a b c d a b d c a c d b b c d d ++÷+=++÷+=++÷+=++÷+=将这四个式⼦左右两边分别相加得到:21()3()3()3()381210933a b c d a b d c a c d b b c d d ++÷++++÷++++÷++++÷+=+++()340a b c a b d a c d b c d a b c d +++++++++++÷++++=3()3()40a b c d a b c d ?+++÷++++=2()40a b c d ?+++=20a b c d +++=3. 在3×3的⽹格中(每个格⼦是个1×1的正⽅形)放两枚相同的棋⼦,每个格⼦最多放⼀枚棋⼦, 共有种不同的摆放⽅法.(如果两种放法能够由旋转⽽重合, 则把它们视为同⼀种摆放⽅法).【考点】【专题】杂题【难度】☆【解析】这种题⽬因为情况不多,所以⼀⼀列举就是⼀种很好的办法,但是要注意不能重复和遗漏。
2017年第22届华杯总决赛小高组一试及详解
么甲第 10 次到达山顶前,有 2 次(第 3 次和第 9 次)当甲到达山顶时,乙正爬向
山顶,且距离山脚 5 处(小于 1 ).
18
3
(法 2): v甲上 : v乙上 : v甲下 : v乙下 6 : 5 : 6 1.5 : 5 1.5 =12 :10 :18 :15
易求: t甲上 : t乙上 : t甲下 : t乙下 15 :18 :10 :12
20174 20172 12 2 20162 2
20174 20174 2 20172 1 20162 2
2 20172 20162 1
2 2017 2016 2017 2016 1
2 4033 1 8065
2017kb b 2016kb 2016k kb b 2016k
k 1b 2016k
匠人之心 精致教学 5
当
k
1 时,无解.当
k
1
时,
b
2016k
k 1
.
k 1,k 1 , b 是整数,所以 k 1 是 2016 的因数.
2016 25 32 7
20174 20162 20172 2 2017 3 20174 20162 20172 2 2017 12 2
20174 20162 2017 12 20162 2 20174 2017 1 2017 12 20162 2
即 a 与 b 有 36 种不同的数值. 综上所述,有 36 种不同的方法.
6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.己知甲、 乙下山速度都是上山速度的 1.5 倍,甲的速度与乙的速度之比是 6 : 5 .两人同时从山脚 开始爬山,经过一段时间后,甲第 10 次到达山顶.问:在此之前,甲在山顶上有多少 次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?
第22届华杯赛总决赛全部四组题目
总决赛试题 小中组一试一、填空题(共3题,每题10分)1. 计算:2017201820192020220182019⨯+⨯-⨯⨯=_________.2. 若干枚白色棋子成直线摆放,将其中一些棋子染成红色,使未染成的白色棋子被隔成9部分,其中有2部分棋子数量相同,而同样被白色棋子隔开的各部分的红色棋子数均不相同,则棋子总数的最小值为_________.3. 把1,2,3,4,5,6,7,8,9分别填入33⨯的九宫格中,使得每行、每列的三个数的和都相等,中心位置可能填的数共有_________个.二、解答题(共3题,每题10分,写出解答过程)4. 如图,大、小正方形的边长分别为4和1,且各边均水平或竖直放置,求四边形ADFG和BHEC 的面积之和.5. 将一个数的各位数字倒序后所得的数称为原数的倒序数.2017具有这样的性质:将2017及其倒序数7102相加,所得和9119的各位数字都是奇数.能否找到这样的五位数,使它与其倒序数的和的各位数字都是奇数?若能,请给出一个例子;若不能,请说明理由.6. 一副扑克牌去掉大小王后还有52张,如果把J ,Q ,K ,A 分别当作11,12,13,1点,问最多取出多少张牌,可使得取出的牌中任意两张牌的点数之和是合数?BA总决赛试题 小中组二试一、填空题(共3题,每题10分)1. 2017的倍数中,各个数字不同的五位数最大为_________.2. 长方形甲与乙的边长都是大于1的自然数,如图拼成一个“L 形”.已知“L 形”的面积是432,甲的面积为133,那么“L 形”的周长为_________.3. 同时满足下列两个条件的四位数共有_________个.(1)该数的各位数字只能是2,3,4,5中的数,数字允许重复; (2)该数能被组成它的各位数字整除.二、解答题(共3题,每题10分,写出解答过程)4. 将1,2,3,4,5,6,7,8分成两组,若第一组数的乘积恰为第二组数的乘积的整数倍,则最小为多少倍?5. 能否将1个正方形恰好分割成2017个互不重叠的小正方形,使得这2017个小正方形一共只有2种不同的大小?若能,请给出一个例子;若不能,请说明理由.bc6.下图是用9个相同的小正三角形拼成的图案,小正三角形的顶点称为格点.以格点为顶点,一组对边平行但不相等,另一组对边相等的四边形,称为“贝贝梯形”.(1)图中共有多少个“贝贝梯形”?(2)在格点处写下自然数1,2,3,4,…,8,9,10,每个格点写1个数字,不同格点所写的数字不同,将每一个“贝贝梯形”的四个顶点处的数字求和,再将这些和相加,结果最大是多少?总决赛试题 小高组一试一、填空题(共3题,每题10分)1. 计算:()422201720162017220173-⨯+⨯+=_________.2. 不超过100的所有质数的乘积,减去不超过100的所有个位数字为3和7的质数的乘积,所得差的个位数字为_________.3. 运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能得第一名;比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是_________.二、解答题(共3题,每题10分,写出解答过程)4. 能够将1到2017这2017个自然数分为若干组,使得每组中的最大数都等于该组其余数的和吗?如果能,请举一例;如果不能,请说明理由. 5. 把20172016表示成两个形式均为1n n+的分数相乘(其中n 是不为零的自然数),问有多少种不同的方法?(b d a c ⨯与d bc a⨯视为相同方法)6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.已知甲、乙下山速度都是上山速度的1.5倍,甲的速度与乙的速度之比是6:5.两人同时从山脚开始爬山,经过一段时间后,甲第10次到达山顶.问:在此之前,甲在山顶上有多少次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?总决赛试题 小高组二试一、填空题(共3题,每题10分)1. 某小镇上有若干辆共享单车,如果小镇人口少1人,则平均200人共享一辆单车,如果单车减少2俩,小镇共享一辆单车的平均人数仍为整数,则小镇最多有_________人.2. 恰有1513个不超过m 的正整数n 使得1234n n n n +++的个位数字为0,则自然数m =_________.3. 下图中的L 型立体称为“构件”,可切割成为4个单位正方体.用4个“构件”连结组合成一个长方体,如果经旋转及翻转后,连结成的两个长方体宽、长、高相同,并且连结方式相同,可视为相同的长方体,否则是不同的长方体,则可连结出_______种一条棱长为1的不同的长方体,总共可以连结出_______种不同的长方体.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,3,4,…,2017中,最多能选出多少个数,在这些数中,不存在三个数a ,b ,c 满足a b c +=?5. 下图中,ABCD 是长为3,宽为1的长方形,BE EG GC ==,2AH HD =,AC 、AG 、BH 、EH 交成阴影四边形PNQM .求四边形PNQM 的面积.6. 在等差数列1,4,7,10,13,16,…的前500项中,有多少个是完全平方数?总决赛试题 初一组一试一、填空题(共3题,每题10分)1. 计算:22222222221223344520162017---+---+--=_________.2. 某班30名同学在旅游途中看到一个商店的广告:酸奶一瓶5元,两瓶9元;冰激凌一支6元,两只10元.每人选择酸奶或者冰激凌中的一种,用最省钱的方式购买,一共花了140元.那么,他们一共至多买了_____瓶酸奶,至少买了_____瓶酸奶.3. 如图,在三角形ABC 中,D 、E 分别在边BC 、AC 上,AB AC =,AD AE =,18CDE ∠=︒,则BAD ∠=_________.二、解答题(共3题,每题10分,写出解答过程)4. 是否存在数c 满足:对任意的有理数a ,b ,都有a b +,a b -,1b -三个值中最大值大于等于c ?如果存在这样的c ,请给出一个具体数值,并求c 的最大值;如果不存在,请说明理由.5. 一个立方体是由27个棱长为1个单位的小正方体构成的.一只蚂蚁从A 沿着立方体表面的小正方体的边爬到B ,最短路径长是多少个单位?最短路径有多少种不同的走法? 6. []a 表示不超过a 的最大整数,求满足条件12235x x x x ++⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦的所有x 的值的和.AD总决赛试题 初一组二试一、填空题(共3题,每题10分)1. 一个四位数abcd 是完全平方数,并且满足()5104910c d a b ++=+,则这个四位数是_____或_____.2. 把500枚鸡蛋装到分别能装17枚和27枚两种规格的盒子中出售,刚好装完无剩余,则17枚规格的盒子装了_____盒,27枚规格的盒子装了_____盒.3. 在一条线段有n 个等分点,从n 个等分点中任选10个点,中间必有两个点,能把原线段分成3段,这3段能构成三角形,则n 的最大值是_________.二、解答题(共3题,每题10分,写出解答过程) 4. 求方程2432426760x y y y y -+-+-=的全部整数解.5. E 、F 分别是四边形ABCD 的对角线AC 、BD 的中点,EF 分别交边AD 、BC 于点P 和Q .已知7APPD=,求BQ QC 的值.6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?A总决赛试题 初二组一试一、填空题(共3题,每题10分) 1. 若正数a ,b ,c 满足1a b c ++=,则()()()111abca b c ---的最大值为_________.2. 将正数x 四舍五入到个位得到整数n ,若42017x n -=,那么x =_________.3.已知1p =+,那么23331p p p++=_________.二、解答题(共3题,每题10分,写出解答过程)4. 在边长为1的正方形中(含边上)至多放置多少个点,可使得这些点之间的所有距离都不小于0.5?5. 下图中,四边形ABCD 是矩形,()12ABr r BC=<<.四边形AEFG 是正方形,顶点G 在边CD 上,边EF 通过点B .求:BF EF .6. 早上8点,快、慢两车同时从A 站出发,慢车环行全程一次用43分钟,回到A 站休息5分钟;快车环行全程一次用37分钟,回到A 站休息4分钟.如此往返行驶.问:22点以前,两车同时到达A 站几次?快车在A 站休息时慢车达到的情况有几次?(8点整,两车出发时不计).FA总决赛试题 初二组二试二、填空题(共3题,每题10分)1. 设多项式()p x 的各项系数都是非负整数,且()16p =,()332p =,则()2p 的所有可能值为_________.2.已知a =105173a a a +-=+_________.3.()12k k +能被n 整除的最小正整数k 记为()F n ,例如,()54F =.若()9F x =,则x =_______.若()9F y =,则y =_______.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,…,50这50个数中任选n 个不同的数,其中一定有三个的比为2:3:7.求n的最小值.5. 如图,以长为4厘米的线段AB 的中点O 为圆心和2厘米为半径画圆,交AB 的中垂线于点E .再以A 、B 为圆心和4厘米为半径分别画圆弧交AE 于C ,交BE 于D .最后以E 为圆心和DE 为半径画圆弧DC .请确定“下弦月形”ADCBEA (图中阴影部分)的面积是多少平方厘米.(答案中圆周率用π表示)6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?。
第22届“华杯赛”初赛试卷初一组试卷
第二十二届华罗庚金杯少年数学邀请赛初赛试卷(初一组)初赛试卷(初一组) (时间: 2017年12月10日10:00—11:00) 一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 若(121 3.125)121x -⨯÷的值为 3.38-(精确到0.01), 则整数x 为( ). (A )30- (B )31- (C )32- (D )33-2. 已知当x m =时, 代数式3263x x ++的值为11, 则当1x m =时, 代数式32431x x --的值为( ). (A )11- (B )11 (C )0 (D )4-3. 如图所示, 在四边形ABCD 中, BC CD DA ==, DC BC ⊥, 150D ∠=o , 则ABC ∠=( ). (A )75o (B )70o (C )65o (D )60o4. 将不大于2017的整数2017, 2016, 2015, L , 1, 0, 1-, 2-, L 中的相邻三个整数乘积依次排成一列201720162015⨯⨯, 201620152014⨯⨯,……210⨯⨯, 10(1)⨯⨯-, 0(1)(2)⨯-⨯-, L , 记这列数的前n 个数的和为n S , 则当n S 取得最大值时, n 的取值有( )个. (A )1(B )2(C )3(D )45. 将有理数8584, 8887-, 8483, 8786-, 8685两两相乘得到10个积, 将10个积从大到小顺序排列, 排在第5个的积是有理数( )的乘积.(A )8483和8887- (B )8685和8887-装订线B ACD 150o第二十二届华罗庚金杯少年数学邀请赛初赛试卷(初一组)M G F E D C B A(C )8584和8786- (D )8685和8786-6. 已知x , y , m 满足等式1||12x m +=-, ||11y m +=+, 且m 是整数, 则22x y m ++的值是( ).(A )0 (B )12 (C )14 (D )2二、填空题(每小题 10 分, 满分40分). 7. 小明在网上超市购买一件商品, 可以享受原价88折的会员优惠价, 同时网站正在做每满100元减20元的促销活动(每满100元减20元是指, 每个100元少付20元.例如商品价格268元, 含有2个100元, 应少付40元, 实际付款228元).超市规定促销优惠和会员优惠不能同时使用.计算后, 小明发现这件商品的促销优惠价格要比会员价低90元, 那么它的原价为元.8. 放在同一个储藏室会发生爆炸的两种化工产品需用不同的储藏室来存放;不会发生爆炸的可以放在一个储藏室.下图中的10个点表示十种不同的化工产品, 放在同一个储藏室会发生爆炸的两种化工产品对应的两点之间用线连接表示, 否则不用线连接.为了保证这十种化工产品的安全, 至少要用个储藏室.9. 如图, 正方形ABCD 和正方形CEFG 的面积分别为4平方厘米和36平方厘米, 90DCG ∠=o , M 是BF 的中点.则三角形DMG 的面积为平方厘米.10. 从自然数1至2017中选出一个数n , 使得余下的2016个数的和除以2003的余数与n 除以2003的余数相同, 则n =.。
(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)
2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A 卷)一、填空题(每小题10分,共80分)1.(10分)用[]x 表示不超过x 的最大整数,例如[3.14]3=,则 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 . 2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、2103和193,则原来给定的4个整数的和为 . 3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B 地去了C 地,甲已离开A 地2小时,于是,甲以原来的速度的2倍去C 地.又经过了2小时后,甲乙两人同时到达C 地,则乙的速度是 千米/小时.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是 .6.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 厘米.7.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 .8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n有多少个不同的数值?10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月2I日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A 卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)用[]x 表示不超过x 的最大整数,例如[3.14]3=,则 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 6048 . 【分析】可以先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和. 【解答】解:根据分析,原式为: 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++ 1592610[550][733][916][1100][1283][1466]111111111111=+++++ 550733916110012831466=+++++6048=.故答案是6048.【点评】本题考查了高斯取整,本题突破点是:先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、2103和193,则原来给定的4个整数的和为 20 . 【分析】根据题意,设原来给定的4个整数分别是a 、b 、c 、d ,则83a b cd +++=(1),123a b d c +++=(2),21033a c d b +++=(3),1933b c d a +++=(4),据此求出原来给定的4个整数的和是多少即可.【解答】解:设原来给定的4个整数分别是a 、b 、c 、d , 83a b cd +++=(1), 123a b dc +++=(2), 21033a c db +++=(3),1933b c d a +++=(4), (1)+(2)+(3)+(4),可得 212()81210933a b c d +++=+++,所以20a b c d +++=,所以原来给定的4个整数的和为20. 故答案为:20.【点评】此题主要考查了平均数问题,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数. 3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 10 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法. 【解答】解:根据分析,份三种情况:①当正中间即E 处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE 、BE ;②当两颗棋子都不在正中间E 处时,而其中有一颗在顶点处时,有4种不同摆法,即AB 、AF 、AH 、AD ;③当两颗棋子都在顶点处时,有2种不同摆法,即AC 、AI ;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD 、BH .综上,共有:242210+++=种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是64千米/小时.【分析】首先知道甲在2小时的路程是80千米,那么甲现在的速度和后来的速度都是可求的,再根据甲的时间和速度可求从B到C的路程,用路程除以乙的时间即是速度.【解答】解:甲在2小时走80千米,甲速为:80240÷=(千米/时);甲速度加速变成40280⨯=(千米/时);甲再经过2小时路程为:280160⨯=(千米/时)乙路程共是160千米,时间是2.5小时,乙速为:160 2.564÷=(千米/时)故答案为:64【点评】本题考查对追及问题的理解和运用,同时关键在求出BC之间的路程,隐含中知道乙的时间是2.5小时.问题解决.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是3:4.【分析】把两个小组都参加的人数看作单位“1”,则只参加书法小组人数的分率是27172÷=,只参加朗诵小组人数的分率是1155÷=,则参加书法小组人数的分率是79122+=,参加朗诵小组人数的分率是156+=,然后根据比的意义解答即可.【解答】解:把两个小组都参加的人数看作单位“1”,21(11):(11)75+÷+÷9:62=3:4=答:书法小组与朗诵小组的人数比是3:4.故答案为:3:4.【点评】本题关键是把中间量两个小组都参加的人数看作单位“1”,然后都统一到这个单位“1”就容易解答了.6.(10分)如图,ABC∆的面积为100平方厘米,ABD∆的面积为72平方厘米.M为CD 边的中点,90MHB∠=︒,已知20AB=厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出ABC ∆、ABD ∆的高,而已知20AB =厘米,再利用MH 的中位线性质求出MH 的长度.【解答】解:根据分析,过D ,C 分别作DE AB ⊥交AB 于E ,CF AB ⊥交AB 于F ,如图:ABD ∆的面积11722022DE AB DE ==⨯⨯=⨯⨯,7.2DE ∴=厘米,ABC ∆的面积111002022CF AB CF ==⨯⨯=⨯⨯,10CF ∴=厘米;又11()(7.210)8.622MH DE CF =⨯+=⨯+=厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH 的长.7.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 10 .【分析】首先要分析清楚()i S a 的含义,即i a 是一个自然数,()i S a 表示i a 的数字和,再根据n a 的递推式列出数据并找出规律.【解答】解:()i S a 表示自然数i a 的数字和,又12()()n n n a S a S a --=+,在下表中列出1n =,2,3,4,⋯时的n a 和()n S a ,nn a ()n S a1 2017 10 222430 14 5 31 10 1 3266由上表可以得出:4289a a ==,428()()9S a S a ==; 52914a a ==,529()()5S a S a ==;⋯可以得到规律:当4i 时,24i i a a +=,24()()i i S a S a +=, 201732014-=,2014248322÷=⋯,所以:20173222510a a a +===.【点评】本题重点是弄清楚()i S a 的含义,通过地推找到规律,再进行求解.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法. 【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法. 综上,共有:1124++=种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n有多少个不同的数值?【分析】按题意,可以分类讨论,最后确定n的取值.【解答】解:根据分析,0n=,即5条直线互相平行;n=,即五条直线交于一点;1n=,3,不存在;2n=,5,6,7,8,9,10的情况分别如下图:4n的取值共有9种不同的数,故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定n 的取值. 10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?【分析】将所有学生分成四种,即三种水果都选的人数a 、同时选苹果和香蕉的人数b 、同时选梨和苹果的人数c 、同时选香蕉和梨的人数d ,再根据选每种水果的人数列关系式,270403010040a b c d +++=++-=,再利用各个取值范围求出三种水果都选的人数最大值.【解答】解:根据分析,设学生总数为100人,故70人的学生选择苹果,40人的学生选择了香蕉.30人的学生选了梨,三种水果都选的学生人数有a 人,同时选了苹果和香蕉的人数有b 人,同时选了梨和苹果的人数有c 人, 同时选了香蕉和梨的人数有d人,则:40()2704030100402b c d a b c d a -+++++=++-=⇒=,又b c d ++,400202a-∴=, 故当0b c d ++=时,a 取最大值20,即占总数的20% 故答案是20%.【点评】本题考查了分数和百分数的应用,本题突破点是:根据容斥原理列出三种水果都选的人数与总数及两种都选的人数的关系式,再求解.11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.【分析】按题意,可以设每个重量的数量为未知数,19克的珠子有x 个,17克的珠子有y 个,再列出关系式,根据正整数的范围逐步取值,最后找出符合题意的值. 【解答】解:根据分析,设有x 个19克的珠子,y 个17克的珠子,则有: 19172017x y +=,又x ,y 均为正整数 2017171200011061919x-⨯∴=<,2017191199611181717y -⨯=<;2017171917201719yx y x -+=⇒=,由余数定理,要使x 为正整数,201717y -必须能被19整除,即余数为0,而2017被9除余数为3,故17y被19除余数也为3,在所有被19除余数为3既小于2017又能被17整除的数只有:①136,即171368y y=⇒=,20171789919x-⨯==,998107x y+=+=;②459,即1745927y y=⇒=,20174598219x-==,8227109x y+=+=;③782,即1778246y y=⇒=,20177826519x-==,6546111x y+=+=;④1105,即17110565y y=⇒=,201711054819x-==,4865113x y+=+=;⑤1428,即17142884y y=⇒=,201714283119x-==,3184115x y+=+=;⑥1751,即171751103y y=⇒=,201717511419x-==,14103117x y+=+=.综上,两种珠子的数量和即x y+所有可能的值是:107、109、111、113、115、117.故答案是:107、109、111、113、115、117.【点评】本题考查了不定方程的分析求解,本题突破点是:通过列出关系式,再根据未知数的范围确定取值.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.【分析】3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,我们可以用51n+尝试来锁定答案,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102109116998+++⋯+(102998)1292=+⨯÷70950 =答:使3251nn++不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月2I日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?【分析】同月份和同号数的回答取遍0到14,即同月份和同号数的人数取遍1到15,进而分析求解.【解答】解:回答中包含了由0到14的所有整数,也就是说每种回答包含的学生数量是1到15.由于12315120260+++⋯+==⨯,因此不论是回答同月,还是回答同号,同月份和同号数的人数的数字不会重复(比如说,某一月份生日的人有3个,就不会出现生日号数为某一号的人数有3个),因此统计同月份或同号数的人数时,1~15这15个数字每个数字都只出现一次.要使同月同日的人尽量少,则可以使月份情况或者号数情况尽量分散,例如可以将60拆分成:60123457891011=+++++++++这一种分散情况,不妨设这是同月份的人数,和另一种情况:60612131415=++++,这是同号数的人数,分析最大数字15,将15个同号数的人,分配到上面10个月份中,可知,同月同日最少会有两人.所以:该班生日相同的人数至少有2人.【点评】本题难点是分析出同月份和同号数的人数的数字不会重复,难度较大.14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?【分析】按题意,1至9的数字中,填入4和5之外,只剩下7个数,可以先求出7个数的和,即为36,中间的x只可能是3,6,9,故一一检验,即可得知x的值.【解答】解:根据分析,123678936++++++=,填入的x是其它五个数的因数,故x只能是3、6、9,若9x=,则,不能每个数的周围的数字之和是该格子中所填数字的整数倍;x=时,如图所示,易知6x=符合题意.6故答案是:6.【点评】本题考查最大与最小,突破点是:可以先求出7个数的和,再求最大值.。
22届华杯赛决赛小学高年级组A卷解析
5n 1= 1 或 6 或 11 或 16 或 21,因为 21=3×7,所以 5n 1=21时 7 | 5n 1成立,此时 n
即为最小值,且为 4,其他值即可顺次找出,只需要将 4 递加 7 即可, 题中让我们求的是符合条件的三位数,那么最小为 102,最大为 998,此后利用等差数 列求和即可:
5. 某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小
组人数的 2 ,是只参加朗诵小组人数的 1 ,那么书法小组与朗诵小组的人数比是
7
5
_______。
【答案】3:4
【解析】
根据题意有,书法小组的 2 = 2 等于朗诵小组的 1 = 1 ,即 书 2 =朗 1 ,得到:
72 9
4 / 10
a
s
a 10 13
4
a 1 2017
10
a 11 11
2
a 2 22
4
a 12
6
6
a 3 14
5
a 13
8
8
7. 一列数a1,a2,…,an,…a,记4 S(ai)为9 ai的所有数9 字之和a,1如4 S(221)4=2+2=4。5若
a1=2017,a2=22,an=S(an-1)+aS(a5n-2),那14么a2017等于5 ______a__。15 13
7
2017 8 11
=
2017 11
3
2017 11
8
2017 11
4
2016年第22届“华杯赛”决赛初一组试题(pdf版)
内
的个位数字是 4.
, 其中 m 是正整数.
已知 x . 设 x 表示不大于 x 的最大整数, 定义 x x x . 如果 x x 是整数, 则满足条件的所有 x 的和等于 . 组.
封
线
5.
设 x, y, z 是自然数, 则满足 x y z xy 的 x, y, z 有
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 直线 a 平行于直线 b, a 上有 个点 A , A , , A , b 上有 个点 B , B , ,
B , 用线段连接 Ai 和 B j ( i= , , , j= , , ), 所得到的图形中一条边
在 a 上或者在 b 上的三角形有多少个?
14. 已知关于 x, y 的方程 x y k 有且只有六组正整数解, 且 x y , 求 k 的最大值.
-2-
2. 如右图, △ABC, △AEF 和△BDF 均为正三 角形, 且△ABC, △AEF 的边长分别为 和 , 则线段 DF 长度的最大值等于 .
.
学校____________ 姓名_________ 参赛证号
勿
答
3.
请
如下的代数和
() m m ( m )
p q , 都是正整数, 则 p q 的最大值等于 q p
密
6.
设 p, q,
.
7.
右图是 A, B, C, D, E 五个防区和连接这些防区的 条公路的示意图. 已知每一个防区驻有一支部队. 现在这五支部队都要换防, 且换防时, 每一支部队 只能经过一条公路, 换防后每一个防区仍然只驻有 一支部队, 则共有 种不同的换防方式.
第二十二届华杯赛试题(2017)
第二十二届“华罗庚金杯”少年数学邀请赛(2017)一、选择题(每小题10分,共60分。
)1.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由( )拼成。
A.两个锐角蔓角形 B.两个直角三角形 C.两个钝角三角形D.-个锐角三角形和一个钝角三角形2.从1~10这10个整数中,至少取( )个数,才能保证其中有2个数的和等于10。
A.4 B.5 C.6 D.73.小明行李箱锁的密码是由2个数字8与5构成的三位数。
某次旅行,小明忘记了密码,他最少要试( )次,才能确保打开箱子。
A.9 B.8 C.7 D.64.猎豹跑一步长为2米,狐狸跑一步长为1米。
猎豹跑2步的时间狐狸跑3步。
猎豹距离狐狸30米,则猎豹跑( )米可追上狐狸。
A. 90 B.105 C.120 D.1355.题图中的八边形是将大长方形纸片剪去一个小长方形得到的,则至少需要知道( )条线段的长度,才可以计算出这个八边形的周长。
A. 4B. 4C. 5D. 106.一个数串219A,从第4个数字开始,每个数字都是前面3个数字和的个位数。
下面有4个四位数:1113、2226、2125、2215,其中共有( )个不出现在该数串中。
A.1 B.2 C.3 D.4二、填空题(每小题10分,满分40分。
)7.计算1000-257-84-43-16=____。
8.已知动车的速度是普快的两倍,动车的速度提高25%即达到高铁的速度,高铁与普快的平均速度比特快快15千米/时,动车与普快的平均速度比特快慢10千米/时,则高铁和普快列车的速度分别是千米/时和千米/时。
9.《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援。
马克的居住舱内留有每名航天员5天的食品和50千克的非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要灌溉4千克的水。
马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多支撑天。
17至22届华杯赛小中组解析
第17届华杯赛小中组解析1.答案:D算式中9个汉字,分别代表1~9,由于1+2+3+4+5+6+7+8+9=45,45是9的倍数,所以和也是9的倍数,选项只有D选项18是9的倍数。
例如324+657=981。
2.答案:D从镜子里看到的指针与实际是相反的,可将题中的指针以秒针为对称轴作对称,可知D选项15:55是最接近16时的。
3.答案:B最少4个三角形,如图4.答案:B最大值为109,10×10+10-10÷10=109。
5.答案:C设长方形长为a,宽为b,a+2b=30,2ab最大值为15×15,但a、b均为偶数,2ab最大值为14×16,长宽分别为14和8,面积最大112。
6.答案:A45=3×3×5,约数15小于19,所以不变的边长应为15,另一边最长为19,所以小虎最多用了15×19=285枚棋子。
7.答案:665将第二堆剩下的17颗小球除去,剩下的恰好是第三堆球数的3倍,如图第一堆第二堆第三堆所以第三堆原有小球(2012-17)÷3=665颗。
8.答案:925三个档上的算珠合起来是1110,1110=2×3×5×37,要求上面的三位数字不同,而,37×3=111,所以1110=37×5×6=37×5×(5+1)。
那么满足题意的上面的三位数是:37×5×5=9259.答案:105,2520小正方形的边长应为90和42的最大公因数,(90,42)=6,所以最少能剪出90/6×42/6=105块;所有正方形纸片的周长之和为6×4×105=2520厘米。
10.答案:20两桌单打的人数和一桌双打的人数相同,要想双打的人数和单打的多4人,则双打的桌数应为单打的一半多一桌。
已知乒乓球台共13张,所以双打的乒乓球台应有(13-1)÷3+1=5张,人数为5×4=20人。
华杯赛试题及答案初中
华杯赛试题及答案初中一、选择题(每题3分,共30分)1. 已知函数y=f(x)在点x=a处的导数为f'(a),那么曲线y=f(x)在点(a, f(a))处的切线斜率为:A. f(a)B. f'(a)C. f(a) - f'(a)D. f'(a) - f(a)2. 一个数列的前三项为1,1,2,从第四项开始,每一项是前三项的和,那么这个数列的第10项是:A. 76B. 89C. 144D. 2333. 一个圆的直径为10,那么这个圆的面积是:A. 25πB. 50πC. 100πD. 200π4. 一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是:A. 7B. 10C. 11D. 145. 一个数的平方根是2和-2,那么这个数是:A. 4B. -4C. 2D. -26. 一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是:A. 5B. 6C. 7D. 87. 一个数列的前三项为2,4,8,从第四项开始,每一项是前三项的乘积,那么这个数列的第5项是:A. 64B. 128C. 256D. 5128. 一个圆的半径为5,那么这个圆的周长是:A. 10πB. 20πC. 30πD. 40π9. 一个等边三角形的边长为6,那么这个三角形的高是:A. 3√3B. 4√3C. 6√3D. 9√310. 一个数的立方根是3,那么这个数是:A. 27B. 81C. 243D. 729二、填空题(每题4分,共20分)1. 如果一个数的倒数是它本身,那么这个数是______。
2. 一个长方体的长、宽、高分别为2、3、4,那么这个长方体的体积是______。
3. 一个数的绝对值是5,那么这个数可以是______。
4. 一个圆的半径为7,那么这个圆的面积是______。
5. 一个直角三角形的两条直角边长分别为5和12,那么这个三角形的斜边长是______。
三、解答题(每题10分,共50分)1. 已知函数y=x^2-4x+3,求函数的顶点坐标。
201703011第二十二届华杯赛决赛解析(小中a卷)
华杯赛决赛试题A(小学中年级组) 1 第二十二届华罗庚金杯少年数学邀请赛决赛试题小学中年级组本文题目由热心家长提供,南京新东方启智数学教师录排,时间仓促,如若有误,欢迎各位家长留言指正!一、填空题(每小题10分,共80分)1.在 2017 个自然数中至少有一个两位数,而且其中任意两个数至少有一个三位数,则这2017 个数中有个三位数。
【答案】2016【考点】抽屉原理的基础:最不利原则【启智数学春季班四年级第 8 讲内容】【解析】假设这些自然数中有2个数不满足三位数的条件,则与“任意两个数至少有一个三位数”相矛盾,因此只有 1 个数不是三位数,三位数有:2017-1=2016(个)2.如下图(1)所示,一个棋子从 A 到 B 只能沿着横平竖直的路线,在网格中行走,给定棋子的一条路线,将棋子在某一列中经过的格子数标在该列的上方,在某一行中经过的格子数标在该行的左方。
如果右图(2)中网格上方和左方的数字也是根据以上规则确定的,那么图中 x 代表的数字为。
1344 11 2 2 3 A2Ax211 B3(1)4 B(2)【答案】2【考点】平面图形找规律【启智数学秋季班三年级第 6 讲内容】【解析】每个格子都在某一行某一列上,所以行上的数字和与列上的数字和相等,故:x=(1+3+4+4+1)-(3+1+3+4)=13-11=2(路线如上图)13.用[x]表示不超过 x 的最大整数,例如[10.2]=10,则:[ 2017×3 ] + [ 2017×4 ] + [ 2017×5 ] + [ 2017×6 ] + [ 2017×7 ] + [ 2017×8 ]等于。
11 11 11 11 11 11【答案】6048【考点】定义新运算【启智数学春季班五年级第 15 讲内容】2017×3 2017×8 2017×(3+8)【解析】11 + 11 = 11 = 2017又[x]表示不超过 x 的最大整数,所以[2017×311] + [2017×811] = 2017 − 1 = 2016原式=2016×3=6048.4.盒子里有一些黑球和白球,将黑球数量变成原来的 5 倍,总的球数将会变成原来的 2 倍。
a2017年第22届华杯赛初赛试题
总分第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2016年12月10日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.(A )16 (B )17(C )18(D )192.小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟.某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟.(A )6 (B )8(C )10(D )123.将长方形 ABCD 对角线平均分成 12 段,连接成右图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是( )平方厘米.(A )14 (B )16(C )18(D )204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是( ).(A )2986 (B )2858(C )2672(D )27545.在序列 20170……中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是( ).(A )8615 (B )2016(C )4023(D )20176.从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4.(A )1(B )2(C )3(D )4ABDC二、填空题(每小题 10 分, 满分40分) 7.若425.2433275239524151=+÷⨯-+)(A,那么A 的值是 。
8.右图中,“华罗庚金杯”五个汉字分别代表 1—5 这五个不同的数字.将各线段两端点的数字相加得到五个和,共有________种情况使得这五个和恰为五个连续自然数.9.右图中,ABCD 是平行四边形,E 为 CD 的中点,AE 和 BD 的交点为 F ,AC 和 BE 的交点为 H ,AC 和 BD 的交点为 G ,四边形 EHGF 的面积是 15 平方厘米,则 ABCD 的面积是__________平方厘米.10.若2017,1029与725除以d 的余数均为 r ,那么d-r 的最大值是________.第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2016年12月10日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
华杯赛初一初赛试题及答案
华杯赛初一初赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 计算下列表达式的值:\( 3^2 - 2 \times 3 + 1 \)A. 1B. 4C. 7D. 9答案:A3. 如果 \( a \) 和 \( b \) 是两个连续的自然数,且 \( a > b \),那么 \( a - b \) 的值是:A. 1B. 2C. 3D. 4答案:A4. 下列哪个分数是最接近1的?A. \( \frac{1}{2} \)B. \( \frac{3}{4} \)C. \( \frac{4}{3} \)D. \( \frac{5}{6} \)答案:B5. 如果一个圆的半径是 \( r \),那么它的面积是:A. \( \pi r^2 \)B. \( 2\pi r \)C. \( \pi r \)D. \( \pi \)答案:A6. 一个长方体的长、宽、高分别是 \( l \)、\( w \) 和 \( h \),那么它的体积是:A. \( l \times w \)B. \( w \times h \)C. \( l \times w \times h \)D. \( l + w + h \)答案:C7. 如果一个数的平方根是 \( x \),那么这个数是:A. \( x^2 \)B. \( 2x \)C. \( x + x \)D. \( x - x \)答案:A8. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 零C. 负数D. 所有选项答案:D10. 如果一个数的立方是 \( -27 \),那么这个数是:A. 3B. -3C. 9D. -9答案:B二、填空题(每题2分,共20分)11. 一个数的相反数是 \( -a \),那么这个数是 ______ 。
华杯赛初一组决赛试题
华杯赛初一组决赛试题参考答案第一届华杯赛初赛试题答案:1.【求解】就是这五个数的平均数,所以和=×5=。
2.【解】方框的面积是。
每个重叠部分占的面积是一个边长为1厘米的正方形。
重叠部分共有8个()×5一l×8=(100―64)×5―8=36×5―8=172(平方厘米)。
故被遮住的面积就是172平方厘米。
3.【解】105=3×5×7,共有(1+1)×(1+1)×(1+1)=8个约数,即1,3,5,7,15,21,35,105。
4.【求解】在这道题里,最合理的精心安排必须最省时间。
先洗开水壶,接着烧开水,烧上水以后,小明须要等15分钟,在这段时间里,他可以洗脸茶壶,洗脸茶杯,拎茶叶,水上开了就泡茶,这样就用16分钟。
5.【解】149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。
于是,四个数字的总和是14+9=23。
6.【求解】松鼠改采了:112÷14=8(天)假设这8天都是晴天,可以采到的松籽是:20×8=160(个)实际只挖掘出112个,共少采松籽:160-112=48(个)每个下雨天就要少采:20-12=8(个)所以存有48÷8=(6)个雨天。
7.【解】因为正方体的边长是1米,个正方体堆成实心长方体的体积就是立方米。
已经晓得,低为10米,于是短×阔=210平方米把210分解为质因数:210=2×3×5×7由于短和阔必须大于低(10米),短和阔就可以就是:3×5和2×7。
也就是15米和14米。
14米+15米=29米。
答:长与宽的和是29米。
8.【求解】39-32=7。
这7分钟每辆高速行驶的距离恰好等同于第二辆车在8点32支行过的距离的1(=3-2)倍。
因此第一辆车在8点32分已行及7×3=21(分后),它就是8点11分后返回化肥厂的(32-21=11)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二届华罗庚金杯少年数学邀请赛
决赛试题(初中一年级组)
(时间: 2017年3月11日10:00~11:30)
一、填空题(每小题 10分, 共80分)
1.数轴上10个点所表示的数分别为,1a ,2a ,10a , 且当i 为奇数时, 2=-1+i i a a , 当i 为偶数时, 1=-1+i i a a , 那么=
-610a a .
2.如右图, △ABC , △AEF 和△BDF 均为正三角形, 且
△ABC , △AEF 的边长分别为3和4, 则线段DF 长度的最大值等于
. 3.如下的代数和1007⨯1010++1+-2016⨯1-+-2015⨯2+2016⨯1- )()(m m m 的个位数字是 , 其中m 是正整数.
4.已知2016<<2015x . 设[]x 表示不大于x 的最大整数, 定义{}[]x x x -=.如果{}[]x x ⨯是整数, 则满足条件的所有x 的和等于 .
5.设x , y , z 是自然数, 则满足36=+++222xy z y x 的x , y , z 有 组.
6.设p , q ,q p 1-3, p
q 1-都是正整数, 则22+q p 的最大值等于 . 7.右图是A , B , C , D , E 五个防区和连接这些防区的10条公路的示
意图. 已知每一个防区驻有一支部队. 现在这五支部队都要换
防, 且换防时, 每一支部队只能经过一条公路, 换防后每一个
防区仍然只驻有一支部队, 则共有种不同的换防方式.
8.下面两串单项式各有2017个单项式:
(1) 60506049604760461-32-387542y x y x y x y x y x xy n n ,,,,,,, ;
(2) 100831008210078100772-53-513128732y x y x y x y x y x y x m m ,,,,,,, ,
其中n , m 为正整数, 则这两串单项式中共有 对同类项.
二、解答下列各题(每题10分, 共40分, 要求写出简要过程)
9.是否存在长方体, 其十二条棱的长度之和、体积、表面积的数值均相等?如
果存在, 请给出一个例子; 如果不存在, 请说明理由.
10.如右图, 已知正方形ABDF 的边长为6厘米, △EBC 的面
积为6平方厘米, 点C 在线段FD 的延长线上, 点E 为线
段BD 和线段AC 的交点. 求线段DC 的长度.
11.如右图, 先将一个菱形纸片沿对角线AC 折叠, 使顶点
B 和D 重合. 再沿过A , B (D ) 和
C 其中一点的直线剪
开折叠后的纸片, 然后将纸片展开. 这些纸片中菱形
最多有几个? 请说明理由.
12.证明: 任意5个整数中, 至少有两个整数的平方差是7的倍数.
三、解答下列各题(每小题 15分,共30分,要求写出详细过程)
13.直线a 平行于直线b , a 上有10个点1A ,2A , ,10A , b 上有11个点1B ,2B , ,
11B , 用线段连接i A 和j B ( i =1, ,10, j =1, ,11), 所得到的图形中一条边在a 上或者在b 上的三角形有多少个?
14.已知关于x , y 的方程
2017=+-22k y x 有且只有六组正整数解, 且y x ≥,求k 的最大值.
第二十二届华罗庚金杯少年数学邀请赛
决赛试题参考答案
(初中一年级组)
一、填空题(每小题10 分, 共80分)
二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)
9.答案: 否
10.答案: 3厘米
11.答案:0
12.略
三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)
13.答案: 5995
14.答案: 1777。