水库诱发地震简述

合集下载

水库诱发地震

水库诱发地震
1.汶川地震的序列特征与水库诱发地震的规律不符合 2.汶川地震震源深度过深,与水库诱发地震的规律不符合 3.汶川地震和紫坪铺水库的水位变化并没有明显的关系 4.目前还并没有充分有力的定量计算结果可以证明汶川地震是由紫坪铺水库蓄水诱发的
谢谢
3.1.2震源深度问题 按照过去归纳总结出的水库诱发地震震源深度规律,水库诱 发地震的震源深度一般不大于10km。而汶川8.0级地震微观 震中深度为19km,已超过了多数水库诱发地震的典型深度指 标。
03 汶川地震的特点
3.2汶川地震与库水位及水荷载随时间变化的相关性。
2005年10月1日,紫坪铺水库正式下闸蓄水,当年冬春库水位限制在830m以下。2006年夏秋汛期似有几次洪 水过境,水位控制在850m以下,且持续了四个月。
03 汶川地震的特点
3.1汶川地震活动与水库的空间联系
3.1.1微观震中距水库最高淹没线仅4km 汶川8.0级地震的微观震中位于北纬31.0°、东经103.4°。所
谓微观震中是地震仪器测定的震中位置,对于破裂长度超过 300km的汶川8.0级特大地震微观震中即是该地震的起始破裂 点(震源)对应的震中位置。由图可见,汶川地震的微观震 中位置距紫坪铺水库蓄满水的淹没边沿仅4km。 按照过去归纳总结出的水库诱发地震空间震中空间分布规律, 水库诱发地震多发生于水库边岸几千米到十几千米范围内。 但是宏观观震中位于汶川县漩口镇何家山的一个叫“莲花芯” 的山顶。地震时,龙门山中央断裂带中的花岗岩和花岗闪长 岩在强烈地逆冲挤压和剪切作用下,瞬间发生无数脆性破裂, 约400万m³的白色岩石干碎屑流在短短的不到两分钟时间内 将两千多米长的山谷填平。。碎屑流是干的,说明宏观震中 断裂带岩石破裂与水或其它流体无关。
的文本后,在此框中选择粘贴

浅析水库诱发地震

浅析水库诱发地震

浅析水库诱发地震近年来,随着地壳运动的持续进行,地震发生的次数也越来越频繁。

地震在海底或滨海地区容易引发海啸,在大陆地区则会引发滑坡、崩塌、地裂缝等次生灾害。

因此,国家和人民对地震的关注度也逐步提高,尤其是对于因水库蓄水而诱使库坝区、近岸范围发生的地震逐步开始重视并探讨;人们根据多次较大地震诱发的原因、地震的特征对水库诱发地震的原因和特征进行了分析,同时也针对水库诱发地震采取了相应的预防和预测措施。

本文主要是对水库地震诱发的原因、特征及预防措施进行了浅层的探索研究。

标签:水库诱发地震诱发原因特征预防措施1水库诱发地震的原因1.1地层岩性的影响根据我国水库诱发地震的数据统计分析,碳酸盐岩地区的发震几率最高,占47%左右,其次为火成岩地区,发震几率约占22%,最后为碎屑岩地区,其发震几率最小。

同时,区域岩体的强度往往决定了地震震级的大小,这说明岩石强度越高,当积聚了足够的能量后,应变积累接近于岩体破裂的临界值时,在有利于诱发水库地震的地质构造条件的地段,其导致岩体内累积的应变能也越快释放从而产生地震,这样地震的震级也就越大。

例如我国湖北省的邓家桥水库、湖南省的黄石水库,这些水库每当水库的蓄水位将库尾的岩石淹没时就要诱发不同程度的地震。

以上直接说明了地层岩性成为水库诱发地震的重要影响因素之一。

1.2构造活动的影响地质构造活动诱发的地震主要是岩体中的断裂在库水作用下发生错动引起的。

张性断裂或张扭性断裂更利于库水向深部渗透,易于诱发地震。

现代构造活动较强烈的地区,由于活动断裂常常随地应力的局部集中,有利于诱发较强的水库地震。

构造活动诱发的水库地震虽然发生概率较低,但其破坏性较强,多为中强震或强震。

根据统计资料显示,我国共有约49例地震位于断陷盆地和褶皱带上或者直接位于活动断层附近,而水库诱发地震的发生基本上均与附近的小构造活动存在密切关系,例如我国广东新丰江水库发生的6.1级水库地震。

1.3水库规模的影响根据统计数据显示,诱发地震的发生概率随着坝高、蓄水深度和库容的增大而明显增高。

水库诱发地震机理分析

水库诱发地震机理分析

水库诱发地震机理分析
水库诱发地震的机理可以通过以下几个方面进行分析:
1. 水库水体的加重效应:水库的蓄水会增加地表的负荷,对于地下岩石产生压力。

如果岩石处于应力平衡状态下,水库蓄水可能会破坏平衡导致地震发生。

2. 水库水体的重力效应:水库蓄水会改变地下岩石的重力场分布,可能会导致岩石体发生应力调整,从而导致地震。

3. 水库水体的滑动效应:水库蓄水会增加地下岩石体的水压,减小岩石的摩擦力,使得地下岩石体相互之间发生滑动,引发地震。

4. 水库与断层的相互关系:水库的建设可能会改变地下断层的应力状态,使得原本处于相对平衡状态的断层重新活跃,从而诱发地震。

需要注意的是,水库诱发地震的机理可能与地质条件、水库建设方式、水库蓄水过程等因素有关,因此具体情况需要具体分析。

水库到底能诱发多大地震

水库到底能诱发多大地震

水库到底能诱发多大地震?2008年汶川5.12地震后,社会上有些人将地震的发生归咎于西南地区的水电建设。

到底什么是水库诱发地震?水库到底能诱发多大的地震?水库诱发地震是指由于水库蓄水而引起水库区以及库水影响所及的邻近地区新出现的地震现象。

世界上首次有关水库诱发地震的报道是美国的胡佛大坝。

1939年春,胡佛水库水位上升至运行水位后不久,出现地震高潮,最大震级达到5级。

据不完全统计,全世界坝高大于15米的水库大约有3万座,发生水库诱发地震的比例不足0.3%且分布在29个国家;全世界大于6.0级的水库诱发地震有4起,分别是我国的新丰江水库地震(1962年3月19日,6.1级),赞比亚—津巴布韦边界的卡里巴(Kariba)水库地震(1963年9月23日,6.1级),希腊的克里马斯塔(Kremasta)水库地震(1965年2月5日,6.2级),印度的柯依那(Koyna)水库地震(1967年12月10日,6.3级)。

我国坝高大于15米的水库约有1.9万多座,而坝高30米以上的水库约5700座,自从新丰江水库发生6.1级水库诱发地震至今,比较公认的水库诱发地震震例有33个,除新丰江以外,震级均在5级以下。

我国是世界上水库诱发地震震例最多的国家,也是对水库诱发地震研究最深入的国家。

我国学者根据库区工程地质条件把水库诱发地震分为塌陷型、卸荷型和构造型三种类型。

前两者是水库诱发地震中最常见的类型,震例较多,但震级一般不超过3级;而构造型水库诱发地震发生的概率极低,但其震级较高,有的可达中强震水平。

水库诱发地震的主要特征是:在时间上,诱发地震的产生和活动与水库蓄水密切相关,开始发震时间70%发生在蓄水至正常蓄水位期间;在空间上,水库地震的震中大多分布在水库及其周围5公里范围内,且相对集中在一特定范围;水库诱发地震的震源深度一般很浅,震源深度小于5公里。

由于震源浅,水库地震的震中烈度一般均较同震级天然地震高,但影响范围较天然地震小很多。

水库诱发地震

水库诱发地震

一. 地震的一些基本概念
5.震级与烈度 (2)地震烈度
一次地震对某一地区的影响和破坏程度称地震烈 度,简称为烈度。用I表示。 一般而言,震级越大,烈度就越大。同一次地震, 震中距小烈度就高,反之烈度就低。影响烈度的 因素,除了震级、震中距外,还与震源深度、地 质构造和地基条件等因素有关。
地震烈度表是评定烈度的标准和尺度,我国在1980 年制定了《中国地震烈度表》,将地震烈度分为112度。
因人为因素直接造成的地震是人工地震。 如工业爆破、地下核爆炸造成的振动;在深 井中进行高压注水以及大水库蓄水后增加了 地壳的压力,有时也会诱发地震。 1962年3月19日在广东河源新丰江水库坝区发 生了迄今我国最大的水库诱发地震,震级为 6.1级。
一. 地震的一些基本概念
4.地震分类 (2)按震源深浅分类 浅源地震—震源深度小于70千米的称为浅源地震。 全世界85%以上的地震都是浅源地震。 中源地震—震源深度在70至300千米的称为中源地震。 深源地震—震源深度在300千米以上的称为深源地震。
b.水灾:由水坝决口或山崩拥塞河道等引起;
c.毒气泄漏:由建筑物或装置破坏等引起;
目前有记录的最深震源达720公里。
浅源地震波及范围小,但破坏力大;深源地震波及 范围大,但破坏力小。
2002年6月29日晨1:20发生于吉林的7.2级地震, 震源深度为540km,无破坏。 1960年2月29日发生于摩洛哥艾加迪尔城的5.8级 地震,深度为3km。震中破坏极为严重,但破坏 仅局限在震中8km内。
环境岩土工程
第六讲 建筑物抗震设计及水库诱发地震
5月31日,受飓风“阿加莎”的影响,危地马拉首都危地 马拉城出现一个深达60米塌陷洞,有目击称一幢3层建筑 坠入洞中,至少造成1人死亡。 (凤凰网2010年6月1日)

水库诱发地震资料

水库诱发地震资料

过去,世界各国建设水库大坝工程,都是尽量避免在地质条件复杂的地区建设,更不会建造在会发生强烈地震的断裂带上。

许多断裂带都是在地震发生之后才发现的。

过去的经验总结是:在弱震地区或地质构造稳定的地区,大型水库大坝会诱发地震,水库诱发地震强度可以超过历史上所记录的最大地震强度。

下面介绍世界上几个著名的水库诱发地震的案例:1.印度科依纳水库诱发地震印度科依纳(KOYNA)水库位于印度孟买城以南二百三十公里的地方,库容量27.8亿立方米,水库面积116平方公里.科依纳水库于1954年开工建造,1963年完工。

科依纳水库大坝高103米,大坝体积130万立方米,大坝为粗石混凝土重力坝。

印度科依纳水库不但大坝底下的地基十分理想,而且水库所在地区的地质结构完整,从地质板块学的观点来看米,这座水库是建造在印度板块上,是印度-澳大利亚板块的一部份。

于几百年万前就已经形成。

人们认为这种地质结构是最稳定的,即所谓的无震区,而且在水库建造之前,也没有地震的记载。

大坝位于前寒武纪地质带上,地质条件非常优越.但是就在这里发生了至今为止记录在案的强度最大的地震。

1963年科依纳水库竣工并当即蓄水启用。

在这之后,附近地区就小震不断,在1964年和1965年之间,最高一周地震次数达四十多次。

水库在1965年蓄满水,之后地震次数增多,强度加大,到1967年,一周地震次数竟高达320次地震。

在1967年9月13日发生了一次震级 5.5级的地震,1967年12月11日在大坝附近发生了为震级6.5级的地震,震中烈度为VIII度。

这次地震的震源就在水库大坝附近离地面9-23公里的地方。

这次地震影响的范围很大,整个印度半岛的西半部份都能感觉到该次地震。

由于水库诱发地震而直接死亡人数约为177人,受伤人数超过1700人。

该地区大批房屋倒塌或是受到严重损坏,成千上万的人无家可归。

科依纳水库的大坝虽然没有因地震而倒塌,但受到严重损坏,水泥大坝两面出现了多处裂缝,有几处水都从裂缝处渗透出来。

第六章 水库诱发地震(完整资料).doc

第六章  水库诱发地震(完整资料).doc

【最新整理,下载后即可编辑】第六章 水库诱发地震的工程地质分析4.水库诱发地震的诱发机制4.1水库蓄水的基本效应(1)水的物理化学效应①软化、泥化--天然河谷下断裂一般含水,这种效应通常不起作用;②石膏软化膨胀—诱因,但充塞导水裂隙而隔水;③应力腐蚀--增加水份缩短破坏时间、固定压力加速裂隙扩展,蓄水后水压增大,水可进入裂隙→应力腐蚀;(2)水库的荷载效应在岩体中产生附加应力,恶化断裂的应力条件。

①影响深度与荷载作用面积有关—大型水库;②荷载效应与岩体结构有关—陡倾软弱结构面;(3)空隙水压力效应τ=(σn -P W )tg φ+C只有在地壳岩体天然应力场中的最大、最小主应力差相当大的情况下,水库的荷载效应和空隙水压力效应才能起到有效的诱发作用。

4.2水库地震的诱震机制设定:水库无限延伸,则:①水体荷载在岩体中的垂直附加应力:⊿σV =γh水平附加应力:⊿σh =(μ/1-μ)γh=0.43γh②水位升高所产生的空隙水压力:⊿P w =γh(1)潜在正断型应力状态①水库的荷载效应:a.由于水库荷载σV 与垂向最大主应力迭加,则σ1→σ1/=σ1+⊿σV =σ1+γhb.侧压力效应使水平向最小主应力增值仅为σ3→σ3/=σ3+⊿σh =σ3+(μ/1-μ)γh=σ3+0.43γh莫尔圆增大并稍向右移,稳定条件有所恶化;②空隙水压力效应:σ1/→σ1//=σ1/-⊿P w=σ1+γh-γh=σ1σ3/→σ3//=σ3/-⊿P w=σ3+0.43γh-γh=σ3-0.57γh空隙水压力同时减小最大、最小主应力,莫尔圆左移接近强度包络线。

显然,荷载与空隙水压力效应最终导致震源岩体稳定状况强烈恶化。

(2)潜在走滑型应力状态①水库的荷载效应:σ1→σ1/=σ1+⊿σh =σ1+0.43γhσ3→σ3/=σ3+⊿σh =σ3+0.43γh莫尔圆大小不变地右移远离强度包络线,稳定性有所改善。

②空隙水压力效应:σ1/→σ1//=σ1/-⊿P w=σ1+0.43γh-γh=σ1- 0.57γhσ3/→σ3//=σ3/-⊿P w=σ3+0.43γh-γh=σ3-0.57γh荷载效应使莫尔圆离开强度包络线的距离小于空隙水压力效应使之接近包络线的距离,最终稳定性状况明显恶化。

第六章 水库诱发地震

第六章  水库诱发地震

第六章水库诱发地震的工程地质分析4.水库诱发地震的诱发机制4.1水库蓄水的基本效应(1)水的物理化学效应①软化、泥化--天然河谷下断裂一般含水,这种效应通常不起作用;②石膏软化膨胀—诱因,但充塞导水裂隙而隔水;③应力腐蚀--增加水份缩短破坏时间、固定压力加速裂隙扩展,蓄水后水压增大,水可进入裂隙→应力腐蚀;(2)水库的荷载效应在岩体中产生附加应力,恶化断裂的应力条件。

①影响深度与荷载作用面积有关—大型水库;②荷载效应与岩体结构有关—陡倾软弱结构面;(3)空隙水压力效应τ=(σn-P W)tgφ+C只有在地壳岩体天然应力场中的最大、最小主应力差相当大的情况下,水库的荷载效应和空隙水压力效应才能起到有效的诱发作用。

4.2水库地震的诱震机制设定:水库无限延伸,则:①水体荷载在岩体中的垂直附加应力:⊿σ=γhV=(μ/1-μ)γh=0.43γh水平附加应力:⊿σh=γh②水位升高所产生的空隙水压力:⊿Pw(1)潜在正断型应力状态①水库的荷载效应:与垂向最大主应力迭加,则a.由于水库荷载σVσ1→σ1/=σ1+⊿σV =σ1+γhb.侧压力效应使水平向最小主应力增值仅为σ3→σ3/=σ3+⊿σh =σ3+(μ/1-μ)γh=σ3+0.43γh 莫尔圆增大并稍向右移,稳定条件有所恶化;②空隙水压力效应:σ1/→σ1//=σ1/-⊿P w+γh-γh=σ1=σ1σ3/→σ3//=σ3/-⊿P w=σ+0.43γh-γh3=σ-0.57γh3空隙水压力同时减小最大、最小主应力,莫尔圆左移接近强度包络线。

显然,荷载与空隙水压力效应最终导致震源岩体稳定状况强烈恶化。

(2)潜在走滑型应力状态①水库的荷载效应:σ1→σ1/=σ1+⊿σh =σ1+0.43γhσ3→σ3/=σ3+⊿σh =σ3+0.43γh莫尔圆大小不变地右移远离强度包络线,稳定性有所改善。

②空隙水压力效应:σ1/→σ1//=σ1/-⊿P w=σ+0.43γh-γh1- 0.57γh=σ1σ3/→σ3//=σ3/-⊿P w+0.43γh-γh=σ3=σ-0.57γh3荷载效应使莫尔圆离开强度包络线的距离小于空隙水压力效应使之接近包络线的距离,最终稳定性状况明显恶化。

水库诱发地震的特点

水库诱发地震的特点

水库诱发地震的特点有哪些1、发生地多位于水库附近—般仅发生在水库及其周边几公里至十几公里范围内,或发生于水库最大水深处及其附近。

具有一定的规律性。

2、时间上与工程活动密切相关一般发生于水库蓄水后不久,在最高蓄水位的第一、二个周期内可能发生较大的地震。

影响水库地震频率的因素除地质和构造因素外,还与水位增长速率、荷载持续时间、最高水位、高水位持续时间等有关。

3、震源较浅,震源体小震源深度较浅,一般在地表下10 km以内,个别达20 km,以4km~7 km居多,且有初期浅,后逐渐加深之趋势。

震源体小,地震影响范围不大,等震线衰减快,影响范围多属局部性。

4、地震的类型主要分为震群型和前震一主震一余震型震群型水库地震与水库水位变化有较好的对应关系。

这种诱发地震的分布与库基地型与水体形状有一定的关系,他们的形成还受浅层库基内小断裂网络的影响,而与大型活动断层关系不明显。

前震一主震_余震型水库地震是在水库蓄水以后,一段时间内诱发一系列微小地震,经过持续的地震活动后出现主震,最后发展成为缓慢衰减的余震活动。

汶川特大地震已经过去一年了,对这次地震的成因已经有许多科学家进行了较深入的研究,认为是印度大陆板块向北漂移并和欧亚大陆板块碰撞挤压,地壳沿着龙门山断裂带逆冲而发生强烈地震。

然而,还有一些声音总是把这次地震的发生归咎于西南地区的水电建设。

那么,水电建设形成的水库到底能诱发多大的地震呢?诱发地震的危害很大吗?水库诱发地震一般是指由于水库蓄水或水位变化而引发的地震现象。

世界上记录到的第一例水库诱发地震是希腊的马拉松水库。

据不完全统计,全世界坝高大于15m的水库大约有3万多座,发生水库诱发地震约有120例(分布在29个国家);我国坝高大于15m的水库约有19000多座,产生诱发地震仅22例(包括有争议的8座),约占0.1%,诱发地震的比例极小。

全球范围内大于M6.0级的水库诱发地震共有4起,大于5.0级的有12起,其余震级均较小。

概评水库诱发地震及激发机制

概评水库诱发地震及激发机制

3 1 第一类 型 . 震群型诱发地震 特 点是 地震 序列 为 一个 或数 个震 群所
组 成 , 震 级 较 小 , 常 为 3级 以 下 , 源 很 浅 , 布 于 水 库 其 通 震 分
或水域边缘附近 。地震在 时间分布 上有秘 籍和稀疏 的变 化 , 形成数组地震或 互不 相衔 接 的几个 小 震群 。整个 地震 活动 持续 数月或数年 。地震 活 动 的连续 性 和持久 性都 较差 。震
震 的评 估 。水 库 诱 发 地 震 将 对 经 济 建 设 和 人 民 生 命 财 产 构
水都会 诱发地震 。根据 已发生 诱发地 震水 库进行 剖析 , 大多
数 发 生 在 地 质 构 造 相 对 活 动 地 区 , 均 于 断 陷 盆 地 中 并 与 活 且
成威胁 , 成一定的损失 , 造 其危 害绝 不容忽视 。
动 断层 有关 , 区内断层 发育 , 库 新构造 差异 运动显 著、 温泉发
育, 皆利于应力集 中 , 从而容 易诱 发地震 。
产 生诱 发地震 , 别是 6级 以上 的震 区岩 性 多 为变 质 特 岩、 玄武岩类 等 脆性 岩 石 , 易于 破 碎 , 使库 水 易 向 深部 渗 促 透 。孔 隙水压 力作用下 , 岩石易 软化 、 使强度 降低 、 而岩 性 不均一则有 利于应力 集 中 , 这均 利 于使 断层产 生错 动 , 软 但 基 内均质岩 体不 易积蓄应力 , 故不易激发地震 。
多 地 震 的 国家 , 曾 经 发 生 多 起 水 库 诱 发 地 震 。 因 此 , 库 也 水
2 诱 发地 震 发 生的条 件
水 库 诱 发 地 震 的 发 生 是 有 条 件 的 , 不 是 所 有 的 水 库 蓄 并

谈工程地质及水文地质的水库诱发地震

谈工程地质及水文地质的水库诱发地震

谈工程地质及水文地质的水库诱发地震土木101 张妍 1014013005 随着我国社会的发展和经济的繁荣,人类的活动越来越频繁。

与此同时,对资源的需求量也日趋增大,人们开始在山沟或河流的狭口处建造拦河坝使之形成人工湖泊,即水库。

水库建成后可以为附近的地区提供自来水及灌溉用水;利用水坝上的水力发电机来产生电力;运河系统的一部份;水库的防洪效益;对库区和下游进行径流调节;其他的用处包括渔业。

然而,随着水库的建成,也有了很多问题的出现。

其中水库诱发地震就是问题之一。

它是人类兴建水库的工程建设活动与地质环境中原有的内、外应力引起的不稳定因素相互作用的结果,是诱发地震中震例最多、震害最重的一种类型。

水库蓄水后,使库区及其邻近地带地震活动明显增强的现象称为水库诱发地震,又称为水库地震。

水库诱发地震的原因可分为两种:一:在原本没有地震断裂带的地区,由于水坝的建设以后形成水库,水库蓄水改变了原来的地应力分布,从而产生了局部的地震。

二:由于水库蓄水地区域原来就是地震区,有明显的地震断裂带存在。

原有的地应力积累就已经孕育着地震的发生,由于水库蓄水打破了原有的受力平衡,导致了原有地震的延迟或者提前发生。

水库诱发地震的条件有:一、水库规模:从国内外水库诱发地震统计资料看,诱发地震的发生概率随着坝高、蓄水深度和库容的增大而明显增高。

二、岩性条件:据统计资料分析,组成库盆的岩性与水库诱发地震有一定的相关性。

三、构造条件:现代构造活动较强烈的地区,由于活动断裂常常随地应力的局部集中,有利于诱发较强的水库地震。

四、渗透条件:水库诱发地震的发生,必须有库水渗透参与,因此,库盆岩体的渗透条件是诱发地震重要条件之一。

五、地应力动态:库盆及周围地区的天然地应力状态、水库附加荷载及库水渗透压力等综合作用,将使岩体中不连续面上的应力条件改变,导致不连续面破裂而诱发水库地震。

六、区域地震活动水平:区域地震活动水平总体上反映该区域稳定状态,地震活动水平较高地区,可能诱发较强的水库地震。

什么是水库诱发地震?

什么是水库诱发地震?

什么是水库诱发地震?修建水库会造成地震吗?如何评估和应对?水库诱发地震,是指由于水库蓄水或水位变化而引发的地震。

因为水库蓄水后荷载增加以及对地下水分布状态的扰动,可能造成地下岩层变化,促使原来自然条件下孕育的地应力释放而发生地震。

水库诱发地震的规模一般比较小,其震中位置只是分布在坝区、水库库盆及其近岸地段非常小的范围内,而且震源深度也很浅。

水库诱发地震虽然影响面不是太大,但是对于库区周围以及大坝的影响却不容忽视。

因此修建大型水库时,开展水库诱发地震危险性评价是极其重要的工作。

首先,在兴建水库前可根据所建水库的规模、水库区的岩性、地质构造、渗透条件、应力分布状态和地震活动背景等,划分出可能发震的地段和可能发生的最大震级。

水库诱发地震的发生概率随坝高(水深)和库容的增大而增高。

一般中小型水库可不考虑水库诱发地震问题。

对于大型水库特别是库容大于10亿立方米的大Ⅰ型水库,每兴建十座可能就有一至两座发生地震,应予以特别关注。

岩性是诱发地震最为重要的相关条件,已有的震例表明,绝大部分水库诱发地震发生在碳酸岩等可溶岩中,其次为花岗岩类、火山熔岩等坚硬岩层。

松散岩、碎屑岩、变质碎屑岩中一般不出现水库诱发地震。

在地质构造上,那些具有引张性质并平行于库岸的不连续构造面,如断层、节理及裂隙等易于发震。

库水不被表层铺盖松散岩所阻隔、峡谷和基岩裸露的库岸、岩溶管道系统的发育等良好的渗透条件也是容易发震的诱因。

各种应力集中的状态都可能引发地震。

浅部地震多数与逆断层和正断层应力集中状态有关,而较大地震则可能与正断层或走滑断层的应力状态有关。

区域地震活动背景的研究有助于了解岩体或构造的稳定状态,在估计发震强度时可作参考。

为了规范水库诱发地震危险性评价,国家标准GB 21075—2007《水库诱发地震危险性评价》对工作内容、技术要求和工作方法做出了具体的规定,有效地规范了考虑水库诱发地震因素的大型水利水电工程的抗震设计、工程选址等工作。

水库诱发地震——丽江抗震减灾

水库诱发地震——丽江抗震减灾

水库诱发地震——防震减灾一、水库诱发地震简介水库诱发地震是指因水库蓄水而诱使坝区、水库库盆或近岸范围内发生的地震。

根据精确定位的水库诱发地震的震中资料证明,水库诱发地震震中位置均分布在坝区、水库库盆及近岸地段范围内,距库边线一般不超过3~5千米,最远10千米。

对水库地震成因的探讨一直是人们最感兴趣的课题,也曾有许多似是而非的观点流行。

库水的重力荷载作用和孔隙压力作用是诱震因素之一,但库水的作用必须借助于地质体中存在的导水结构面才能向深部传递。

通过查明库区是否存在特定的水文地质条件来判别诱发地震的可能性,进而估计发震地点和最大可能强度,称为水库诱发地震研究中的水文地质结构面理论,是现阶段预测水库诱发地震的理论基础。

据研究,我国曾归纳了以下七条可能诱发水库地震的定性标志。

①坝高大于100米,库容大于10亿立方米;②库坝区有新构造,活断裂呈张,扭性和张扭,压扭性;③库坝区为中,新生代断陷盆地或其它边缘,近代升降活动明显;④深部存在重力梯度异常;⑤岩体深部张裂隙发育,透水性强;⑥库坝区有温泉;⑦库坝区历史上曾有地震发生。

上述七条,符合数越齐备,越典型,则该水库蓄水后诱发地震的可能性就越大。

按工程地质条件来分类,水库诱发地震具有不同的成因类型,主要有岩溶塌陷型和断层破裂型。

其他类型的诱发地震震级很小,不会对大坝和周围环境造成危害,因此一般不作过多的研究。

岩溶塌陷型水库诱发地震最常见,多为弱震或中强震。

我国在岩溶地区的大型水库有8个,其中4个诱发了地震。

断层破裂型水库诱发地震发生的概率虽然较低,但有可能诱发中强震或强震。

我国的新丰江水库和印度的柯依纳水库的诱发地震都属于这种类型。

20世纪40年代以来,世界上已有34个国家的134座水库被报道出现了水库诱发地震,其中得到较普遍承认的超过90处。

它们仅占世界大坝会议已登记的3.5万座水库的2‰~3‰。

但是不容忽视的是,随着大坝坝高的增加,发生水库诱发地震的比例也相应增加,坝高超过200米的水库,发生诱发地震的实际比率为34%。

浅谈水库诱发地震问题

浅谈水库诱发地震问题

浅谈水库诱发地震问题摘要:文章通过统计数据阐述水库诱发地震的因素、地震特征和地震的成因机制,浅析水库诱发地震产生的地质灾害。

关键词:地震;水库;库水荷载;孔隙水压力因水库蓄水而诱使坝区、水库库盆或近岸范围内发生的地震叫做水库诱发地震。

自1931年希腊的马松水库首次诱发地震以来,到1986年底(1988年出版的《世界大坝登记》)的55年时间内,世界上已有79个国家建成库坝37 308座,其中已有29个国家报道了116座水库诱发地震的震例(详见表1),发震率为3.1‰。

笔者根据目前已掌握的资料对水库诱发地震问题提出一些粗浅的认识,以期与同行其商榷。

1 与水库诱发地震相关的因素1.1 岩性从52例统计数分析,诱发地震的水库可溶岩地区25例,占48.1%;火成岩地区12例,占23.1%;变质岩地区11例,占21.1%;碎屑岩地区4例,占7.7%。

其中,近一半的水库诱发地震发生在可溶岩地区,说明水库诱发地震与库区岩石的渗透性能有着密切的关系,如我国湖北省的邓家桥水库,每当库水位淹没库左岸的溶洞口后,就会诱发一系列的微震;又如我国湖南的黄石水库,每当库水位到达库尾奥陶系灰岩区时都要诱发地震。

6例5.5级以上的水库诱发地震中有4例发生在以花岗岩为主的火成岩地区,占66.7%,说明岩石强度与水库诱发地震的强度成正比关系。

1.2 构造从65例统计数分析,49例位于断陷盆地和褶皱带上或位于活动断层附近,而其余诱发地震的水库均与附近小构造有着密切的关系。

说明水库诱发地震离不开地应力相对集中的断裂构造,即离不开一般地震的机理。

如1962年3月19日发生Ms6.1级主震的我国广东新丰江水库位于断陷盆地边缘的北北西和北东东向断裂部位,1963年9月10日发生Ms4.0级主震的意大利瓦依昂水库处在新生代褶皱带上。

1.3 库水荷载从理论上分析,库水荷载可以增大地下一定深度内断裂面的应力。

根据J.B.Beck对美国奥鲁威尔库水荷载的计算,库水深200 m时地下1 km处的岩体因库水荷载增加的剪应力为3.4 kg/cm2,地下5~10 km处的岩体因库水荷载增加的剪应力为0.12 kg/cm2。

水库诱发地震的研究综述

水库诱发地震的研究综述

水库诱发地震的研究综述作者:靳建市黄鹏李丽来源:《中国科技博览》2014年第01期摘要:水库诱发地震问题是今年来水利和地震工作者所做的重点研究之一。

本文简介了水库诱发地震的特点、形成机制和地质条件等,并以此为基础提出了水库诱发地震的相应对策。

水库诱发地震具有较大的破坏性,因此,水库诱发地震问题日益引起人们的关注,已成为水电工程建设中值得研究的重要课题之一。

关键词:水库诱发地震;特点;形成机制;地质条件中图分类号:P315.1一、前言水库诱发地震,一般是指在库区特定的地质条件下,水库蓄水后伴随产生某种诱发作用,导致岩体内累积的应变能释放而产生地震的现象。

水库诱发地震具有很大的破坏性,不仅将给工程建筑物和设备等财产造成破坏,还可能诱发滑坡、引起涌浪,使水库地区人民的生命财产造成灾难性的损失。

因此,水库诱发地震已引起各国地震学者的关注。

相对其他国家,我国发生水库诱发地震的概率较高,而且以东部和中南部经济发达、人口众多的弱震区或少震区为甚。

因此,更应引起足够的重视。

二、水库诱发地震的特点1、发生地多位于水库附近一般仅发生在水库及其周边几公里至十几公里范围内,或发生于水库最大水深处及其附近。

具有一定的规律性。

2、时间上与工程活动密切相关一般发生于水库蓄水后不久,在最高蓄水位的第一、二个周期内可能发生较大的地震。

影响水库地震频率的因素除地质和构造因素外,还与水位增长速率、荷载持续时间、最高水位、高水位持续时间等有关。

3、震源较浅,震源体小震源深度较浅,一般在地表下10 km 以内,个别达20 km,以4 km~7 km 居多,且有初期浅,后逐渐加深之趋势。

震源体小,地震影响范围不大,等震线衰减快,影响范围多属局部性。

4、地震的类型主要分为震群型和前震-主震-余震型震群型水库地震与水库水位变化有较好的对应关系。

这种诱发地震的分布与库基地型与水体形状有一定的关系,他们的形成还受浅层库基内小断裂网络的影响,而与大型活动断层关系不明显。

浅谈水库诱发地震

浅谈水库诱发地震

水库诱发地震,一般指在库区特定的地质条件下,水库蓄水后伴随产生某种诱发作用,导致岩体内累积的应变能释放而产生地震的现象。

世界上一部分大型和特大型水库蓄水后都伴有地震活动。

观测研究表明,相当一部分水库蓄水后的地震活动水平和活动特征都与蓄水前具有明显的差异。

特别是高坝大库蓄水后地震活动明显增多的例子较多。

水库诱发地震在时间和空间分布,震源机制,序列特征等诸多方面与天然构造地震想比较,有其自己独有的特征。

据资料统计,目前世界上已有一百余个水库诱发地震例子,仅我国就有二十余例。

尤其是坝高100米以上,库容亦达10亿立方米以上的水库发生诱发地震的概率较高。

在我国已发生诱发地震的高坝水库约占总数的四分之一,且不少诱发地震均发生在天然地震的少震区和弱震区。

水库诱发地震曾经在世界上多次导致破坏性后果,最早于1931 年发生在希腊的马拉松水库。

20 世纪60 年代以来,又有几个大水库相继发生6 级以上强烈地震。

造成大坝及附近建筑物的破坏和人员伤亡。

由于水库诱发地震具有很大的破坏性,不仅将给工程建筑物和设备等财产造成破坏,还可能诱发滑坡、引起涌浪,使水库地区人民的生命财产造成灾难性的损失。

因此。

水库诱发地震不仅是水利水电工程研究的重要内容,也是区域构造稳定性和环境工程地质研究重要内容之一。

1地震类型引起地球表层振动的原因很多,根据地震的成因,可以把地震分为以下几种:1.1构造地震由于地下深处岩层错动、破裂所造成的地震称为构造地震。

这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。

1.2火山地震由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。

只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。

1.3塌陷地震由于地下岩洞或矿井顶部塌陷而引起的地震称为塌陷地震。

这类地震的规模比较小,次数也很少,即使有,也往往发生在溶洞密布的石灰岩地区或大规模地下开采的矿区。

1.4诱发地震由于水库蓄水、油田注水等活动而引发的地震称为诱发地震。

水库诱发地震的特征

水库诱发地震的特征

水库诱发地震的特征新丰江水库地震后,我国投入了大量的人力物力对其进行观测与研究。

培养锻炼了一支水库地震研究的队伍,摸索出了一条具有中国特色的研究水库地震的途径,经他们研究总结提出水库诱发地震的特征是:时间特征---诱发地震的产生和活动性与水库蓄水密切相关。

水库诱发地震初次发震时间百分之七十左右发生在蓄水后一年内。

主震发生的时间距初震一至数月的比例较高。

一般的规律是水位上升伴随地震活动性增加,水位下降则地震活动性则减弱。

也有个别水位与地震活动性负相关的例子,蓄水后排空反而出现了诱发地震。

按水库蓄水和地震活动性的时间差还可以从另一个角度将其分为“快速响应”型和“滞后响应”型,此处不再细说。

空间特征---水库地震的震中大多分布在水库及其附近,特别是大坝附近的深水库区容易诱发较大的地震。

水库诱发的地震一般局水域线不超过十几千米,且相对密集在一定的范围之内。

水库诱发地震的震源深度一般很浅,多数在数百至数千米范围内,很少有超过十千米例子。

强度特征---多数水库诱发地震的最高震级不超过三级。

据资料统计世界上诱发了5级以上中强震的水库约有二十余例,而诱发6级以上强震的水库只有四例。

水库地震的震中烈度一般就达Ⅴ度,3级以上诱发地震震中烈度达Ⅵ度的例子亦不少。

活动特征---水库诱发地震有前震—主震—余震型和震群型两大类,且以具有快速响应特征的震群型居多。

表征水库地震的震级—频度关系的B值较同样震级的天然构造地震的B值偏高。

构造型水库诱发地震的活动持续时间长,余震频繁,衰减慢且强度亦高。

波谱特征---水库地震的高频能量丰富,多数绊有可闻声波。

国外有观测到优势频谱为70—80HZ甚至更高的报导。

高坝大库与水库诱发地震世界上一部分大型和特大型水库蓄水后都伴有地震活动。

观测研究表明,相当一部分水库蓄水后的地震活动水平和活动特征都与蓄水前具有明显的差异。

特别是高坝大库蓄水后地震活动明显增多的例子较多。

水库诱发地震在时间和空间分布,震源机制,序列特征等诸多方面与天然构造地震想比较,有其自己独有的特征。

三峡地区水库诱发地震成因分析

三峡地区水库诱发地震成因分析

三峡地区水库诱发地震成因分析南华大学核资源工程学院陈雨林摘要水库诱发地震是由于水库建成蓄水所引起的地震。

水库诱发地震的可能性客观存在是世界学术界已经形成的共识。

三峡水利工程的拦河坝高181米,库容量为393亿立方米,是世界上最大型的水利枢纽工程。

自蓄水以来诱发地震明显增强。

本文参考台站监测数据从构造、岩性、水位三个方面论述三峡库区诱发地震的原因。

关键词三峡水库、诱发地震Analysis on the reasons of RIS in Three Gorge areaAbstract Reservoir Induced Seismicity(RIS) is one kind of earthquake caused by the reservoir built water. It is the world's academic consensus that the possibility of reservoir inducing earthquake objectivly existences. Project has a 39.3 billion cubic meters of capacity with a 181 meters high dam, which is the greatest key water control project in the world at present.Seismicity has been enhancing obviously since water storage. This paper analyses the reasons of RIS in three aspects of construction、lithology and water level, refer to the data of seismic monitoring station.Key words Three Gorge Project、Reservoir Induced Seismicity引言迄今长江三峡工程是世界上发电量最大的水电站。

水库诱发地震研究

水库诱发地震研究

水库诱发地震研究摘要:近年来随着我国水利工程建设的不断发展,水库大坝和大型水库的建设投资越来越多,数量也不断增加,特别是在复杂地质构造区域的建设逐渐增多,水库诱发地震的危险程度相应增加。

本文主要从水库诱发地震的类型、基本特征以及诱发的可能性条件素等方面进行研究,并研究未来水库工作的发展趋势。

关键词:水库诱发地震;基本特征;诱发条件;诱发因素水库诱发地震是一种异常的地震活动,通常指在当地库区某种特定地质条件下,水库排水或蓄水过程中,由于矿山坑道发生坍塌、修建水库、地下核爆炸或者人工爆破等外界诱发作用下,累积的岩体内应变能释放导致库区及其附近周边范围内发生的地震。

早期在50年代末期,人们并没有过多的注重水库地震的发生与研究,直到60年代,全球范围内陆续报导了赞比亚——卡里巴、中国——新丰江、希腊——克雷马斯塔以及印度——柯依纳等大型水库地震,地震级别均>6级,给人们的财产安全和生命安全造成重大损失,水库地震的破坏性才逐渐引起世界各地物理工作者和工程技术人员的关注,对水库诱发地震的研究越来越多。

水库诱发地震涉及的内容非常广泛,对其研究包括工程地质学、结构抗震学、地震学以及水文地质学等多门前沿课程学科,目前对于水库诱发地震的成因、诱发因素以及诱发机制尚未明确。

水库诱发地震的类型及其基本特征1.1水库诱发地震的主要类型水库诱发地震的类型根据多成因理论主要分为地壳表层卸荷型、岩溶塌陷型以及构造破裂型三种类型:①地壳表层卸荷型水库地震:地震发生的震级通常不会超过3级,一般无明显的发生规律,只需要具备一定的水动力和卸荷应力即可在坚硬脆性以及断裂发育的岩体中发生。

②岩溶塌陷型水库地震:震级通常不会超过4级,地震的发生和地下管道系统以及岩溶洞穴的发育有一定的联系,而且一般只会在水库中分布有碳酸盐岩的地段出现。

③构造破裂型水库地震:震级比前两种类型强很多,可能在4.5级(中等)以上,大部分破坏性较强的水库地震都属于该种类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水库诱发地震简述
人类大规模的工程建设活动会引发地震。

水库诱发地震是人工湖在蓄水初期出现的、与当地天然地震活动特征明显不同的地震现象,亦简称为水库地震。

水库诱发地震具有多种成因,其发震机理和诱震因素十分复杂,目前还没有完全为人们所认识。

水库诱发地震是涉及地震学、水文地质学、工程地质学、和结构抗震学等多学科交叉的前沿课题。

本世纪40年代以来,世界上已有34个国家的134座水库被报道出现了水库诱发地震,其中得到较普遍承认的超过90处。

有4例发生了6级以上地震,他们是中国的新丰江(1962年,6.1级)、赞比亚─津巴布韦的卡里巴(Kariba,1963年,6.1级)、希腊的克瑞马斯塔(Kremasta,1966年,6.3级)、和印度的柯依纳(Koyna,1967年,6.5级)。

发生在坝址附近的强震和中强震,有可能对大坝和其它水工建筑物造成直接损害。

已知挡水建筑物遭受损害的有两个震例(表1),尚未发生过大坝因水库地震而溃垮或严重破坏的情况。

水库诱发地震对库区及邻近地区居民点的影响则更为常见,强震和中强震会给库区造成人员伤亡,带来重大物质损失。

即使一般的弱震微震,也会对震中区造成一定危害,影响当地居民的正常生产和生活,是库区主要的环境地质问题之一。

我国迄今已报道出现水库诱发地震的工程有25例,其中得到公认的有17
例(见表2),是世界上水库地震最多的国家之一。

值得注意的是,高坝大库中出现诱发地震的比例明显偏高。

我国(含香港和台湾)已建成的百米以上大坝32座,出现了水库诱发地震的有10座,发震比例超过31%;其中1979年以后蓄水的17座百米以上大坝中有8座发生水库地震,发震比例高达47%,远远高于世界平均水平。

从水库诱发地震的强度来看,全球发生6.0级以上强烈地震的仅占3%,
5.9—4.5级中等强度的占27%,发生4.4—3.0级弱震和3.0级以下微震的占到70%(分别为32%和38%)。

在我国这一比例相应为4%、16%和80%。

但是水库诱发地震往往出现在历史地震较平静的地区,强烈和中强水库地震在大多数情况下都超过了当地历史记载的最大地震,许多发生弱震和有感微震的情况,也是当地居民记忆中未曾有过的重大事件。

自70年代末开始,我国的水库诱发地震研究由回顾性研究逐渐转变为前瞻性研究。

近20年来,几乎全部拟建的大(1)型和多数大(2)型水利水电工程,对诱发地震的潜在危险性及其对工程和环境的影响作出前期论证,数十个重大工程在蓄水前提出过正式预测意见。

我国水库诱发地震研究的突出特点,是始终紧密结合工程建设和工程抗震安全的需要,具有很强的实用性和可操作性。

对成因机制、判别标志、评价和预测准则等问题,进行了多方面的探索,逐渐形成一整套具有特色的研究和评价方法,特别在研究和确定工程的抗震对策方面,积累了丰富的经验。

表2 中国水库诱发地震震例基本情况一览表
按照多成因理论,常见的水库诱发地震主要有三种类型:构造破裂型、岩溶塌陷型和地壳表层卸荷型。

构造型水库地震有可能达到中等(4.5级)以上强度,破坏性水库地震绝大部分属于构造型水库地震。

岩溶塌陷型水库地震只出现在碳酸盐岩分布的库段,与岩溶洞穴和地下管道系统的发育有关,震级一般小于4级。

地壳表层卸荷型水库地震具有一定的随机性,在断裂发育、坚硬脆性的岩体中,具备一定的卸荷应力和水动力条件时即可发生,但其震级一般在3级以下。

实用的水库诱发地震预测模型至少必须能辨别出上述三种主要类型的诱震环境,并分别进行预测。

对于不常见的水库地震类型,最好也具有一定的识别能力。

对水库地震成因的探讨一直是人们最感兴趣的课题,也曾有许多似是而非的观点流行。

库水的重力荷载作用和孔隙压力作用是诱震因素之一,但库水的作用必须借助于地质体中存在的导水结构面才能向深部传递。

通过查明库区是否存在特定的水文地质条件来判别诱发地震的可能性,进而估计发震地点和最大可能强度,称为水库诱发地震研究中的水文地质结构面理论,是现阶段预测水库诱发地震的理论基础。

地震监测是大型水利水电工程的常规监测项目之一。

在前期勘测阶段或开始施工阶段就应进行地震监测台网建设,积累地震本底资料,以便对比水库蓄水前后地震活动的变化情况。

据不完全统计,设立了地震台站的大型水库工程已经超
过40座,设立了比较先进的遥测地震台网的目前已有11个。

在确保大坝抗震安全,保证工程顺利施工和运行方面发挥了重要作用。

我们认为,下一步应采取理论与实践相结合的方法,深入探讨水库地震的成因机制、判别标志和预测评价方法等问题。

将GIS(地理信息系统)技术引入水库诱发地震的研究中,建立集分析预测评价、安全监测预警和防震抗灾决策支持为一体的综合系统。

中国水利水电科学研究院工程抗震研究中心
地址:北京市海淀区车公庄西路20号
邮编:100044
电话:+86-10-68415522转6224、6517
传真:+86-10-68478065
Email:eerc@。

相关文档
最新文档