初中数学教师《新课标》培训测试题

合集下载

初中数学新课标测试题

初中数学新课标测试题

初中数学《课程标准》测试题科组:姓名:总分:一、选择题(单选题1-10每题3分,多选题11-15每题4分,共50分)1、数学是研究()的科学。

A. 数量关系B. 空间形式C. 数量关系和空间形式2.()是现代社会每一个公民应当具备的基本素养。

A. 核心素养B. 数学素养C. 数学核心素养3. 义务教育数学课程具有基础性、普及性和()。

A. 延续性B. 发展性C. 持续性4、根据学生数学学习的心理特征和认知规律,将九年的学习时间划分为()个学段。

A. 三B. 四C. 五5、()是数学学习和发展的主体。

A. 学生B. 教师C. 学生和教师6、数学教育承载着落实()根本任务。

A.培养核心素养B. 立德树人C. 实施素质教育7、学生通过数学课程的学习发展实践能力和创新精神,形成和发展核心素养,增强社会责任感,树立正确的()。

A. 世界观B. 人生观C. 世界观、人生观、价值观8、数学课程内容的组织应重视数学结果的形成过程,处理好( )的关系。

A. 过程与结果B. 直观与抽象C. 直接经验与间接经验9. 数学核心素养具有整体性、()和阶段性,在不同阶段具有不同表现。

A. 协调性B. 一致性C. 层次性10、教学活动应注重(),激发学生学习兴趣,引发学生积极思考,鼓励学生质疑问难,引导学生在真实情境中发现问题和提出问题。

A. 启发式B. 参于式C. 互动式11、学生通过数学课程的学习,掌握适应现代生活及进一步学习必备的()、()、()和()激发学习数学的兴趣,养成独立思考的习惯和合作交流的意愿;发展实践能力和创新精神,形成和发展核心素养。

A.基础知识B. 基本技能C. 基本思想D. 基本活动经验12、数学知识与方法的“四能”指的是()。

A. 发现问题的能力B. 提出问题的能力C. 分析问题的能力D. 解决问题的能力13、数与代数是义务教育阶段学生数学学习的重要领域,在初中阶段包括()三个主题。

A. 方程与不等式B. 数与式C. 数量关系D.函数14、初中阶段,核心素养主要表现为:抽象能力、运算能力、几何直观、()、模型观念、应用意识、创新意识。

初中新课程标准测试题3套

初中新课程标准测试题3套

初中数学新课程标准测试题(第一套)一、填空题1.义务教育阶段的数学课程的基本出发点是___________________.2.义务教育阶段数学学习内容安排了“数与代数”“空间与图形”“统计与概率”“ ___”“_____________”四个学习领域.3.在数学教学活动中,教师应发扬民主,成为学生学习数学活动的组织者,__________。

4.义务教育阶段的数学课程应突出体现、和发展性,使数学教育面向全体学生,实现:——人人学有价值的数学;——;——不同的人在数学上得到不同的发展。

5.在各个学段中,课程内容的学习,强调学生的数学活动,发展学生的数感、符号感、、以及应用意识与推理能力。

二、简答题1、数感主要表现在哪些方面?2、推理能力主要表现在哪些方面?3、新课程标准中“理解”的含义是什么4、符号感主要表现在哪些方面?5、新课程标准中灵活应用的含义是什么?三、论述题结合自己的教学实际谈谈你对培养学生的情感态度目标是如何理解的?一.名词解释:(5`*2=10`)1.数学模型:2.反证法:二.填空:(2`*10=20`)1.基础教育课程改革要以邓小平同志关于"教育要面向现代化.面向世界.面向未来" 和江泽民同志"______________"的重要思想为指导思想.2.新课程体系涵盖幼儿教育.__________和普通高中教育.3.课程改革将改变以往课程内容"____.____._____.____"和过于注重书本知识的现状,精选学生终身学习必备的基础知识和技能.4.国家课程标准是教材编写,________,评价和考试命题的依据,是国家管理和评价课程的基础.5.义务教育课程标准应适应普及义务教育的要求,着眼于培养学生_____________的愿望和能力.6.基础教育课程改革是一项系统工程,应始终贯彻"______________________________________"的工作方针.7.高考制度改革是推进中小学全面实施素质教育的重要措施,要改变"______________________"的招生考试和评价制度.8.义务教育阶段的数学课程的基本出发点是_________________________________.9.义务教育阶段数学学习内容安排了"数与代数","空间与图形"."统计与概率","___ ______________"四个学习领域.10.在数学教学活动中,教师应发扬民主,成为学生学习数学活动的组织者,__________合作者.三.判断:(2`*5=10`)1.课程改革的焦点是协调国家发展需要和学生发展需要二者间的关系.( )2.素质教育就是把灌输式与启发式的教学策略相辅相成.( )3.全面推进素质教育的基础是基本普及九年义务教育.( )4.现代信息技术的应用能使师生致力于改变教与学的方式,有更多的精力投入现实的.探索性的数学活动中去. ( ) 5.新课程评价只是一种手段而不是目的,旨在促进学生全面发展.( )四.简答:(8`*3=24`)1.新课程改革的具体目标是什么?2.新课程教师应具备什么样的角色转变?3.义务教育阶段的数学课程的基本理念是什么?五.通过学习,你对课程改革有何见解?(10`)六.请你设计一堂课改课.(26`)答案一.名词解释:1.针对或参照某种事物特征或数量相依关系,采用形式化的数学语言,概括或近似地表述出来的一种数学结构。

初中数学新课程标准测试卷

初中数学新课程标准测试卷

一、选择题(每题2分,共20分)1. 下列哪个选项不属于《义务教育数学课程标准(2022年版)》提出的数学核心素养?A. 数学抽象B. 数学逻辑C. 数学应用D. 数学美学2. 下列哪个概念不属于空间与图形的内容?A. 线段B. 角C. 平面D. 空间3. 下列哪个函数不属于反比例函数?A. y = 2/xB. y = -3/xC. y = x^2D. y = 4/x4. 在下列选项中,哪个不属于《义务教育数学课程标准(2022年版)》提倡的数学学习方法?A. 探究式学习B. 合作学习C. 个性化学习D. 机械记忆5. 下列哪个几何图形的面积计算公式是错误的?A. 长方形的面积公式:S = abB. 正方形的面积公式:S = a^2C. 圆的面积公式:S = πr^2D. 三角形的面积公式:S = (ah)/26. 下列哪个选项不属于《义务教育数学课程标准(2022年版)》倡导的数学思想方法?A. 分类与归纳B. 归纳推理C. 抽象思维D. 逆向思维7. 下列哪个选项不属于《义务教育数学课程标准(2022年版)》提出的数学教育目标?A. 培养学生的数学素养B. 提高学生的数学应用能力C. 增强学生的数学创新意识D. 培养学生的数学审美能力8. 下列哪个数学概念不属于《义务教育数学课程标准(2022年版)》提倡的数学基本概念?A. 数字B. 数轴C. 函数D. 图形9. 下列哪个数学思想不属于《义务教育数学课程标准(2022年版)》提倡的数学思想方法?A. 分类与归纳B. 模型思想C. 抽象思维D. 演绎推理10. 下列哪个选项不属于《义务教育数学课程标准(2022年版)》倡导的数学教育理念?A. 注重学生的主体地位B. 强调学生的实践能力C. 重视学生的个性发展D. 强调教师的权威地位二、填空题(每题2分,共20分)1. 《义务教育数学课程标准(2022年版)》提出了______个数学核心素养。

初中数学新课程标准(2019版)测试题

初中数学新课程标准(2019版)测试题

初中数学新课程标准(2019版)测试题初中数学新课程标准(2019版)测试题一、选择题(单项选择、多项选择)1.数学教学活动是师生积极参与、交往互动、共同发展的过程。

(选C)2.教师要积极利用各种教学资源,创造性地使用教材,学会用教材教。

(选B)3.“三维目标”是指知识与技能、过程与方法、情感态度与价值观。

(选B)4.《数学课程标准》中使用了“经历、体验、探索”等表述来描述研究过程目标。

(选A)5.评价要关注研究的结果,也要关注研究的过程和目的。

(选C)6.“综合与实践”的教学活动应当保证每学期至少一次。

(选A)7.在新课程背景下,评价的主要目的是全面了解学生数学研究的过程和结果,激励学生研究和改进教师教学。

(选C)8.学生是数学研究的主人,教师是数学研究的组织者、引导者、合作者。

(选C)9.学生的数学研究活动应是一个生动活泼的、主动的和富有个性的过程。

(选A)10.推理一般包括合情推理和演绎推理。

(选C)11.义务教育阶段的数学课程是培养公民素质的基础课程,它不具有连续性。

(选D)12.对于教学中应当注意的几个关系,下列说法中错误的是使用现代信息技术与教学思想多样化的关系。

(选D)13.科学性是对教材编写的基本要求。

(选B)14.书面测验是考查学生课程目标达成状况的重要方式,合理地设计和实施它有助于全面考查学生的数学学业成就,及时反馈教学成效,不断提高教学质量。

(选A)15.评价不仅要关注学生的研究结果,更要关注学生在研究过程中的发展和变化。

(选A)16.实行启发式教学有助于落实学生的主体地位和发挥教师的指导作用。

(选B)B、人人都能获得良好的数学教育C、不同的人在数学上得到不同的发展改写:义务教育阶段的数学课程的目标是面向全体学生,适应学生个性发展的需要,使每个学生都能获得有价值的数学教育,同时也能在数学上得到不同的发展。

7、数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

改写:学生的认知发展水平和已有的知识经验基础是数学活动的基础。

初中数学新课程标准测试题(附答案)

初中数学新课程标准测试题(附答案)

初中数学新课程标准测试题(附答案)一、选择题(1-10单项选择,11-15多项选择)(30%)1、数学教学活动是师生积极参与,(C )的过程。

A、交往互动B、共同发展C、交往互动、共同发展2、教师要积极利用各种教学资源,创造性地使用教材,学会(B )。

A、教教材B、用教材教3、“三维目标”是指知识与技能、(B )、情感态度与价值观。

A、数学思考B、过程与方法C、解决问题4、《数学课程标准》中使用了“经历、体验、探索”等表述(A )不同程度。

A、学习过程目标B、学习活动结果目标。

5、评价要关注学习的结果,也要关注学习的( C )A、成绩B、目的C、过程6、“综合与实践”的教学活动应当保证每学期至少( A )次。

A、一B、二C、三D、四7、在新课程背景下,评价的主要目的是( C )A、促进学生、教师、学校和课程的发展B、形成新的教育评价制度C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学8、学生是数学学习的主人,教师是数学学习的(C )。

A 组织者合作者B组织者引导者 C 组织者引导者合作者9、学生的数学学习活动应是一个( A )的过程。

A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性10、推理一般包括( C )。

A、逻辑推理和类比推理B、逻辑推理和演绎推理C、合情推理和演绎推理11、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:(BC )A、人人学有价值的数学B、人人都能获得良好的数学教育C、不同的人在数学上得到不同的发展12、数学活动必须建立在学生的(AB )之上。

A、认知发展水平B、已有的知识经验基础C、兴趣13、数学课程应致力于实现义务教育阶段的培养目标,体现(ABC )。

A、基础性B、普及性C、发展性D、创新性14、在“数与代数”的教学中,应帮助学生(ABCD )。

A、建立数感B、符号意识C、发展运算能力和推理能力D、初步形成模型思想15、课程内容的组织要处理好(ABC)关系。

初中数学新课程标准(2020版)测试题(有答案)

初中数学新课程标准(2020版)测试题(有答案)
A、认知发展水平B、已有的知识经验基础C、兴趣
13、数学课程应致力于实现义务教育阶段的培养目标,体现(ABC)。
A、基础性B、普及性C、发展性D、创新性
14、在“数与代数”的教学中,应帮助学生(ABCD)。
A、建立数感B、符号意识C、发展运算能力和推理能力D、初步形成模型思想
15、课程内容的组织要处理好(ABC)关系。
A、过程与结果B、直观与抽象C、直接经验与间接经验
二、填空题。(45%)
1、数学是研究数量关系和空间形式的科学。
2、有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。
3、义务教育阶段数学课程的总体目标,从以下四个方面作出了阐述:知识技能、数学思考、问题解决、情感态度。
11、教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。
12、义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。
三、简答题。(25%)
1、简述《标准》中总体目标四个方面的关系?
答:总体目标的四个方面,不是互相独立和割裂的,而是一个密切联系、相互交融的有机整体。课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展,有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。
A、数学思考B、过程与方法C、解决问题
4、《数学课程标准》中使用了“经历、体验、探索”等表述(A)不同程度。
A、学习过程目标B、学习活动结果目标。
5、评价要关注学习的结果,也要关注学习的(C)

2022版数学新课标教师过关考试培训测试卷含部分答案(三套)

2022版数学新课标教师过关考试培训测试卷含部分答案(三套)

2022版数学新课标教师过关考试培训测试卷(一)一、填空题1.随着义务教育全面普及,教育需求从“有学上”转向“上好学”,必须进一步明确“(培养什么人)、(怎样培养人)、(为谁培养人)”,优化学校育人蓝图。

2.聚焦中国学生发展核心素养,培养学生适应未来发展的(正确价值观)、(必备品格)和(关键能力,引导学生明确人生发展方向,成长为德智体美劳全面发展的社会主义建设者和接班人。

3.各课程标准针对“内容要求”提出“学业要求““教学提示”,细化了评价与考试命题建议,注重实现“(教一学一评)”一致性,增加了教学、评价案例,不仅明确了“(为什么教”“(教什么”“(教到什么程度”,而且强化了“(怎么教”的具体指导,做到好用、管用。

4.数学是研究(数量关系)和(空间形式)的科学。

5.数学教育承载着落实(立德树人)根本任务、实施(素质教育)的功能。

6.义务教育数学课程具有(基础性)、(普及性)和(发展性)。

7.课程目标以(学生发展)为本,以(核心素养)为导向,进一步强调使学生获得数学(基础知识、基本技能、基本思想和基本活动经验)(简称“四基")的获得与发展,发展运用数学知识与方法(发现、提出、分析和解决问题的能力)(简称“四能”),形成正确的(情感、态度和价值观)。

8.课程内容呈现。

注重数学知识与方法的层次性和多样性,适当考虑(跨学科主题学习)。

9.在义务教育阶段,数学眼光主要表现为:(抽象能力)(包括数感、量感、符号意识)、(几何直观、空间观念与创新意识)。

10.在义务教育阶段,数学思维主要表现为:(运算能力、推理意识或推理能力)。

11.在义务教育阶段,数学语言主要表现为:(数据意识或数据观念、模型意识或模型观念、应用意识)。

12.核心素养具有(整体性、一致性和阶段性),在不同阶段具有不同表现。

13.描述结果目标的行为动词,包括(“了解”“理解””掌握”“运用”)等。

14.描述过程目标的行为动词,包括(“经历””“体验”“感悟”“探索”)等。

初中数学新培训标准考试【及解答】

初中数学新培训标准考试【及解答】

《初中数学课程标准考试题》()有效的数学学习活动不能单纯地依赖模仿与记忆,、与是学习数学的重要方式。

()《义务教育数学课程标准》的基本理念指出:义务教育阶段的数学课程应突出体现、和,使数学教育面向全体学生,实现:;;。

()学生是数学学习的,教师是数学学习的、与。

()《标准》中所陈述课程目标的动词分两类。

第一类,知识与技能目标动词,包括、、、、第二类,数学活动水平的过程性目标动词,包括、、。

)数学教学活动必须建立在学生的认知和已有基础上。

教师应激发学生的学习积极性,向学生提供充分从事数学的机会,帮助他们在自主探索和的过程中真正理解和掌握数学知识技能、数学思想和方法,获得广泛的数学活动经验。

()《义务教育数学课程标准》的基本理念指出:义务教育阶段的数学课程应突出体现、和,使数学教育面向全体学生,实现:;;。

()评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标化、评价方法化的评价体系,对学生的数学学习评价要关注学生数学学习的,更要关注他们的。

()初中数学新课程的四大学习领域是、、、。

()《标准》中陈述课程目标的动词分两类。

第一类,目标动词,第二类,数学活动水平的目标动词。

()学生的数学学习内容应当是、、的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。

()《义务教育数学课程标准》的基本理念指出:义务教育阶段的数学课程应突出体现、和,使数学教育面向全体学生,实现:;;。

()学生是数学学习的,教师是数学学习的、与。

()《标准》中所陈述课程目标的动词分两类。

第一类,知识与技能目标动词,包括、、、、第二类,数学活动水平的过程性目标动词,包括、、。

()数学教学活动必须建立在学生的认知和已有基础上。

教师应激发学生的学习积极性,向学生提供充分从事数学的机会,帮助他们在自主探索和的过程中真正理解和掌握数学知识技能、数学思想和方法,获得广泛的数学活动经验。

初中数学新课程标准测试题

初中数学新课程标准测试题

初中数学新课程标准测试题一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333D. 1/32. 若a < 0,b > 0,且|a| > |b|,则a + b的值是:A. 正数B. 负数C. 0D. 无法确定3. 一个长方体的长、宽、高分别是6cm、4cm和3cm,其体积是:A. 72cm³B. 144cm³C. 216cm³D. 288cm³4. 以下哪个代数式是二次的?A. x + 2B. x² - 3x + 1C. 2x³ - 5D. x/25. 一个圆的半径是5cm,其面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π cm²二、填空题(每题2分,共20分)6. 一个数的平方根是4,这个数是________。

7. 一个等腰三角形的底边长为6cm,两腰相等,若底角为60°,则其腰长为________cm。

8. 一个数的立方根是2,则这个数是________。

9. 一个直角三角形的两条直角边分别为3cm和4cm,其斜边长为________cm。

10. 如果一个数的相反数是-7,则这个数是________。

三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2)(x + 1),其中x = 2。

12. 解一元一次方程:2x + 5 = 11。

13. 计算下列多项式乘以单项式的结果:(2x² - 3x + 1)(3x)。

四、解答题(每题10分,共30分)14. 一个长方体的长、宽、高分别是a、b、c,求证其体积V = abc。

15. 解析一个二次方程:x² - 5x + 6 = 0。

16. 一个直角三角形的两条直角边长分别为5cm和12cm,求其斜边长,并证明勾股定理。

初中数学新课标测试题及答案(三套)

初中数学新课标测试题及答案(三套)

初中数学新课标测试题及答案(三套)初中数学新课标测试题及答案(三套)一、选择题1. 如图所示,直线l与横轴交于点A,与纵轴交于点B,点P是直线l上的一点,且AP的延长线与BQ的延长线相交于点O。

已知∠APB=75°,则∠POQ的度数是:A. 45°B. 60°C. 75°D. 90°答案:B. 60°解析:根据题意,∠APB = 75°,则由垂直交角相等可知,∠POQ = 180° - ∠APB = 180° - 75° = 105°。

而∠POQ + ∠QOB = 180°,所以∠QOB = 180° - 105° = 75°。

由于∠POB是三角形POB的内角和,所以∠POB = 180° - ∠POQ - ∠QOB = 180° - 105° - 75° = 0°。

所以∠POQ的度数为60°。

2. 若函数y = f(x)的图像关于直线x = 3对称,则点(3, -4)在函数y = f(x)的图像上的对称点为:A. (6, -4)B. (0, -4)C. (3, 4)D. (3, 8)答案:A. (6, -4)解析:由题意,函数y = f(x)的图像关于直线x = 3对称,因此对于任意一点(x, y)在图像上,都有关于直线x = 3的对称点(2a-x, y)也在图像上。

已知点(3, -4)在图像上,所以对称点为(2 * 3 - 3, -4) = (6, -4)。

3. 计算:3 * (2 + 4) ÷ (5 - 1) =A. 6B. 12C. 3D. 9答案:B. 12解析:按照运算法则,先计算括号里的运算,得到3 * 6 ÷ 4 = 18 ÷4 = 4.5。

4. 下列哪个数是无理数?A. -3B. 0.5C. 1.73D. 0答案:C. 1.73解析:无理数是不能表示为两个整数的比例的实数。

初中数学教师《新课标》培训考试题

初中数学教师《新课标》培训考试题

初中数学教师《新课标》培训考试题初中数学教师《新课标》培训考试题一、选择题:1、《新课程标准》对“基本理念”进行了很大的修改,过去的基本理念说:“人人学有价值的数学,人人获得必须的数学,不同人在数学上得到不同的发展。

”,现在的《新课标》改为:(A)A.“人人都能获得良好的数学教育,不同的人在数学教育中得到不同的发展。

B.“人人都获得教育,人人获得良好的教育”C.“人人学有用的数学,人人获得有价值的教育”D.“人人获得良好的数学教育”2、什么叫良好的数学教育?(B)A.即掌握了知识,又培养了技能,并能学以致用。

B.就是不仅懂得了知识,还懂得了基本思想,在学习过程中得到磨练。

D.严格遵循教材,充分把握《新课标》理念,才能称为“良好的数学教育”3、旧的标准理念中,为了突破过去的东西,写的时候有一些偏重,非常强调学生的独立学习,强调学生活动,《新课标》则强调(A)A.除了传授知识外,还必须调动学生学习积极性,引发学生的思考;既要培养习惯,又要掌握有效的学习方法。

B.能培养学生良好的学习习惯。

C.用什么形式教学、怎样教学,要通过集备后,有一个大致统一的模式。

D.让学生掌握有效的学习方法4、《新课标》强调“从双基到四基”的转变,四基是指:(C)A.基础知识、基本技能、基本方法和基本过程C.基础知识、基本技能、基本思想和基本活动经验D.基础知识、基本经验、基本思想和基本过程5、《新课标》强调“从两能到四能”的转变,“四能”是指(B)A.分析问题、解决问题的能力;发现问题和讨论问题的能力B.发现问题、提出问题的能力、分析问题、解决问题的能力。

C.分析问题、讨论问题的能力、计算能力、逻辑推理能力D.分析问题、解决问题的能力、计算能力、逻辑推理能力二、填空题:1、教学活动是师生积极参与、交往互动、共同发展的过程。

有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

2、认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。

教师初中数学新课标考试试题

教师初中数学新课标考试试题

教师初中数学新课标考试试题一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bD. y = a^x + b2. 圆的面积公式是什么?A. A = πr^2B. A = 2πrC. A = πrD. A = 4πr^23. 绝对值的定义是什么?A. |x| = x,当x ≥ 0B. |x| = -x,当x < 0C. |x| = x,当x ≥ 0;|x| = -x,当x < 0D. |x| = x,当x < 04. 以下哪个选项是等腰三角形的性质?A. 两个底角相等B. 三条边相等C. 三个角相等D. 底边的中垂线也是高5. 以下哪个选项是勾股定理的表述?A. 在直角三角形中,直角边的平方和等于斜边的平方B. 在直角三角形中,斜边的平方等于两直角边的平方和C. 在直角三角形中,斜边的平方和等于两直角边的平方D. 在直角三角形中,两直角边的平方和等于斜边的平方6. 以下哪个选项是正比例函数的定义?A. y = kx + bB. y = kxC. y = k/xD. y = kx^27. 以下哪个选项是反比例函数的定义?A. y = kx + bB. y = kxC. y = k/xD. y = kx^28. 以下哪个选项是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 面积相等D. 周长相等9. 以下哪个选项是三角形内角和定理?A. 三角形内角和等于180°B. 三角形内角和等于360°C. 三角形内角和等于90°D. 三角形内角和等于120°10. 以下哪个选项是函数的定义?A. 函数是一种关系B. 函数是一种特殊的映射C. 函数是一种运算D. 函数是一种图形二、填空题(每题2分,共20分)11. 一次函数的图象是一条______。

初中数学新课程标准测试题及答案

初中数学新课程标准测试题及答案

初中数学新课程标准测试题学校姓名一、填空题(24×2.5=60分)1、初中数学教学内容包括、、、四个部分。

2、数与代数的内容包括、、。

3、新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分为个阶段。

4、新课程标准的总目标中由原来的“双基”变为“四基”,“四基”即、、、。

5、数学课程目标包括结果目标和过程目标。

结果目标使用了、、、等行为动词表述,过程目标使用了、、等行为动词表述。

6、新课程标准提出了10个核心概念,请列举其中的任意5个核心概念、、、、。

二、简答题:(共40分)1、叙述新课程中规定的9条基本事实(9分)2、各举两例说明数学新课程标准相比数学课程标准(实验稿)在内容上加强与削弱的方面。

(8分)3、新课标指出义务教育阶段数学课程总体目标下的具体目标包括哪四个方面?请简述这四个方面的相互联系?(8分)三、论述题:结合新课标的学习列举教学案例谈一谈如何重视学生在学习活动中的主体地位。

(15分)参考答案:一、填空题:1、数与代数、图形与几何、统计与概率、综合与实践2、数与式、方程与不等式、函数3、三4、基础知识、基本技能、基本思想、基本活动经验5、了解、理解、掌握、运用;经历、体验、探索6、数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识(任选5个)二、简答题1、(1)两点确定一条直线(2)两点之间线段最短(3)过一点有且只有一条直线与已知直线垂直(4)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(5)过直线外一点有且只有一条直线与这条直线平行(6)两边及其夹角分别相等的两个三角形全等(7)两角及其夹边分别相等的两个三角形全等(8)三边分别相等的两个三角形全等(9)两条直线被一组平行线所截,所得的对应线段成比例2、加强的方面:最简二次根式和最简分式的概念;能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。

初中数学新课程标准(2020版)测试题(有答案)

初中数学新课程标准(2020版)测试题(有答案)

初中数学新课程标准(2020版)测试题一、选择题(1-10单项选择,11-15多项选择)(30%)1、数学教学活动是师生积极参与,( C )的过程。

A、交往互动B、共同发展C、交往互动、共同发展2、教师要积极利用各种教学资源,创造性地使用教材,学会( B )。

A、教教材B、用教材教3、“三维目标”是指知识与技能、( B )、情感态度与价值观。

A、数学思考B、过程与方法C、解决问题4、《数学课程标准》中使用了“经历、体验、探索”等表述( A )不同程度。

A、学习过程目标B、学习活动结果目标。

5、评价要关注学习的结果,也要关注学习的( C )A、成绩B、目的C、过程6、“综合与实践”的教学活动应当保证每学期至少( A )次。

A、一B、二C、三D、四7、在新课程背景下,评价的主要目的是( C )A、促进学生、教师、学校和课程的发展B、形成新的教育评价制度C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学8、学生是数学学习的主人,教师是数学学习的( C )。

A 组织者合作者B组织者引导者 C 组织者引导者合作者9、学生的数学学习活动应是一个( A )的过程。

A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性10、推理一般包括( C )。

A、逻辑推理和类比推理B、逻辑推理和演绎推理C、合情推理和演绎推理11、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:(BC )A、人人学有价值的数学B、人人都能获得良好的数学教育C、不同的人在数学上得到不同的发展12、数学活动必须建立在学生的(AB )之上。

A、认知发展水平B、已有的知识经验基础C、兴趣13、数学课程应致力于实现义务教育阶段的培养目标,体现(ABC )。

A、基础性B、普及性C、发展性D、创新性14、在“数与代数”的教学中,应帮助学生(ABCD )。

A、建立数感B、符号意识C、发展运算能力和推理能力D、初步形成模型思想15、课程内容的组织要处理好(ABC)关系。

初中数学教师新课程标准测试答案

初中数学教师新课程标准测试答案

初中数学教师新课程标准测试答案一、填空题1、统计与概率2、教师的教学3、主人4、基本活动经验5、认知发展水平6、模型7、和谐8、几何直观9、空间形式10、应用二、选择题1、C、2、A3、B4、C5、A6、C7、C8、BC 9、AB 10、ABC三、简答题1、数学课程的核心理念是:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

2、数学课程总目标:①获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基本思想、基本生活经验。

②体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。

③了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。

(也可以简要概括为:获得“四基”、增强能力、培养科学态度。

)新课程标准具体从知识与技能、数学思考、解决问题、情感与态度四个方面作了进一步的阐述,这四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的。

其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。

四、论述题如何有效开展数学思想教学:1、立足数学本源,挖掘并渗透数学思想。

2、在知识的发生过程中,体验数学思想。

3、在问题的解决过程中,凸显数学思想。

4、在知识的总结过程中,归纳数学思想。

5、引导学生养成反思习惯,增强数学思想意识。

再根据实际教学案例进行论述(略)。

初中数学新课程标准测试题

初中数学新课程标准测试题

初中数学新课程标准测试题一、选择题(每题 3 分,共 30 分)1、新课程标准强调数学课程应致力于实现义务教育阶段的培养目标,体现()。

A 基础性B 普及性C 发展性D 以上都是2、数学教学活动是师生积极参与、()的过程。

A 交往互动B 共同发展C 相互促进D 以上都是3、评价结果的呈现应采用()与定性相结合的方式。

A 定量B 描述C 等级D 分数4、数学课程资源是指应用于教与学活动中的各种资源,下列不属于数学课程资源的是()。

A 文本资源B 信息技术资源C 社会教育资源D 人力资源E 考试资源5、学生是数学学习的主人,教师是数学学习的()。

A 组织者B 引导者C 合作者D 以上都是6、数学课程内容要反映社会的需要、数学的特点,要符合学生的()。

A 认知规律B 心理特征C 兴趣爱好D 以上都是7、推理一般包括()。

A 合情推理和演绎推理B 归纳推理和类比推理C 逻辑推理和非逻辑推理D 直接推理和间接推理8、数学教学中应当注意几个关系,下列说法错误的是()。

A 面向全体学生与关注学生个体差异的关系B “预设”与“生成”的关系C 合情推理与演绎推理的关系D 使用现代信息技术与教学手段多样化的关系9、对于数学学习的评价,既要关注学生学习的结果,也要关注学习的()。

A 水平B 过程C 方法D 能力10、义务教育阶段数学课程目标分为总目标和学段目标,从()方面进行阐述。

A 知识技能B 数学思考C 问题解决D 情感态度E 以上都是二、填空题(每题 3 分,共 30 分)1、数学是研究和的科学。

2、有效的数学教学活动是教师教与学生学的统一,应体现“ ”的理念,促进学生的全面发展。

3、课程内容的组织要重视,处理好与的关系。

4、数学教学活动必须建立在学生的和基础之上。

5、数学课程应致力于实现义务教育阶段的培养目标,面向全体学生,适应学生个性发展的需要,使得:,。

6、义务教育数学课程的设计,充分考虑本阶段学生数学学习的特点,符合学生的规律和特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校:____________ 年级:______ 姓名:_______
一、选择题:
1、《新课程标准》对“基本理念”进行了很大的修改,过去的基本理念说:“人人学有价值的数学,人人获得必须的数学,不同人在数学上得到不同的发展。

”,现在的《新课标》改为:( )
A.“人人都能获得良好的数学教育,不同的人在数学教育中得到不同的发展。

B.“人人都获得教育,人人获得良好的教育”
C.“人人学有用的数学,人人获得有价值的教育”
D.“人人获得良好的数学教育”
2、什么叫良好的数学教育?()
A.即掌握了知识,又培养了技能,并能学以致用。

B.就是不仅懂得了知识,还懂得了基本思想,在学习过程中得到磨练。

C.良好的数学教育,要通过考试成绩来衡量,成绩不高就不是良好的数学教育。

D.严格遵循教材,充分把握《新课标》理念,才能称为“良好的数学教育”
3、旧的标准理念中,为了突破过去的东西,写的时候有一些偏重,非常强调学生的独立学习,强调学生活动,《新课标》则强调()
A. 除了传授知识外,还必须调动学生学习积极性,引发学生的思考;既要培养习惯,又要掌握有效的学习方法。

B.能培养学生良好的学习习惯。

C. 用什么形式教学、怎样教学,要通过集备后,有一个大致统一的模式。

D. 让学生掌握有效的学习方法
4、《新课标》强调“从双基到四基”的转变,四基是指:()
A. 基础知识、基本技能、基本方法和基本过程
B. 基础知识、基本经验、基本过程和基本方法
C. 基础知识、基本技能、基本思想和基本活动经验
D. 基础知识、基本经验、基本思想和基本过程
5、《新课标》强调“从两能到四能”的转变,“四能”是指()
A. 分析问题、解决问题的能力;发现问题和讨论问题的能力
B. 发现问题、提出问题的能力、分析问题、解决问题的能力。

C. 分析问题、讨论问题的能力、计算能力、逻辑推理能力
D. 分析问题、解决问题的能力、计算能力、逻辑推理能力
二、填空题:
1、教学活动是师生积极参与、交往互动、共同发展的过程。

有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

2、认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。

3、教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。

4、在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识和创新意识。

5、《新课标》的总目标包括四个方面,即:知识技能、数学思考、问题解决、情感态度。

三、简答题:
1、简述数学的基本思想内容包括什么?结合你的教学实践,谈谈你如何理解“数学思想”?答:数学的基本思想,主要有下面的三个:一个是数学抽象的思想,一个是数学推理的思想,一个是数学建模的思想。

人类通过数学抽象从客观世界中,得到数学的概念和法则建立了数学学科,通过数学推理,进一步得到大量的结论,数学科学就得以发展,在通过数学模型把数学应用到客观世界中去,就产生了巨大的效益,反过来又促进了数学科学的发展。

数学抽象的思想,能产生出分类的思想,集合的思想,数形结合的思想,符号表示的思想,对称的思想,对应的自然,有限与无限的思想思想,优化的思想,随机的思想,抽样统计的思想等等。

数学推理的思想,还能派生出,像归纳的思想,演绎的思想,公理化的思想,转化划规的思想,理想类比的思想,逐步逼近的思想,代换的思想,特殊一般的思想,等等。

数学建模的思想,还能进一步派生出来,像简化的思想,量化的思想,函数的思想,方程的思想。

三个思想之间的关系也是大家需要思考的一件事情,它们存在着深刻的本质联系,但是又有各自的特点。

实际教学中,我们老师常常会更多的说到数学方法,像换元法等等,但是这个数学方法它是不同于数学思想的,因为它处在较低的层次上,这个数学思想,往往可以用这样几个形容词来描述:它是观念的,是全面的,是普遍的,是深刻的,是一般的,是内在的,是概括的。

而数学方法呢,可以用这样几个形容词来描述,它是操作的,局部的,特殊的,表象的,具体的,程序的,技巧的。

但是这两者是有关系的,数学思想是要通过数学方法去体现,数学方法又常常反应了数学思想。

2、结合实际,谈一谈如何理解“从两能到四能”的转变?
答:从两个能力到四个能力的变化,即从分析问题和解决问题的能力,到发现问题和提出问题的能力。

ABACB。

相关文档
最新文档