高数定理定义总结复习进程

合集下载

高数上册知识点总结

高数上册知识点总结

高数上册知识点总结高等数学上册知识点总结引言高等数学是大学数学的重要组成部分,它为我们提供了解析几何、微积分、无穷级数等一系列数学工具,为我们理解和解决各种实际问题提供了强大的支持。

在高等数学上册中,我们将学习到很多重要的概念和定理,本文将对其中一些关键知识进行总结。

一、导数与微分导数是微积分的首要概念之一,用于描述函数的变化率。

公式上,导数表示函数在某一点上的切线斜率。

微分是导数的微小变化,表示函数在某一点上的微小增量。

我们需要掌握导数的基本定义和常见函数的求导法则,并理解导数的物理和几何意义。

二、极限与连续极限是高等数学中最关键的概念之一,用于描述随着自变量趋近某一特定值时函数值的变化情况。

极限可以分为常数极限、无穷大极限和无穷小极限。

连续是指函数在整个定义域上无间断,没有跳跃和缺口。

我们需要熟悉极限的计算方法和性质,并理解连续函数的判定条件和性质。

三、函数与映射函数是一种描述两个变量之间关系的数学工具。

函数包括常见的数学函数如多项式函数、指数函数、对数函数、三角函数等。

映射是函数的一种特殊形式,将每个自变量映射到唯一的因变量。

我们需要了解函数的性质和特点,并应用函数构建数学模型。

四、定积分与不定积分定积分和不定积分是微积分的重要内容。

定积分用于计算曲线下面积,而不定积分则表示函数的原函数。

在应用上,定积分可以计算曲线长度、质量、质心等问题。

不定积分是求函数的原函数,常用于求解微分方程。

我们需要熟练掌握积分的计算方法和性质,并能熟练运用积分解决实际问题。

五、级数级数是数列求和的推广概念,特定地,级数是无穷项的和。

我们需要掌握级数的收敛与发散判别方法,如比值判别法、积分判别法、积和判别法等。

同时,要了解级数的性质,如绝对收敛和条件收敛等,并能运用级数解决实际问题。

六、逼近与展开逼近和展开是一种将复杂函数转化为简单形式的数学方法。

逼近是将某个函数近似替代为一个简单的函数,如泰勒多项式逼近。

展开则是将一个函数表示为一系列更简单的函数的和,如傅里叶级数展开。

高数基础知识的简明总结与归纳

高数基础知识的简明总结与归纳

高数基础知识的简明总结与归纳
高数,作为数学的一个分支,是许多学科的基础。

本文将简要概述和总结高数中的一些基本概念和定理,以帮助读者更好地理解和掌握这一学科。

一、极限论
极限论是高等数学的基础,它涉及到函数的变化趋势和无穷小量的概念。

极限的定义是:对于任意给定的正数ε,总存在一个正数δ,使得当x满足|x-a|<δ时,|f(x)-A|<ε成立,其中a是x的某一取值,A是f(x)在a处的极限。

二、导数与微分
导数是函数在某一点的切线的斜率,表示函数在该点的变化率。

微分则是函数值变化的近似值。

导数在几何上可以表示曲线在某一点处的切线,也可以用于求解函数的极值。

微分法则提供了计算近似值的方法,例如计算函数的增减性、极值等。

三、积分学
积分学包括不定积分和定积分。

不定积分是求函数的原函数的过程,而定积分则是计算曲线与x轴所夹的面积。

定积分的应用非常广泛,例如计算物体的重心、求解变速直线运动的位移等。

四、多元函数微积分
多元函数微积分是高数的又一重要分支,它涉及到多个变量的函数及其极限、连续、可微、可积等概念。

其中,方向导数和梯度表示
函数在多维空间中的变化率,而多元函数的积分则涉及到重积分、曲线积分和曲面积分等。

五、无穷级数与幂级数
无穷级数是无穷多个数相加的结果,它可以用来表示数学中的一些公式和定理。

幂级数是无穷级数的一种特殊形式,它可以用来近似表示一些复杂的函数。

幂级数的收敛性和函数性质是研究幂级数的重要内容。

数学高数定理定义总结

数学高数定理定义总结

数学高数定理定义总结高中数学中的高数定理是指一套基本定理和公式,包括中值定理、洛必达法则、微分学基本定理、积分学基本定理、拉格朗日中值定理、罗尔中值定理、柯西中值定理等,这些定理和公式可以帮助我们简化和解决复杂的数学问题。

下面将对这些定理进行定义和总结。

1.中值定理:中值定理是微分学中的一个重要定理,包括拉格朗日中值定理、柯西中值定理和罗尔中值定理。

这些定理都与函数在一些区间内取得特定值或通过其中一点的斜率有关。

-拉格朗日中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,则在(a,b)内至少存在一点c,使得f'(c)等于[f(b)-f(a)]/(b-a)。

-柯西中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导且g'(x)不为零,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)。

-罗尔中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)=f(b),则在(a,b)内至少存在一点c,使得f'(c)=0。

2.洛必达法则:洛必达法则是一种求极限的方法,用于计算形如[0/0]、[∞/∞]、[0*∞]、[∞-∞]等不定型的极限。

- 洛必达法则:设函数f(x)和g(x)在特定点x=a附近都可导,且g'(x)不为零,若lim[x→a]f(x) = lim[x→a]g(x) = 0或∞,则lim[x→a]f(x)/g(x) = lim[x→a]f'(x)/g'(x)。

- 微分学基本定理:设函数f(x)在[a, b]上连续,则函数F(x) = ∫[a,x]f(t)dt在(a, b)内可导且F'(x) = f(x),其中[a,x]表示对f(t)在区间[a,x]上的积分。

- 积分学基本定理:设函数f(x)在[a, b]上连续,则该区间上的定积分∫[a,b]f(x)dx可以通过求该函数的一个原函数F(x)在区间[a, b]上的差F(b) - F(a)来求得。

河北省考研数学复习资料高等数学重要定理总结

河北省考研数学复习资料高等数学重要定理总结

河北省考研数学复习资料高等数学重要定理总结河北省考研数学复习资料-高等数学重要定理总结高等数学作为河北省考研数学科目的一部分,是考验学生基础知识和解题能力的重要环节。

掌握高等数学的核心定理对于考研的顺利通过至关重要。

本文将就河北省考研数学复习资料,对高等数学的重要定理进行总结,并给出相应的例题,帮助同学们更好地理解和复习。

一、极限1. 极限的定义当自变量趋于某一值时,函数的函数值趋近于某一常数。

数列也满足这一定理。

2. 极限的性质极限具有唯一性、有界性、保序性等性质,这些性质是我们求解极限的基础。

3. 基本极限公式常用基本极限公式包括幂函数的极限、指数函数的极限、三角函数的极限等,熟练掌握这些公式对于解题至关重要。

例题:计算极限lim(n→∞)(√(n^2+n+1)-√(n^2-n+1))二、导数与微分1. 导数的定义导数表示函数在某一点附近的变化率,导数定义为函数在该点处的极限。

2. 基本导数公式常用的基本导数公式包括常数函数、幂函数、指数函数、三角函数等。

这些公式是求解导数的基础。

3. 微分的定义微分表示函数在某一点的变化量,可以看作是导数的近似值。

例题:已知函数f(x)=ln|x|,求f'(x)和f''(x)。

三、不定积分1. 不定积分的定义不定积分表示函数的原函数,求导的逆运算。

2. 基本积分表掌握常用函数的基本积分表是求解不定积分的基础,如常数函数、多项式函数、指数函数、三角函数等。

3. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式将定积分与不定积分联系起来,为我们求解定积分提供了便利。

例题:计算∫(2x+3)dx。

四、定积分1. 定积分的定义定积分表示函数在给定区间上的面积或曲线长度。

2. 定积分的性质定积分具有线性性、区间可加性、定积分的上下界性质等。

3. 基本定积分公式常用的基本定积分公式包括多项式函数、指数函数、三角函数等的定积分公式。

例题:计算∫(0,π/2)(sinx+cosx)dx。

高数(上)重要内容总结复习笔记

高数(上)重要内容总结复习笔记
有上式中取 x0 = 0 ,则有 f ( x) ≈ f (0) + f (0)′ x且x → 0 误差估计: 如果某个量的精确值为A,它的近似值为 a ,那么 A − a 叫做 a 的绝对误差,
A−a 叫做 a 的相对误差 a
如果 A − a ≤ δ A ,那么 δ A 叫做测量A的绝对误差限,而
δA 叫做测量A的相对误差限. a
(3) lim
f ′( x) f ( x) f ′( x) 存在(或为无穷大) ,那么 lim . = lim x → ∞ F ′( x ) x →∞ F ( x ) x →∞ F ′( x )
如果函数 f ( x) 在含有 x0 的某个开区间 (a, b) 内具有直到(n+1)阶的倒数,则对任一
泰勒(Taylor)中值定理
高阶导数:
(cot x)′ = − csc 2 x (a x )′ = a x ln a (arccos x)′ = − 1 1 − x2
(arcsin x)′ =
1
(sec x)′ = sec x tan x 1 (log a x)′ = x ln a 1 (arctan x)′ = 1+ x2
1 (ch x)′ = sh x (th x)′ = 2 ch x 1 (arch x)′ = 1 x 2 − 1 (arth x)′ = 1 − x2
f ′′(0) f ( n ) (0) f ( n+1) (θx) n +1 x +…+ x+ x 2! n! (n + 1)!
(0 < θ < 1)
另带有佩亚诺余项的麦克劳林公式从略. 定义
x1 + x2 f ( x1 ) + f ( x2 ) )< ,那么称 f ( x) 在 2 2 x +x f ( x1 ) + f ( x2 ) I 上的图形是(向上)凹的(或凹弧);如果恒有 f ( 1 2 ) > ,那么称 f ( x) 在 I 上的图形是(向上) 2 2

高数考试中的知识点整理与复习

高数考试中的知识点整理与复习

高数考试中的知识点整理与复习在高数考试的前夜,知识点的整理与复习就像一场精心策划的演出,每一个细节都需要精细打磨。

高等数学这位严肃的老师,拥有丰富的知识宝藏,但也因为内容的复杂与深奥,让许多学生感到困惑。

如何有效地整理和复习这些知识点,才能在考试中发挥出最佳水平呢?首先,认识到高数的核心知识点就像识别出演出中的主要角色一样重要。

高等数学通常包括微积分、线性代数、常微分方程等几个主要部分。

每一个部分都有其独特的“性格特点”,例如,微积分的核心在于理解函数的变化和极限,线性代数则关注向量空间的结构和变换,而常微分方程则处理函数与其导数之间的关系。

在复习的过程中,了解每个知识点的基本概念、定理和公式就像是熟悉每个角色的背景故事。

要将这些知识点进行系统化整理。

建立一个知识框架图,将各个知识点之间的联系清晰地呈现出来。

这种方式有助于将零散的知识串联起来,使其形成一个完整的知识体系。

比如,在微积分中,可以把极限、导数和积分这三个基本概念用不同的颜色标记,并标出它们的相互关系和应用场景,这样可以更好地理解它们之间的联系和区别。

接下来,将重点放在关键定理和公式的记忆上。

高数的公式往往像是演出中的台词,记住它们不仅要理解其含义,还要知道如何灵活应用。

例如,积分的部分公式如牛顿-莱布尼茨公式,或者线性代数中的矩阵运算公式,都需要通过大量的练习来巩固记忆。

制作公式卡片,将每个公式的应用场景和推导过程简洁地记录在卡片上,可以在复习时反复翻阅,以加深记忆。

实践是检验知识掌握程度的最佳方法。

在高数的学习中,做大量的习题就像是演员反复排练演出一样,能够帮助学生真正掌握和应用所学的知识。

针对每一类题型,分门别类地进行练习,比如对微分方程问题,可以先从简单的线性微分方程入手,逐步过渡到更复杂的非线性微分方程,通过逐步攻克不同难度的问题,建立起解决类似问题的思路和方法。

此外,复习过程中,不要忽视对错题的分析。

错题就像是演出中的失误,找到失误的原因并加以改正,才能提升整体的演出水平。

高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识

高数学习笔记总结,帮你快速复习数学知识高数学习笔记总结:
一、函数与极限
1. 函数的定义:函数是数学表达关系的符号,它表示两个变量之间的依赖关系。

函数的定义域和值域是函数的两个重要属性。

2. 极限的概念:极限是函数在某个点附近的变化趋势,它可以用来研究函数的特性。

极限的运算法则包括加减乘除和复合函数的极限运算法则。

3. 无穷小和无穷大的概念:无穷小是指一个函数在某个点的值趋于0,而无穷大是指一个函数在某个点的值趋于无穷大。

无穷小和无穷大是研究函数的重要工具。

二、导数与微分
1. 导数的概念:导数是函数在某一点的切线的斜率,它可以用来研究函数的单调性、极值、拐点等特性。

导数的运算法则包括求导法则和复合函数的导数法则。

2. 微分的概念:微分是函数在某一点附近的小增量,它可以用来近似计算函数的值。

微分的运算法则包括微分的基本公式和微分的链式法则。

3. 导数与微分的应用:导数和微分的应用非常广泛,例如求极值、求拐点、近似计算、优化问题等等。

三、积分与级数
1. 积分的概念:积分是定积分和不定积分的总称,它可以用来计算面积和体积等几何量。

定积分和不定积分的计算方法包括基本公式法和凑微分法等等。

2. 级数的概念:级数是无穷多个数的和,它可以用来研究函数的性质和行为。

级数的分类包括几何级数、调和级数、幂级数等等。

3. 积分与级数的应用:积分和级数的应用非常广泛,例如计算面积和体积、近似计算、信号处理等等。

大一高数知识点笔记总结

大一高数知识点笔记总结

大一高数知识点笔记总结高等数学是大一学生必修的一门课程,它是理工科学生的基础课,对于学生的数学素养和思维能力的培养有着重要的作用。

下面将对大一高数课程中的知识点进行总结和笔记整理,帮助同学们更好地掌握和理解这门学科。

一、函数与极限1. 函数的定义和性质- 函数的定义域和值域- 函数的单调性和奇偶性- 函数的周期性2. 极限与连续- 极限的定义和性质- 函数的连续性及其判定方法- 中值定理和拉格朗日中值定理二、导数与微分1. 导数的定义和求导法则- 导数的几何意义和物理意义- 基本导数公式- 导数的四则运算法则- 高阶导数和隐函数求导法2. 微分与近似计算- 微分的定义和性质- 泰勒展开式及其应用- 凸函数与凹函数三、不定积分与定积分1. 不定积分的定义和基本性质- 不定积分的性质和运算法则- 分部积分法和换元积分法- 简单函数的不定积分2. 定积分的定义和基本定理- 定积分的性质和运算法则- 牛顿-莱布尼兹公式和积分中值定理- 反常积分和曲边梯形法四、级数与幂级数1. 数项级数的定义和性质- 数项级数的收敛和发散判定方法- 收敛级数的性质- 幂级数的收敛半径和收敛域2. 幂级数的常见函数展开- 指数函数、三角函数和对数函数的幂级数展开- 常用函数的泰勒展开式五、微分方程初步1. 微分方程的基本概念- 微分方程的定义和分类- 常微分方程的解与通解2. 一阶常微分方程- 可分离变量方程和一阶线性齐次方程- 齐次线性非齐次方程和常数变易法- 变量分离法和恰当方程六、空间解析几何1. 点、直线和平面的基本性质- 点、向量和坐标系- 直线和平面的参数方程和一般方程- 平面与平面的位置关系2. 空间曲线和曲面- 曲线的参数方程和一般方程- 曲面的一般方程和旋转曲面- 曲线、曲面与球的相交问题以上是大一高数课程中的主要知识点的笔记总结。

随着学习的深入,我们需要更多细致全面的学习资料。

希望这份简要的总结对同学们的学习有所帮助,同时也希望大家能够加强课后的练习和复习,夯实基础,掌握好高数这门重要的数学学科。

高数知识点总结大一定理

高数知识点总结大一定理

高数知识点总结大一定理在大学数学课程中,高等数学是大一学生必修的一门课程。

高等数学以其广泛的应用领域和深邃的数学原理而闻名。

为了帮助大一学生更好地掌握高等数学的知识点,本文将对高数的一些重要概念和定理进行总结和解释。

一、导数与微分导数是高等数学中的基本概念之一,它描述了函数在某一点的瞬时变化率。

导数的定义和计算方法很多,其中最基本的是用极限的方法来定义导数。

导数的应用十分广泛,例如在物理学的运动学中,速度的概念可以通过导数来进行描述。

二、积分与不定积分积分是导数的逆运算,表示了函数在一段区间上的累积效应。

不定积分是积分的一种形式,它表示了函数的一个原函数。

求不定积分的方法有很多,包括反常积分、换元法和分部积分法等。

三、连续与间断连续与间断是几乎所有数学领域中的基本概念。

在高等数学中,连续函数与间断函数的概念对于分析函数的性质和图像十分重要。

连续函数具有保持局部性质的特点,而间断函数则会在某些点上失去连续性。

四、极限与收敛极限是数学分析的核心概念之一,它描述了函数或数列接近某个值的过程。

极限的定义和性质是高等数学中的重要内容,对于研究函数的性质和求解极限值都十分关键。

五、级数与收敛性级数是指由一系列数相加所得到的无穷和。

级数的收敛性是数学分析中的重要问题,其中正项级数和交错级数是两类经典的级数。

求解级数的收敛性需要运用到一系列的判别法和技巧。

六、多项式函数与分式函数多项式函数是高等数学中的基础函数之一,它可以通过有限次的加、减、乘、除和乘方运算得到。

分式函数则是多项式函数的延伸,它能够描述更为复杂的数学关系。

七、微分方程与方程组微分方程是描述函数与其导数之间关系的方程,是应用数学中的重要工具。

常微分方程和偏微分方程是两类常见的微分方程。

方程组则是多个方程的集合,也是数学建模和工程问题中常见的表达形式。

八、空间解析几何空间解析几何是数学中的一门分支学科,它研究点、直线、平面及其在空间中的相互位置关系和性质。

高数复习重点梳理

高数复习重点梳理

高数复习重点梳理
第一章:导数与微分
在高数复习中,导数与微分是非常重要的概念,它们是微积分的基础。

导数表
示函数在某一点上的变化率,微分则表示函数在该点附近的近似线性变化。

在学习导数与微分时,需要掌握的重点包括:
1.导数的定义与性质
2.基本导数的求法
3.高阶导数
4.微分的定义与性质
5.隐函数与参数方程的导数与微分
6.微分中值定理
第二章:不定积分与定积分
不定积分与定积分是微积分的另一个重要内容,它们是对函数积分的不同形式。

在学习不定积分与定积分时,需要注意以下内容:
1.不定积分的基本性质
2.基本的不定积分表
3.定积分的定义与性质
4.定积分的应用:计算面积、求解定积分方程等
5.变限积分与定积分的运算法则
6.定积分的几何应用
第三章:微分方程
微分方程是数学中一个重要的研究对象,它描述了函数的导数与自身之间的关系。

在学习微分方程时,需要了解以下内容:
1.微分方程的分类与基本概念
2.一阶微分方程的求解方法
3.高阶微分方程的求解方法
4.微分方程的初值问题
5.线性微分方程
6.微分方程的物理应用
第四章:级数
级数是数学分析中的一个重要概念,它描述了无穷序列之和的性质。

在学习级数时,需要牢记以下要点:
1.级数收敛与发散的判别法
2.正项级数收敛的性质
3.常用级数的收敛性质
4.级数的运算:加法、乘法、除法
5.幂级数及其收敛半径
6.泰勒级数与麦克劳林级数的应用
以上是高等数学复习中的重点内容梳理,希望对你的复习有所帮助。

祝你取得优异的成绩!。

考研数学高数定理定义总结

考研数学高数定理定义总结

考研数学高数定理定义总结高数定理是大学数学中的重要内容,包括了极限、连续性和可微性、中值定理、导数与微分以及积分和微分方程几个方面。

以下是这些定理的定义总结:1.极限:极限是函数论中最基本的概念之一、设函数$f(x)$在$x_0$的邻域内有定义,如果存在常数$A$,对于任意给定的正数$\varepsilon$,都存在正数$\delta$,使得当$0<,x-x_0,<\delta$时,有$,f(x)-A,<\varepsilon$,则称函数$f(x)$当$x$趋于$x_0$时极限为$A$,记作$\lim_{x \to x_0} f(x) = A$。

2.连续性和可微性:函数$f(x)$在点$x_0$处连续的定义是:$\lim_{x \to x_0} f(x) = f(x_0)$。

函数在点$x_0$处可微的定义是:如果函数$f(x)$在$x_0$的一些邻域内有定义,并且存在常数$A$,使得$$f(x)=f(x_0)+(x-x_0)A+o(x-x_0),x\to x_0$$则称函数$f(x)$在$x_0$处可微。

3.中值定理:中值定理是微积分中的重要定理之一、设函数$f(x)$在闭区间$[a,b]$上连续,在开区间$(a,b)$上可微。

则在$(a,b)$内至少存在一点$c$,使得$f(b)-f(a)=f'(c)(b-a)$,其中$f'(c)$是$f(x)$在点$c$处的导数。

4.导数与微分:设函数$f(x)$在点$x$处有定义。

如果极限$\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$存在,那么称此极限为函数$f(x)$在点$x$处的导数,记作$f'(x)$。

函数$f(x)$在点$x$处的微分定义为$df=f'(x)dx$。

5.积分:积分是微积分中的重要概念之一、设函数$f(x)$在区间$[a,b]$上有定义,将区间$[a,b]$分成$n$个小区间$[x_{i-1},x_i]$,其中$a=x_0<x_1<x_2<\cdots<x_n=b$。

高三数学定理知识点总结

高三数学定理知识点总结

高三数学定理知识点总结数学在高三阶段是学生们最重要的学科之一,定理是数学中的基础知识点,对于学生们的数学学习起到至关重要的作用。

本文将对高三数学中的定理知识点进行总结与归纳,帮助学生们更好地掌握和应用这些知识。

1.函数1.1 一元二次函数定理一元二次函数的一些重要定理如下:- 零点定理:一元二次函数的零点是函数与x轴交点的横坐标。

一个一元二次函数至多有两个零点。

- 最值定理:当二次曲线的系数a大于0时,函数的最小值为对称轴上的纵坐标;当二次曲线的系数a小于0时,函数的最大值为对称轴上的纵坐标。

- 平移定理:一元二次函数图像的平移不改变其开口方向。

1.2 三角函数定理三角函数中的重要定理有:- 三角函数的周期性:正弦函数和余弦函数的周期为2π,而正切函数的周期为π。

- 正负性定理:根据角的大小,可以判断三角函数的正负性。

- 和差化积:sin(A±B)和cos(A±B)可以通过三角函数和余弦函数的和差化积公式互相转换。

2.解析几何2.1 直线与圆相关定理- 直线与圆的位置关系:直线和圆可能相离、外切、相交、内切或者相切。

- 切线定理:如果一条直线与圆有且仅有一个交点,那么这条直线就是圆的切线。

- 弦切角定理:一条切线和它所对应的弦的夹角等于这个弧所对应的圆心角。

2.2 平面和空间几何定理- 平行四边形定理:平行四边形的对角线互相等分并且互相反向。

- 空间直线平行定理:直线与一个平面平行,那么它与这个平面内的任意一条直线平行。

- 夹角平分线定理:夹角平分线把一个角分成两个相等的角。

3.概率统计3.1 基本事件和必然事件- 基本事件:指一个试验中不可再分的事件。

- 必然事件:指在任何一次试验中一定发生的事件。

3.2 条件概率条件概率是指当某个事件已经发生时,另一个事件发生的概率。

条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。

大一高数知识点总结归纳

大一高数知识点总结归纳

大一高数知识点总结归纳【大一高数知识点总结归纳】高等数学是大学阶段十分重要的一门基础学科,它涉及到许多重要的数学理论和方法。

在大一的学习过程中,我们接触到了许多高数的知识点,这些知识点对我们今后的学习和发展都具有重要的作用。

本文将对大一高数的知识进行总结归纳,以帮助我们更好地理解和掌握这些知识。

一、极限与连续1. 极限的概念与性质:极限的定义、左极限与右极限、无穷大与无穷小、极限运算的性质。

2. 连续函数与间断点:连续函数的定义、间断点的分类、间断点的性质。

3. 中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理。

二、导数与微分1. 导数的概念与性质:导数的定义、导数的几何意义、导数的运算法则。

2. 基本初等函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等的导数。

3. 高阶导数与高阶微分:高阶导数的定义、高阶导数的计算、高阶微分的定义与计算。

4. 隐函数与参数方程求导:隐函数的导数与高阶导数、参数方程的导数与高阶导数。

三、积分与不定积分1. 不定积分的概念与性质:不定积分的定义、不定积分的运算法则。

2. 基本初等函数的不定积分:常数函数、幂函数、指数函数、对数函数、三角函数等的不定积分。

3. 定积分与定积分的计算:定积分的概念与性质、定积分的计算方法、变限积分。

4. 牛顿-莱布尼茨公式:微积分基本定理与牛顿-莱布尼茨公式。

四、微分方程与应用1. 微分方程的基本概念:微分方程的定义、常微分方程与偏微分方程。

2. 一阶常微分方程:可分离变量方程、一阶线性常微分方程。

3. 二阶常系数齐次线性微分方程:特征方程的求解、通解的求法。

4. 应用问题与数学模型:生物学、物理学、经济学等领域中的应用问题。

五、级数与幂级数1. 数列与级数:数列的极限、级数的定义与收敛性。

2. 常数项级数:等比级数与调和级数的性质与求和。

3. 幂级数与函数展开:幂级数的收敛半径、函数的幂级数展开。

4. 泰勒级数与麦克劳林级数:泰勒级数与麦克劳林级数的定义与求导。

数一高数定理定义总结

数一高数定理定义总结

数一高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

高等数学(上)定义定理归纳(同济六版)

高等数学(上)定义定理归纳(同济六版)

高等数学(上)定义、定理及一些重要结论归纳(按照同济第六版上册第一章到第六章,不含第七章微分方程,定理证明从略)第一章函数与极限(1)(数列极限的定义){}{}{}lim ,()n n n n n n n x a N n N x a a x x a x a x a n εε→∞>−<=→→∞设为一数列,如果存在常数,对于任意给定的正数(不论它多么小),总存在正整数,使得当时,不等式都成立,那么就称常数是数列的极限,或者称数列收敛于,记为或(2)(数列极限的唯一性){}n x 如果数列收敛,那么它的极限唯一.(3)(收敛数列的有界性){}{}n n x x 如果数列收敛,那么数列一定有界。

(4)(收敛数列的保号性)n lim ,0(0),0,,0(0).n n n x a a a N n N x x →∞=><>>><如果且或那么存在正整数当时都有或(5)(收敛数列保号性的推论){}00lim ,0(0).n n n n n x x x x a a a →∞≥≤=≥≤如果数列从某项起有(或),且那么或(6)(收敛数列与其子数列间的关系){},.n x a a 如果数列收敛于那么它的任一子数列也收敛,且极限也是(7)(自变量趋于有限值时函数极限的定义)0000(),0,0()(),()lim ()()()x x f x x A x x x f x f x A A f x x x f x A f x Ax x εδδε→><−<−<→=→→设函数在点的某一去心邻域内有定义.如果存在常数对于任意给定的正数(不论它多么小),总存在使得当满足不等式时,对应的函数值都满足不等式那么常数就叫做函数当时的极限,记作或当(8)(函数极限存在的条件)000()()().f x x x f x f x −+→=函数当时极限存在的充分必要条件是左极限及右极限各自存在并且相等,即(9)(自变量趋于无穷大时函数极限的定义)().,,()(),()lim ()()().x f x x A X x x X f x f x A A f x x f x A f x Ax εε→∞>−<→∞=→→∞设函数当大于某一正数时有定义如果存在常数对于任意给定的正数(不论它多么小),总存在正数使得当满足不等式时,对应的函数值都满足不等式那么常数就叫做函数当时的极限,记作或当(10)(函数极限的唯一性)lim ().x x f x →如果存在,那么这极限唯一(11)(函数极限的局部有界性)0lim (),00,0().x x f x A M x x f x M δδ→=>><−<<如果那么存在常数和使得当时,有(12)(函数极限的局部保号性1)0lim (),0(0)00()0(()0).x x f x A A A x x f x f x δδ→=><><−<><如果且或,那么存在常数,使得当时,有或(13)(函数极限局部的保号性2)000lim ()(0),().2x x f x A A x U x x U x Af x →=≠∈>��如果那么就存在着的某一去心邻域(),当()时,就有(14)(函数极限局部保号性的推论)0()0(()0),lim (),0(0).x x x f x f x f x A A A →≥≤=≥≤如果在的某一去心邻域内或而且那么或(15)(函数极限与数列极限的关系){}{}000lim (),(),(),()lim ()lim ().n n x x n n n x x f x x f x x x x n N f x f x f x →+→∞→≠∈=如果极限存在为函数的定义域内任一收敛于的数列且满足:那么相应的函数值数列必收敛,且(16*)(Heine 归并定理){}000lim (),()(),lim ().n n n x x n n f x x x x n x x n N f x →+→∞→→∞≠∈极限存在的充分必要条件是:对任何数列满足且有存在(17)(无穷小的定义)0()()lim ()0,()().x x x f x f x f x x x x →→∞=→→∞如果函数的极限那么称函数为当或时的无穷小(18)(无穷小与函数极限的关系)0()()lim ()(),.x x x x x x f x A f x A αα→→∞→→∞==+在自变量的同一变化过程或中,函数的充分必要条件是其中是无穷小(19)(无穷大的定义)000()0(),0(0),0()(),()().f x x x M X x x x X f x M f x x x x δδ∀>∃>∃><−<>>→→∞设函数在的某一去心邻域内有定义(或大于某一正数时有定义).如果对于不论它有多大或使得当或时,总有成立则称函数为当或是的无穷大(20)(无穷大与无穷小之间的关系)1,(),;()()1()0,.()f x f x f x f x f x ≠在自变量的同一变化过程中如果为无穷大则为无穷小反之,如果为无穷小,且则为无穷大�以下为一些极限运算法则的相关定理(21).有限个无穷小的和也是无穷小(22).有界函数与无穷小的乘积是无穷小(23).常数与无穷小的乘积是无穷小(24).有限个无穷小的乘积也是无穷小(25)(函数极限运算法则)[]lim (),lim (),(1)lim ()()lim ()lim ();(2)lim[()()]lim ()lim ();lim ()()(3)0,lim .()lim ()x x x x x x x x x x x f x A g x B f x g x f x g x A B f x g x f x g x A B f x f x A B g x g x B→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞==±=±=±⋅=⋅=⋅≠==如果那么若有则(26)(数列极限运算法则){}{}n .lim ,lim ,1lim();(2)lim ;(3)0(),0,lim.n n n n n n n n n n n n n x y A B x y A B x y A B x Ay n N B y B→∞→∞→∞→∞+→∞==±=±⋅=⋅≠∈≠=设有数列和如果那么()当且时(27)[]lim (),,lim ()lim ().x x x f x c cf x c f x →∞→∞→∞=如果存在而为常数则(28)[]lim (),lim ()lim ().nnx x x f x n N f x f x +→∞→∞→∞⎡⎤∈=⎣⎦如果存在,而则(29)()(),lim (),lim (),.x x x x x a x b a b ϕψϕψ→∞→∞≥==≥如果而那么(30)(复合函数的极限运算法则)000000[()]()()[()]lim (),lim (),0,(,),(),lim [()]lim ().x x u u x x u u y f g x u g x y f u f g x x g x u f u A x U x g x u f g x f u A δδ→→→→=====∃>∈≠==�设函数是由函数与函数复合而成,在点的某一去心邻域内有定义,若且当时有则(31)(数列极限的夹逼准则极限存在准则I ){}{}{}{}001,,2lim ,lim ,lim .n n n n n n n n n n n n n x y z n N n n y x z y a z a x x a →∞→∞→∞∃∈>≤≤===如果数列、及满足下列条件:()当时,有()那么数列的极限存在,且(32)(函数极限的夹逼准则极限存在准则I ’)0()()()()1(,)()()()()(2)lim (),lim ,lim ()lim ().x x x x x x x x x x U x r x M g x f x h x g x A A f x f x A →→∞→∞→∞→∞→∞→∞→∞∈>≤≤===�如果()当或时,那么存在,且(33)(数列极限存在准则极限存在准则II ).单调有界数列必有极限(34)(函数极限存在准则极限存在准则II II’’)00000()()().(,,,)f x x f x x f x x x x x x x −−+→→→−∞→+∞设函数在点的某个左邻域内单调且有界,则在的左极限必定存在类似(35)(柯西极限存在准则){}00,,.n n m x N N N m N n N x x εε+∀>∃∈>>>−<数列收敛的充分必要条件是:对于,且使得当时,就有(36)(两个无穷小之间的比较)0:lim 0,lim ,lim 0,;(4)lim 0,0,.(5)lim 1,x x x k x x c c k k αβαββαβοααββααββααββααββααβα→∞→∞→∞→∞→∞≠==∞=≠=≠>=∼已知和是在同一个自变量的变化过程中的无穷小,且(1)如果就说是比高阶的无穷小,记作=();(2)如果就说是比低阶的无穷小.(3)如果就说与是同阶无穷小如果就说是关于的阶无穷小如果就说与是等价无穷小,记作.(37)().βαβαοα=+与是等价无穷小的充分必要条件是(38)(等价无穷小替换定理)''',',limlim lim .''x x x βββααββααα→∞→∞→∞=∼∼设且存在,则(39)(函数连续性的定义1)[]00000()lim lim ()()0,().x x y f x x y f x x f x y f x x ∆→∆→=∆=+∆−==设函数在点的某一邻域内有定义,如果那么就称函数在点连续(40)(函数连续性的定义2)000()lim ()(),().x x y f x x f x f x f x x →==设函数在点的某一邻域内有定义,如果那么就称函数在点连续(41)(连续函数的和、差、积、商的连续性)000()(),(()0).ff xg x x f g f g g x gx ±⋅≠设函数和在点连续则它们的和(差)、积及商当时都在点连续(42)(反函数的连续性){}1()()(),().x y x y f x I x f y I y y f x x I −====∈如果函数在区间上单调增加(或单调减少)且连续,那么它的反函数也在对应的区间上单调增加或单调减少且连续(43)(复合函数的连续性1)[][]00000()()(),().lim (),(),lim ()lim ()().f g x x x x u u y f g x u g x y f u U x D g x u y f u u u f g x f u f u →→→===⊂=====��设函数由函数与函数复合而成若而函数在连续则(44)(复合函数的连续性2)[][][][]000000000()()(),().(),(),(),(),lim ()lim ()()().f g x x u u y f g x u g x y f u U x D u g x x x g x u y f u u u y f g x x x f g x f u f u f g x →→===⊂==========�设函数是由函数与函数复合而成若函数在连续且而函数在连续则复合函数在也连续即(45)(初等函数的连续性)..基本初等函数在它们的定义域内都是连续的一切初等函数在其定义区间内都是连续的(46)(有界性与最大值最小值定理)在闭区间上连续的函数在该区间上有界,且一定能取得它的最大值和最小值.(47)(零点定理)[]()(),,()()0,,()0.f x a b f a f b a b f ξξ⋅<=设函数在闭区间上连续且那么在开区间内至少有一点,使得(48)(介值定理)()[,],()(),(,),(,)().f x a b f a A f b B C A B a b f C ξξ==∀∈∃∈=设函数在闭区间上连续且在这区间的端点取不同的函数值及那么对于使得(49)(介值定理的推论).M m 在闭区间上连续的函数必取得介于最大值与最小值之间的任何值(50)(一致连续性的定义)121212().0,0,,,,()().().f x I x I x I x x f x f x f x I εδδε∀>∃>∀∈∀∈−<−<设函数在区间上有定义如果对于使得对于和当时就有那么就称函数在区间上是一致连续的(51)(一致连续性定理)()[,],.f x a b 如果函数在闭区间上连续那么它在该区间上一致连续第二章导数与微分(1)(导数的定义)000000000000000()(),()();lim(),(),(),()()()lim lim lim x x x x x y f x x x x x x x yy f x x f x xy f x x y f x x f x f x x f x f yf x x x ∆→∆→∆→→=∆+∆∆∆=+∆−∆′==+∆−∆′===∆∆设函数在点的某个邻域内有定义,当自变量在处取得增量点仍在该邻域内时相应的函数取得增量如果存在,则称函数在点处可导并称这个极限为函数在点处的导数记为即0000()(),,().x x x x x x x f x dyy x x dxdf x dx===−′−也可记作或(2)(函数可导的充分必要条件)000000()()()()()().f x x f x f x f x f x f x −+−+′′′′′==函数在点处可导的充分必要条件是左导数和右导数都存在且相等,即(3)(可导与连续的关系)(),.y f x x =如果函数在点处可导则函数在该点必连续(4)(函数的和、差、积、商的求导法则)[]2()(),(1)()()()()(2)[()()]()()()()()()()()()(3)(()0).()()u u x v v x x x u x v x u x v x u x v x u x v x u x v x u x u x v x u x v x v x v x v x ==′′′±=±′′′=+′′′⎡⎤−=≠⎢⎥⎣⎦如果函数及都在点具有导数,那么它们的和、差、积、商(除分母为0的点外)都在点具有导数且(5)(反函数的求导法则){}11()()0,()11(),,().()y x y x f y I f y y f x dy I x x f y y I f x dx f y dxdy−−′=≠=′⎡⎤==∈==⎣⎦′如果函数在区间内单调、可导且则它的反函数在区间内也可导且或(6)(复合函数的求导法则)[](),()(),(),()().u g x x y f u u g x y f g x x dy dy dy du f u g x dx dx du dx====′′=⋅=⋅如果在点可导而在点可导则复合函数在点可导且其导数为或(7)(微分的定义)000000(),,()()(),,()(),,.y f x x x x y f x x f x y A x x A x y f x x A x y f x x x dy dy A x ο=+∆∆=+∆−∆=∆+∆∆=∆=∆=∆设函数在某区间内有定义及在这区间内如果增量可表示为其中是不依赖于的常数那么称函数在点是可微的,而叫做函数在点相应于自变量增量的微分记作即(8)(可微与可导的关系)0000()(),(),(),().f x x f x x f x x dy f x dx dy f x dx ′′==函数在点可微的充分必要条件是函数在点可导且当在点可微时其微分一定是即函数微分的表达式(9)(函数和、差、积、商的微分法则)()()2()(),(1)(2)(3)(0).u u x v v x x x d u v du dv d uv vdu udv u vdu udvd v v v ==±=±=+−⎛⎞=≠⎜⎟⎝⎠如果函数及都在点可微,那么它们的和、差、积、商(除分母为0的点外)都在点可微且(10)(复合函数的微分法则)[]()()()()(),().x u y f u u g x x f g x dy y dx f u g x dx dy f u du dy y du ==′′′′′====设函数及都在点处可导,则复合函数的微分为也可以写成或第三章微分中值定理与导数的应用(1)(费马引理)0000000()(),,(),()()(()()),()0.f x x U x x x U x f x f x f x f x f x ∀∈′≤≥=设函数在点的某邻域内有定义并在处可导如果对有或那么(2)(罗尔定理)[]()()(),(2),;(3),()().,()()0.f x a b a b f a f b a b a b f ξξξ=′<<=如果函数满足:(1)在闭区间上连续;在开区间上可导在区间端点处的函数值相等即那么在内至少有一点,使得(3)(拉格朗日中值定理)[]()()()(1),;(2),;,(),()()()().f x a b a b a b a b f b f a f b a ξξξ′<<−=−如果函数满足:在闭区间上连续在开区间上可导那么在内至少有一点使等式成立(4)()0,().f x I f x I 如果函数在区间上的导数恒为那么在区间上是一个常数(5)(柯西中值定理)[]()()()()()(1),;(2),;(3),,()0;()()(),,.()()()f x F x a b a b x a b F x f b f a f a b F b F a F ξξξ′∀∈≠′−=′−如果函数及满足:在闭区间上连续在开区间上可导对那么在内至少有一点使等式成立(6)(洛必达法则)000000()()()()()0()()()(1)lim ()0lim ()0,lim ()lim ()lim()0;0(2)(),()(),()0;()(3)lim ,()limx x x x x x x x x x x x x x x x x x x x x f x f x g x f x g x g x f x g x U x x X g x f x g x f →→→→→→∞→∞→∞→∞→∞→→∞→→∞===∞=∞∞∞′>≠′∞′�且或者且,即极限为未定式或在某去心邻域或时可导且存在或为则0()()()lim .()()x x x x f x g x g x →→∞′=′(7)(泰勒中值定理泰勒公式)()()()()0()20000000(1)10(1)0(),(1),,,()()()()()()()()(),2!!()()()().(1)!,,(),()n n n n n n n n f x x a b n a b f x f x f x f x f x x x x x x x R x n f R x x x a b n x a b f x M R x x x ξξο++++∀∈′′′=+−+−++−+=−<<+∈≤=−⋯如果函数在含有的某个开区间内具有直到阶的导数则对x 恒有其中称为拉格朗日型余项.如果当时则有.n⎡⎤⎣⎦,称为佩亚诺型余项(8)(麦克劳林公式)()20(0)(0)0,()(0)(0)(),2!!n nn f f x f x f f x x x R x n ′′′==+++++⋯在泰勒公式中,当时称为麦克劳林公式.(9)(函数单调性的判定定理)[]()()[]()[](),,,.(1),()0,(),.(2),()0,(),.y f x a b a b a b f x y f x a b a b f x y f x a b =′>=′<=设函数在上连续在内可导如果在内那么函数在上单调增加如果在内那么函数在上单调减少将闭区间换成其他各种区间(包括无穷区间),结论也同样成立.(10)(曲线凹凸性的定义)1212121212(),,()(),()()();22()()(2),()()().22f x I I x x x x f x f x f f x I x x f x f x f f x I ++⎛⎞<⎜⎟⎝⎠++⎛⎞>⎜⎟⎝⎠设在区间上连续对上任意两点(1)如果恒有那么称在上的图形是向上凹的或凹弧如果恒有那么称在上的图形是向上凸的或凸弧(11)(曲线凹凸性的判定定理)[]()()[]()[](),,,,(1),()0,(),;(2),()0,(),f x a b a b a b f x f x a b a b f x f x a b ′′>′′<设在上连续在内具有一阶和二阶导数那么若在内则在上的图形是凹的若在内则在上的图形是凸的.(12)(函数极值的定义)000000()(),(),()()(()()),()()f x x U x U x x f x f x f x f x f x f x <>�设函数在点的某邻域内有定义如果对于去心邻域内的任意一点有或那么就称是函数的一个极大值(或极小值).(13)(可导函数取得极值的必要条件)000(),,()0.f x x x f x ′=设函数在处可导且在处取得极值那么(14)(判定极值的第一充分条件)()()()()()()000000000000000(),,.(1),,()0,,,()0,();(2),,()0,,,()0,();(3),,(),().f x x x U x x x x f x x x x f x f x x x x x f x x x x f x f x x x U x f x f x x δδδδδδ′′∈−>∈+<′′∈−<∈+>′∈��设函数在处连续且在的某去心邻域内可导若时而时则在处取得极大值若时而时则在处取得极小值若时的符号保持不变则在处没有极值(15)(判定极值的第二充分条件)0000000()()0,()0,(1)()0,();(2)()0,()f x x f x f x f x f x x f x f x x ′′′=≠′′<′′>设函数在处具有二阶导数且那么当时函数在处取得极大值当时函数在处取得极小值.(16)(区间内单一极值时最值的判定)000000()(,),()(),()();(2)()()().f x x x f x f x f x f x f x f x f x 函数在一个区间有限或无限开或闭内可导且只有一个驻点并且这个驻点是函数的极值点,那么(1)当是极大值时就是在该区间上的最大值当是极小值时,就是在该区间上的最小值第四章~第六章一元函数积分学(1)(原函数的定义),()(),,()()()(),()()(()).I F x f x x I F x f x dF x f x dx F x f x f x dx I ′∀∈==如果在区间上可导函数的导函数为即对都有或那么函数就称为或在区间上的原函数(2)(原函数存在定理)(),(),()()..f x I I F x x I F x f x ∀∈′=如果函数在区间上连续那么在区间上存在可导函数使对都有即连续函数一定有原函数(3)(原函数之间的关系){}()().()()(),()()(),(),().f x I f x F x x f x x F x C C f x F x C C ΦΦ−=+−∞<<+∞如果在区间上有一个原函数,那么就有无限多个原函数假设和均为的原函数则为某个常数且的全体原函数所组成的集合就是函数族(4)(不定积分的定义),()()(()),().,(),(),.I f x f x f x dx I f x dx f x f x dx x ∫∫在区间上函数的带有任意常数项的原函数称为或在区间上的不定积分记作其中记号称为积分号称为被积函数称为被积表达式称为积分变量(5)(不定积分的性质1)[]()(),()()()().f xg x f x g x dx f x dx g x dx ±=±∫∫∫设函数及的原函数存在则(6)(不定积分的性质2)(),()().f x k kf x dx k f x dx =∫∫设函数的原函数存在为非零常数,则(7)(不定积分的凑微分法第一类换元法)[]()(),(),()()()u x f u u x f x x dx f u du ϕϕϕϕ==⎡⎤′=⎣⎦∫∫设具有原函数可导则有换元公式(8)(不定积分的代入法第二类换元法)[]11()(),()0.[()](),()()(),()().t x x t x f x x f x dx f t t dt x x t ψψψψψψψψψ−−=′′=≠⎡⎤′==⎣⎦∫∫设是单调的、可导的函数并且又设具有原函数则有换元公式其中是的反函数(9)(不定积分的分部积分法)()(),.u u x v v x udv uv vdu ===−∫∫设函数及具有连续导数那么(10)(定积分的定义)[][][][][][]{}[][][]012101121112111(),,,,,,,,,,,max ,,,,,,()0,n n n n i i i n i i i ni i i i i i f x a b a b a x x x x x b a b n x x x x x x x x x x x x x x a b f x x x λξξλξ−−−−−==<<<<<=∆=−=∆∆∆∈∆→∈∑⋯⋯⋯设函数在有界闭区间上有定义,在中任意插入若干个分点把区间分成个小区间各个小区间的长度依次为记,令若无论区间怎么分划,在时总存在与选取无关的确定的[][][]01(),(),(),()lim (),(),(),,,,,nbi i ai I f x a b I f x a b f x dx I f x f x f x dx x a b a b λξ→===∆∑∫极限,则称函数在上是可积的,这个极限称为函数在区间上的定积分简称积分记作其中叫做被积函数叫做被积表达式叫做积分变量叫做积分下限叫做积分上限叫做积分区间.(11)(函数可积的条件1)[][](),,(),.f x a b f x a b 设在区间上连续则在上可积(12)(函数可积的条件2)[][](),,,(),.f x a b f x a b 设在区间上有界且只有有限个间断点则在上可积(13)(定积分的性质1)[]()()()()bbbaaaf xg x dx f x dx g x dx±=±∫∫∫(14)(定积分的性质2)()()()bbaa kf x dx k f x dx k =∫∫是常数(15)(定积分的性质3),()()()bcbaaca cb f x dx f x dx f x dx<<=+∫∫∫设则(16)(定积分的性质4)[],()1,1.b baaa b f x dx dx b a ≡==−∫∫如果在区间上则(17)(定积分的性质5)[],,()0(()0),()0(()0).b baaa b f x f x f x dx f x dx a b ≥≤≥≤<∫∫如果在区间上或则或 ()(18)(定积分性质5的推论1)[],,()(),()()().b baaa b f x g x f x dx g x dx a b ≤≤<∫∫如果在区间上则 (19)(定积分性质5的推论2)()()bbaaf x dx f x dx a b ≤<∫∫ ().(20)(定积分的性质6)[](),,()()())baM m f x a b m b a f x dx M b a a b −≤≤−<∫设及分别是函数在区间上的最大值和最小值则((21)(定积分中值定理积分中值公式)[][](),,,()()().baf x a b a b f x dx f b a ξξ=−∫如果函数在积分区间上连续则在上至少存在一个点,使得成立(22)(积分上限函数的可导性)[][](),,()(),,()()()xaxa f x ab x f t dt a b d x f t dt f x a x b dxΦ=′Φ==≤≤∫∫如果函数在区间上连续则积分上限的函数在上可导并且它的导数 ().(23)[][](),,()()(),.xaf x a b x f t dt f x a b Φ=∫如果函数在区间上连续则函数就是在上的一个原函数(24)(牛顿(Newton)-莱布尼兹(Leibniz)公式微积分基本公式)()()[,],()()().baF x f x a b f x dx F b F a =−∫如果函数是连续函数在区间上的一个原函数则(25)(定积分的换元法)[][][]()()()(1)(),();(2)(),(,)()()().bay f x x t t x t a b t f x dx f t t dt βαϕαβϕϕαϕβϕαββαϕϕ==≤≤===′=∫∫假设函数在函数的值域上连续(),函数满足条件:在或上具有连续导数,则有(26)[][]0(1)(),,()2().(2)(),,()0.aaaaaf x a a f x dx f x dx f x a a f x dx −−−=−=∫∫∫若在上连续且为偶函数则若在上连续且为奇函数则(27)[]2200()0,1,(1)(sin )(cos );(2)(sin )(sin ).2f x f x dx f x dx xf x dx f x dx πππππ==∫∫∫∫若在上连续则(28)(),,(1)()();(2)()()().a T Taa nTTaf x T f x dx f x dx f x dx n f x dx n N ++==∈∫∫∫∫设是连续的周期函数周期为则(29)(定积分的分部积分法)[][],()(),.bbba aaa b u x v x udv uv vdu =−∫∫设在区间上函数和可导则(30)(无穷限的反常积分的定义)[)[)[)(),,,lim (),(),,(),()lim ().();,(),(),()tat taaat aaf x a t a f x dx f x a f x dx f x dx f x dx f x dx f x a f x dx f x →+∞+∞+∞→+∞+∞+∞+∞>+∞=+∞∫∫∫∫∫∫(1)设函数在区间上连续取如果极限存在则称此极限为函数在无穷区间上的反常积分记作即这时也称反常积分收敛如果上述极限不存在则函数在无穷区间上的反常积分没有意义习惯上称为反常积分(](],().(2)(),,,lim (),(),,(),()lim ().();,().(aabtt bbbtt b bdx f x dxf x b t b f x dx f x b f x dx f x dx f x dx f x dx f x dx +∞+∞→−∞−∞−∞→−∞−∞−∞−∞<−∞=∫∫∫∫∫∫∫∫发散这时记号不再表示数值设函数在区间上连续取如果极限存在则称此极限为函数在无穷区间上的反常积分记作即这时也称反常积分收敛如果上述极限不存在则称反常积分发散()()03)(),,()(),(),(),()()()lim ()lim (),();t tt t f x f x dx f x dx f x f x dx f x dx f x dx f x dx f x dx f x dx f x dx +∞−∞+∞−∞+∞+∞−∞−∞→+∞→−∞+∞−∞−∞+∞−∞+∞=+=+∫∫∫∫∫∫∫∫∫设函数在区间上连续如果反常积分和都收敛则称上述两反常积分之和为函数在无穷区间上的反常积分,记作即这时也称反常积分收敛否则就称反常积分().f x dx +∞−∞∫发散(31)(瑕点的定义)()()().f x a a f x 如果函数在点的任一邻域内都无界,那么点称为函数的瑕点也称为无界间断点(32)(无界函数的反常积分的定义)(](][)(),,(),lim (),(),,(),()lim ().().,().(2)(),,()btt ab b baatt ab baaf x a b a f x t a f x dx f x a b f x dx f x dx f x dx f x dx f x dx f x a b b f x ++→→>=∫∫∫∫∫∫(1)设函数在上连续点为的瑕点.取如果极限存在则称此极限为函数在上的反常积分仍然记作即这时也称反常积分收敛如果上述极限不存在则称反常积分发散设函数在上连续点为的瑕点.取[],lim (),()lim ().().(3)(),(),().()()()()()lim ()l tat bbt baaat bc abbcbtcaacat ct b f x dx f x dx f x dx f x dx f x a b c a c b c f x f x dx f x dx f x dx f x dx f x dx f x dx −−−→→→<=<<=+=+∫∫∫∫∫∫∫∫∫∫如果极限存在则定义否则,就称反常积分发散设函数在上除点外连续点为的瑕点如果两个反常积分与都收敛,则定义im ().().btt cbaf x dx f x dx +→∫∫否则,就称反常积分发散(33)(无穷限反常积分的审敛法1)[)[)(),,()0.()(),()xaaf x a f x F x f t dt a f x dx +∞+∞≥=+∞∫∫设函数在区间上连续且若函数在上有上界,则反常积分都收敛.(34)(无穷限反常积分的审敛法2比较审敛原理)[)()(),.0()()(),(),()0()()(),(),().aaaaf xg x a f x g x a x g x dxf x dxg x f x a x g x dx f x dx +∞+∞+∞+∞+∞≤≤≤<+∞≤≤≤<+∞∫∫∫∫(1)设函数和在区间上连续如果并且收敛则也收敛;(2)如果并且发散则也发散(35)(无穷限反常积分的审敛法3比较审敛法1)[)(),(0),()0.(1)01,()(),();0,()(),().p a a f x a a f x MM p f x a x f x dx xNN f x a x f x dx x+∞+∞+∞>≥>>≤≤<+∞>≥≤<+∞∫∫设函数在区间上连续且如果存在常数及使得则反常积分收敛(2)如果存在常数使得则反常积分发散(36)(无穷限反常积分的审敛法4极限审敛法1)[)(),,()0.1,lim (),()(2)lim ()0(lim ()),().p a x ax x f x a f x p x f x f x dx xf x d xf x f x dx +∞→+∞+∞→+∞→+∞+∞≥>=>=+∞∫∫设函数在区间上连续且(1)如果存在常数使得存在则反常积分收敛;如果或则反常积分发散(37)(无穷限反常积分的审敛法5)[)(),.(),().().aaaf x a f x dx f x dx f x dx +∞+∞+∞+∞∫∫∫设函数在区间上连续如果反常积分收敛则反常积分也收敛即绝对收敛的反常积分必定收敛(38)(无界函数的反常积分的审敛法1比较审敛法2)(](),,()0().(1)01,()(),();()(2)0()(),().b q a b a f x a b f x x a f x MM q f x a x b f x dx x a NN f x a x b f x dx x a≥=>>≤<≤−>≥<≤−∫∫设函数在区间上连续且,为的瑕点如果存在常数及使得则反常积分收敛如果存在常数,使得则反常积分发散(39)(无界函数的反常积分的审敛法2极限审敛法2)(](),,()0,().(1)01,lim ()()();(2)lim ()()0(lim ()()),().bq a x abax ax af x a b f x x a f x q x a f x f x dx x a f x d x a f x f x dx +++→→→≥=<<−−=>−=+∞∫∫设函数在区间上连续且为的瑕点如果存在常数使得存在,则反常积分收敛如果或则反常积分发散(40)(Γ函数的相关性质)21101220(1):()(0).0.(2)(1)()(0).,(1)!(3)0,().(4)()(1)(01).sin (5)(),,()2x s x s xs u s e x dx s e x dx s s s s s n N n n s s s s s ss e x dx x u s eu ππ+∞+∞−−−−+++∞−−−ΓΓ=>>Γ+=Γ>∈Γ+=→Γ→+∞ΓΓ−=<<Γ==Γ=∫∫∫函数定义 反常积分对任意都收敛递推公式: 当时当时余元公式:在中作代换有2100.11121,()(1).222s u tdu t t s t s e u du t +∞−+∞−++−===Γ>−∫∫再令或即有 (41).光滑曲线弧是可求长的。

高数定理定义总结

高数定理定义总结

任一子数列也收敛于a.假如数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}高数定理定义总结高数定理定义总结高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;假如有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)假如数列{xn}收敛,那么数列{xn}肯定有界。

假如数列{xn}无界,那么数列{xn}肯定发散;但假如数列{xn}有界,却不能断定数列{xn}肯定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)假如数列{xn}收敛于a,那么它的收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中00(或A0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,假如lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

假如lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理假如F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

上海市考研数学复习资料高等数学重要定理总结

上海市考研数学复习资料高等数学重要定理总结

上海市考研数学复习资料高等数学重要定理总结高等数学是考研数学中的一门重要课程,它的理论基础是一系列的重要定理。

这些定理在考研数学中起着至关重要的作用,对于学生来说,熟练掌握和理解这些定理是顺利通过考试的关键。

本文将对上海市考研数学复习资料中的高等数学重要定理进行总结和归纳,以帮助考生更好地准备考试。

一、微分学的重要定理1. 导数的四则运算定理:导数具有四则运算的性质,即导数可以进行加减乘除运算。

2. 高阶导数的计算:通过迭代运算,可以计算出任意阶的导数。

3. 高阶导数的求导法则:使用高阶导数的求导法则可以简化复杂函数的求导过程。

4. 极值点的判定定理:通过一阶导数和二阶导数的符号变化可以判断函数的极值点。

二、积分学的重要定理1. 不定积分的线性性质:不定积分具有线性运算的性质,即可以对各项进行分别积分后再相加。

2. 定积分的基本性质:定积分具有加法性、线性性和区间可加性等基本性质。

3. 牛顿-莱布尼茨公式:利用这一定理,可以将定积分转化为不定积分进行计算。

4. 变量替换法则:通过进行变量替换,可以简化积分运算过程。

三、级数的重要定理1. 收敛级数的性质:收敛级数具有有限项相加的性质,可以进行线性运算。

2. 收敛级数的比较判别法:通过与已知级数进行比较,可以判断待定级数的敛散性。

3. 收敛级数的比值判别法:通过求级数项之比的极限,可以判断级数的敛散性。

4. 绝对收敛级数的性质:绝对收敛级数具有交换律和向量空间的性质。

四、微分方程的重要定理1. 解微分方程的存在唯一性定理:对于给定的初值问题,存在唯一的解函数。

2. 线性微分方程的叠加原理:线性微分方程的解具有叠加性质,可以通过对各个解的线性组合得到新的解。

3. 齐次线性微分方程的解结构:齐次线性微分方程的解可以通过特征方程的根的不同情况分类讨论。

五、向量与空间的重要定理1. 向量的线性相关性定理:多个向量线性相关的充要条件是它们能通过线性组合得到零向量。

高数考研知识点归纳

高数考研知识点归纳

高数考研知识点归纳高等数学是考研数学的重要组成部分,其知识点广泛且深入,以下是对高数考研知识点的归纳总结:一、极限与连续性- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点- 连续函数的性质二、导数与微分- 导数的定义与几何意义- 基本导数公式- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用三、中值定理与导数的应用- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 泰勒公式- 导数在几何、物理等领域的应用四、不定积分与定积分- 不定积分的概念与性质- 基本积分公式- 换元积分法- 分部积分法- 定积分的定义与性质- 定积分的计算方法五、级数- 级数的概念与性质- 正项级数的收敛性判别- 幂级数与泰勒级数- 函数项级数的一致收敛性六、多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度- 多元函数的泰勒展开七、重积分与曲线积分、曲面积分- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理八、常微分方程- 一阶微分方程的解法- 高阶微分方程- 线性微分方程的解法- 微分方程的应用结束语:考研高等数学的知识点繁多,要求考生不仅要掌握基本的概念和公式,还要能够灵活运用这些知识点解决实际问题。

通过系统地复习和大量的练习,可以提高解题速度和准确率,为考研数学取得高分打下坚实的基础。

希望以上的知识点归纳能够帮助考生更好地复习和准备考研高等数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数定理定义总结高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

单调有界数列必有极限。

6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。

不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。

如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。

非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。

定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。

反三角函数在他们的定义域内都是连续的。

定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。

如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。

定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)。

<B)。

<B)。

<B)。

< P>推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。

第二章导数与微分1、导数存在的充分必要条件函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。

2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。

即函数在某点连续是函数在该点可导的必要条件而不是充分条件。

3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。

4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。

第三章中值定理与导数的应用1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a<ξ<b),使的函数f(x)在该点的导数等于零:f'(ξ)= 0.<>2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a<ξ<b),使的等式f(b)-f (a)= f'(ξ)(b-a)成立即f'(ξ)= [f(b)-f(a)]/(b-a)。

3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F'(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。

4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。

5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f'(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)<0,那么函数f(x)在[a,b]上单调减少。

如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f'(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f'(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f'(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f'(x)恒为正;当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f'(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f'(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。

定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f'(x0)=0,f''(x0)≠0那么:(1)当f''(x0)<0时,函数f(x)在x0处取得极大值;(2)当f''(x0)>0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。

7、函数的凹凸性及其判定设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凹的;如果恒有f[(x1+x2)/2]>[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。

定理设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f'’(x)>0,则f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内f'’(x)<0,则f(x)在闭区间[a,b]上的图形是凸的。

判断曲线拐点(凹凸分界点)的步骤(1)求出f'’(x);(2)令f'’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f'’(x)在x0左右两侧邻近的符号,如果f'’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。

第四章不定积分1、原函数存在定理定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F'(x)=f(x);简单的说连续函数一定有原函数。

分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。

如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u.2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

第五章定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

相关文档
最新文档