二次函数与几何图形的综合问题
题型五二次函数和几何图形综合题
目录题型五二次函数与几何图形综合题 (2)类型一与特殊三角形形状有关 (2)类型二与特殊四边形形状有关 (8)类型三与三角形相似有关 (19)类型四与图形面积函数关系式、最值有关 (24)类型五与线段、周长最值有关 (30)题型五二次函数与几何图形综合题类型一与特殊三角形形状有关针对演练1. (’16原创)如图,已知抛物线y=-x2+bx+c的对称轴为x=1,与y轴的交点第1题图C为(0,3),与x轴交于点A、B,顶点为D.(1)求抛物线的解析式;(2)求A、B、D的坐标,并确定四边形ABDC的面积;(3)点P是x轴上的动点,连接CP,若△CBP是等腰三角形,求点P的坐标.2. (’15长沙模拟)如图,抛物线y=ax2+bx+c的图象过点M(),顶点为N(),与x轴交于点A、B(点A在点B的右侧),与y轴交于点C. (1)求抛物线解析式;(2)判断△ABC的形状,并说明理由;(3)若点Q是抛物线对称轴上一点,当△QBC是直角三角形时,求点Q的坐标.3. (’16原创)如图,抛物线y = -12x2+mx+n与x轴交于点A、B两点,与y轴交于点C,其对称轴与x轴的交点为D,已知A(-1,0),C(0,2).(1)求抛物线的解析式;(2)判断△ACD的形状,并说明理由;(3)在抛物线对称轴上是否存在一点P,使得△PBC是以P为直角顶点的直角三角形,若存在,求点P的坐标;若不存在,说明理由.4. 如图,已知二次函数L1:y=x2-4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2-4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.答案1. 解:(1)∵抛物线y =-x 2+bx +c 的对称轴为112bx =-=-⨯, 解得b =2,∵抛物线过点C (0,3),∴c =3, ∴抛物线解析式为y =-x 2+2x +3;(2)由抛物线y =-x 2+2x +3,令y =0得,-x 2+2x +3=0, 解得x 1=-1,x 2=3,∴点A (-1,0),点B (3,0), 当x =1时,y =-12+2+3=4,∴点D 的坐标为(1,4).如解图,过D 作DM ⊥AB 于M ,则OM =1,DM =4, ∴S 四边形ABDC =S △AOC +S 四边形OMDC +S △BMD=12AO ·OC +12(OC +MD )·OM +12BM ·DM =12×1×3+12×(3+4)×1+12×4×2 =9.(3)设点P 的坐标为(t ,0),则PC 2=t 2+32,PB 2=(3-t )2, ∴BC 2=32+32=18, 若△PBC 是等腰三角形,则有①PC 2=PB 2,即t 2+9=(3-t )2,解得t =0,此时点P 的坐标为(0,0); ②PC 2=BC 2,则t 2+9=18,解得t =3(舍)或t =-3,此时点P 的坐标为(-3,0);③PB 2=BC 2则(3-t )2=18,解得t =3+t =3-此时点P 的坐标为(3+)或(3-).2. 解:(1)由抛物线的顶点为N (-1,),故设抛物线的顶点式为y =a (x +1)2,将点M (a ×(-2+1)2=3,解得a =3-,∴抛物线的解析式为y = -3 (x +1)2+3.即y =3-x 23-x(2)对于抛物线y =-2-y = 0,得2-x , 解得x 1=1,x 2=-3,∴点A (1,0),点B (-3,0),令抛物线x =0,得y ,∴点C 的坐标为().∴AB 2=42=16,AC 2=12)2=4,BC 2=32)2=12, ∴AB 2=AC 2+BC 2, ∴△ABC 是直角三角形.(3)由抛物线顶点N ()知抛物线的对称轴为x =-1,设点Q 的坐标为(-1,t ),则BQ 2=(-3+1)2+t 2=4+t 2,CQ 2=(-1)2+(t2=t 2-+4,BC 2=12. 要使△BQC 是直角三角形,(ⅰ) 当∠BQC =90°,则BQ 2+QC 2=BC 2, 即4+t 2+t 2-+4=12, 解得t 1,t 2Q 的坐标为(-1-1,2-2);(ⅱ)当∠QBC =90°,则BQ 2+BC 2=QC 2,即4+t 2+12=t 2-+4,解得t=-Q 的坐标为(-1,-; (ⅲ)当∠BCQ = 90°时,则QC 2+BC 2=BQ 2,即t 2-+4+12=4+t 2,解得t=Q 的坐标为(-1, . 综上,当△QBC 是直角三角形时,点Q 坐标为(-1,2),(-1,± 3. 解:(1)∵点A (-1,0),C (0,2)在抛物线上,∴1022m n n ⎧--+=⎪⎨⎪=⎩,解得322m n ⎧=⎪⎨⎪=⎩ ∴抛物线解析式为y =-12x 2+32x +2; (2)△ACD 是等腰三角形. 理由:∵抛物线y =-12x 2+32x +2的对称轴为直线x =32, ∴点D (32,0), ∵A (-1,0),C (0,2),∴AC ,AD =1+32=52,CD 52=,∴AD =CD ≠AC ,∴△ACD 是等腰三角形; (3)令抛物线y =-12x 2+32x +2=0,得x 1=-1,x 2=4,∴点B 的坐标为(4,0),则BC = 取BC 的中点为S ,则点S 的坐标为(2,1); 设点P (32,t ),则PS =12BC (2-32)2+(t -1)2=5,解得t 1t 2∴存在这样的点P ,其坐标为(32)或(32,.4. 解:(1)当y =0时,x 2-4x +3=0, ∴x 1=1,x 2=3, 即:A (1,0),B (3,0);(2) ①二次函数L 2与L 1有关图象的两条相同的性质:(Ⅰ)对称轴都为直线x =2或顶点的横坐标都为2; (Ⅱ)都经过A (1,0),B (3,0)两点; ②存在实数k ,使△ABP 为等边三角形. ∵y =kx 2-4kx +3k =k (x -2)2-k , ∴顶点P (2,-k ).∵A (1,0),B (3,0),∴AB = 2,要使△ABP 为等边三角形,必满足|-k |=3,∴k =±3;③线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于点E、F两点,∴kx2-4kx+3k=8k,∵k≠0,∴x2-4x+3=8,∴x1=-1,x2=5,∴EF =x2-x1=6,∴线段EF的长度不会发生变化且EF=6.类型二与特殊四边形形状有关针对演练1. 抛物线y=x2+bx+c经过A(0,2),B(3,2)两点,点D在x轴的正半轴. (1)求抛物线与x轴的交点坐标;(2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由.2. 如图,已知平面直角坐标系xOy中,O是坐标原点,抛物线y=-x2+bx+c(c>0)的顶点D在第二象限,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使AC =2BC,连接OA,OB,BD和AD.(1)若点A 的坐标为(-4,4),求抛物线的解析式; (2)在(1)的条件下,求直线BD 的解析式;(3)是否存在b 、c 使得四边形AOBD 是矩形,若存在,直接写出b 与c 的关系式;若不存在,说明理由.3. 如图,已知直线y =43-x +8与x 轴交于点A ,与y 轴交于点B ,C 是线段AB的中点,抛物线y =ax 2+bx +c (a >0)过O 、A 两点,且其顶点的纵坐标为43-.(1)分别写出A 、B 、C 三点的坐标; (2)求抛物线的函数解析式;(3)在抛物线上是否存在点P ,使得以O 、P 、B 、C 为顶点的四边形是菱形?若存在,求所有满足条件的点P 的坐标;若不存在,请说明理由.4. (’15毕节16分)如图,抛物线y =x 2+bx +c 与x 轴交于A (-1,0),B (3,0)两点,顶点M 关于x 轴的对称点是M′.第4题图 (1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A、B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.5. (’15黄冈14分)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA 所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长;(2)求经过O,D,C三点的抛物线的解析式;(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B 时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP =DQ;(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.答案1. 解:(1)把A (0,2),B (3,2)代入y =x 2+bx +c ,得2932c b c =⎧⎨++=⎩,解得32b c =-⎧⎨=⎩, ∴抛物线的解析式为:y =x 2-3x +2, 当y =0时,x 2-3x +2=0,解得x 1=1,x 2=2, ∴抛物线与x 轴的交点坐标为(1,0)、(2,0). (2)存在.理由:∵A (0,2),B (3,2), ∴AB ∥x 轴,且AB =3,要使A 、B 、C 、D 四点为顶点的四边形是平行四边形, 则只要CD =AB =3.①当C 点坐标为(1,0)时,D 坐标为(4,0); ②当C 点坐标为(2,0)时,D 坐标为(5,0).∴存在点D ,使以A ,B ,C ,D 四点为顶点的四边形是平行四边形,D 点的坐标为(4,0)或(5,0).2. 解:(1)∵CA ∥x 轴,点A 的坐标为(-4,4), ∴点C 的坐标为(0,4), 将点A 与点C 代入y =-x 2+bx +c 得16444b c c --+=⎧⎨=⎩,解得44b c =-⎧⎨=⎩, ∴抛物线的解析式为y =-x 2-4x +4; (2)∵AC =2BC ,∴BC =2, ∴点B 的坐标为(2,4),由抛物线y =-x 2-4x +4得顶点D 的坐标为(-2,8), 设直线BD 的解析式为y =kx +m ,则2824k m k m -+=⎧⎨+=⎩,解得16k m =-⎧⎨=⎩,∴直线BD 的解析式为y =-x +6.(3)存在,b 与c 的关系式为b c .【解法提示】∵点C 的坐标为(0,c ),抛物线的对称轴为x =2b<0,即b <0,AC ∥x 轴,∴点A 的坐标为(b ,c ),∵AC =2BC ,∴点B 的坐标为(-2b,c ), 则AB 的中点坐标为(4b,c ), 若四边形AOBD 是矩形, 则需①OD 的中点坐标为(4b,c );②OD =AB , 由①得点D 的坐标为(4b,2c ), 由②得(32b )2=(4b )2+(2c )2,整理得2c 2=b 2,∵c >0,b <0, ∴bc .3. 解:(1)令y =0,即-43x +8=0,得x =6,∴A 点坐标为(6,0), 令x =0,则y =8,∴B 点坐标为(0,8), ∴C 点坐标为(3,4).(2)∵点C 在抛物线的对称轴上, ∴抛物线顶点坐标为(3,-43). 依题意有036604933c a b c a b c ⎧=⎪⎪++=⎨⎪++=-⎪⎩,解得427890a b c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩,∴抛物线的函数解析式为248279y x x =-; (3)存在.∵∠AOB =90°,A (6,0)、B (0,8),∴10AB ===, ∵C 是AB 的中点,∴OC =12AB =BC =5, ∵OB =8,∴OB >OC ,且OB >BC ,∴当以O 、P 、B 、C 为顶点的四边形是菱形时,OB 是菱形的对角线, 连接PC ,则OB 是PC 的垂直平分线, ∴点P 与点C 关于y 轴对称, ∵C (3,4), ∴P (-3,4),把点P (-3,4)代入抛物线解析式248279y x x =-得: 当x =-3时,y =427×(-3)2-89×(-3)=4, ∴点P (-3,4)在抛物线上.故在抛物线上存在点P ,使以O 、P 、B 、C 为顶点的四边形是菱形,且点P 的坐标是(-3,4).4. 解:(1)∵抛物线与x 轴交于点A (-1,0),B (3,0),∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3;……………………(4分) (2)∵抛物线y =x 2-2x -3=(x -1)2-4, ∴点M 的坐标为(1,-4). ∵点M 与点M′关于x 轴对称,∴点M′的坐标为(1,4),…………………………………………………(6分) 设直线AM′的解析式为y =kx +m , 将点A (-1,0),点M′(1,4)代入得,4k m k m -+=⎧⎨+=⎩,解得22k m =⎧⎨=⎩,∴直线AM′的解析式为y =2x +2,…………………………………………(8分) 将直线AM′与抛物线y =x 2-2x -3联立得22223y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,22512x y =⎧⎨=⎩ ∴点C 的坐标为(5,12),……………………………………………………(10分) 又∵AB =3-(-1)=4, ∴S △CAB =12×4×12=24. ……………………………………………………(12分) (3)∵四边形APBQ 是正方形, ∴PQ 垂直且平分AB ,且PQ =AB , 设PQ 与x 轴交点为N ,则PN =12AB =2, ∵抛物线的对称轴为x =1,∴点P 的坐标为(1,2)或(1,-2). …………………………………(13分) 设过A 、B 两点的抛物线的解析式为y =a (x +1)(x -3),将点(1,2)代入得a =-12, 此时抛物线解析式为y =-12 (x +1)(x -3)=- 12x 2+x +32;………………(15分)将点(1,-2)代入得a =12,此时抛物线解析式为2113(1)(3)222y x x x x =+-=--.……………………(16分)5. 解:(1)∵四边形OABC 为矩形, ∴BC =OA =5,OC =AB =4,∠COA =90°,又∵△CED 是△BCD 沿直线CD 折叠得到的,点B 的对应点为点E , ∴CE =BC =5,在Rt△COE 中,OE 2=CE 2-OC 2, ∴OE∴OE=3. ………………………………………………………………………(2分) (2)设AD =m,则DE=BD=4-m.∵OE=3,∴AE=OA-OE=5-3=2.在Rt△ADE中,AD2+AE 2=DE 2,即m 2+22=(4-m)2,∴m=32,∴D(-32,-5). ………………………………………………………………(4分)又∵C(-4,0),O(0,0),∴设过O,D,C三点的抛物线的解析式为y=ax(x+4),∴-5=-32a·(-32+4),∴a=43,∴经过O,D,C三点的抛物线的解析式为y=43x2+163x. …………………(6分)(3)①由于运动时间为t秒,则EQ=t,CP=2t,如解图①,∵△BCD沿直线CD折叠得到△ECD, ∴BD=DE,若DP=DQ,则Rt△P BD≌Rt△QED(HL),∴PB=QE,即CB-CP=EQ.∴5-2t=t,解得t=53 .………………………………………………………………………(8分)(4)(ⅰ)如解图②,当M 点在对称轴右侧,即为M1点,M 1N ∥CE 且M 1N =CE 时,四边形ECNM 1为平行四边形,过M 1作M 1F 垂直对称轴于点F ,则△M 1FN ≌△COE , ∴FM 1=OC ,∵对称轴为直线x =-2, ∴此时,点M 1的横坐标为2, 对于y =43x 2+163x ,当 x =2时,y =16, ∴点M 1的坐标为(2,16). ………………………………………………(10分) (ⅱ)如解图③,当M 点在对称轴左侧,即为M2,M 2N ∥CE 且M 2N =CE 时,四边形ECM 2N 为平行四边形,过M 2作 M 2F 垂直对称轴于点F ,则△M 2FN ≌△COE , ∴FM 2=OC ,∵对称轴直线x =-2, ∴此时,点M 2的横坐标为-6. 对于y =43x 2+163x ,当x =-6时,y =16, ∴点M 2的坐标为(-6,16). ………………………………………………(12分) (ⅲ)如解图④,当M 点在抛物线的顶点上,即为点M 3,CN ∥ M 3E 且CN = M 3E 时,四边形EM 3CN 为平行四边形,CE 与NM 3相交于点O′,则O′为线段CE 的中点, 又∵点M 3在对称轴上,则M 3的横坐标为-2,对于y =43x 2+163x ,当 x =-2时,y =-163, ∴点M 3的坐标为(-2,-163 ).综上所述,当点M 的坐标为(2,16)、(-6,16)、(-2,-163)时,以M ,N ,C ,E为顶点的四边形为平行四边形. ……………………………………………(14分)类型三与三角形相似有关针对演练1. (’15黔南州12分)如图,在平面直角坐标系xOy中,抛物线y=-16x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB.过点B作x轴的垂线,过点A作y 轴的垂线,两直线相交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A、B、D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.2. (’15常德模拟)已知抛物线y =ax2-2x+c与x轴交于A(-1,0)、B两点,与y轴交于点C,对称轴为x =1,顶点为E,直线y =-13x+1交y轴于点D.(1)求抛物线的解析式;(2)求证:△BCE∽△BOD;(3)点P是抛物线上的一动点,当点P运动到什么位置时,△BDP的面积等于△BOE的面积?答案解:(1)由抛物线y =-16x 2+bx +c 过点A (0,4)和C (8,0)可得, ∴4164806c b c =⎧⎪⎨-⨯++=⎪⎩,解得564b c ⎧=⎪⎨⎪=⎩ 故b 的值为56,c 的值为4;………………………………………………(3分) (2)∵∠AOP =∠PEB =90°,∠OAP =∠EPB =90°-∠APO ,∴△AOP ∽△PEB ,则2OA AP PE PB==, ∵AO =4,P (t ,0),∴PE =2,OE =OP +PE = t +2,又∵DE =OA =4,∴点D 的坐标为(t +2,4), ∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4, 解得t =3或t =-2,∵t >0,∴t =3.故当t 为3时,点D 落在抛物线上;…………………………………………(6分)(3)存在,理由:由(2)知△AOP ∽△PEB , 则2OP AP BE PB==,∵P (t ,0),即OP =t .∴BE =2t . ①当0<t <8时,若△POA ∽△ADB ,则OP AO AD BD =, 即41242t t t =+-, 整理得t 2+16=0,∴t 无解;若△POA ∽△BDA ,则PO AO BD AD =,即41242t t t =+-, 解得t 1= -2+t 2= -2-舍去);②当t >8时,如解图.若△POA ∽△ADB ,则PO AO AD BD =, 即41242t t t =+-, 解得t 1= 8+t 2= 8-负值舍去);若△POA ∽△BDA ,同理可得t 无解.综上可知,当t=-2+8+A 、B 、D 为顶点的三角形与△AOP 相似. …………………………………………………………………………(12分) 2. 解:(1)由抛物线y =ax 2-2x +c 得,对称轴2122b x a a-=-=-=,∴a =1, 将点A (-1,0)及a =1,代入y =ax 2-2x +c 中,得1+2+c =0,c =-3,∴抛物线的解析式:y =x 2-2x -3;(2)由抛物线的解析式y =x 2-2x -3=(x -1)2-4 =(x +1)(x -3),得点C (0,-3)、B (3,0)、E (1,-4).易知点D (0,1),则有:OD =1,OB =3,BDCE,BC=BE= ∴OD OB BD CE BC BE==, ∴△BCE ∽△BOD ;(3)S △BOE =12×BO ×|y E |=12×3×4=6, ∴S △BDP =12×BD ×h =S △BOE =6,即h, 在y 轴上取点M ,过点M 作MN 1⊥BD 于N 1,使得MN 1=h, 在Rt△MN 1D 中,sin∠MDN 1=sin∠BDO=OB BD =, 且MN 1则MD =11sin MN MDN ∠=4; ∴点M (0,-3)或(0,5).过点M 作直线l ⊥MN 2,如解图,则直线l :y =-13x -3或y =-13x +5. 联立抛物线的解析式有:213323y x y x x ⎧=--⎪⎨⎪=--⎩或215323y x y x x ⎧=-+⎪⎨⎪=--⎩ , 解得:1103x y =⎧⎨=-⎩,2235329x y ⎧=⎪⎪⎨⎪=-⎪⎩或3356x y ⎧+=⎪⎪⎨⎪=⎪⎩,4456x y ⎧-=⎪⎪⎨⎪=⎪⎩∴当点P 的坐标为(0,-3),(53,329-),),,)时,△BDP的面积等于△BOE的面积.类型四与图形面积函数关系式、最值有关针对演练1.(’15安顺26题14分)如图,抛物线y=ax2+bx+52与直线AB交于点A(-1,0),B(4,52).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.2. (’15岳阳模拟)如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.3. (’15永州模拟)如图,已知平面直角坐标系xOy中,抛物线y=ax2+bx+c 的对称轴为x=0,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB.(1)求证:mn=-6;(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线AB 交y 轴于点F ,过点F 作直线l 交抛物线于P ,Q 两点,问是否存在直线l ,使S △POF ∶S △QOF =1∶3?若存在,求出直线l 对应的函数关系式;若不存在,请说明理由.答案1.解:(1)由题意得5025516422a b a b ⎧-+=⎪⎪⎨⎪++=⎪⎩,……………………………………(2分) 解得122a b ⎧=-⎪⎨⎪=⎩,…………………………………………………………………(4分)∴215222y x x =-++.…………………………………………………………(6分) (2)设直线AB 为y kx b =+,则有0542k b k b -+=⎧⎪⎨+=⎪⎩, 解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩,……………………………………………………………………(7分) ∴直线AB 的解析式为1122y x =+.…………………………………………(8分) 则21511(,2),(,)2222D m m m C m m -+++,…………………………………(9分)21511(2)()2222CD m m m =-++-+ 213222m m =-++.………………………………………………………(10分) ∴11(1)(4)22ACD BCD S S S m CD m CD =+=+⋅+-⋅△△ 21521135(2)222CD m m =⨯⨯=⨯⨯-++ 2515544m m =-++. …………………………………………………(11分) ∵54-<0, ∴抛物线开口向下故当m =32时,S 有最大值. ………………………………………………(12分) 当m =32时,111315222224m +=⨯+=, ∴点C (32,54). 当S 取最大值时的点C 坐标为(32,54).…………………………………(14分) 2. 解:(1)将A (1,0),B (-3,0)代入y =-x 2+bx +c 中,得10930b c b c -++=⎧⎨--+=⎩,∴23b c =-⎧⎨=⎩, ∴抛物线解析式为:y =-x 2-2x +3;(2)存在.理由如下:由题意知A 、B 两点关于抛物线的对称轴x=-1对称,∴直线BC 与x =-1的交点即为Q 点,此时△AQC 的周长最小,∵y =-x 2-2x +3,∴C 的坐标为(0,3),∴直线BC 的解析式为y =x +3.将x =-1代入y =x +3中,解得y =2,∴Q (-1,2).(3)存在.理由如下:∵B (-3,0),C (0,3),∴水平宽a =x C -x B =0-(-3)=3.设点P (x ,-x 2-2x +3)(-3<x <0),过P 点作PE ⊥x 轴交x 轴于点E ,交BC 于点F ,则F 点坐标为(x ,x +3), ∴铅垂高h=y P -y F =-x 2-2x +3-(x +3)=-x 2-3x ,∴S =12ah = 32(-x 2-3x )=- 32(x 2+3x +94-94) =-32(x +32)2+278, ∴当x =-32时,△BPC 的面积最大,最大为278, 当x =-32时,-x 2-2x +3 =154, ∴点P 的坐标为(-32,154). 3. (1)证明:作BC ⊥x 轴于点C ,AD ⊥x 轴于点D ,∵A ,B 点坐标分别为(m ,6),(n ,1),∴BC =1,OC =-n ,OD =m ,AD =6,又OA ⊥OB ,易证△CBO ∽△DOA , ∴CB CO DO DA=, ∴16n m -=, ∴mn =-6.(2)解:由(1)知,△CBO ∽△DOA , ∴1OB BC OA OD m==,即OA =m BO , 又∵S △AOB =10, ∴32OB ·OA =10,即OB ·OA =20, ∴mBO 2=20,又OB 2=BC 2+OC 2=n 2+1,∴m (n 2+1)=20,又∵mn =-6,∴m =2,n =-3,∴A 坐标为(2,6),B 坐标为(-3,1),易得抛物线解析式为y =-x 2+10.(3)解:存在.理由如下:直线AB 的解析式为y =x +4,且与y 轴交于点F (0,4),∴OF =4,假设存在直线l 交抛物线于P ,Q 两点,使S △POF ∶S △QOF =1∶3,如解图所示,则有PF ∶FQ =1∶3,作PM ⊥y 轴于点M ,QN ⊥ y 轴于点N ,设P 坐标为(x ,-x 2+10),∴PM =-x ,OM =-x 2+10,则FM =OM -OF =(-x 2+10)-4=-x 2+6,易证△PMF ∽△QNF , ∴13PM MF PF QN FN QF ===, ∴QN =3PM =-3x ,NF =3MF =-3x 2+18,∴ON =NF –OF =-3x 2+18-4=-3x 2+14,∴Q点坐标为(-3x,3x2-14),∵Q点在抛物线y=-x2+10上,∴3x2-14=-9x2+10,解得:x1x2∴P 1,8),Q 1P 2,8),Q 2∴易得直线PQ的函数关系式为y x+4或y x+4.类型五与线段、周长最值有关针对演练1. 如图,已知抛物线y=ax2+bx+c与x轴交于O、B两点,其中O为原点,且OB=6,抛物线的顶点为A,若点M(1,209)是抛物线上一点.(1)求抛物线的解析式;(2)若N为抛物线对称轴上一个动点,当NO +NM的值最小时,求点N的坐标.2. (’15枣庄10分)如图,直线y =x +2与抛物线y =ax 2+bx +6(a ≠0)相交于A (12,52)和B (4,m )两点,点P 是线段AB 上异于A ,B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C . (1)求抛物线的解析式;(2)是否存在这样的点P ,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)当△PAC 为直角三角形时,求点P 的坐标.3. (’15沈阳14分)如图,在平面直角坐标系中,抛物线224233y x x =--+与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A ,抛物线的顶点为D . (1)填空:点A 的坐标为(___,___),点B 的坐标为(___,___),点C 的坐标为(___,___),点D 的坐标为(___,___);(2)点P 是线段BC 上的动点(点P 不与点B 、C 重合).①过点P 作x 轴的垂线交抛物线于点E ,若PE =PC ,求点E 的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.温馨提示:可以根据题意,在备用图中补充图形,以便作答.答案解:(1)由对称性得抛物线与x轴的交点为O(0,0),B(6,0),设抛物线的解析式为y=a(x-0)(x-6),∵M(1,209)是抛物线上一点,∴209=a ×1×(-5),∴a =-49, ∴抛物线的解析式为y =-49x 2+83x .(2)抛物线对称轴为:x =3,∵点O 、B 关于对称轴对称, ∴连接MB 交对称轴于N ,如解图,这时NO +NM 的值最小. 设MB 的解析式为:y =k 1x +b 1, 将B (6,0),M (1,209)代入MB 的解析式中, 得11110620=9k b k b =+⎧⎪⎨+⎪⎩,解得114-983k b ⎧=⎪⎪⎨⎪=⎪⎩,易得直线MB 的解析式为48-93y x =+,当x =3时,y =43,∴N (3,43).2.解:(1)∵B (4,m )在直线y =x +2上, ∴m =4+2=6, ∴B (4,6), ∵点A (12,52),B (4,6)在抛物线y =ax 2+bx +6上, ∴22115()62224466b a b ⎧++=⎪⎨⎪++=⎩,解得28a b =⎧⎨=-⎩, ∴抛物线的解析式为y =2x 2-8x +6. …………………………………………(3分) (2)设动点P 的坐标为(n ,n +2),则点C 的坐标为(n ,2n 2-8n +6), ∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2(n -94)2+498. ∴当n =94时,线段PC 取得最大值498. ∴存在这样的点P ,使线段PC 的长有最大值,PC 最大值为498.……………(6分) (3)如解图①,显然,∠APC ≠90°,当∠PAC =90°时,直线AB 的解析式为y =x +2, 设直线AC 的解析式为y =-x +b , 把A (12,52)代入得52=-12+b ,解得b =3. ∴直线AC 的解析式为y =-x +3. 由-x +3=2x 2-8x +6, 解得x = 3或x =12(舍去), 当x =3时,x +2=3+2=5,此时,点P 坐标为P 1(3,5);………………………(8分) 当∠PCA =90°时,如解图②,由A (12,52)知,点C 的纵坐标为y =52. 由2x 2-8x +6=52,得x 1=12(舍去),x 2=72, 当x =72时,x +2=72+2=112.此时,点P 坐标为P 2(72,112).综上所述,满足条件的点P 有两个,分别为P 1(3,5),P 2(72,112). …(10分) 3. 解:(1)A (0,2),B (-3,0),C (1,0),D (-1,83)【解法提示】∵抛物线224233y x x =--+与x 轴交于B 、C 两点,∴2242033x x --+=,解得x 1=-3,x 2 =1,∵点B 在点C 的左侧,∴B (-3,0),C (1,0),又∵抛物线与y 轴交于点A ,∴当x =0时,y =2,∴A (0,2).∵431222()3ba --==-⨯-,且当x =-1时,2248(1)(1)2333y =-⨯--⨯-+=.∴顶点D 的坐标为(-1,83).(2)①设点P 的坐标为(n ,0),-3<n <1. ∵EP ⊥x 轴,点E 在抛物线上,∴点E 的坐标为(n , 224233n n --+),又∵PE =PC ,∴2242133n n n --+=-,∴n 1=-32,n 2=1(不符合题意,舍去),当n=-32时,2224224252()()23333332n n --+=-⨯--⨯-+=,∴E (-32,52),…………………………………………………………………(7分)②32或52.…………………………………………………………………… (10分) 【解法提示】如解图①,设直线DE 与x 轴交于M ,与y 轴交于N ,直线EA 与x轴交于点K ,根据E 、D 的坐标求得直线ED 的解析式为y =13x +3,根据E 、A 的坐标求得直线EA 的解析式为y =-13x +2,∴△MEK 是以MK 为底边的等腰三角形,△AEN 是以AN 为底边的等腰三角形,∵到EA 和ED 的距离相等的点F 在顶角的平分线上,根据等腰三角形的性质可知,EF 的长是E 点到坐标轴的距离,∴EF =32或52.③. ………………………………………………………………(14分)【解法提示】根据题意得:当P与O重合时,周长最小,如解图②,作O关于AB的对称点E,作O关于AC的对称点F,连接EF交AB于点Q,交AC于点R,此时△PQR的周长=PQ +QR +PR =EF,∵A(0,2),B(-3,0),C(1,0),∴AB=AC=∵S△AOB=12×12OE×AB =12OA·OB,∴OE,易得△OEM ∽△ABO,∴OM EM OEOA OB AB==,即23OM EM==,∴OM =2413,EM =3613,∴E(-2413,3613),同理可求F(85,45),∴△PQR周长的最小值为65EF==.。
专题六 二次函数与几何图形的综合
若不存在,请说明理由.
+ + = ,
【解析】(1)由题意得:ቐ
−
= ,
= ,
解得ቊ
= −,
故抛物线的表达式为y=x2-5x+4①;
(2)对于y=x2-5x+4,令y=x2-5x+4=0,解得x=1或4,令x=0,则y=4,
= − +
= −
得:ቐ
,解得ቐ = ,
=
= + +
=
∴抛物线的表达式为:y=-x2+2x+3;
(2)∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,
∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;
(3)存在.∵抛物线交正方形OBDC的边BD于点E,
设AB的中点为J,连接PJ,则J(-2,-2),
∴PJ= AB=2
,∴12+(n+2)2=(2 )2,解得n= -2或n=- -2,
∴P3(-1, -2),P4(-1,- -2),
综上所述,满足条件的点P的坐标为(-1,3)或(-1,-5)或(-1, -2)或(-1,- -2).
在Rt△BOM中,BM=tan 30°·OB= ,∴ME=BE-BM=2- ,
综上所述,ME的值为:3 -2或2- .
考点二直角三角形的存在性问题
解答二次函数中直角三角形存在性问题的方法:
(1)假设其存在,画出相应的图形.
(2)分情况讨论:当所给条件不能确定直角顶点时,应分情况讨论.分别令三角形三个
第八讲 二次函数与几何图形的综合运用1(含答案)
第八讲 二次函数与几何图形的运用一、知识梳理二次函数与三角形的综合运用:1、求面积及最值2、与三角形的综合运用3、与相似三角形的综合运用4、与四边形的综合运用二、例题例1:如图,已知抛物线y=﹣x 2+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0)(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.变式 1 如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.例2、如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.例3:在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.例4:已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B 两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.例5、如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.(1)写出点D的坐标.(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c (a≠0)的图象过点A.①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x ﹣4)、y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H 作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.三、课堂练习1、如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE.设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是 ( )A.y=32x2 B.y=3x2 C.y=23x2 D.y=33x22、已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为.3、直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB 恒过一个定点,该定点坐标为.4、如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.5、如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为(2,9),与y 轴交于点A (0,5),与x 轴交于点E 、B . (1)求二次函数y=ax 2+bx+c 的表达式;(2)过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的一点(点P 在AC 上方),作PD 平行与y 轴交AB 于点D ,问当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M 在抛物线上,点N 在其对称轴上,使得以A 、E 、N 、M 为顶点的四边形是平行四边形,且AE 为其一边,求点M 、N 的坐标.六、课后作业1、已知抛物线y=ax 2﹣3x+c (a ≠0)经过点(﹣2,4),则4a+c ﹣1= .2、a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b c (用“>”或“<”号填空)3、已知二次函数n mx x y ++=2的图像经过点()1,3-P ,对称轴是经过()0,1-且平行于y轴的直线。
(完整版)二次函数与几何图形综合题.doc
二次函数与几何图形综合题类型 1二次函数与相似三角形的存在性问题1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点.(1)求这条抛物线的解析式;(2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值;(3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点E.(1)求抛物线的解析式;(2)当 DE= 4 时,求四边形CAEB 的面积;(3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点.(1)求抛物线的解析式;(2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似?(3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.类型 2二次函数与平行四边形的存在性问题1. (2014 ·靖曲 )如图,抛物线y=ax2+bx+ c 与坐标轴分别交于A(- 3, 0), B(1, 0), C(0, 3)三点, D 是抛物线顶点, E 是对称轴与 x 轴的交点.(1)求抛物线的解析式;(2)F 是抛物线对称轴上一点,且1,求点 O 到直线 AF 的距离;tan∠ AFE =2(3)点 P 是 x 轴上的一个动点,过P 作 PQ∥ OF 交抛物线于点Q,是否存在以点O, F, P,Q 为顶点的平行四边形?若存在,求出P 点坐标;若不存在,请说明理由.2. (2013 ·明昆 )如图,矩形 OABC 在平面直角坐标系 xOy 中,点 A 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上, OA= 4, OC=3,若抛物线的顶点在 BC 边上,且抛物线经过 O,A 两点,直线 AC 交抛物线于点D .(1)求抛物线的解析式;(2)求点 D 的坐标;(3)若点 M 在抛物线上,点 N 在 x 轴上,是否存在以点A,D ,M,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.3. (2015 昆·明西山区二模 )如图,抛物线 y= x2- 2x-3 与 x 轴交于 A、B 两点 (A 点在 B 点左侧 ) ,直线l 与抛物线交于A、 C 两点,其中 C 点的横坐标为 2.(1)求 A、B、 C 三点的坐标;(2)在抛物线的对称轴上找到点P,使得△ PBC 的周长最小,并求出点P 的坐标;(3)点 G 是抛物线上的动点,在 x 轴上是否存在点 F ,使 A、C、F 、G 为顶点的四边形是平行四边形?如果存在,求出所有满足条件的 F 点坐标;如果不存在,请说明理由.类型 3二次函数与直角三角形的存在性问题1. (2015 ·南云 )如图,在平面直角坐标系中,抛物线y= ax2+ bx+ c( a≠0)与 x 轴相交于A、 B 两点,与y 轴相交于点C,直线 y= kx+n( k≠ 0)经过 B、 C 两点,已知 A(1, 0), C(0, 3),且 BC=5.(1)分别求直线BC 和抛物线的解析式(关系式 );(2)在抛物线的对称轴上是否存在点P,使得以 B、C、P 三点为顶点的三角形是直角三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由.2. (2015 ·贡自 )如图,已知抛物线y= ax2+ bx+ c(a≠0) 的对称轴为x=- 1,且抛物线经过A(1, 0),C(0, 3)两点,与x 轴交于点 B.(1)若直线 y=mx+ n 经过 B、 C 两点,求线段BC 所在直线的解析式;(2)在抛物线的对称轴x=- 1 上找一点M,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出此点M的坐标;(3)设点 P 为抛物线的对称轴x=- 1 上的一个动点,求使△BPC 为直角三角形的点P 的坐标.3. (2015 益·阳 )已知抛物线 E 1: y = x 2 经过点 A(1, m),以原点为顶点的抛物线E经过点 B(2, 2),点2 A 、 B 关于 y 轴的对称点分别为点A ′,B ′.(1)求 m 的值及抛物线E 2 所表示的二次函数的表达式;(2)如图,在第一象限内,抛物线E 1 上是否存在点 Q ,使得以点 Q 、B 、 B ′为顶点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)如图, P 为第一象限内的抛物线E 1 上与点 A 不重合的一点,连接OP 并延长与抛物线E 2 相交于点P ′,求△ PAA ′与△ P ′BB ′的面积之比.类型 4二次函数与等腰三角形的存在性问题1. (2015 ·东南黔 )如图,已知二次函数y 1=- x2+134x+c 的图象与x 轴的一个交点为A(4,0) ,与 y 轴的交点为 B,过 A、 B 的直线为y2= kx+b.(1)求二次函数y1的解析式及点 B 的坐标;(2)由图象写出满足y1<y2的自变量x 的取值范围;(3)在两坐标轴上是否存在点P,使得△ ABP 是以 AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.- 10 -2.如图,抛物线与x 轴交于 A, B 两点,直线y=kx- 1 与抛物线交于A, C 两点,其中A(- 1, 0),B(3, 0),点 C 的纵坐标为- 3.(1)求 k 值;(2)求抛物线的解析式;(3)抛物线上是否存在点P,使得△ ACP 是以 AC 为底边的等腰三角形?如果存在,写出所有满足条件的点 P 的坐标;如果不存在,请说明理由.3.(2015 ·明官渡区二模昆)如图,已知抛物线y=ax2+ bx+ c(a≠0)交于 x 轴于 A(- 1,0) ,B(5,0)两点,与 y 轴交于点C(0, 2).(1)求抛物线的解析式;(2)若点 M 为抛物线的顶点,连接BC、 CM 、BM ,求△ BCM 的面积;(3)连接 AC,在 x 轴上是否存在点P,使△ ACP 为等腰三角形;若存在,请求出点P 的坐标;若不存在,请说明理由.类型 5二次函数与图形面积问题1.(2014 ·明昆 )如图,在平面直角坐标系中,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(- 2,0),B(4,0)两点,与 y 轴交于点 C.(1)求抛物线的解析式;(2)点 P 从 A 点出发,在线段AB 上以每秒 3 个单位长度的速度向 B 点运动,同时点Q 从 B 点出发,在线段 BC 上以每秒 1 个单位长度的速度向 C 点运动.其中一个点到达终点时,另一个点也停止运动.当△ PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△ PBQ 的面积最大时,在BC 下方的抛物线上存在点K,使 S△CBK∶ S△PBQ= 5∶ 2,求 K 点坐标.2.(2015 云·南二模 )如图所示,抛物线 y= ax2+ bx(a< 0)与双曲线 y=k相交于点 A、B,点 A 的坐标为x(- 2, 2),点 B 在第四象限内,过点 B 作直线 BC∥x 轴,直线 BC 与抛物线的另一交点为点C,已知直线BC 与 x 轴之间的距离是点 B 到 y 轴的距离的 4 倍,记抛物线的顶点为 E.(1)求双曲线和抛物线的解析式;(2)计算△ ABC 与△ ABE 的面积;(3)在抛物线上是否存在点 D ,使△ ABD 的面积等于△ABE 的面积的8 倍?若存在,请求出点 D 的坐标;若不存在,请说明理由.类型 6 二次函数与最值问题1. (2015 ·明盘龙区一模昆)如图,对称轴为直线x= 2 的抛物线经过A(-1, 0), C(0, 5)两点,与x 轴另一交点为B,已知 M(0, 1), E(a, 0),F(a+ 1, 0),点 P 是第一象限内的抛物线上的动点.(1)求抛物线的解析式;(2)当 a= 1 时,求四边形MEFP 的面积最大值,并求此时点P 的坐标;(3)若△ PCM 是以点 P 为顶点的等腰三角形,求 a 为何值时,四边形PMEF 周长最小?请说明理由.2. (2013 ·溪玉 )如图,顶点为 A 的抛物线 y=a(x+ 2)2-4 交 x 轴于点 B(1, 0),连接 AB,过原点 O 作射线OM ∥ AB ,过点 A 作 AD∥ x 轴交 OM 于点 D,点 C 为抛物线与 x 轴的另一个交点,连接 CD .(1)求抛物线的解析式(关系式 );(2)求点 A,B 所在的直线的解析式(关系式 );(3)若动点 P 从点 O 出发,以每秒 1 个单位长度的速度沿着射线OM 运动,设点P 运动的时间为t 秒,问:当 t 为何值时,四边形ABOP 分别为平行四边形?(4)若动点 P 从点 O 出发,以每秒 1 个单位长度的速度沿线段OD 向点 D 运动,同时动点Q 从点 C 出发,以每秒 2 个单位长度的速度沿线段CO 向点 O 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t 秒,连接PQ.问:当 t 为何值时,四边形CDPQ 的面积最小?并求此时PQ 的长.类型 7二次函数与根的判别式问题1. (2015 ·阳衡 )如图,顶点M 在 y 轴上的抛物线与直线y= x+ 1 相交于 A、 B 两点,且点 A 在 x 轴上,点 B 的横坐标为2,连接 AM 、 BM .(1)求抛物线的函数关系式;(2)判断△ ABM 的形状,并说明理由;(3)把抛物线与直线y=x 的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点?类型 8二次函数与圆1.(2015 ·明盘龙区二模昆)如图,已知以E(3 ,0)为圆心,以 5 为半径的⊙ E 与 x 轴交于点A, B 两点,与 y 轴交于 C 点,抛物线y= ax2+ bx+ c 经过 A, B, C 三点,顶点为 F .(1)求 A, B, C 三点的坐标;(2)求抛物线的解析式及顶点 F 的坐标;(3)已知 M 为抛物线上一动点(不与 C 点重合 ).试探究:①使得以A,B, M 为顶点的三角形面积与△ABC 的面积相等,求所有符合条件的点M 的坐标;②若探究①中的M 点位于第四象限,连接M 点与抛物线顶点 F ,试判断直线MF 与⊙ E 的位置关系,并说明理由.2. (2015 ·靖曲 )如图,在平面直角坐标系xOy 中,直线l ⊥ y 轴于点 B(0,- 2), A 为 OB 的中点,以 A为顶点的抛物线 y= ax2+ c(a≠0)与 x 轴分别交于 C、D 两点,且 CD= 4.点 P 为抛物线上的一个动点,以 P 为圆心, PO 为半径画圆.(1)求抛物线的解析式;(2)若⊙ P 与 y 轴的另一交点为E,且 OE= 2,求点 P 的坐标;(3)判断直线l 与⊙ P 的位置关系,并说明理由.。
解答题压轴题二次函数与几何图形综合(解析版)
周日解答题压轴题二次函数与几何图形综合一模块一2022中考真题集训类型一二次函数中的最值问题(1)自变量范围与最值问题1.(2022•绍兴)已知函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(0,-3),(-6,-3).(1)求b ,c 的值.(2)当-4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.思路引领:(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x 的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x =-3,结合二次函数图象的性质,分类讨论得出m 的取值范围即可.解:(1)把(0,-3),(-6,-3)代入y =-x 2+bx +c ,得b =-6,c =-3.(2)∵y =-x 2-6x -3=-(x +3)2+6,又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.(3)①当-3<m ≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为-m 2-6m -3,∴-m 2-6m -3+(-3)=2,∴m =-2或m =-4(舍去).②当m ≤-3时,当x =-3时y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴-(m +3)2+6=-4,∴m =-3-10或m =-3+10(舍去).综上所述,m =-2或-3-10.总结提升:此题主要考查了待定系数法求二次函数解析式以及二次函数的性质等知识,正确分类讨论得出m 的取值范围是解题关键.2.(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),12,12 ,(-2,-2),⋯⋯都是和谐点.(1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点52,52.①求a ,c 的值;周日②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为-1,最大值为3,求实数m 的取值范围.思路引领:(1)设函数y =2x +1的和谐点为(x ,x ),可得2x +1=x ,求解即可;(2)将点52,52代入y =ax 2+6x +c ,再由ax 2+6x +c =x 有且只有一个根,Δ=25-4ac =0,两个方程联立即可求a 、c 的值;②由①可知y =-x 2+6x -6=-(x -3)2+3,当x =1时,y =-1,当x =3时,y =3,当x =5时,y =-1,则3≤m ≤5时满足题意.解:(1)存在和谐点,理由如下,设函数y =2x +1的和谐点为(x ,x ),∴2x +1=x ,解得x =-1,∴和谐点为(-1,-1);(2)①∵点52,52是二次函数y =ax 2+6x +c (a ≠0)的和谐点,∴52=254a +15+c ,∴c =-254a -252,∵二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点,∴ax 2+6x +c =x 有且只有一个根,∴Δ=25-4ac =0,∴a =-1,c =-254;②由①可知y =-x 2+6x -6=-(x -3)2+3,∴抛物线的对称轴为直线x =3,当x =1时,y =-1,当x =3时,y =3,当x =5时,y =-1,∵函数的最大值为3,最小值为-1;当3≤m ≤5时,函数的最大值为3,最小值为-1.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,并与二次函数的性质结合解题是关键.(2)胡不归问题3.(2022•淮安)如图(1),二次函数y =-x 2+bx +c 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),点C 的坐标为(0,3),直线l 经过B 、C 两点.(1)求该二次函数的表达式及其图象的顶点坐标;(2)点P 为直线l 上的一点,过点P 作x 轴的垂线与该二次函数的图象相交于点M ,再过点M 作y 轴的垂线与该二次函数的图象相交于另一点N ,当PM =12MN 时,求点P 的横坐标;(3)如图(2),点C 关于x 轴的对称点为点D ,点P 为线段BC 上的一个动点,连接AP ,点Q 为线段AP 上一点,且AQ =3PQ ,连接DQ ,当3AP +4DQ 的值最小时,直接写出DQ 的长.周日思路引领:(1)用待定系数法求函数的解析式即可;(2)设P(t,-t+3),则M(t,-t2+2t+3),N(2-t,-t2+2t+3),则PM=|t2-3t|,MN=|2-2t|,由题意可得方程|t2-3t|=12|2-2t|,求解方程即可;(3)由题意可知Q点在平行于BC的线段上,设此线段与x轴的交点为G,由QG∥BC,求出点G(2,0),作A点关于GQ的对称点A',连接A'D与AP交于点Q,则3AP+4DQ=4DQ+34AP=4 (DQ+AQ)≥4A'D,利用对称性和∠OBC=45°,求出A'(2,3),求出直线DA'的解析式和直线QG的解析式,联立方程组y=-x+2y=3x-3,可求点Q54,34,再求DQ=5104.解:(1)将点B(3,0),C(0,3)代入y=-x2+bx+c,∴-9+3b+c=0c=3,解得b=2c=3,∴y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点坐标(1,4);(2)设直线BC的解析式为y=kx+b,∴3k+b=0b=3,解得k=-1b=3,∴y=-x+3,设P(t,-t+3),则M(t,-t2+2t+3),N(2-t,-t2+2t+3),∴PM=|t2-3t|,MN=|2-2t|,∵PM=12MN,∴|t2-3t|=12|2-2t|,解得t=1+2或t=1-2或t=2+3或t=2-3,∴P点横坐标为1+2或1-2或2+3或2-3;(3)∵C(0,3),D点与C点关于x轴对称,∴D(0,-3),令y=0,则-x2+2x+3=0,解得x=-1或x=3,周日∴A (-1,0),∴AB =4,∵AQ =3PQ ,∴Q 点在平行于BC 的线段上,设此线段与x 轴的交点为G ,∴QG ∥BC ,∴AQ AP =AG BA ,∴34=AG 4,∴AG =3,∴G (2,0),∵OB =OC ,∴∠OBC =45°,作A 点关于GQ 的对称点A ',连接A 'D 与AP 交于点Q ,∵AQ =A 'Q ,∴AQ +DQ =A 'Q +DQ ≥A 'D ,∴3AP +4DQ =4DQ +34AP =4(DQ +AQ )≥4A 'D ,∵∠QGA =∠CBO =45°,AA '⊥QG ,∴∠A 'AG =45°,∵AG =A 'G ,∴∠AA 'G =45°,∴∠AGA '=90°,∴A '(2,3),设直线DA '的解析式为y =kx +b ,∴b =-32k +b =3,解得k =3b =-3 ,∴y =3x -3,同理可求直线QG 的解析式为y =-x +2,联立方程组y =-x +2y =3x -3 ,解得x =54y =34,∴Q 54,34 ,∴DQ =5104.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,利用轴对称求最短距离的方法,解绝对值方程,待定系数法求函数的解析式是解题的关键.4.(2022•梧州)如图,在平面直角坐标系中,直线y =-43x -4分别与x ,y 轴交于点A ,B ,抛物线y =518x 2+bx +c 恰好经过这两点.周日(1)求此抛物线的解析式;(2)若点C 的坐标是(0,6),将△ACO 绕着点C 逆时针旋转90°得到△ECF ,点A 的对应点是点E .①写出点E 的坐标,并判断点E 是否在此抛物线上;②若点P 是y 轴上的任一点,求35BP +EP 取最小值时,点P 的坐标.思路引领:(1)根据直线解析式可得点A 、B 的坐标,代入二次函数解析式,解方程即可;(2)①由旋转的性质可得E (6,3),当x =6时,y =518×62-12×6-4=3,可知点E 在抛物线上;②过点E 作EH ⊥AB ,交y 轴于P ,垂足为H ,sin ∠ABO =AO AB=HP BP =35,则HP =35BP ,得35BP +EP =HP +PE ,可知HP +PE 的最小值为EH 的长,从而解决问题.解:(1)∵直线y =-43x -4分别与x ,y 轴交于点A ,B ,∴当x =0时,y =-4;当y =0时,x =-3,∴A (-3,0),B (0,-4),∵抛物线y =518x 2+bx +c 恰好经过这两点.∴518×(-3)2-3b +c =0c =-4,解得b =-12c =-4,∴y =518x 2-12x -4;(2)①∵将△ACO 绕着点C 逆时针旋转90°得到△ECF ,∴∠OCF =90°,CF =CO =6,EF =AO =3,EF ∥y 轴,∴E (6,3),当x =6时,y =518×62-12×6-4=3,∴点E 在抛物线上;②过点E 作EH ⊥AB ,交y 轴于P ,垂足为H ,周日∵A(-3,0),B(0,-4),∴OA=3,OB=4,∴AB=5,∵sin∠ABO=AOAB =HPBP=35,∴HP=35BP,∴35BP+EP=HP+PE,∴当E,P,H三点共线时,HP+PE有最小值,最小值为EH的长,作EG⊥y轴于G,∵∠GEP=∠ABO,∴tan∠GEP=tan∠ABO,∴PG EG =AO BO,∴PG6=34,∴PG=92,∴OP=92-3=32,∴P0,-32.总结提升:本题是二次函数综合题,主要考查了待定系数法求函数解析式,旋转的性质,三角函数,两点之间、线段最短等知识,利用三角函数将35BP转化为HP的长是解题的关键.5.(2022•济南)抛物线y=ax2+114x-6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx-6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.思路引领:(1)用待定系数法求函数的解析式即可求解;周日(2)作PM ⊥x 轴交于M ,可求PM =14m 2-114m +6,AM =m -3,通过证明△COA ∽△AMP ,利用OA OC =PMAM,求m 的值即可求P 点坐标;(3)作PN ⊥x 轴交BC 于N ,过点N 作NE ⊥y 轴交于E ,通过证明△PQN ∽△BOC ,求出QN =35PN ,PQ =45PN ,再由△CNE ∽△CBO ,求出CN =54EN =54m ,则CQ +12PQ =CN +PN =-14m -132 2+16916,即可求解.解:(1)将B (8,0)代入y =ax 2+114x -6,∴64a +22-6=0,∴a =-14,∴y =-14x 2+114x -6,当y =0时,-14t 2+114t -6=0,解得t =3或t =8(舍),∴t =3,∵B (8,0)在直线y =kx -6上,∴8k -6=0,解得k =34;(2)作PM ⊥x 轴交于M ,∵P 点横坐标为m ,∴P m ,-14m 2+114m -6 ,∴PM =14m 2-114m +6,AM =m -3,在Rt △COA 和Rt △AMP 中,∵∠OAC +∠PAM =90°,∠APM +∠PAM =90°,∴∠OAC =∠APM ,∴△COA ∽△AMP ,∴OA OC =PM AM,即OA •MA =CO •PM ,3(m -3)=614m 2-114m +6 ,解得m =3(舍)或m =10,∴P 10,-72;(3)作PN ⊥x 轴交BC 于N ,过点N 作NE ⊥y 轴交于E ,∴PN =-14m 2+114m -6-34m -6 =-14m 2+2m ,∵PN ⊥x 轴,∴PN ∥OC ,∴∠PNQ =∠OCB ,周日∴Rt△PQN∽Rt△BOC,∴PN BC =NQOC=PQOB,∵OB=8,OC=6,BC=10,∴QN=35PN,PQ=45PN,由△CNE∽△CBO,∴CN=54EN=54m,∴CQ+12PQ=CN+NQ+12PQ=CN+PN,∴CQ+12PQ=54m-14m2+2m=-14m2+134m=-14m-1322+16916,当m=132时,CQ+12PQ的最大值是16916.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质是解题的关键.类型二二次函数中的面积问题1.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D-2,-52两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)思路引领:(1)用待定系数法求函数的解析式即可;(2)作直线BC,过M点作MN∥y轴交BC于点N,求出直线BC的解析式,设M m,-12m2+m+32,则N m,-12m+32,可得S△MBC=12•MN•OB=-34m-322+2716,再求解即可;(3)设Q(0,t),P m,-12m2+m+32,分三种情况讨论:①当AB为平行四边形的对角线时;②当AQ为平行四边形的对角线时;③当AP为平行四边形的对角线时;根据平行四边形的对角线互相平分,利用中点坐标公式求解即可.解:(1)将B(3,0),D-2,-5 2代入y=ax2+x+c,周日∴9a +3+c =04a -2+c =-52,解得a =-12c =32 ,∴y =-12x 2+x +32,令x =0,则y =32,∴C 0,32;(2)作直线BC ,过M 点作MN ∥y 轴交BC 于点N ,设直线BC 的解析式为y =kx +b ,∴3k +b =0b =32,解得k =-12b =32 ,∴y =-12x +32设M m ,-12m 2+m +32 ,则N m ,-12m +32 ,∴MN =-12m 2+32m ,∴S △MBC =12•MN •OB =-34m -32 2+2716,当m =32时,△MBC 的面积有最大值2716,此时M 32,158;(3)令y =0,则-12x 2+x +32=0,解得x =3或x =-1,∴A (-1,0),设Q (0,t ),P m ,-12m 2+m +32,①当AB 为平行四边形的对角线时,m =3-1=2,∴P 2,32;②当AQ 为平行四边形的对角线时,3+m =-1,解得m =-4,∴P -4,-212;③当AP 为平行四边形的对角线时,m -1=3,解得m =4,Y our Text07周日∴P 4,-52;综上所述:P 点坐标为2,32 或-4,-212 或4,-52.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.2.(2022•淄博)如图,抛物线y =-x 2+bx +c 与x 轴相交于A ,B 两点(点A 在点B 的左侧),顶点D(1,4)在直线l :y =43x +t 上,动点P (m ,n )在x 轴上方的抛物线上.(1)求这条抛物线对应的函数表达式;(2)过点P 作PM ⊥x 轴于点M ,PN ⊥l 于点N ,当1<m <3时,求PM +PN 的最大值;(3)设直线AP ,BP 与抛物线的对称轴分别相交于点E ,F ,请探索以A ,F ,B ,G (G 是点E 关于x 轴的对称点)为顶点的四边形面积是否随着P 点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.思路引领:(1)利用顶点式求解,可得结论;(2)如图,设直线l 交x 轴于点T ,连接PT ,BD ,BD 交PM 于点J .设P (m ,-m 2+2m +3).四边形DTBP 的面积=△PDT 的面积+△PBT 的面积=12×DT ×PN +12×TB ×PM =52(PM +PN ),推出四边形DTBP 的面积最大时,PM +PN 的值最大,求出四边形DTBP 的面积的最大值,可得结论;(3)四边形AFBG 的面积不变.如图,设P (m ,-m 2+2m +3),求出直线AP ,BP 的解析式,可得点E ,F 的坐标,求出FG 的长,可得结论.解:(1)∵抛物线的顶点D (1,4),∴可以假设抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(2)如图,设直线l 交x 轴于点T ,连接PT ,BD ,BD 交PM 于点J .设P (m ,-m 2+2m +3).点D (1,4)在直线l :y =43x +t 上,∴4=43+t ,∴t =83,周日∴直线DT 的解析式为y =43x +83,令y =0,得到x =-2,∴T (-2,0),∴OT =2,∵B (3,0),∴OB =3,∴BT =5,∵DT =32+42=5,∴TD =TB ,∵PM ⊥BT ,PN ⊥DT ,∴四边形DTBP 的面积=△PDT 的面积+△PBT 的面积=12×DT ×PN +12×TB ×PM =52(PM +PN ),∴四边形DTBP 的面积最大时,PM +PN 的值最大,∵D (1,4),B (3,0),∴直线BD 的解析式为y =-2x +6,∴J (m ,-2m +6),∴PJ =-m 2+4m -3,∵四边形DTBP 的面积=△DTB 的面积+△BDP 的面积=12×5×4+12×(-m 2+4m -3)×2=-m 2+4m +7=-(m -2)2+11∵-1<0,∴m =2时,四边形DTBP 的面积最大,最大值为11,∴PM +PN 的最大值=25×11=225;解法二:延长MP 交直线l 与点H ,易得直线l :y =43x +83,∴H m ,43m +83设直线l 交x 轴于点C ,交y 轴于点L ,∴C (-2,0),L 0,83,∴CL =103,∴sin ∠CLO =35,由LO ∥HM ,∴∠NHM =∠CLO ,∴sin ∠NHM =35,∴PH =43m +83+m 2-2m -3=m 2-23m -13,∴PN =35PH ,周日∴PM +PN =-m 2+2m +3+35m 2-23m -13 =-25(m -2)2+225,∵-25<0,∴m =2时,PM +PN 的值最小,最小值为225;(3)四边形AFBG 的面积不变.理由:如图,设P (m ,-m 2+2m +3),∵A (-1,0),B (3,0),∴直线AP 的解析式为y =-(m -3)x -m +3,∴E (1,-2m +6),∵E ,G 关于x 轴对称,∴G (1,2m -6),∴直线PB 的解析式y =-(m +1)x +3(m +1),∴F (1,2m +2),∴GF =2m +2-(2m -6)=8,∴四边形AFBG 的面积=12×AB ×FG =12×4×8=16.∴四边形AFBG 的面积是定值.总结提升:本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数解决问题,属于中考压轴题.类型三二次函数与角度问题1.(2022•菏泽)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-2,0)、B (8,0)两点,与y 轴交于点C (0,4),连接AC 、BC .(1)求抛物线的表达式;(2)将△ABC 沿AC 所在直线折叠,得到△ADC ,点B 的对应点为D ,直接写出点D 的坐标,并求出四边形OADC 的面积;(3)点P 是抛物线上的一动点,当∠PCB =∠ABC 时,求点P 的坐标.思路引领:(1)利用待定系数法解答即可;(2)过点D 作DE ⊥x 轴于点E ,利用轴对称的性质和三角形的中位线的性质定理求得线段OE ,DE ,则点D 坐标可得;利用四边形OADC 的面积=S △OAC +S △ACD ,S △ADC =S △ABC ,利用三角形的面积公式即可求得结论;周日(3)利用分类讨论的思想方法分两种情况讨论解答:①当点P在BC上方时,利用平行线的判定与性质可得点C,P的纵坐标相等,利用抛物线的解析式即可求得结论;②当点P在BC下方时,设PC交x 轴于点H,设HB=HC=m,利用等腰三角形的判定与性质和勾股定理求得m值,则点H坐标可求;利用待定系数法求得直线PC的解析式,与抛物线解析式联立即可求得点P坐标;解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(-2,0)、B(8,0)两点,与y轴交于点C(0,4),∴4a-2b+c=064a+8b+c=0c=4,解得:a=-14b=32c=4.∴抛物线的表达式为y=-14x2+32x+4;(2)点D的坐标为(-8,8),理由:将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,过点D作DE⊥x轴于点E,∵A(-2,0)、B(8,0),C(0,4),∴OA=2,OB=8,OC=4.∵OA OC =12,OCOB=12,∴OA OC =OC OB.∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO.∵∠CBO+∠OCB=90°,∴∠ACO+∠OCB=90°,∴∠ACB=90°,∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,∴点D,C,B三点在一条直线上.由轴对称的性质得:BC=CD,AB=AD.∵OC⊥AB,DE⊥AB,∴DE∥OC,∴OC为△BDE的中位线,∴OE=OB=8,DE=2OC=8,∴D(-8,8);由题意得:S△ACD=S△ABC,∴四边形OADC的面积=S△OAC+S△ADC=S△OAC+S△ABC=12×OC•OA+12×AB•OC=12×4×2+12×10×4=4+20 =24;周日(3)①当点P在BC上方时,如图,∵∠PCB=∠ABC,∴PC∥AB,∴点C,P的纵坐标相等,∴点P的纵坐标为4,令y=4,则-14x2+32x+4=4,解得:x=0或x=6,∴P(6,4);②当点P在BC下方时,如图,设PC交x轴于点H,∵∠PCB=∠ABC,∴HC=HB.设HB=HC=m,∴OH=OB-HB=8-m,在Rt△COH中,∵OC2+OH2=CH2,∴42+(8-m)2=m2,解得:m=5,∴OH=3,∴H(3,0).设直线PC的解析式为y=kx+n,∴n=43k+n=0,解得:k=-43n=4.∴y=-43x+4.∴y=-43x+4y=-14x2+32x+4,解得:x1=0y1=4,x2=343y2=-1009.∴P343,-100 9.综上,点P的坐标为(6,4)或343,-1009.总结提升:本题主要考查了二次函数图象的性质,待定系数法,一次函数图象的性质,抛物线上点的坐标的特征,一次函数图象上点的坐标的特征,勾股定理,相似三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.2.(2022•鞍山)如图,抛物线y=-12x2+bx+c与x轴交于A(-1,0),B两点,与y轴交于点C(0,2),连接BC.(1)求抛物线的解析式.(2)点P是第三象限抛物线上一点,直线PB与y轴交于点D,△BCD的面积为12,求点P的坐标.(3)在(2)的条件下,若点E是线段BC上点,连接OE,将△OEB沿直线OE翻折得到△OEB',当直线周日EB'与直线BP相交所成锐角为45°,时,求点B'的坐标.思路引领:(1)用待定系数法求函数的解析式即可;(2)先由△BDC的面积求出OD的长,从而确定D点坐标为(0,-4),再由待定系数法求出直线BD的解析式,直线BD与抛物线的交点即为所求;(3)当B'在第一象限时,由∠ODB=45°,可知EB'∥CD,求出直线BC的解析式,可设E t,-12t+2,在Rt△OHB'中,B'H=16-t2,则BE=16-t2+12t-2,在Rt△BHE中,由勾股定理得16-t2+12t-22=(4-t)2+-12t+22,求出t的值即可求B'坐标;当B'在第二象限时,B'G∥x轴,可得四边形B'OBE是平行四边形,则B't-4,-12t+2,由折叠的性质可判断平行四边形OBEB'是菱形,再由BE=OB,可得(4-t)2+-12t+22=4,求出t的值即可求B'坐标.解:(1)将A(-1,0),C(0,2)代入y=-12x2+bx+c,∴c=2-12-b+c=0 ,解得b=32c=2 ,∴y=-12x2+32x+2;(2)令y=0,则-12x2+32x+2=0,解得x=-1或x=4,∴B(4,0),∴OB=4,∴S△BCD=12×4×(2+OD)=12,∴OD=4,∴D(0,-4),设直线BD的解析式为y=kx+b,∴b=-44k+b=0 ,周日解得k =1b =-4 ,∴y =x -4,联立方程组y =x -4y =-12x 2+32x +2,解得x =-3y =-7 或x =4y =0 ,∴P (-3,-7);(3)如图1,当B '在第一象限时,设直线BC 的解析式为y =k 'x +b ',∴b '=24k '+b '=0,解得k '=-12b '=2,∴y =-12x +2,设E t ,-12t +2 ,∴OH =t ,EH =-12t +2,∵D (0,-4),B (4,0),∴OB =OD ,∴∠ODB =45°,∵直线EB '与直线BP 相交所成锐角为45°,∴EB '∥CD ,由折叠可知,OB '=BO =4,BE =B 'E ,在Rt △OHB '中,B 'H =16-t 2,∴B 'E =16-t 2--12t +2 =16-t 2+12t -2,∴BE =16-t 2+12t -2,在Rt △BHE 中,16-t 2+12t -2 2=(4-t )2+-12t +2 2,解得t =±455,∵0≤t ≤4,∴t =455,∴B '455,855 ;如图2,当B '在第二象限,∠BGB '=45°时,∵∠ABP =45°,∴B 'G ∥x 轴,周日∵将△OEB 沿直线OE 翻折得到△OEB ',∴BE =B 'E ,OB =OB ',∠BOE =∠B 'OE ,∴∠BOE =∠B 'EO ,∴B 'E ∥B 'O ,∵B 'E =BO ,∴四边形B 'OBE 是平行四边形,∴B 'E =4,∴B 't -4,-12t +2 ,由折叠可知OB =OB '=4,∴平行四边形OBEB '是菱形,∴BE =OB ,∴(4-t )2+-12t +2 2=4,解得t =4+855或t =4-855,∵0≤t ≤4,∴t =4-855,∴B '-855,455;综上所述:B '的坐标为455,855 或-855,455.方法2:在Rt △BCO 中,BC =25,CO :OB :BC =1:2:5,∵BP 与x 轴和y 轴的夹角都是45°,BP 与B 'E 的夹角为45°,∴B 'E ∥x 轴或B 'E ∥y 轴,当B 'E ∥y 轴时,延长B 'E 交x 轴于F ,∴B 'F ⊥OB ,∵∠CBA =∠OB 'E ,∴△OB 'F ∽△CBO ,∴OF :FB ':B 'O =1:2:5,∵OB =OB '=4,∴FO =455,B 'F =855,∴B '455,855 ;当B 'E ∥x 轴时,过B '作B 'F ⊥x 中交于F ,∴B 'F ⊥OF ,B 'E ∥OB ,∵B 'E 和BE 关于OE 对称,OB 和OB '关于OE 对称,∴BE ∥OB ',∵∠FOB '=∠OBC ,∴△OB 'F ∽△BCO ,∴B 'F :FO :OB '=1:2:5,∵OB =OB '=4,周日∴B 'F =455,OF =855,∴B '-855,455;综上所述:B '坐标为455,855 或-855,455.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,直角三角形的性质,折叠的性质,勾股定理的应用是解题的关键.类型四二次函数与圆综合1.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且AB =8dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度OC =8dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.思路引领:(1)先根据题意求出抛物线的解析式,当正方形的两个顶点在抛物线上时正方形面积最大,先根据GH =2OG 计算H 的横坐标,再求出此时正方形的面积即可;(2)由(1)知:设H t ,-12t 2+8 (t >0),表示矩形EFGH 的周长,再根据二次函数的性质求出最值即可;(3)解法一:设半径为3dm 的圆与AB 相切,并与抛物线相交,设交点为N ,求出点N 的坐标,并计算点N 是圆M 与抛物线在y 轴右侧的切点即可.解法二:计算MN 2,配方法可得结论.解法三:同解法二得MN 2,利用换元法可解答.解:(1)如图1,由题意得:A (-4,0),B (4,0),C (0,8),设抛物线的解析式为:y =ax 2+8,把B (4,0)代入得:0=16a +8,∴a =-12,∴抛物线的解析式为:y =-12x 2+8,∵四边形EFGH 是正方形,∴GH =FG =2OG ,设H t ,-12t 2+8 (t >0),周日∴-12t2+8=2t,解得:t1=-2+25,t2=-2-25(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(-2+25)2=(96-325)dm2;(2)如图2,由(1)知:设H t,-12t2+8(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2-12t2+8=-t2+4t+16=-(t-2)2+20,∵-1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)解法一:若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,则MN=OM=3,NQ⊥MN,设N m,-12m2+8,由勾股定理得:PM2+PN2=MN2,∴m2+-12m2+8-32=32,解得:m1=22,m2=-22(舍),∴N(22,4),∴PM=4-3=1,∵cos∠NMP=PMMN =MNQM=13,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴b=1222k+b=4 ,∴k=-22 b=12,∴QN的解析式为:y=-22x+12,-1 2x2+8=-22x+12,12x2-22x+4=0,Δ=(-22)2-4×12×4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆.解法二:如图3,取点M(0,3),在抛物线上取点N m,-12m2+8,且0<m<4,周日则MN 2=m 2+-12m 2+8-3 2=14(m 2-8)2+9,∴当m =22时,MN 有最小值为3,此时抛物线上除了点N ,N '(点N ,N '关于y 轴对称)外,其余各点均在以点M (0,3)为圆心,3dm 为半径的圆外(铁皮底部边缘中点O 也在该圆上),∴若切割成圆,能切得半径为3dm 的圆.解法三:如图3,取点M (0,m ),在抛物线上取点N a ,-12a 2+8 ,且0<a <4,则MN 2=a 2+-12a 2+8-m 2,令y =a 2,则MN 2=y +-12y +8-m 2=14(y +2m -14)2+15-2m ,∴MN 2的最小值是15-2m ,当MN 的最小值=OM =m 时,⊙O 与抛物线相切,此时⊙M 最大,∴15-2m =m ,∴m =-5(舍)或3,∴若切割成圆,能切得半径为3dm 的圆.总结提升:本题是二次函数与圆,四边形的综合题,考查了利用待定系数法求二次函数和一次函数的解析式,圆的切线的性质,矩形和正方形的性质,二次函数的最值问题,综合性较强,并与方程相结合解决问题是本题的关键.2.(2022•盐城)【发现问题】小明在练习簿的横线上取点O 为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验,以圆心O 为原点,过点O 的横线所在直线为x 轴,过点O 且垂直于横线的直线为y 轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为(-3,4)或(3,4).【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P (0,m ),m 为正整数,以OP 为直径画⊙M ,是否存在所描的点在⊙M 上.若存在,求m 的值;若不存在,说明理由.周日思路引领:【分析问题】根据题意可知:该点的纵坐标为4,利用勾股定理,即可求出该点的横坐标,进而可得出点的坐标;【解决问题】设所描的点在半径为n (n 为正整数)的同心圆上,则该点的纵坐标为(n -1),利用勾股定理可得出该点的坐标为(-2n -1,n -1)或(2n -1,n -1),结合点横、纵坐标间的关系,可得出该点在二次函数y =12x 2-12的图象上,进而可证出小明的猜想正确;【深度思考】设该点的坐标为(±2n -1,n -1),结合⊙M 的圆心坐标,利用勾股定理,即可用含n 的代数式表示出m 的值,再结合m ,n 均为正整数,即可得出m ,n 的值.【分析问题】解:根据题意,可知:所描的点在半径为5的同心圆上时,其纵坐标y =5-1=4,∵横坐标x =±52-42=±3,∴点的坐标为(-3,4)或(3,4).【解决问题】证明:设所描的点在半径为n (n 为正整数)的同心圆上,则该点的纵坐标为(n -1),∴该点的横坐标为±n 2-(n -1)2=±2n -1,∴该点的坐标为(-2n -1,n -1)或(2n -1,n -1).∵(±2n -1)2=2n -1,n -1=2n -1-12,∴该点在二次函数y =12(x 2-1)=12x 2-12的图象上,∴小明的猜想正确.【深度思考】解:设该点的坐标为(±2n -1,n -1),⊙M 的圆心坐标为0,12m ,∴(±2n -1-0)2+n -1-12m 2=12m ,∴m =n 2n -1=(n -1+1)2n -1=(n -1)2+2(n -1)+1n -1=n -1+2+1n -1.又∵m ,n 均为正整数,∴n -1=1,∴m =1+2+1=4,∴存在所描的点在⊙M 上,m 的值为4.总结提升:本题考查了勾股定理、二次函数图象上点的坐标特征以及与圆有关的位置关系,解题的关键是:【分析问题】利用勾股定理,求出该点的横坐标;【解决问题】根据点的横、纵坐标间的关系,找出点在二次函数y =12x 2-12的图象上;【深度思考】利用勾股定理,用含n 的代数式表示出m 的值.周日类型五二次函数中的定值问题1.(2022•巴中)如图1,抛物线y =ax 2+2x +c ,交x 轴于A 、B 两点,交y 轴于点C ,F 为抛物线顶点,直线EF 垂直于x 轴于点E ,当y ≥0时,-1≤x ≤3.(1)求抛物线的表达式;(2)点P 是线段BE 上的动点(除B 、E 外),过点P 作x 轴的垂线交抛物线于点D .①当点P 的横坐标为2时,求四边形ACFD 的面积;②如图2,直线AD ,BD 分别与抛物线对称轴交于M 、N 两点.试问,EM +EN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.思路引领:(1)由当y ≥0时,-1≤x ≤3,可知x 1=-1,x 2=3是ax 2+2x +c =0的两根,代入方程可得a ,c ,从而得解;(2)①把x =2代入抛物线解析式可得D 点坐标,再将x =0代入抛物线解析式可得C 点坐标,从而得知线段CD ∥x 轴,利用配方法可知点F 坐标,从而利用S 四边形ACFD =S △FCD +S △ACD =12CD (y F -y A )求面积;②设D (m ,-m 2+2m +3)(1<m <3),用待定系数法求出直线AD 与直线BD 的解析式,再令x =1得y M ,y N ,从而得出ME ,NE 的长,从而得到NE +ME 是定值8.解:(1)∵当y ≥0时,-1≤x ≤3,∴x 1=-1,x 2=3是ax 2+2x +c =0的两根,A (-1,0),B (3,0),∴a -2+c =09a +6+c =0,解得:a =-1c =3 ,∴抛物线的表达式为:y =-x 2+2x +3;(2)①把x =2代入y =-x 2+2x +3得:y =3,∴D (2,3).又当x =0,y =3,∴C (0,3),∴线段CD ∥x 轴.∵y =-x 2+2x +3=-(x -1)2+4,∴F (1,4),S 四边形ACFD =S △FCD +S △ACD =12CD (y F -y A )=4;②设D (m ,-m 2+2m +3)(1<m <3),周日直线AD :y =k 1x +b 1,BD :y =k 2x +b 2,因此可得:0=-k 1+b 1-m 2+2m +3=k 1m +b 1或0=3k 2+b 2-m 2+2m +3=k 2m +b 2,解得:k 1=3-m b 1=3-m 或k 2=-1-mb 2=3m +3 ,∴直线AD :y =(3-m )x +(3-m ),BD :y =-(m +1)x +3(m +1).令x =1得y M =6-2m ,y N =2m +2,∴ME =6-2m ,NE =2m +2,∴NE +ME =8.总结提升:本题考查二次函数与一次函数综合,涉及四边形的面积求法,待定系数法等知识,掌握待定系数法和面积求法是解题的关键.类型六二次函数中几何图形的存在性问题1.(2022•枣庄)如图①,已知抛物线L :y =x 2+bx +c 经过点A (0,3),B (1,0),过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当△OPE 面积最大时,求出P 点坐标;(3)将抛物线L 向上平移h 个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE 的边界),求h 的取值范围;(4)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.思路引领:(1)利用待定系数法可得抛物线的解析式;(2)过P 作PG ∥y 轴,交OE 于点G ,设P (m ,m 2-4m +3),根据OE 的解析式表示点G 的坐标,表示PG 的长,根据面积和可得△OPE 的面积,利用二次函数的最值可得其最大值;(3)求出原抛物线的对称轴和顶点坐标以及对称轴与OE 的交点坐标、与AE 的交点坐标,用含h 的代数式表示平移后的抛物线的顶点坐标,列出不等式组求出h 的取值范围;(4)存在四种情况:作辅助线,构建全等三角形,证明△OMP ≌△PNF ,根据|OM |=|PN |,列方程可得点P 的坐标;同理可得其他图形中点P 的坐标.解:(1)∵抛物线L :y =x 2+bx +c 经过点A (0,3),B (1,0),∴1+b +c =0c =3,解得b =-4c =3 ,周日∴抛物线的解析式为:y =x 2-4x +3;(2)如图,过P 作PG ∥y 轴,交OE 于点G ,设P (m ,m 2-4m +3),∵OE 平分∠AOB ,∠AOB =90°,∴∠AOE =45°,∴△AOE 是等腰直角三角形,∴AE =OA =3,∴E (3,3),∴直线OE 的解析式为:y =x ,∴G (m ,m ),∴PG =m -(m 2-4m +3)=-m 2+5m -3,∴S △OPE =S △OPG +S △EPG=12PG •AE =12×3×(-m 2+5m -3)=-32(m 2-5m +3)=-32m -52 2+398,∵-32<0,∴当m =52时,△OPE 面积最大,此时,P 点坐标为52,-34;(3)由y =x 2-4x +3=(x -2)2-1,得抛物线l 的对称轴为直线x =2,顶点为(2,-1),抛物线L 向上平移h 个单位长度后顶点为F (2,-1+h ).设直线x =2交OE 于点M ,交AE 于点N ,则E (3,3),∵直线OE 的解析式为:y =x ,∴M (2,2),∵点F 在△OAE 内(包括△OAE 的边界),∴2≤-1+h ≤3,解得3≤h ≤4;(4)设P (m ,m 2-4m +3),分四种情况:①当P 在对称轴的左边,且在x 轴下方时,如图,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∴∠OMP =∠PNF =90°,∵△OPF 是等腰直角三角形,∴OP =PF ,∠OPF =90°,周日∴∠OPM +∠NPF =∠PFN +∠NPF =90°,∴∠OPM =∠PFN ,∴△OMP ≌△PNF (AAS ),∴OM =PN ,∵P (m ,m 2-4m +3),则-m 2+4m -3=2-m ,解得:m =5+52(舍)或5-52,∴P 的坐标为5-52,1-52 ;②当P 在对称轴的左边,且在x 轴上方时,同理得:2-m =m 2-4m +3,解得:m 1=3+52(舍)或m 2=3-52,∴P 的坐标为3-52,5+12 ;③当P 在对称轴的右边,且在x 轴下方时,如图,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN =FM ,则-m 2+4m -3=m -2,解得:m 1=3+52或m 2=3-52(舍);P 的坐标为3+52,1-52 ;④当P 在对称轴的右边,且在x 轴上方时,如图,同理得m 2-4m +3=m -2,解得:m =5+52或5-52(舍),P 的坐标为:5+52,5+12;综上所述,点P 的坐标是:5-52,1-52或3-52,5+12或3+52,1-52 或5+52,5+12 .方法二:作直线DE :y =x -2,E (1,-1)是D 点(2,0)绕O 点顺时针旋转45°并且OD 缩小2倍得到,易知直线DE 即为对称轴上的点绕O 点顺时针旋转45°,且到O 点距离缩小2倍的轨迹,联立直线DE 和抛物线解析式得x 2-4x +3=x -2,周日解得x 1=5+52,x 2=5-52,同理可得x 3=3+52或x 4=3-52;综上所述,点P 的坐标是:5-52,1-52 或3-52,5+12 或3+52,1-52 或5+52,5+12 .总结提升:本题属于二次函数综合题,主要考查了二次函数的综合应用,二次函数的图象与性质及图形的平移,全等三角形的判定与性质以及解一元二次方程的方法,运用分类讨论思想和方程的思想解决问题的关键.2.(2022•攀枝花)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于O (O 为坐标原点),A 两点,且二次函数的最小值为-1,点M (1,m )是其对称轴上一点,y 轴上一点B (0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P ,连结PA ,PB ,设点P 的横坐标为t ,△PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点N ,使得以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N 的坐标,若不存在,请说明理由.思路引领:(1)根据题意知,二次函数顶点为(1,-1),设二次函数解析式为y =a (x -1)2-1,将点B (0,0)代入得,a -1=0,即可得出答案;(2)连接OP ,根据题意得点A 的坐标,则S =S △AOB +S △OAP -S △OBP ,代入化简即可;(3)设N (n ,n 2-2n ),分AB 或AN 或AM 分别为对角线,利用平行四边形的性质和中点坐标公式,分别求出n =的值,进而得出答案.解:(1)∵二次函数的最小值为-1,点M (1,m )是其对称轴上一点,∴二次函数顶点为(1,-1),设二次函数解析式为y =a (x -1)2-1,将点O (0,0)代入得,a -1=0,∴a =1,∴y =(x -1)2-1=x 2-2x ;(2)连接OP ,。
二次函数与几何图形综合题
【例1】如图,已知抛物线y=ax2-2ax+a-4与x轴交于A,B两点(A在B的 左侧),交y轴于点C(0,-3),顶点为M,连接CB. (1)求抛物线的解析式及顶点M的坐标; (2)若点P是抛物线上不同于点C的一点,S△ABC=S△ABP,求点P的坐标;
图14-4
练习 如图14-4,已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l 是抛物线的对称轴. (3)设点P是直线l上的一个动点,当△PAC的周长最小 时,求点P的坐标.
(3)如图,连接 BC,交直线 l 于点 P,
则点 P 为使△PAC 的周长最小的点, 设直线 BC 的解析式为 y=kx+n,
解:作 OC 的垂直平分线 DP,交 OC 于点 D,交 BC 下方抛物线于点 P, 如图①,∴PO=PC,此时 P 点即为满足条件的点,∵C(0,-4), ∴D(0,-2),∴P 点纵坐标为-2,代入抛物线解析式 可得 x2-3x-4=-2,解得 x=3+2 17(小于 0,舍去)或 x=3+2 17,
图14-4
将
B(3,0),C(0,3)代入得
3������ + ������ ������ = 3,
=
0,解得
������ ������
= =
-31, ,∴直线
BC
的解析式为
y=-x+3,
∵对称轴为直线 x=1,∴当 x=1 时,y=2,即点 P 的坐标为(1,2).
练习 如图14-4,已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l 是抛物线的对称轴. (4)在直线l上是否存在点M,使△MAC为等腰三角形? 若存在,求出所有符合条件的点M的坐标;若不存在, 请说明理由.
二次函数与几何图形综合训练题精选(含19题)
二次函数与几何图形综合训练题精选(含19题)1.如图1,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣4,0),B(3,0)两点,动点D 从点A出发,以每秒2个单位长度的速度沿AC方向运动,以AD为边作矩形ADEF(点E在x轴上),设运动的时间为t秒.(1)求抛物线y=ax2+bx﹣3的表达式;(2)过点D作DN⊥x轴于点N,交抛物线于点M,当t=时,求点M的坐标;(3)如图2,动点P同时从点B出发,以每秒3个单位长度的速度沿BA方向运动,以BP为边作等腰直角三角形BPQ(∠BPQ=90°),EF与PQ交于点G.给出如下定义:在四边形ABCD中,AB=AD,CB=CD且AB≠BC,我们把这种两组邻边分别相等的四边形叫做“筝形”,当矩形ADEF和等腰三角形BPQ重叠的四边形是“筝形”时,求“筝形”的面积.2.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P 的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.3.如图1,抛物线C1:y=ax2+bx+c经过A(﹣1,0),B(5,0),C(0,)三点,直线DF为该抛物线的对称轴,连接线段AC,∠CAB的平分线AE交抛物线C1于点E.(1)求抛物线C1的表达式;(2)如图1,作点C关于x轴的对称点C′,将原抛物线沿对称轴向下平移经过点C′得到抛物线C2,在射线AE上取点Q,连接CQ,将射线QC绕点Q逆时针旋转120°交抛物线C2于点P,当△CAQ为等腰三角形时,求点P的横坐标;(3)如图2,将抛物线C1沿一定方向平移,使顶点D′落在射线AE上,平移后的抛物线C3与线段CB相交于点M、N,线段CB与DF相交于点Q,当点Q恰好为线段MN 的中点时,求抛物线C3的顶点坐标.4.如图抛物线y=﹣x2与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C.C,D两点关于抛物线对称轴对称,连接BD交y轴于点E,抛物线对称轴交x轴于点F.(1)点P为线段BD上方抛物线上的一点,连接PD,PE.点M是y轴上一点,过点M 作MN⊥y轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+NF的最小值;(2)如图2,在(1)中PM+MN+NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PM′E′,点G是MN的中点,连接M′G交抛物线的对称轴于点H,过点H作直线l∥PM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.5.在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.(1)求此抛物线解析式;(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标;(3)在(2)的条件下,P A交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连接NF,求证:NF∥y轴.6.如图,抛物线y=ax2﹣2x+c与x轴相交于A(﹣1,0),B(3,0)两点.(1)求抛物线的函数表达式;(2)点C在抛物线的对称轴上,且位于x轴的上方,将△ABC沿直线AC翻折得到△AB'C,点B'恰好落在抛物线的对称轴上.若点G为直线AC下方抛物线上的一点,求当△AB'G 面积最大时点G的横坐标;(3)点P是抛物线上位于对称轴右侧的一点,在抛物线的对称轴上存在一点Q使得△BPQ为等边三角形,请直接写出此时直线AP的函数表达式.7.已知抛物线y=ax2+bx+c交x轴于点A(﹣1,0),B(5,0),交y轴于点C(0,5),点D是该抛物线上一点,且点D的横坐标为4,连BD,点P是线段AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN,设点P的坐标为(t,0).(1)求抛物线解析式;(2)若点Q在线段AD上时,延长PQ与抛物线交于点G,求t为何值时,线段QG最长;(3)在AB上是否存在点P,使△OCM为等腰三角形?若存在,求P点坐标,若不存在,请说明理由;(4)设正方形PQMN与△ABD重叠部分面积为s,求s与t的函数关系式.8.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点的坐标分别为A(0,2),B(﹣1,0),点C为线段AB的中点,现将线段BA绕点B按逆时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)、经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣1.①求点D的坐标及该抛物线的解析式;②连接CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(﹣1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.9.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.10.已知抛物线y=ax2+bx(a≠0)的顶点在直线上,且过点A(4,0).(1)求这个抛物线的解析式;(2)设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OP AB为梯形?若存在,求出点B的坐标;若不存在,请说明理由;(3)设点C(1,﹣3),请在抛物线的对称轴确定一点D,使|AD﹣CD|的值最大,请直接写出点D的坐标.11.已知抛物线过点(8,0),(1)求m的值;(2)如图a,在抛物线内作矩形ABCD,使点C、D落在抛物线上,点A、B落在x轴上,设矩形ABCD的周长为L,求L的最大值;(3)如图b,抛物线的顶点为E,对称轴与直线y=﹣x+1交于点F.将直线EF向右平移n个单位后(n>0),交直线y=﹣x+1于点M,交抛物线于点N,若以E、F、M、N 为顶点的四边形是平行四边形,求n的值.12.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是线段BC上方抛物线上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.13.抛物线y=ax2+bx﹣3(a≠0)的图象与x轴交于点B(﹣3,0),C(1,0),与y轴交于点A.(1)求抛物线的表达式和顶点坐标;(2)抛物线上是否存在一点D(不与点A,B,C重合),使得直线DA将四边形DBAC 的面积分为3:5两部分,若存在,求出点D的坐标;若不存在,请说明理由;(3)点P是抛物线对称轴上一点,在抛物线上是否存在一点Q,使以点P,Q,A,B为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图1,在平面直角坐标系中,抛物线y=﹣x2﹣x﹣2与x轴交于A,B两点(点A在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点,过点P作PD⊥AC,垂足为D,当线段PD 的长度最大时,点Q从点P出发,先以每秒1个单位的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒3个单位的速度运动到点C停止,当点Q在整个运动中所用时间t最少时,求点M的坐标;(3)如图2,将△BOC沿直线BC平移,平移后B,O,C三点的对应点分别是B′,O′,C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,请直接写出所有符合条件的点S的坐标.15.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.16.如图,抛物线y=﹣x2+x+4与x轴和y轴的正半轴分别交于点A和B.(1)求点A,点B的坐标及AB的长;(2)已知M为AB的中点,∠PMQ在AB的同侧以点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D,设AD的长为m(m>0),BC的长为n.①求n随m变化的函数解析式;②若点E(﹣k﹣1,﹣k2+1)在抛物线y=﹣x2+x+4上,且点E不在坐标轴上,当m,n为何值时,∠PMQ的边过点E?17.如图,抛物线y=ax2+bx+c经过O(0,0),A(﹣1,﹣),B(﹣3,)三个点.(1)求抛物线解析式;(2)若点P(﹣4,p),Q(t,q)为该抛物线上的两点,且q<p.求t的取值范围.(3)在线段AB上是否存在一点C(不与点A,点B重合),使点A,点B到直线OC的距离之和最大?若存在,求∠BOC的度数,并直接写出点C的坐标;若不存在,请说明理由.18.在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为4.(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.19.如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c (a≠0)经过A、B、C三点.(1)求此抛物线的函数表达式;(2)点P(2,﹣3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由.第11页(共11页)。
二次函数与几何综合(习题及部分答案)
二次函数与几何综合(习题)➢例题示范例1:如图,抛物线y=ax2+2ax-3a 与x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴交于点C,且OA=OC,连接AC.(1)求抛物线的解析式.(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值.(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.yA OB xC第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a,可以求解A(-3,0),B(1,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3),代入表达式,即可求得抛物线解析式.再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形.【过程示范】解:(1)由y=ax2+2ax-3a=a(x+3)(x-1)可知A(-3,0),B(1,0),∵OA=OC,∴C(0,-3),将C(0,-3)代入y=ax2+2ax-3a,解得,a=1,∴y=x2+2x-3.1第二问:铅垂法求面积【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S△ACP的最大值,分析A,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即-3<x P<0;(2)设计方案:注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S△ACP.第三问:平行四边形的存在性【思路分析】分析不变特征:以A,B,E,F 为顶点的四边形中,A,B 为定点,E,F 为动点,定点A,B 连接成为定线段AB.分析形成因素:要使这个四边形为平行四边形.首先考虑AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB 既可以作边,也可以作对角线.画图求解:先根据平行四边形的判定来确定EF 和AB 之间应满足的条yA Q OB xPC23件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB 作为边时,依据平行四边形的判定,需满足 EF ∥AB 且 EF =AB ,要找 EF ,可借助平移.点 E 在对称轴上,沿直线容易平移,故将线段 AB 拿出来沿对称轴上下方向平移,确保点 E 在对称轴上,来找抛物线上的点 F .注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上 E 点坐标,利用平行且相等表达抛物线上 F 点坐标,代入抛物线解析式求解.②AB 作为对角线时,依据平行四边形的判定,需满足 AB , EF 互相平分,先找到定线段 AB 的中点,在旋转过程中找到 EF 恰好被 AB 中点平分的位置,因为 E 和 AB 中点都在抛物线对称轴上,说明 EF 所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为 F 点坐标.画图或推理,根据运动范围考虑是否找全各种情形. 【过程示范】(3)①当 AB 为边时,AB ∥EF 且 AB =EF , 如图所示,设 E 点坐标为(-1,m ), 当四边形是□ABFE 时,由 A (-3,0),B (1,0)可知,F 1(3,m ), 代入抛物线解析式,可得,m =12, ∴F 1(3,12);当四边形是□ABEF 时,由 A (-3,0),B (1,0)可知,F 2(-5,m ), 代入抛物线解析式,可得,m =12, ∴F 2(-5,12).②当 AB 为对角线时,AB 与 EF 互相平分, AB 的中点 D (-1,0),设 E (-1,m ),则 F (-1,-m ), 代入抛物线解析式,可得,m =4, ∴F 3(-1,-4).综上:F 1(3,12),F 2(-5,12),F 3(-1,-4).结果验证:➢巩固练习1.如图,直线y =-1x 与抛物线y =-1x2 + 6 交于A,B 两点,2 4C 是抛物线的顶点.(1)在直线AB 上方的抛物线上有一动点P,当△ABP 的面积最大时,点P 的坐标为.(2)若点M 在抛物线上,且以点M,A,B 以及另一点N 为顶点的平行四边形ABNM 的面积为240,则M,N 两点的坐标为.yCBO xAyCBO xA42.已知抛物线y=-mx2+4x+2m 与x 轴交于点A(α,0),B(β,0),且1+1=-2 .抛物线的对称轴为直线l,与y 轴的交点为点αβC,顶点为点D,点C 关于l 的对称点为点E.(1)抛物线的解析式为.(2)连接CD,在直线CD 下方的抛物线上有一动点G,当S△CDG=3,点G 的坐标为.(3)若点P 在抛物线上,点Q 在x 轴上,当以点D,E,P,Q 为顶点的四边形是平行四边形时,点Q 的坐标为.53.已知抛物线y=ax2-4ax+b 的对称轴为直线x=2,顶点为P,与x 轴交于A,B 两点,与y 轴交于点C,其中A(1,0),连接BC,PB,得到∠PBC=90°.(1)求抛物线的解析式.(2)抛物线上是否存在异于点P 的一点Q,使△BCQ 与△BCP 的面积相等?若存在,求出点Q 的坐标;若不存在,请说明理由.(3)若点E 是抛物线上一动点,点F 是x 轴上一动点,是否存在以B,C,E,F 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.64.如图,在平面直角坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2).抛物线y=ax2-ax-b 与y 轴交于点D,且经过点C,连接AD,可得AB=AD.(1)求抛物线的解析式.(2)平移该抛物线的对称轴所在直线l.当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?(3)点P 是抛物线上一动点,点Q 是抛物线对称轴l 上一动点,是否存在点P,使以P,Q,A,B 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,说明理由.75.如图,二次函数图象的顶点为坐标系原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).(1)求二次函数与一次函数的解析式;(2)如果一次函数图象与y轴相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标;(3)当点D在直线AC上的一个动点时,以点O、C、D、E为顶点的四边形能成为平行四边形吗?请说明理由.6.已知关于二次函数y=x2﹣(4k+2)x+4k2+3k的图象与x轴有两个交点.(1)求k的取值范围;(2)若二次函数与x轴的两个交点坐标为(a,0),(b,0),并满足(a﹣b)2=2,求k的值,并写出二次函数的表达式;(3)如图所示,由(2)所得的抛物线与一次函数y=﹣3x +的图象相交于点C、点D,求三角形CDP的面积.7.如图1,二次函数y=a(x2﹣x﹣6)(a≠0)的图象过点C(1,﹣),与x轴交于A,B两点(点A在x轴的负半轴上),且A,C两点关于正比例函数y=kx(k≠0)的图8象对称.(1)求二次函数与正比例函数的解析式;(2)如图2,过点B作BD⊥x轴交正比例函数图象于点D,连接AC,交正比例函数的图象于点E,连接AD,CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动,当其中一个点到达终点时,另一个点随之停止运动,连接PQ,QE,PE,设运动时间为t秒,是否存在某一刻,使PE,QE分别平分∠APQ和∠PQC?若存在,求出t的值;若不存在,请说明理由.8.如图,二次函数图象的顶点为坐标原点O,y轴为对称轴,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).(1)求二次函数与一次函数的解析式;(2)如果一次函数图象与y轴相交于点C,E是抛物线上OA段上一点,过点E作y轴平行的直线DE与直线AC交于点D,∠DOE=∠EDA,求点E的坐标;(3)点M是线段AC延长线上的一个动点,过点M作y轴的平行线交抛物线于F,以点O、C、M、F为顶点的四边形能否为菱形?若能,求出点F的坐标;若不能,请说明理由.9.小明在学习时遇到这样一个问题:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,9b,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函2数”.求y=﹣x2+3x﹣2函数的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2016的值;(3)已知函数y =﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A,B1,C1,试证明经过点A1,B1,C1的二次函数与函1数y =﹣(x+1)(x﹣4)互为“旋转函数”.10.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.11.如图,抛物线y=ax2+bx+c与x轴交与A(1,0),B(4,0)两点,与y轴交于点C (0,4)(1)求抛物线的解析式.(2)点P为抛物线上一动点,满足S△PBC =S△ABC,求P点的坐标.(3)点D为抛物线对称轴上一点,若△BCD是锐角三角形,求点D的纵坐标n的取值范围.1012.如图,已知直线y=x+2交x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x =﹣,且抛物线经过A、B两点,交x轴于另一点C.(1)求抛物线的解析式;(2)点M是抛物线x轴上方一点,∠MBA=∠CBO,求点M的坐标;(4)过点A作AB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.13.在平面直角坐标系xOy中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆益有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖,如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.(1)对于半径为2的⊙O,它的紧覆盖的边长为.(2)如图1,点P为直线y=﹣2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P的坐标.(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,11①以O为圆心,r为半径的⊙O与线段AB有公共点,且由⊙O与线段AB组成的图形G的紧覆益的边长小于4,直接写出r的取值范围;②若在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3,直接写出a 的取值范围.14.如图1,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.(1)求此抛物线的解析式(a、b、c可用含n的式子表示);(2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D (x1,y1)、E(x2、y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点D和E 的坐标;(3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q 关于直线CM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.1215.如图①,在平面直角坐标系中,抛物线y =x2﹣x﹣2分别与x轴交于A,B两点,与y轴交于C点,直线EF垂直平分线段BC,分别交BC于点E,y轴于点F,交x轴于D.(1)判定△ABC的形状;(2)在线段BC下方的抛物线上有一点P,当△BCP面积最大时,求点P的坐标及△BCP面积的最大值;(3)如图②,过点E作EH⊥x轴于点H,将△EHD绕点E逆时针旋转一个角度α(0°≤α≤90°),∠DEH的两边分别交线段BO,CO于点T,点K,当△KET为等腰三角形时,求此时KT的值.16.如图,在平面直角坐标系中,抛物线y =﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一13点,当M到直线BC的距离最大时,求点M的坐标及MN+NB的最小值;(3)在(2)中,点M到直线BC的距离最大时,连接OM交BC于点E,将原抛物线沿射线OM 平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B 1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.【参考答案】1415。
中考佳题 例析二次函数与几何图形的综合题
中考佳题 例析二次函数与几何图形的综合题姓名二次函数与几何图形相结合的综合问题,是近几年来全国各地中考的热点题型.解这类问题的关键就是要善于利用几何图形和二次函数的有关性质和知识,并充分挖掘题目中的隐含条件,以达到解题目的。
一.二次函数与三角形例1.(2006年上海)如图,在直角坐标系中,O 为原点。
点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,t g ∠OAB=2。
二次函数22y x mx =++的图象经过点A 、B ,顶点为D 。
(1)求这个二次函数的解析;(2)将△OAB 绕点A 顺时针旋转900后,点B 落到点C 的位置。
将上述二次函数图像沿y 轴向上或向下平移后经过点C 。
请直接写出点C 的坐标和平移后所得图像的函数解析式; (3)设(2)中平移后所得二次函数图像与y 轴的交点为B 1,顶点为D 1。
点P 在平移后的二次函数图像上,且满足△PBB 1的面积是△PDD 1面积的2倍,求点P 的坐标。
解:(1)由题意,点B 的坐标为()02,, 2OB ∴=,tg 2OAB = ∠,即2OBOA=. 1OA ∴=.∴点A 的坐标为()10,又 二次函数22y x mx =++的图象过点A ,2012m ∴=++.解得3m =-,∴所求二次函数的解析式为232y x x =-+ (2)由题意,可得点C 的坐标为()31,, 所求二次函数解析式为231y x x =-+.(3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,那么对称轴直线32x =不变,且111BB DD ==. 点P 在平移后所得二次函数图象上,设点P 的坐标为()231x x x -+,.在1PBB △和1PDD △中,112PBB PDD S S = △△,∴边1BB 上的高是边1DD 上的高的2倍.①当点P 在对称轴的右侧时,322x x ⎛⎫=-⎪⎝⎭,得3x =,∴点P 的坐标为()31,; ②当点P 在对称轴的左侧,同时在y 轴的右侧时,322x x ⎛⎫=- ⎪⎝⎭,得1x =, ∴点P 的坐标为()11-,;③当点P 在y 轴的左侧时,0x <,又322x x ⎛⎫-=- ⎪⎝⎭,得30x =>(舍去), ∴所求点P 的坐标为()31,或()11-,例2.(2006年桂林)已知,如图,在平面直角坐标系中,⊿ABC 是边长为2的等边三角形,且点A 在y 轴上,点B 、C 在x 轴上。
2024中考备考重难点01 二次函数与几何的综合训练(9大题型+限时分层检测)
重难点01 二次函数与几何图形的综合练习中考数学中《二次函数与几何图形的综合练习》部分主要考向分为九类:一、二次函数与几何变换的综合(选择性考,10~12分)二、二次函数与直角三角形的综合(选择性考,10~12分)三、二次函数与等腰三角形的综合(选择性考,10~12分)四、二次函数与相似三角形的综合(选择性考,10~12分)五、二次函数与四边形的综合(选择性考,10~12分)六、二次函数与最值的综合(选择性考,10~12分)七、二次函数与新定义的综合(选择性考,10~12分)八、二次函数与圆的综合(选择性考,10~12分)九、二次函数与角的综合(选择性考,10~12分)因为二次函数是大多数中考压轴题的几何背景,所以,训练二次函数与其他几何图形的综合问题非常必要,只要自己见过一定量的题型,才能再遇到对应类型的压轴题时不至于新生畏惧。
所以,本专题就常见的中考数学中二次函数的几种结合类型的压轴题进行训练,希望大家在训练中摸索方法,掌握技能,练就心态!考向一:二次函数与几何变换的综合1.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.2.在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图1,当的值最大时,求点P 的坐标及的最大值;(3)过点P作x轴的垂线交直线AC于点M,连结PC,将△PCM沿直线PC翻折,当点M的对应点M′恰好落在y轴上时,请直接写出此时点M的坐标.考向二:二次函数与直角三角形的综合1.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.2.(2023•内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于B(4,0),C(﹣2,0)两点,与y轴交于点A(0,﹣2).(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平行线交x轴于点D,求的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△MAB是以AB为一条直角边的直角三角形;若存在,请求出点M的坐标,若不存在,请说明理由.考向三:二次函数与等腰三角形的综合1.(2023•青海)如图,二次函数y=﹣x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P,对称轴与x轴交于点Q,求四边形AOBP的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).2.(2023•娄底)如图,抛物线y=x2+bx+c过点A(﹣1,0)、点B(5,0),交y轴于点C.(1)求b,c的值.(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考向四:二次函数与相似三角形的综合1.(2023•乐至县)如图,直线与x轴、y轴分别交于A、B两点,抛物线经过A、B两点.(1)求抛物线的表达式;(2)点D是抛物线在第二象限内的点,过点D作x轴的平行线与直线AB交于点C,求DC的长的最大值;(3)点Q是线段AO上的动点,点P是抛物线在第一象限内的动点,连结PQ交y轴于点N.是否存在点P,使△ABQ与△BQN相似,若存在,求出点P的坐标;若不存在,说明理由.2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C (0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.考向五:二次函数与四边形的综合1.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①y=x2﹣1;②y=x2﹣x,其中,为函数y=x﹣1的轴点函数.(填序号)【尝试应用】(2)函数y=x+c(c为常数,c>0)的图象与x轴交于点A,其轴点函数y=ax2+bx+c与x轴的另一交点为点B.若OB=OA,求b的值.【拓展延伸】(3)如图,函数y=x+t(t为常数,t>0)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得ON=OC.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数y=x+t(t为常数,t>0)的轴点函数y=mx2+nx+t的顶点P在矩形MNDE的边上,求n的值.3.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.考向六:二次函数与最值的综合1.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠P AQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.2.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.考向七:二次函数与新定义的综合1.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k 为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;(2)动点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.2.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是(填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是、;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.考向八:二次函数与圆的综合1.(2023•湘西州)如图(1),二次函数y=ax2﹣5x+c的图象与x轴交于A(﹣4,0),B(b,0)两点,与y轴交于点C(0,﹣4).(1)求二次函数的解析式和b的值.(2)在二次函数位于x轴上方的图象上是否存在点M,使?若存在,请求出点M的坐标;若不存在,请说明理由.(3)如图(2),作点A关于原点O的对称点E,连接CE,作以CE为直径的圆.点E′是圆在x轴上方圆弧上的动点(点E′不与圆弧的端点E重合,但与圆弧的另一个端点可以重合),平移线段AE,使点E移动到点E′,线段AE的对应线段为A′E′,连接E′C,A′A,A′A的延长线交直线E′C于点N,求的值.2.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.考向九:二次函数与角的综合1.(2023•无锡)已知二次函数y=(x2+bx+c)的图象与y轴交于点A,且经过点B(4,)和点C (﹣1,).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=(x2+bx+c)图象上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.2.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.(建议用时:150分钟)1.(2023•宜兴市一模)如图,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,则∠ACB=°;M是二次函数在第四象限内图象上一点,作MQ∥y轴交BC 于Q,若△NQM是以NQ为腰的等腰三角形,则线段NC的长为.2.(2023•越秀区一模)如图,抛物线与H:交于点B(1,﹣2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是.(填写正确的序号)3.(2023•晋州市模拟)如图所示,已知在平面直角坐标系xOy中,点A(15,8),点M是横轴正半轴上的一个动点,⊙P经过原点O,且与AM相切于点M.(1)当AM⊥x轴时,点P的坐标为;(2)若点P在第一象限,设点P的坐标为(x,y),则y关于x的函数关系式为(不用写出自变量x的取值范围);(3)当射线OP与直线AM相交时,点M的横坐标t的取值范围是.4.(2024•道里区模拟)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2当最大值时,求点D的坐标;(3)如图3,在(2)的条件下,连接CD、BD,将△BCD沿BC翻折,得到△BCF(点D和点F为对应点),直线BF交y轴于点P,点S为BC中点,连接PS,过点S作SP的垂线交x轴于点R,在对称轴TH上有一点Q,使得△PQB是以PB为直角边的直角三角形,求直线RQ的解析式.5.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.6.(2023•东莞市一模)抛物线y=ax2+bx﹣2与x轴交于A、B两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C.连结BC,以BC为边,点O为中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)求该抛物线对应的函数表达式;(2)x轴上是否存在一点P,使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;(3)当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.7.(2024•碑林区校级二模)二次函数y=ax2+bx+4(a≠0)的图象与x轴交于A(﹣4,0),B(1,0)两点,点M为y轴负半轴上一点,且OM=2.(1)求二次函数表达式;(2)点E是线段AB(包含A,B)上的动点,过点E作x轴的垂线,交二次函数图象于点P,交直线AM于点N,若以点P,N,A为顶点的三角形与△AOM相似,若存在,请求出点P的坐标;若不存在,请说明理由.8.(2024•镇海区校级模拟)若二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2的图象关于点P(1,0)成中心对称图形,我们称y1与y2互为“中心对称”函数.(1)求二次函数y=x2+6x+3的“中心对称”函数的解析式;(2)若二次函数y=ax2+2ax+c(a>0)的顶点在它的“中心对称”函数图象上,且当时,y最大值为2,求此二次函数解析式;(3)二次函数y1=ax2+bx+c(a<0)的图象顶点为M,与x轴负半轴的交点为A、B,它的“中心对称”函数y2的顶点为N,与x轴的交点为C、D,从左往右依次是A、B、C、D,若AB=2BP,且四边形AMDN 为矩形,求b2﹣4ac的值.9.(2024•雁塔区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴分别交于A,B两点,点A的坐标是(﹣4,0),点B的坐标是(1,0),与y轴交于点C,P是抛物线上一动点,且位于第二象限,过点P作PD⊥x轴,垂足为D,线段PD与直线AC相交于点E.(1)求该抛物线的解析式;(2)连接OP,是否存在点P,使得∠OPD=2∠CAO?若存在,求出点P的横坐标;若不存在,请说明理由.10.(2024•长沙模拟)若两条抛物线相交于A(x1,y1),B(x2,y2)两点,并满足y1﹣kx1=y2﹣kx2,其中k为常数,我们不妨把k叫做这两条抛物线的“依赖系数”.(1)若两条抛物线相交于A(﹣2,2),B(﹣4,4)两点,求这两条抛物线的“依赖系数”;(2)若抛物线1:y=2ax2+x+m与抛物线2:y=ax2﹣x﹣n相交于A(x1,y1),B(x2,y2)两点,其中a>0,求抛物线1与抛物线2的“依赖系数”;(3)如图,在(2)的条件下,设抛物线1和2分别与y轴交于C,D两点,AB所在的直线与y轴交于E点,若点A在x轴上,m≠0,DA=DC,抛物线2与x轴的另一个交点为点F,以D为圆心,CD为半径画圆,连接EF,与圆相交于G点,求tan∠ECG.11.(2023•嘉善县一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.12.(2023•任城区二模)如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,当△PCM和△ABC相似时,求此时点P的坐标;(3)若点P是直线BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;13.(2023•姑苏区校级二模)探究阅读题:【阅读】在大自然里,有很多数学的奥秘,一片美丽的心形叶片,一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.(如图1和图2)【探究任务1】确定心形叶片的形状如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分,且过原点,求抛物线的解析式和顶点D的坐标.【探究任务2】研究心形叶片的尺寸如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A、B两点,直线x=6分别交抛物线和直线AB于点E、F点,点E、E′是叶片上的一对对称点,EE′交直线AB与点G,求叶片此处的宽度EE′.【探究任务3】研究幼苗叶片的生长小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分.如图4,幼苗叶片下方轮廓线正好对应探究任务1中的二次函数,已知直线PD与水平线的夹角为45°,三天后,点D长到与点P同一水平位置的点D′时,叶尖Q落在射线OP上,如图5所示,求此时幼苗叶子的长度和最大宽度.。
二次函数与几何综合类存在性问题课件
03
注意答案的完整性和规 范性;
04
在解答过程中,注意逻 辑的严密性和推理的准 确性。
02
二次函数与几何综合类存在
性问题的类型
以二次函数为背景的存在性问题
总结词
这类问题主要考察二次函数的性质,如开口方向、对称轴、顶点等,以及这些 性质在几何图形中的应用。
详细描述
这类问题通常会给出二次函数的一般形式,如$f(x) = ax^2 + bx + c$,然后要 求求解满足某些条件的点或线。例如,求函数$f(x) = x^2 - 2x$在$x$轴上的交 点,或求函数$f(x) = x^2 - 2x$的对称轴等。
3. 将代数结果和几何结果相互印证,得出最终结论。
04
二次函数与几何综合类存在
性问题的实例分析
实例一
总结词
利用抛物线的性质和点到直线距离公式,求出最小值。
详细描述
设抛物线方程为 $y = ax^2 + bx + c$,直线方程为 $y = mx + n$。首先,将抛线上的点 $(x, y)$ 到直线的距离表示为 $d = frac{|ax^2 + bx + c - mx - n|}{sqrt{m^2 + 1}}$。然后,利用抛物线的 性质和极值定理,求出 $d$ 的最小值。
实例三
总结词
利用双曲线的性质和点到直线距离公 式,求出最小值。
详细描述
设双曲线方程为 $frac{x^2}{a^2} frac{y^2}{b^2} = 1$,直线方程为 $y = mx + n$。首先,将双曲线上的点 $(x, y)$ 到直线的 距离表示为 $d = frac{|mx - y + n|}{sqrt{m^2 + 1}}$。然后,利用双曲线的性质和极值定理 ,求出 $d$ 的最小值。
例析二次函数与几何综合题的最值问题
得 PA +PC 最小? 若存在,请求 出 点 P 的 坐 标;若 不
存在,请说明理由 .
分 析:要在对称轴上找点 P ,使得 PA +PC 最小,
则要 作 出 点 A 关 于 对 称 轴 的 对 称 点,而 点 A 和 点 B
例 2 如 图 2,已 知 抛 物 线
2
y= -x -4x +5 与 x 轴 相 交
当 d>
R +r 时,两 圆 外 离;当 R -r<d <R +r 时,两 圆 相
交.
同样,利用“数”与 “形”的 结 合,还 可 对 “两 圆 外 切”
“两圆内切”等进行描述 .
数学是揭示数量 关 系 和 空 间 形 式 的 科 学 .
正如华
罗庚所说 的 “数 缺 形 时 少 直 观,形 缺 数 时 难 入 微 ”,通
只 需 求 出 AF + DE 的 最 小 值
法 2:当三角形没有边在坐标轴上时,则 作 辅 助 线
即可 .
由图可知,点 D 与 点 C 关
将三角形的 面 积 转 化 为 其 他 三 角 形 面 积 的 和 或 差 进
于 抛 物 线 的 对 称 轴 m 对 称,所
行求解 .
通常作平行于坐标轴的直线,转化为两个 同 底
点的横 坐 标 或 者 纵 坐 标 的 绝 对 值
就是此三 角 形 的 高 .
如 图 4,
AB 在
分 析:求 四 边 形 ADEF 的
图4
x 轴上,过点 C 作 三 角 形 的 高 线 CD ,即 可 表 示 出 三 角
周长 时,可 以 看 出 线 段 AD 和
线段 EF 的长度是固定 值,因 此
形面积的函数表达式 .
为最小值 .
解:(
二次函数与几何图形综合题解题技巧
二次函数与几何图形综合题解题技巧一、求二次函数解析式。
根据y=mx+b,把一元二次方程mx+b=0化为ax+by+c=0的系数a=b,然后通过解方程得出y=mx+b的值,由于不知道b、 a的具体值,可以通过函数与几何图形的综合分析来得到它们的大致范围。
例如,已知点( 1, 1),( 3, -3),直线( x, -3),( 4, 2);在(-3, 4)、(-1, 1)处画出一个坐标平面内关于坐标轴对称的二次函数解析式;( 5, 2)处画出一个关于坐标轴对称的抛物线,使其解析式为y=x+b。
求这些二次函数的表达式。
1。
设二次函数解析式为y=mx+b。
分析:二次函数与一元二次方程有密切联系,解一元二次方程是解二次函数的基础。
设一元二次方程为x+b=0,则根据对称性可得,函数解析式为x+b=mx+c。
2。
设二次函数解析式为y=ax+by+c。
分析: a、 b、 c都是实数,且a>0,b>0。
设函数解析式为x+b=ax+by+c,代入上式可得, y=x+b/c=mx+c/c。
求出二次函数的解析式,即可求出a、 b、 c的值。
3。
设二次函数解析式为y=ax+by+c。
分析:根据对称性,可得y=bx+c, a、 b、c均为实数,且a>0, b>0。
设函数解析式为x+b=bx+c,代入上式可得, y=x+b/c=mx+c/c。
4。
设二次函数解析式为y=ax+by+c。
分析:解方程得y=mx+c,由对称性,得x+c=y+b,代入上式,可得, y=x+b/c。
二、用几何图形解题。
二、用几何图形解题,最好能画出这些图形的图像,再列式解答。
因为几何图形看似复杂,但并不难,常见的如圆的周长、扇形面积、矩形的面积等等。
以下是应用这两种方法解二次函数综合题的例子,供同学们参考: 1。
求出二次函数的解析式,画出抛物线y=mx+b。
分析:首先将点( 1, 1),( 3, -3),直线( x, -3),( 4, 2) ;在(-3, 4)、(-1, 1)处画出一个坐标平面内关于坐标轴对称的二次函数解析式;再设函数解析式为x+b=mx+c,代入上式得y=mx+c/c。
二次函数与几何图形的综合题
说明:1.试题左侧二维码为该题目对应解析;2.请同学们在独立解答无法完成题目后再扫描二维码查看解析,杜绝抄袭;3.查看解析还是无法掌握题目的,可按下方“向老师求助”按钮;4.组卷老师可在试卷下载页面查看学生扫描二维码查看解析情况统计,了解班级整体学习情况,确定讲解重点;5.公测期间二维码查看解析免扣优点,对试卷的使用方面的意见和建议,欢迎通过“意见反馈”告之。
2015年03月03日光辉职业的初中数学组卷一.解答题(共30小题)1.(2015•崇明县一模)如图,已知抛物线y=x2+bx+c经过直线y=﹣+1与坐标轴的两个交点A、B,点C为抛物线上的一点,且∠ABC=90°.(1)求抛物线的解析式;(2)求点C坐标;(3)直线y=﹣x+1上是否存在点P,使得△BCP与△OAB相似?若存在,请直接写出P点的坐标;若不存在,请说明理由.2.(2015•三亚三模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.3.(2015•金山区一模)如图,已知直线y=2x+6与x轴、y轴分别交于A、D两点,抛物线y=ax2+bx+2(a≠0)经过点A和点B(1,0).(1)求抛物线的解析式;(2)在线段AD上取一点F(点F不与点A重合).过点F作x轴的垂线交抛物线于点G、交x轴于点H.当FG=GH时,求点H的坐标;(3)设抛物线的对称轴与直线AD交于点E,抛物线与y轴的交点为C,点M在线段AB上,当△AEM 与△BCM相似时,求点M的坐标.4.(2015•普陀区一模)如图,在平面直角坐标系xOy中,点A(m,0)和点B(0,2m)(m>0),点C 在x轴上(不与点A重合)(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示)(2)当△BOC与△AOB全等时,二次函数y=﹣x2+bx+c的图象经过A、B、C三点,求m的值,并求点C的坐标(3)P是(2)的二次函数图象上的一点,∠APC=90°,求点P的坐标及∠ACP的度数.5.(2015•宝山区一模)(1)数学小组的单思稿同学认为形如的抛物线y=ax2+bx+c,系数a、b、c一旦确定,抛物线的形状、大小、位置就不会变化,所以称数a、b、c为抛物线y=ax2+bx+c的特征数,记作{a,b,c};请求出与y轴交于点C(0,﹣3)的抛物线y=x2﹣2x+k在单同学眼中的特征数;(2)同数学小组的尤恪星同学喜欢将抛物线设成y=a(x+m)2+k的顶点式,因此坚持称a、m、k为抛物线的特征数,记作{a,m,k};请求出上述抛物线在尤同学眼中的特征数;(3)同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同组的董和谐将上述抛物线表述成:特征数为{u,v,w}的抛物线沿平行于某轴方向平移某单位后的图象,即此时的特征数{u,v,w}无论按单思稿同学还是按尤恪星同学的理解做出的结果是一样的,请你根据数学推理将董和谐的表述完整地写出来;(4)在直角坐标系xOy中,上述(1)中的抛物线与x轴交于A、B 两点(A 在B的左边),请直接写出△ABC的重心坐标.6.(2015•松江区一模)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.7.(2015•山西模拟)如图1,P(m,n)是抛物线y=x2﹣1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.【特例探究】(1)填空,当m=0时,OP=_________,PH=_________;当m=4时,OP=_________,PH= _________.【猜想验证】(2)对任意m,n,猜想OP与PH大小关系,并证明你的猜想.【拓展应用】(3)如图2,如果图1中的抛物线y=x2﹣1变成y=x2﹣4x+3,直线l变成y=m(m<﹣1).已知抛物线y=x2﹣4x+3的顶点为M,交x轴于A、B两点,且B点坐标为(3,0),N是对称轴上的一点,直线y=m (m<﹣1)与对称轴于点C,若对于抛物线上每一点都有:该点到直线y=m的距离等于该点到点N的距离.①用含m的代数式表示MC、MN及GN的长,并写出相应的解答过程;②求m的值及点N的坐标.8.(2015•徐汇区一模)已知:如图,抛物线C1:y=ax2+4ax+c的图象开口向上,与x轴交于点A、B(A 在B的左边),与y轴交于点C,顶点为P,AB=2,且OA=OC.(1)求抛物线C1的对称轴和函数解析式;(2)把抛物线C1的图象先向右平移3个单位,再向下平移m个单位得到抛物线C2,记顶点为M,并与y轴交于点F(0,﹣1),求抛物线C2的函数解析式;(3)在(2)的基础上,点G是y轴上一点,当△APF与△FMG相似时,求点G的坐标.9.(2014•辽阳)如图,在Rt△ABC中,∠C=90°,顶点A、C的坐标分别为(﹣1,2),(3,2),点B在x轴上,抛物线y=﹣x2+bx+c经过A、C两点.(1)求该抛物线所对应的函数关系式;(2)点P是抛物线上的一点,当S△PAB=S△ABC时,求点P的坐标;(3)若点N由点B 出发,以每秒个单位的速度沿边BC、CA向点A移动,秒后,点M也由点B出发,以每秒1个单位的速度沿线段BO向点O移动,当其中一个点到达终点时另一个点也停止移动,点N的移动时间为t秒,当MN⊥AB时,请直接写出t的值,不必写出解答过程.10.(2014•梧州)如图,抛物线y=ax2+bx+2与直线l交于点A、B两点,且A点为抛物线与y轴的交点,B(﹣2,﹣4),抛物线的对称轴是直线x=2,过点A作AC⊥AB,交抛物线于点C、x轴于点D.(1)求此抛物线的解析式;(2)求点D的坐标;(3)抛物线上是否存在点K,使得以AC为边的平行四边形ACKL的面积等于△ABC的面积?若存在,请直接写出点K的横坐标;若不存在,请说明理由.[提示:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣,顶点坐标为(﹣,)].11.(2014•青海)如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A (﹣6,0),与x轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.12.(2014•河池)如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.(1)抛物线的解析式是_________;(2)如图(2),点P是AD上一个动点,P′是P关于DE的对称点,连接PE,过P′作P′E∥PE交x轴于F.设S四边形EPP′P=y,EF=x,求y关于x的函数关系式,并求y的最大值;(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q 的坐标;若不存在.请说明理由.13.(2014•葫芦岛)如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G 九个格点.抛物线l的解析式为y=x2+bx+c.(1)若l经过点O(0,0)和B(1,0),则b=_________,c=_________;它还经过的另一格点的坐标为_________.(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D(1,2)是否在l上.(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.14.(2014•日照二模)已知:如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B ;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上有一动点P,从O点出发以每秒1个单位的速度沿x轴向右运动,是否存在点P使得△PBC 是以P为直角顶点的直角三角形?若存在,求出点P运动的时间t的值,若不存在,请说明理由.(4)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD 相似,若存在,求a的值,若不存在,说明理由.15.(2014•福田区模拟)如图所示,对称轴是x=﹣1的抛物线与x轴交于A、B(1,0)两点,与y轴交于点C(0,3),作直线AC,点P是线段AB上不与点A、B重合的一个动点,过点P作y轴的平行线,交直线AC于点D,交抛物线于点E,连结CE、OD.(1)求抛物线的函数表达式;(2)当P在A、O之间时,求线段DE长度s的最大值;(3)连接AE、BC,作BC的垂直平分线MN分别交抛物线的对称轴x轴于F、N,连接BF、OF,若∠EAC=∠OFB,求点P的坐标.16.(2014•西城区一模)抛物线y=x2﹣kx﹣3与x轴交于点A,B,与y轴交于点C,其中点B的坐标为(1+k,0).(1)求抛物线对应的函数表达式;(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G 所对应的函数表达式;(3)将线段BC平移得到线段B′C′(B的对应点为B′,C的对应点为C′),使其经过(2)中所得抛物线G 的顶点M,且与抛物线G另有一个交点N,求点B′到直线OC′的距离h的取值范围.17.(2014•成都三模)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在y轴上有一点M使△MAB的周长最小,求出此时△MAB的周长;(3)在(2)的条件下,在抛物线上是否存在点N(不与点O、A重合),使∠NAO比∠MAO小?若存在请求出点N横坐标x N的取值范围;若不存在,请说明理由.18.(2014•宜春模拟)如图,对称轴为x=﹣3的抛物线y=ax2+2x 与x 轴相交于点B、O.连结AB,把AB所在的直线平移,使它经过原点O,得到直线l(1)①求抛物线的解析式,并求出顶点A 的坐标;②求直线l的函数解析式.(2)若点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当9<S≤18时,t的取值范围;(3)在(2)的条件下,当t取最小值时,抛物线上是否存在点Q ,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.19.(2014•河东区一模)在平面直角坐标系中,已知抛物线y=﹣x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C 的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,取BC的中点N,连接NP,BQ,试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.20.(2013•铁岭)如图,抛物线y=ax2+bx+4的对称轴是直线x=,与x轴交于点A、B两点,与y轴交于点C,并且点A的坐标为(﹣1,0).(1)求抛物线的解析式;(2)过点C作CD∥x轴交抛物线于点D,连接AD交y轴于点E,连接AC,设△AEC的面积为S1,△DEC 的面积为S2,求S1:S2的值.(3)点F坐标为(6,0),连接DF,在(2)的条件下,点P从点E出发,以每秒3个单位长的速度沿E→C→D→F 匀速运动;点Q从点F出发,以每秒2个单位长的速度沿F→A匀速运动,当其中一点到达终点时,另外一点也随之停止运动.若点P、Q同时出发,设运动时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是直角三角形?请直接写出所有符合条件的t值.21.(2013•海曙区一模)如图,A为第一象限内一点.⊙A切y轴于点D,交x轴于点B,C,点E为BC 的中点.(1)求证:四边形OEAD是矩形;(2)若A(5,4),求过点D,B,C的抛物线解析式;(3)点F与(2)中的点D,B,C三点构成平行四边形,把(2)中的抛物线向上或向下平移多少个单位长度后所得抛物线经过点F?请直接写出点F的坐标及相应平移方向与平移距离;(4)在(2)的条件下,点P为线段AD上的一动点,在BP右侧作PQ⊥PB,且PQ=PB,求当DQ+BQ 最小时P点坐标.22.已知二次函数C1:y=x2+2ax+2x﹣a+1,且a变化时,二次函数C1的图象顶点M总在抛物线C2上;(1)用含有a的式子表示顶点M的坐标,并求出抛物线C2的函数解析式;(2)若抛物线C2的图象与x轴交于点A、B(A在B点左侧),与y轴交于点C.设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.且满足AC=2EF,是否存在这样的点E,使得以A,C,E,F为顶点的四边形是梯形?若存在,求出点E的坐标;若不存在,请说明理由;(3)若P是抛物线C2对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线l交抛物线于M、N两点,当y轴平分MN时,求出直线l的函数解析式.23.如图,抛物线y=x2+bx﹣3与x轴交于A、B两点(点A在点B左侧),直线l与抛物线交于A、C亮点,其中C的横坐标为2.(1)求A、C两点的坐标及直线AC的函数解析式;(2)P是线段AC上的一个动点,过点P作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C 、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.24.如图,已知抛物线y=x2﹣1的顶点坐标为M,与x轴交于A、B两点.(1)判断△MAB的形状,并说明理由;(2)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC、MD,试判断MC、MD是否垂直,并说明理由.25.如图,二次函数y=x2+c的图象经过点D(﹣,),与x轴交于A,B两点.(1)求c的值;(2)如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;(3)设点P,Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P,Q,使△AQP ≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由(图②供选用).26.如图,已知抛物线过点A(﹣1,0),B(4,0),C(,﹣).(1)求抛物线对应的函数关系式及对称轴;(2)点C′是点C关于抛物线对称轴的对称点,证明直线y=﹣(x+1)必经过点C′;(3)问:以AB为直径的圆能否过点C?并说明理由.27.如图,抛物线y=ax2+bx+c与x轴相交于B(2,0)、C(8,0)两点,与y轴的正半轴相交于点A,过点A、B、C三点的⊙P与y轴相切于点A,M为y轴负半轴上的一个动点,直线MB交抛物线于点N,交⊙P于点D.(1)填空:点A的坐标是_________,⊙P半径的长是_________;(2)若S△BNC:S△AOB=15:2,求N点的坐标;(3)若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.28.如图,在直角坐标系中,⊙M的圆心在y轴的正半轴上,AB与⊙M相切于A,BC与⊙M相切于点D,圆M与x轴相切于点O,已知B点坐标为(4,12).(1)求点C的坐标;(2)求经过A、B、C三点的函数的解析式,并写出对称轴;(3)求圆M在抛物线的对称轴上切得的弦EF的长.29.如图,已知二次函数y=(x+2)2的图象与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)求S△AOB;(3)求对称轴方程;(4)在对称轴上是否存在一点P ,使以P 、A、O、B为顶点的四边形为平行四边形?30.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)判断△ABC是否为直角三角形,并给出理由;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABCD的面积最大?若存在,请求出点D的坐标,并求出此时四边形ABCD的面积;若不存在,请说明理由.一.解答题(共30小题)1.(2015•崇明县一模)如图,已知抛物线y=x2+bx+c经过直线y=﹣+1与坐标轴的两个交点A、B,点C为抛物线上的一点,且∠ABC=90°.(1)求抛物线的解析式;(2)求点C坐标;(3)直线y=﹣x+1上是否存在点P,使得△BCP与△OAB相似?若存在,请直接写出P点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据直线的解析式求得A、B的坐标,然后根据待定系数法即可求得抛物线的解析式;(2)作CD⊥x轴于D,根据题意求得∠OAB=∠CBD,然后求得△AOB∽△BDC,根据相似三角形对应边成比例求得CD=2BD,从而设BD=m,则C(2+m,2m),代入抛物线的解析式即可求得;(3)分两种情况分别讨论即可求得.解答:解:(1)把x=0代入y=﹣x+1得,y=1,∴A(0,1),把y=0代入y=﹣x+1得,x=2,∴B(2,0),把A(0,1),B(2,0)代入y=x2+bx+c得,,解得,∴抛物线的解析式y=x2﹣x+1,(2)如图,作CD⊥x轴于D,∵∠ABC=90°,∴∠ABO+∠CBD=90°,∴∠OAB=∠CBD,∵∠AOB=∠BDC,∴△AOB∽△BDC,∴==2,∴CD=2BD,设BD=m,∴C(2+m,2m),代入y=x2﹣x+1得,2m=(m+2)2﹣(m+2)+1,解得,m=2或m=0(舍去),∴C(4,4);(3)∵OA=1,OB=2,∴AB=,∵B(2,0),C(4,4),∴BC=2,①当△AOB∽△PBC时,则=∴=,解得,PB=,作PE⊥x轴于E,则△AOB∽△PEB,∴=,即=,∴PE=1,∴P的纵坐标为±1,代入y=﹣x+1得,x=0或x=4,∴P(0,1)或(4,﹣1);②当△AOB∽△CBP时,则=,即=,解得,PB=4,作PE⊥x轴于E,则△AOB∽△PEB,∴=,即=,∴PE=4,∴P的纵坐标为±4,代入y=﹣x+1得,x=﹣6或x=10,∴P(﹣6,4)或(10,﹣4);综上,P的坐标为(0,1)或(4,﹣1)或(﹣6,4)或(10,﹣4).点评:本题是二次函数和一次函数的综合题,考查了待定系数法、三角形相似的判定和性质,数形结合运用是解题的关键.2.(2015•三亚三模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.考点:二次函数综合题.分析:(1)分别令解析式y=﹣x+2中x=0和y=0,求出点B、点C的坐标;(2)设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式,求出a、b、c的值,进而求得解析式;(3)由(2)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(4)设出E点的坐标为(a,﹣a+2),就可以表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF 求出S与a的关系式,由二次函数的性质就可以求出结论.解答:解:(1)令x=0,可得y=2,令y=0,可得x=4,即点B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式得,,解得:,即该二次函数的关系式为y=﹣x2+x+2;(3)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.如图1所示,作CH⊥x对称轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(4)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).∵直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).点评:本题考查了二次函数的综合运用,涉及了待定系数法求二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.3.(2015•金山区一模)如图,已知直线y=2x+6与x轴、y轴分别交于A、D两点,抛物线y=ax2+bx+2(a≠0)经过点A和点B(1,0).(1)求抛物线的解析式;(2)在线段AD上取一点F(点F不与点A重合).过点F作x轴的垂线交抛物线于点G、交x轴于点H.当FG=GH 时,求点H的坐标;(3)设抛物线的对称轴与直线AD交于点E,抛物线与y轴的交点为C,点M在线段AB上,当△AEM与△BCM 相似时,求点M的坐标.考点:二次函数综合题.分析:(1)根据函数值,可得相应自变量的值,根据待定系数法,可得函数解析式;(2)根据自变量的值,可得相应函数值,根据FG=GH,可得关于a的方程,解方程,可得答案;(3)根据相似三角形的性质,可得关于b的方程,解方程,可得答案.解答:解:(1)当y=0时,2x+6=0.解得x=﹣3,即A(﹣3,0),由抛物线y=ax2+bx+2(a≠0)经过点A(﹣3,0)和点B(1,0),得,解得.故抛物线为y=﹣x2﹣x+2;(2)设H点的坐标为(a,0),F(a,2a+6),G(a,﹣a2﹣a+2).由FG=GH,得2a+6=2(﹣a2﹣a+2).化简,得2a2+7a+3=0.解得a=﹣,a=﹣3(不符合题意要舍去),点H的坐标(﹣,0);(3)设M点坐标为(b,0),AM=b+3,BM=1﹣b,抛物线的对称轴与直线AD交于点E,抛物线与y轴的交点为C,得E(﹣1,4),C(0,2).由勾股定理,得AE=2,BC=.当△AEM∽△BCM时,=,即=.化简,得3b=﹣1,解得b=﹣,即M(﹣,0);当△AEM∽△BMC时,=,即=,化简,得b2+2b+7=0.实数b不存在;综上所述:M(﹣,0).点评:本题考查了二次函数综合题,(1)利用了待定系数法求函数解析式,(2)利用了线段中点的性质,(3)利用了相似三角形的性质.4.(2015•普陀区一模)如图,在平面直角坐标系xOy中,点A(m,0)和点B(0,2m)(m>0),点C在x轴上(不与点A重合)(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示)(2)当△BOC与△AOB全等时,二次函数y=﹣x2+bx+c的图象经过A、B、C三点,求m的值,并求点C的坐标(3)P是(2)的二次函数图象上的一点,∠APC=90°,求点P的坐标及∠ACP的度数.考点:二次函数综合题.分析:(1)分类讨论:△BOC∽△BOA,△BOC∽△AOB,根据相似三角形的性质,可得答案;(2)根据全等三角形的性质,可得C点坐标,根据待定系数法,可得函数解析式;(3)根据相似三角形的性质,可得关于a的方程,根据解方程,可得a的值可得p点坐标,分类讨论:当点P的坐标为(,1)时,根据正弦函数据,可得∠COP的度数,根据等腰三角形得到性质,可得答案;当点P的坐标为(﹣,1)时,根据正弦函数据,可得∠AOP的度数,根据三角形外角的性质,可得答案.解答:解:(1)点C的坐标为(m,0)或(4m,0).或(﹣4m,0);(2)当△BOC与△AOB全等时,点C的坐标为(m,0),二次函数y=﹣x2+bx+c的图象经过A、B、C三点,,解得.二次函数解析式为y=﹣x2+4,点C的坐标为(2,0);(3)作PH⊥AC于H,设点P的坐标为(a,﹣a2+4),∵∠AHP=∠PHC=90°,∠APH=∠PCH=90°﹣∠CPH,∴△APH∽△PCH,∴=,即PH2=AH•CH,(﹣a2+4)2=(a+2)(2﹣a).解得a=,或a=﹣,即P(,1)或(﹣,1),如图:当点P1的坐标为(,1)时,OP1=2=OC,sin∠P1OE==∴∠COP=30°,∴∠ACP==75°当点P的坐标为(﹣,1)时,sin∠P2OF==,∠P2OF=30°.由三角形外角的性质,得∠P2OF=2∠ACP,即∠ACP=15°.点评:本题考查了二次函数综合题,(1)利用了相似三角形的性质,分类讨论是解题关键;(2)利用全等三角形的性质,解三元一次方程组;(3)利用了相似三角形的性质,分类讨论是解题关键,正弦函数及等腰三角形的性质,三角形外角的性质.5.(2015•宝山区一模)(1)数学小组的单思稿同学认为形如的抛物线y=ax2+bx+c,系数a、b、c一旦确定,抛物线的形状、大小、位置就不会变化,所以称数a、b、c为抛物线y=ax2+bx+c的特征数,记作{a,b,c};请求出与y轴交于点C(0,﹣3)的抛物线y=x2﹣2x+k在单同学眼中的特征数;(2)同数学小组的尤恪星同学喜欢将抛物线设成y=a(x+m)2+k的顶点式,因此坚持称a、m、k为抛物线的特征数,记作{a,m,k};请求出上述抛物线在尤同学眼中的特征数;(3)同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同组的董和谐将上述抛物线表述成:特征数为{u,v,w}的抛物线沿平行于某轴方向平移某单位后的图象,即此时的特征数{u,v,w}无论按单思稿同学还是按尤恪星同学的理解做出的结果是一样的,请你根据数学推理将董和谐的表述完整地写出来;(4)在直角坐标系xOy中,上述(1)中的抛物线与x轴交于A、B两点(A在B的左边),请直接写出△ABC的重心坐标.考点:二次函数综合题.专题:综合题.分析:(1)把C坐标代入抛物线解析式求出k的值,确定出抛物线解析式,即可得出抛物线在单同学眼中的特征数;(2)把抛物线解析式化为顶点形式,确定出抛物线在尤同学眼中的特征数即可;(3)把抛物线解析式化为顶点形式,要使单思稿同学和尤恪星同学的理解做出的结果是一样的,必须满足,得到b=0,即可得出董和谐的表述;(4)找出AB的中点,求出AB边中线方程,同理求出AC边中线方程,联立求出重心坐标即可.解答:解:(1)把C(0,﹣3)代入抛物线解析式得:k=﹣3,∴抛物线解析式为y=x2﹣2x﹣3,则该抛物线在单同学眼中的特征数为{1,﹣2,﹣3};(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴上述抛物线在尤同学眼中的特征数为{1,﹣1,﹣4};(3)y=ax2+bx+c=a(x+)2+c﹣,要使单思稿同学和尤恪星同学的理解做出的结果是一样的,必须满足,即b=0,∵y=(x﹣1)2﹣4可以看做y=x2﹣4沿平行于x轴方向向右平移1个单位而成,∴董和谐的表述为:特征数{1,0,﹣4}的抛物线沿平行于x轴方向向右平移1个单位的图象;(4)对于抛物线解析式y=x2﹣2x﹣3,令y=0,得到x2﹣2x﹣3=0,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,即A(﹣1,0),B(3,0),C(0,﹣3),∴线段AB中点坐标为(1,0),AB边的中线方程为y=(x﹣1)=3(x﹣1)=3x﹣3;∵AC边中点坐标为(﹣,﹣),AC边的中线方程为y=(x﹣3)=(x﹣3)=x﹣,联立得:,解得:,则△ABC的重心坐标为(,﹣1).点评:此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,线段中点坐标公式,直线的点斜式方程,以及新定义,弄清题中的新定义是解本题的关键.6.(2015•松江区一模)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.考点:二次函数综合题.分析:(1)根据待定系数法,可得函数解析式;(2)根据顶点坐标公式,可得顶点坐标,根据图象的平移,可得M点的坐标;(3)根据角平分线的性质,可得全等三角形,根据全等三角形的性质,可得方程组,根据解方程组,可得答案.解答:解:(1)由二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5),得,解得.二次函数的解析式y=x2﹣4x;(2)y=x2﹣4x的顶点M坐标(2,﹣4),这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,顶点M坐标向上平移m,即M(2,m﹣4);(3)由待定系数法,得CP的解析式为y=x+m,如图:作MG⊥PC于G,设G(a,a+m).由角平分线上的点到角两边的距离相等,DM=MG.在Rt△DCM和Rt△GCM中,Rt△DCM≌Rt△GCM(HL).CG=DC=4,MG=DM=2,,化简,得8m=36,解得m=.点评:本题考察了二次函数综合题,(1)利用了待定系数法求函数解析式,(2)利用了二次函数顶点坐标公式,图象的平移方法;(3)利用了角平分线的性质,全等三角形的性质.7.(2015•山西模拟)如图1,P(m,n)是抛物线y=x2﹣1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.【特例探究】(1)填空,当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5.【猜想验证】(2)对任意m,n,猜想OP与PH大小关系,并证明你的猜想.【拓展应用】(3)如图2,如果图1中的抛物线y=x2﹣1变成y=x2﹣4x+3,直线l变成y=m(m<﹣1).已知抛物线y=x2﹣4x+3的顶点为M,交x轴于A、B两点,且B点坐标为(3,0),N是对称轴上的一点,直线y=m(m<﹣1)与对称轴于点C,若对于抛物线上每一点都有:该点到直线y=m的距离等于该点到点N的距离.①用含m的代数式表示MC、MN及GN的长,并写出相应的解答过程;②求m的值及点N的坐标.。
二次函数与几何图形的综合问题(学生版)--初中数学专题训练
二次函数与几何图形的综合问题目录一、热点题型归纳【题型一】 二次函数与图像面积的数量关系及最值问题【题型二】 二次函数与角度数量关系问题【题型三】 二次函数与线段长度数量关系及线段长度最值问题【题型四】 二次函数与特殊三角形问题【题型五】 二次函数与相似三角形存在性问题【题型六】 二次函数与特殊四边形存在性问题【题型七】 二次函数与代数或几何综合问题二、最新模考题组练1.热点题型归纳题型一:二次函数与图像面积的数量关系及最值问题1【典例分析】1如图,二次函数y=x2+bx+c的图象与x轴交于A-3,0两点,点C为二次函数的图象与y轴,B1,0的交点.(1)求二次函数的表达式;(2)若点P为二次函数图象上的一点,且S△POC=2S△BOC,求点P的坐标.2【提分秘籍】对于图形的运动产生的相等关系问题,解答时应认真审题,仔细研究图形,分析动点的运动状态及运动过程,解题过程的一般步骤是:①弄清其取值范围,画出符合条件的图形;②确定其存在的情况有几种,然后分别求解,在求解计算中一般由函数关系式设出图形的动点坐标并结合图形作辅助线,画出所求面积为定值的三角形;③过动点作有关三角形的高或平行于y轴、x轴的辅助线,利用面积公式或三角形相似求出有关线段长度或面积的代数式,列方程求解,再根据实际问题确定方程的解是否符合题意,从而证得面积等量关系的存在性.④对于面积的最值问题选择合适的自变量,建立面积关于自变量的函数,并求出自变量的取值范围,用二次函数或一次函数的性质来解决.3【变式演练】1如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(-2,0)和点B,与y轴交于点C(0,8),点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)求△BCP的面积最大值.2如图,抛物线y=x2+bx+c与x轴交于A-1,0两点.,B3,0(1)求该抛物线的解析式;(2)观察函数图象,直接写出当x取何值时,y>0?(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.3如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,抛物线的对称轴l与x轴交于点M.(1)求抛物线的函数关系式.(2)设点P是直线l上的一个动点,求△PAC周长的最小值.题型二:二次函数与角度数量关系问题1【典例分析】1如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0)和B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,若点M为直线BC上方抛物线一动点(与点B、C不重合),作MN平行于y轴,交直线BC于点N,当线段MN的长最大时,请求出点M的坐标;(3)如图2,若P为抛物线的顶点,动点Q在抛物线上,当∠QCO=∠PBC时,请求出点Q的坐标.2【提分秘籍】探究两个角相等的方法:①可转换为满足此三角形是等腰三角形时的点,一般是通过此动点作已知两点连线的中垂线,再通过三角形相似以及中垂线的性质求出中垂线所在直线的解析式,最后通过直线解析式和抛物线解析式联立方程组求得动点的坐标;②通过构造两个三角形相似,再通过三角形相似的性质建立等式关系,再通过直线解析式和抛物线解析式联立方程组求得动点的坐标.3【变式演练】1如图,在平面直角坐标系中,抛物线y=-12x2+bx+c过点A-2,0,B4,0,x轴上有一动点P t,0,过点P且垂直于x轴的直线与直线BC及抛物线分别交于点D,E.连接CE.(1)求抛物线的解析式.(2)点P在线段OB上运动时(不与点O,B重合)当△CDE∽△BDP时,求t的值.(3)当点P在x轴上自由运动时,是否存在点P,使∠DCE=∠DEC?若存在,请直接写出点P的坐标;若不存在,请说明理由.2如图,抛物线y=ax2+bx+5(a≠0)与y轴相交于点C,且经过A(1,0),B(5,0)两点,连接AC.(1)求抛物线的表达式;(2)设P为x轴下方抛物线上一点,M为对称轴上一点,N为该抛物线对称轴与x轴交点,若∠MNP=∠OCA,求点P的坐标.题型三:二次函数与线段长度数量关系及线段长度最值问题1【典例分析】1如图,已知经过A1,0两点的抛物线y=x2+bx+c与y轴交于点C.,B4,0(1)求此抛物线的解析式及点C的坐标;(2)若线段BC上有一动点M(不与B、C重合),过点M作MN⊥x轴交抛物线于点N.求当线段MN的长度最大时点M的坐标;2【提分秘籍】探究平面直角坐标系中线段的数量关系的方法:①先设点的坐标,再用点的坐标表示线段的长度,然后分析表示线段长度的代数式,得出线段之间的数量关系;②函数图象上点的坐标的表示方法:直线y=kx+b上点的坐标为(x,kx+b);抛物线y=ax2+bx+c上点的坐标为(x,ax2+bx+c);双曲线y=k x上的点的坐标为y=x,k x③已知点A(x,y),B(m,n),若AB与x轴平行,则AB=|x-m|;若AB与y轴平行,则AB=|y-n|;若AB既不与x轴平行又不与y轴平行,则AB=(x-m)2+(y-n)2。
二次函数与几何图形结合题及答案
1.如图,抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .〔1〕求A 、B 、C 三点的坐标;〔2〕过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积;解:〔1〕令0y =,得210x -= 解得1x =± 令0x =,得1y =-∴A (1,0)-B (1,0)C (0,1)-……………………3分〔2〕∵O A =O B =O C =1∴∠BAC =∠AC O=∠BC O=45∵A P ∥CB , ∴∠P AB =45过点P 作P E ⊥x 轴于E ,那么∆A P E 为等腰直角三角形令O E =a ,那么P E =1a +∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=- 解得12a =,21a =-〔不合题意,舍去〕∴P E =3……………………………………………………………………………5分∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯=………………………………6分2.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D .〔1〕求b ,c 的值;〔2〕点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;〔3〕在〔2〕的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 假设存在,求出所有点P 的坐标;假设不存在,说明理由.解:〔1〕由得:A 〔-1,0〕 B 〔4,5〕…………………1分∵二次函数2y x bx c =++的图像经过点A 〔-1,0〕B(4,5)∴101645b c b c -+=⎧⎨++=⎩…………………………………………………2分 解得:b=-2 c=-3…………………………………………………3分〔2〕如26题图:∵直线AB 经过点A 〔-1,0〕 B(4,5)∴直线AB 的解析式为:y=x+1……………………………………4分∵二次函数223y x x =--∴设点E(t , t+1),那么F 〔t ,223t t --〕………………………5分∴EF= 2(1)(23)t t t +---………………………………………6分=2325()24t --+ ∴当32t =时,EF 的最大值=254 ∴点E 的坐标为〔32,52〕………………………………7分 〔3〕①如26题图:顺次连接点E 、B 、F 、D 得四边形EBFD.可求出点F 的坐标〔32,154-〕,点D 的坐标为〔1,-4〕 S EBFD 四边行 = SBEF + S DEF =12531253(4)(1)242242⨯-+⨯- =758………………………………………………10分 ②如26题备用图:ⅰ)过点E 作a ⊥EF 交抛物线于点P,设点P(m ,223m m --)那么有:25232m m --= 解得:1226m =-,2226m += ∴12265(,)2p -, 22265(,)2p + ⅱ〕过点F 作b ⊥EF 交抛物线于3P ,设3P 〔n ,223n n --〕那么有:215423n n --=- 解得:112n = ,232n =〔与点F 重合,舍去〕 ∴3P 11524(,-) 综上所述:所有点P 的坐标:12265(,)22p -,22265(,)22p +3P 〔11524(,-). 能使△EFP 组成以EF 为直角边的直角三角形.…………………………………… 13分3.如图,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,与y 轴交于点P ,顶点为C 〔1,-2〕. 〔1〕求此函数的关系式;〔2〕作点C 关于x 轴的对称点D ,顺次连接A 、C 、B 、D.假设在抛物线上存在点E ,使直线PE 将四边形ABCD 分成面积相等的两个四边形,求点E 的坐标;〔1〕∵c bx x y ++=2的顶点为C 〔1,-2〕, ∴2)1(2--=x y ,122--=x x y . ……………2分 26题备用图〔2〕设直线PE 对应的函数关系式为b kx y +=由题意,四边形ACBD 是菱形.故直线PE 必过菱形ACBD 的对称中心M . ………3分由P (0,-1),M 〔1,0〕,得⎩⎨⎧=+-=01b k b .从而1-=x y , …5分 设E (x ,1-x ),代入122--=x x y ,得1212--=-x x x . 解之得01=x ,32=x ,根据题意,得点E (3,2) …………………………………7分.4如图,抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点〔点A 在点B 的右侧〕,点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动〔点P 与A 不重合〕,过点P 作PD ∥y 轴,交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,假设点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?假设存在,求点F 的坐标;假设不存在,请说明理由.解:〔1〕∵抛物线的顶点为Q 〔2,-1〕∴设()122--=x a y将C 〔0,3〕代入上式,得()12032--=a1=a ∴()122--=x y , 即342+-=x x y …〔3分〕〔2〕分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合(如图)令y =0, 得0342=+-x x 解之得11=x , 32=x∵点A 在点B 的右边, ∴B(1,0), A(3,0)∴P 1(1,0) 〔5分〕②解:当点A 为△APD 2的直角顶点是(如图)∵OA=OC, ∠AOC= 90, ∴∠OAD 2=45当∠D 2AP 2= 90时, ∠OAP 2= 45, ∴AO 平分∠D 2AP 2- .又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO, ∴P 2、D 2关于x 轴对称设直线AC 的函数关系式为b kx y +=将A(3,0), C(0,3)代入上式得 ⎩⎨⎧=+=bb k 330, ∴⎩⎨⎧=-=31b k ∴3+-=x y ……………〔7分〕 ∵D 2在3+-=x y 上, P 2在342+-=x x y 上,∴设D 2(x ,3+-x ), P 2(x ,342+-x x )∴(3+-x )+(342+-x x )=0 0652=+-x x , ∴21=x , 32=x (舍)∴当x =2时, 342+-=x x y =32422+⨯-=-1 ∴P 2的坐标为P 2(2,-1)(即为抛物线顶点)∴P 点坐标为P 1(1,0), P 2(2,-1) …………………………………………………〔9分〕(3)解: 由题(2)知,当点P 的坐标为P 1(1,0)时,不能构成平行四边形……………………〔10分〕当点P 的坐标为P 2(2,-1)(即顶点Q)时,平移直线AP(如图)交x 轴于点E,交抛物线于点F.当AP=FE 时,四边形PAFE 是平行四边形∵P(2,-1), ∴可令F(x ,1)∴1342=+-x x 解之得: 221-=x , 222+=x ∴F 点有两点, 即F 1(22-,1), F 2(22+,1) ……………〔13分〕3. 〔2021,25,10分〕如图,抛物线212y x x a =-+与x 轴交于A ,B 两点,与y 轴交于点C ,其顶点在直线y =-2x 上.(1)求a 的值;(2)求A ,B 两点的坐标; (3)以AC ,CB 为一组邻边作□ABCD ,那么点D 关于x 轴的对称点D ´是否在该抛物线上?请说明理由.考点:二次函数综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一师一优课教学设计
【教学目标】
1.知识与能力:一要熟练掌握二次函数和平面几何的基础知识;二要利用几何图形和二次函数的有关性质和知识,充分挖掘题目中的隐含条件,达到解题的目的。
2.过程与方法:一要通过综合题的训练要求学生熟练掌握待定系数法、分类讨论、数形结合的数学思想方法;二要经历探究利用函数的模型表示线段长或面积的过程。
3.情感态度与价值观:一要通过探究,互相讨论,发表意见等学习过程,培养合作精神和认真倾听的习惯,二要经历探究面积的最值问题体会二次函数的应用价值和二次函数模型对解决最值问题的优越性。
【学情分析】二次函数综合题知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此在解决此类综合题时,要求学生,一要树立必胜的信心,二要具备扎实的基础知识和熟练的解题技能,三要掌握常用的解题策略。
【教学重点难点】二次函数与几何图形相结合的综合问题
【教学过程】
一:探究问题,交流讨论
1:问题一:如图,在平面直角坐标系中,抛
物线经过A(-1,0),B(3,0),C(0,-1)三点。
(1)求该抛物线的表达式;
(2)点Q在y轴上,点P在抛物线上,
要使以点Q、P、A、B为顶点的四边形是平行
四边形,求所有满足条件的点P的坐标。
2:合作交流;
分类讨论;
情况一、二情况三
二:师生互动:(1)设该抛物线的表达式为y=ax²+bx+c根据题意,得
a-b+c=0 a=1 3
9a+3b+c=0 解之,得 b=
2 3 -
c=-1 c=-1
∴所求抛物线的表达式为y=1
3
x²-
2
3
-x-1
(2)①AB为边时,只要PQ∥AB且PQ=AB=4即可。
又知点Q在y轴上,∴点P的横坐标为4或-4,这时符合条件的点P
有两个,分别记为P
1,P
2
.
而当x=4时,y=5
3
;当x=-4时,y=7,
此时P
1(4,
5
3
)P
2
(-4,7)
②当AB为对角线时,只要线段PQ与线段AB互相平分即可又知点Q在Y轴上,且线段AB中点的横坐标为1
∴点P的横坐标为2,这时符合条件的P只有一个记为P
3 而且当x=2时y=-1 ,此时P
3
(2,-1)
综上,满足条件的P为P
1(4,
5
3
)P
2
(-4,7)P
3
(2,-1)
三:解决问题:
问题2:在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C (2,0)三点.
(1)求抛物线的解析式;
(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.
(3) 若点P 是抛物线上的动点,点Q 是直线 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.
⑴设抛物线的解析式为 y =ax 2
+bx +c (a ≠0),则有
1640
4
420
a b c c a b c -+=⎧⎪
=-⎨⎪++=⎩
.解得 a =12,b =1,c =-4. ∴ 抛物线的解析式为 y =12
x 2+x -4……3分 ⑵过点M 作MD ⊥x 轴于点D ,设点M 的坐标为(m ,n ) 则AD =m +4,MD =-n ,n =12
m 2+m -4 ∴S =S △AMD +S 梯形DMBO -S △ABO
=12(m +4)(-n )+12(-n +4)(-m )-12
×4×
4
=―2n ―2m ―8
=―2×(12
m 2+m -4)―2m ―8 =―m 2
―4m (-4<m <0) ……6分 ∴S 最大值=4……7分
⑶ 满足题意的Q 点的坐标有四个,分别是
3(4,4)Q -,4(4,4)Q -,(1225,225Q --+,
D
A
B
C M y
x
O
A
B
C x
y
O
Q 4
P 1
Q 1
Q 3
Q 2
P 2
(
22Q -+-……11分
⑶的解答过程以OB 为平行四边形的一边时,由()2
1
442
x x x ⎛⎫+---= ⎪⎝⎭
得
24160x x +-=,12x =--,22x =-+,得(12Q --+,(
22Q -+-;
由()21442
x x x ⎛⎫+---=- ⎪⎝⎭
得2
40x x +=,34x =-,40
x =(舍去),得3(4,4)Q -; 以OB 为平行四边形的对角线时,由图形的中心对称易得4(4,4)Q -.
四:学法指导:
本题主要考查了二次函数解析式的确定,图形面积的求法,二次函数最值的 应用,以及平行四边形的判定和性质。
本题第⑴问用两根式更方便,但不是《数学课程标准》所要求;第⑵问用
S =S △AMO +S △BMO −S △ABO 更简洁;第⑶问用纵坐标之差为4,转化为一元二次方程求解;关键是点的坐标(字母)与线段长度的转换,学生典型错误多表现在分类不全和计算错误上.
本题将二次函数、方程、三角形和四边形的知识结合在一起,突出了待定系数法、数形结合思想、方程思想、函数思想、分类讨论思想、符号思想等重要的数学思想方法的考查.第⑴问考查待定系数法,是数学的核心知识之一,可设定二次函数的不同待定形式;第⑵问,由于动点限定在抛物线上,且位于第三象限,动点M 的横坐标m 限制在-4<m <0范围内,使得△AMB 的面积S 关于动点
M 的横坐标m 函数关系式需要附加约束条件.由于△AMB 不是特殊的三角形,求其面积需要进行转化,要求进一步提高;第⑶问,属于双动点问题,仅要求动点P 在抛物线上,动点Q 在直线上,进一步拓展了探究空间.以点P 、Q 、B 、O 为顶点的四边形为平行四边形,需要分OB 为一边,或者OB 为一条对角线进行讨论,根据图形特点,转化为特殊的点线关系,即可得到要求点的坐标.
本题有效考察学生的探究能力及学生数学思考的真实水平.同时,题目设计以问题的探索为核心,体现了《课程标准》对探究性学习的要求.本题设问自然流畅,且富有变化,层次感较好,随着解答过程中对学生能力要求的逐步提高,较好的考查了学生思维的严谨性、灵活性,有利于激发学生的思维激情和潜能,增强了中考的甄选功能.
五:小结:
破解二次函数与几何图形综合题的策略。