苏科版数学八年级下册第11章《反比例函数》单元测试卷 含答案

合集下载

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象分布在第二、四象限内D.若x>1,则﹣2<y<02、若反比例函数y=的图象经过点(1,-2),则k的值为()A.2B.-2C.-1D.13、如图,分别过点,作x 轴的垂线,与反比例函数的图像交于点分别过,作的垂线,垂足分别为,分别过点作的垂线,垂足分别为.设矩形的面积为S1,矩形的面积为S2,矩形面积为S3,依此类推,则的值为()A. B. C. D.4、若反比例函数y= (k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(1,﹣1)B.(﹣,4)C.(﹣2,﹣1)D.(,4)5、已知反比例函数y=,当x=2时,y=﹣,那么k等于()A.1B.-1C.-4D.﹣6、下列函数中,是反比例函数的是( )A.y=B.3x+2y=0C.xy-=0D.y=7、如图,在平面直角坐标系中,函数与的图象交于点,则代数式的值为()A. B. C. D.8、如果矩形的面积为6,那么它的长与宽的函数关系用图象表示为()A. B. C. D.9、设直线与双曲线相交于P,Q两点,0为坐标原点,则∠POQ是( ).A.锐角B.直角C.钝角D.锐角或钝角10、已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A. B. C. D.11、若双曲线经过第二、四象限,则直线经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限12、如图,一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).与反比例函数的图像交于点Q,反比例函数图像上有一点P满足:① PA⊥x轴;②PO=(O为坐标原点),则四边形PAQO的面积为()A.7B.10C.4+2D.4-213、关于反比例函数y=的图像,下列说法正确的是()A.图像经过点(1,1)B.两个分支分布在第二、四象限C.当x<0时,y随x的增大而减小D.两个分支关于x轴成轴对称14、已知函数y=(k<0),又x1,x2对应的函数值分别是y1,y2,若x2>x1>0对,则有()A. y1>y2>0B. y2>y1>0C. y1<y2<0D. y2<y1<015、如图,在函数的图象上取三点A、B、C,由这三点分别向x轴、y轴作垂线,设矩形AA1OA2、BB1OB2、、CC1OC2的面积分别为SA、SB、SC,则下列正确的是()A.SA <SB<SCB.SA>SB>SCC.SA=SC=SBD.SA<SC<SB二、填空题(共10题,共计30分)16、若函数y=的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为________.17、已知正比例函数y=-4x与反比例函数y=的图像交于A,B两点,若点A的坐标为(x,4),则点B的坐标为________.18、如图,一次函数y1=k1+b与反比例函数y2= 的图象相交于A(﹣1,2)、B(2,﹣1)两点,则y2<y1时,x的取值范围是________.19、如图,已知点A,B分别在反比例函数y1=﹣和y2= 的图象上,若点A是线段OB的中点,则k的值为________.20、函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是________.21、在反比例函数的图象上有两点,,,则________ .(填“”或“”22、如图,L1是反比例函数y= 在第一象限内的图像,且过点A(2,1),L2与L1关于x轴对称,那么图像L2的函数解析式为________(x>0).23、在平面直角坐标系中,直线与双曲线交于,两点,则的值为________.24、已知反比例函数y=的图象经过点(1,2),则k的值是________.25、如图,已知两个反比例函数C1:y=和C2:y=在第一象限内的图象,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、小明在某一次实验中,测得两个变量之间的关系如下表所示:x 1 2 3 4 12y 12.03 5.98 3.03 1.99 1.00请你根据表格回答下列问题:①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由;②请你写出这个函数的解析式;③表格中空缺的数值可能是多少?请你给出合理的数值.28、已知反比例函数y=的图象经过点P(1,6).(1)求k的值;(2)若点M(﹣2,m),N(﹣1,n)都在该反比例函数的图象上,试比较m,n的大小.29、如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.30、如图,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).(1)求反比例函数的解析式;(2)若点P在直线OA上,且满足PA=2OA,直接写出点p的坐标(不写求解过程).参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、B6、C7、C8、B9、D10、B12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、如图,直线l⊥x轴于点P,且与反比例函数y1= (x>0)及y2= (x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为()A.2B.3C.4D.﹣42、下列各点中,在双曲线上的点是().A. B. C. D.3、如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A,C分别在x轴、y轴上,反比例函数y= (k≠0,x>0)的图象与正方形OABC的两边AB,BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是()A.△ONC≌△OAMB.四边形DAMN与△OMN面积相等C.ON=MND.若∠MON=45°,MN=2,则点C的坐标为(0,+1)4、如图,反比例函数与一次函数的图象交于两点,两点的横坐标分别为.则关于x的不等式的解集为()A. B. C. D. 或5、关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A. B. C. D.6、反比例函数y=的图象经过点(-2,3),则k的值为( )A.6B.-6C.D.-7、在双曲线y=-上的点是()A.( ,- )B.( ,)C.(1,2)D.( ,1)8、如图,已知点P为反比例函数上一点,过点P向坐标轴引垂线,垂足分别为M,N,那么四边形MONP的面积为()A.-6B.3C.6D.129、下列函数(x是自变量)中,是反比例函数的是()A. B.5x+4y=0 C.xy﹣=0 D.y=10、二次函数y=ax2+b与反比例函数y= 在同一平面直角坐标系中的图象可能是()A. B. C. D.11、反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A. B. C. D.12、在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y= 相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2 +3或2 ﹣3B. +1或﹣1C.2 ﹣3D.﹣113、如图,在平面直角坐标系中,点A、B的坐标分别为(-2,3)、(0,1),将线段AB沿x轴的正方向平移m(m>0)个单位,得到线段A' B'。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、下列函数中,能表示是的反比例函数的是()A. B. C. D.2、若当x=2时,反比例函数y=(k1≠0)与y=k2x(k2≠0)的值相等,则k1与k2的比是()A.1:4B.2:1C.4:1D.1:23、如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图象交于E、F两点,若△DEF的面积为,则k的值是()A.1B.7C.1或7D.不能确定4、图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变5、如果反比例函数的图象在第一、三象限内,则下列说法正确的是()A. 随的增大而减小B. 随的增大而增大C. 的取值范围为D. 的取值范围是6、反比例函数y=(k≠0)的图象双曲线是()A.是轴对称图形,而不是中心对称图形B.是中心对称图形,而不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形7、如图,P1是反比例函数在第一象限图像上的一点,点A1的坐标为(2,0).若△P1O A1与△P2A1A2均为等边三角形,则A2点的横坐标为( )A. B. C. D.8、函数y=﹣(x<0)和y=(x>0)的图象如图所示,O为坐标原点,M是y轴正半轴上任意一点,过点M作PQ∥x轴,分别与图中的函数图象相交于P、Q两点,连接OP、OQ,则△OPQ的面积为()A. B. C. D.9、如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB 的中线,点B,C在反比例函数的图象上,则△OAB的面积等于()A.2B.3C.4D.610、如图,点A是反比例函数y= 的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣811、下列函数的图象中,与坐标轴没有公共点的是()A. B.y=2x+1 C.y=﹣x D.y=﹣x 2+112、函数(k为常数)的图像上有三个点(-2,y1),(-1,y2),(,y3),函数值y1, y2, y3的大小为()A. B. C. D.13、如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()A. B. C. D.14、若反比例函数的图象在第一、三象限,则的值可以是()A.-1B.-2C.-3D.15、如图直线y=mx与双曲线y= 交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB =2,则k2﹣k1的值为________17、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为________.(填一般式)18、如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是________ .19、若直线y=m(m为常数)与函数y=的图象有三个不同的交点,则常数m的取值范围________20、已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:①;②;③,是关于的一元二次方程的两个实数根;④.其中正确结论是________(填写序号)21、已知点A在反比例函数y= 的图像上,点B与点A关于原地对称,BC∥y 轴,与反比例函数y=﹣的图像交于点C,连接AC,则△ABC的面积为________.22、如图,平面直角坐标系中,等腰Rt△ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x>0)的图象上。

苏科版八年级下册数学第11章 反比例函数含答案解析

苏科版八年级下册数学第11章 反比例函数含答案解析

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、已知点A(-1,5)在反比例函数的图象上,则该函数的解析式为()A. B. C. D.2、如图,平行于x轴的直线与函数y= (k1>0,x>0),y= (k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1-k2的值为()A.8B.-8C.4D.-43、在反比例函数y=的图象上横、纵点坐标都是整数的点有()A.2个B.4个C.6个D.8个4、下列函数中,是反比例函数的是( )A.y=B.3x+2y=0C.xy-=0D.y=5、若点,,在双曲线上,则,,的大小关系是()A. B. C. D.6、已知反比例函数的图象经过点A(1,a),B(3,b)则与的关系正确的是()A. B. C. D.7、已知点,,是函数图象上的三点,则的大小关系是()A. B. C. D.无法确定8、在平面直角坐标系中,反比例函数图像在每个象限内y随着x的增大而减小,那么它的图像的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限9、已知反比例函数y= 的图象的两支分别在第二、四象限内,那么k的取值范围是()A.k>﹣B.k>C.k<﹣D.k<10、下列图形中,阴影部分面积最大的是()A. B. C. D.11、如图,已知第一象限的点A在反比例函数y=上,过点A作AB⊥AO交x轴于点B,∠AOB=30°,将△AOB绕点O逆时针旋转120°,点B的对应点B恰好落在反比例函数y=上,则k的值为()A.﹣4B.﹣C.﹣2D.﹣12、已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图像一个交点的坐标为(-2,-1),则它的另一个交点的坐标是()。

A.(2,1)B.(-1,-2)C.(-2,1)D.(2,-1)13、如图,点A、B分别在反比例函数y=图象的两支上,连接AB交x轴于点C,交y轴于点D,则AD与BC的大小关系为()A.AD>BCB.AD=BCC.AD<BCD.无法判断14、已知反比例函数的图象在第二、第四象限内,函数图象上有两点A(,y1)、B(5,y2),则y1与y2的大小关系为()。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、下列图象中是反比例函数y=﹣图象的是()A. B. C.D.2、如图,在等腰中,,点为反比例函数(其中)图象上的一点,点在轴正半轴上,过点作,交反比例函数的图象于点,连接交于点,若的面积为2,则的值为()A.20B.C.16D.3、如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC的面积是4,则这个反比例函数的解析式是( )A.y=B.y=C.y=D.y=4、面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是( )A. B. C. D.5、如图,已知直线AC与反比例函数图象交于点A,与轴、轴分别交于点C,E,E恰为线段AC的中点,S△EOC=1,则反比例函数的关系式为()A. B. C. D.6、一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1B.-2<x<1C.x<-2或x>1D.x<-2或0<x<17、如图,点A是反比例函数y=-(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1B.3C.6D.128、如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=9、如图,点A在双曲线的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且,点E在线段AC上,且,点D 为OB的中点,若的面积为18,则k的值为A.36B.32C.27D.1810、如图,在平面直角坐标系中,矩形ABCD四个顶点的坐标分别为A(-1,2),B(-1,-1),C(3,-1),D(3,2),当双曲线y= (k>0)与矩形有四个交点时,k的取值范围是( )A.0<k<2B.1<k<4C.k>1D.0<k<111、已知反比例函数y= (k≠0)的图像经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.412、如图,点A在反比例函数的图象上, 轴于点B,点C 在x轴的负半轴上,且,若的面积为18,则k的值为()A.12B.18C.20D.2413、若函数的图象过点(3,-7),那么它一定还经过点( ).A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)14、反比例函数图象上有三个点,,,若,则的大小关系是()A. B. C. D.15、下面的等式中,y是x的反比例函数的是()A.y=B.y=C.y=D.y=二、填空题(共10题,共计30分)16、如图,双曲线y= (x<0)经过Rt△ABC的两个顶点A,C,∠ABC=90°,AB∥x轴,连接OA,将Rt△ABC沿AC翻折后得到Rt△AB′C,点B′刚好落在线段OA上,连接OC,OC恰好平分OA与x轴负半轴的夹角,若Rt △ABC的面积为2,则k的值为________.17、若点在反比例函数的图象上,则________ (填“>”或“<”或“=”)18、如图,点A(-7,8),B(-5,4)连接AB并延长交反比例函数的图象于点C,若,则k=________19、如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为3,则k1﹣k2的值为________.20、如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y 2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________ .21、如图所示,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为4,则这个反比例函数的解析式为________.22、已知反比例函数y=的图象经过点(1,2),则k的值是________.23、在y= ;y= ;y= ;y= 四个函数中,为反比例函数的是________.24、如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是________.25、如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标= (x>0)的图象上,顶点B在原点,斜边AB垂直于x轴,顶点A在函数y1= (x>0)的图象上,∠ABO=30°,则=________.函数y2三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?28、直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式.(2)求△AOC的面积.(3)如图直接写出反比例函数值大于一次函数值的自变量x的取值范围.29、如图所示,Rt△PAB的直角顶点P(3,4)在函数y= (x>0)的图象上,顶点A、B在函数y= (x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA的面积为S△OPA ,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用wmax 和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin.30、请你列举几个生活中的一对变量,使其中的一个变量是另一个变量的反比例函数,并尝试给出某个数值,从而求出这一对变量之间的函数关系式.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、B5、D6、D7、C8、C9、B10、D11、A12、D13、C14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、30、。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、下列函数中,函数值y随自变量x的值增大而增大的是()A. B. C. D.2、已知反比例函数的图象经过点(﹣1,2),则它的解析式是()A.y=﹣B.y=﹣C.y=D.y=3、在函数(k>0)的图象上有三点A1(x1, y1),A2(x2, y2),A3( x3, y3),已知x1<x2<0<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y24、如图,点是反比例函数的图象上任意一点,轴交反比例函数的图象于点,以为边作,其中、在轴上,则为()A.2B.3C.4D.55、如图,过点O作直线与双曲线(k≠0)交于A,B两点,过点B作BC ⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E,F,使点A,E,F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2 ,则S1、S2的数量关系是().A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S26、函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B. C.D.7、如图,点P在双曲线y= 上,以P为圆心的⊙P与两坐标轴都相切,E为y 轴负半轴上的一点,PF⊥PE交x轴于点F,则OF﹣OE的值是()A.6B.5C.4D.28、如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连接AC,CB,BD,DA,则四边形ACBD的面积等于( )A.2B.2C.4D.49、如图,正比例函数与的图像相交于A,C两点,过A作轴于B,连结BC,则的面积为()A.2B.1C.D.10、若与都是反比例函数图象上的点,则a的值是()A.4B.C.2D.11、如图,在y轴正半轴上依次截取OA1=A1A2=A2A3=…=An﹣1An(n为正整数),过A 1, A2, A3,…,An分别作x轴的平行线,与反比例函数y= (x>0)交于点B1, B2, B3,…,Bn,如图所示的Rt△B1C1B2, Rt△B2C2B3,Rt△B3C3B4,…,Rt△Bn﹣1Cn﹣1Bn面积分别记为S1, S2, S3,…,Sn﹣1,则S1+S2+S3+…+Sn﹣1=()A.1B.2C.1﹣D.2﹣12、如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小13、如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= (m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>的解集为()A. B. 或 C. D. 或14、在同一平面直角坐标系中,函数与(k为常数,且k≠0)的图象大致是()A. B. C.D.15、如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,平行四边形ABCD中,顶点A的坐标是(0,2),AD//x轴,BC交y 轴于点E,点E的纵坐标是﹣4,平行四边形ABCD的面积是24,反比例函数y =的图象经过点B和D.则k=________.17、食堂存煤15吨,可使用的天数t和平均每天的用煤量Q(kg)的函数关系为________ ,这个函数是________ 函数.18、若点在反比例函数的图象上,则的值为________.19、反比例函数y= 在第一象限的图象如图,请写出一个满足条件的k值,k=________20、如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C (2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为________.21、如图,在平面直角坐标系中,函数y=kx与y=-的图像交于A,B两点,过A作y轴的垂线,交函数y=的图像于点C,连接BC,则△ABC的面积为________.22、若反比例函数的图象经过点P(﹣1,4),则它的函数关系式是________.23、图象经过点(-2,5)的反比例函数的解析式是________.24、如图,直角坐标系xoy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E.若AB=2,则正方形ODEF的边长为________.25、如图,点A在反比例函数图象上,点B、C在反比例函数图象上,且轴,轴,若点C的纵坐标为2,则的长度为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、证明:任意一个反比例函数图象y=关于y=±x轴对称.28、如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.29、已知反比例函数过点P(2,﹣3),求这个反比例函数的解析式,并在直角坐标系中作出该函数的图象.30、如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、D5、B6、B7、C8、C9、B10、B11、C12、B13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围().A.k<2B.k≤2C.k>2D.k≥22、关于反比例函数,下列说法错误的是()A.点在它的图像上B.它的图像在第一、三象限C.它的图像关于原点中心对称D. 的值随着的值的增大而增大3、某反比例函数的图象经过点(-2,3),则此函数图象也经过点()A.(2,-3)B.(-3,-3)C.(2,3)D.(-4,6)4、反比例函数(k≠0)的图象经过点(-2,3),则它还经过点()A.(-1,-6)B.(6,-1)C.(3,2)D.(-2,-3)5、若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)在反比例函数y= 的图象上,则()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y26、如图,直线y=x+2与双曲线y=相交于点A,点A的纵坐标为3,k的值为().A.1B.2C.3D.47、如图,一次函数y=2x与反比例函数y (k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A. B. C. D.8、根据图中①所示的程序,得到了y与x的函数图象图中②,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P、Q.连结OP、OQ,则下列结论正确的是()A.△OPQ的面积为4.5B.x<0时,y=C.x>0时,y随x的增大而增大D.∠POQ不能等于90°9、若反比例函数的图象经过点A(2,m),则m的值是()A.-2B.2C.D.10、对于函数y= ,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.当x>0时,y随x的增大而增大C.这个函数的图象既是轴对称图形又是中心对称图形D.当x<0时,y随x的增大而减小11、反比例函数的图象经过点,则下列各点中不在该图象上的是()A. B. C. D.12、如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为( )A.5B.6C.7D.813、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y= 与y=bx+c在同一直角坐标系内的大致图象是()A. B. C. D.14、如图所示,函数与在同一坐标系中,图象只能是下图中的()A. B. C. D.15、对于反比例函数,下列说法正确的是()A.图象经过点(1,-1)B.图象位于第二、四象限C.图象是中心对称图形D.当时,随的增大而增大二、填空题(共10题,共计30分)16、如图所示,点A是反比例函数y= 图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是________.17、如图,在直角坐标系中,直线y=6﹣x与双曲线(x>0)的图象相交于A,B,设点A的坐标为(m,n),那么以m为长,n为宽的矩形的面积和周长分别为________,________.18、如图,在轴上方,平行于轴的直线与反比例函数和的图象分别交于两点,连接.若的面积为则________.19、如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为6,则k的值为________.20、若反比例函数的图象在第二、四象限,则________.21、如图,点A为反比例函数y= 图象上一点,点B为反比例函数y= 图象上一点,且AB∥x轴,已知∠AOB=90°,AB交y轴于点C,若=2,则k=________。

苏科版数学八年级下第十一章反比例函数单元测评卷含答案

苏科版数学八年级下第十一章反比例函数单元测评卷含答案

第十一章反比例函数单元测评卷(满分:100分时间:60分钟)一、选择题(每题4分,共32分)1.下列问题中,两个变量成反比例的是( )A.长方形的周长确定,它的长与宽B.长方形的长确定,它的周长与宽C.长方形的面积确定,它的长与宽D.长方形的长确定,它的面积与宽2.若反比例函数1kyx-=的图象位于第二、四象限,则k的取值可以是( )A.0 B.1C.2 D.以上都不是3.若反比例函数的图象经过点(3,2),则该反比例函数的关系式是( )A.y=23x B.y=6xC.y=3xD.y=2x-44.对于反比例函数y=1x,下列说法正确的是( )A.图象经过点(1,-1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大5.函数y=2x与函数y=1x-在同一平面直角坐标系中的大致图象是( )6.已知力F所做的功是15焦(功=力×物体在力的方向上通过的距离),则力F与物体在力的方向上通过的距离s之间的函数图象大致是( )7.如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是( )A.x<-1 B.-1<x<0或x>2C .x >2D .x <-1或0<x <28.如图,A 、B 是函数y =2x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,若△ABC 的面积记为S ,则 ( )A .S =2B .S =4C .2<S<4D .S>4二、填空题(每题4分,共24分)9.已知反比例函数y =k x的图象经过(1,-2),则k =_______. 10.已知y 与x 成反比例,当x =3时,y =1,则y 与x 之间的函数关系式为_______.11.函数y =2x和y =3x +n 的图象交于点A (-2,m ),则m n =_______. 12.如图,l 1是反比例函数y =k x 在第一象限内的图象,且过点A(2,1),l 2与l 1关于x 轴对称,那么图象l 2的函数关系式为_______(x >0).13.双曲线y 、y 在第一象限的图象如图所示,y 1=4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C .若S △AOB =1,则y 2的函数关系式是_______.14.函数y 1=x (x ≥0),y 2=9x(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(3,3);②当x >3时,y 2>y 1;③当x =1时,BC =8;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.其中正确结论的序号是_______.三、解答题(共44分)15.(6分)已知y =y 1-y 2,y 1与x 成反比例,y 2与x -2成正比例,并且当x =3时,y =5;当x =1时,y =-1.求y 与x 之间的函数关系式.16.(6分)已知关于x 的一次函数y =k x -3和反比例函数y =6x的图象都经过点(2,m ).求一次函数的关系式.17.(7分)如图,在平面直角坐标系x O y中,一次函数y=-2x的图象与反比例函数y=kx的图象的一个交点为A(-1,n).(1)求反比例函数y=kx的关系式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.18.(7分)一名司机驾驶汽车从甲地去乙地,以80千米/时的平均速度用了6小时到达目的地.(1)当他按原路匀速返回时,求汽车速度v(千米/时)与时间t(小时)之间的函数关系式;(2)如果该司机匀速返回时用了4.8小时,求返回时的速度.19.(8分)如图,一次函数y=k x+b的图象与反比例函数y=-8x的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2.(1)求一次函数的关系式;(2)求△AOB的面积.20.(10分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动,某化工厂2009年1月的利润为200万元,设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及治污改造工程完工后,y与x之间对应的函数关系式;(2)治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?(3)当月利润少于100万元时为该厂资金紧张期,则该厂资金紧张期共有几个月?参考答案一、1.C 2.A 3.B 4.C 5.B 6.B 7.D 8.B二、9.-2 10.y=3x11.-1 12.y=-2x13.y2=6x14.①③④三、15.y=3x+4x-8 16.一次函数的关系式为y=3x-3 17.(1)y=-2x(2)点P的坐标为(-2,0)或(0,4) 18.(1)480vt(2)100(千米/时) 19.(1) y=-x+2 (2)620.(1)y=200x(x≤5) y=20x-60 (2)8个月(3)5个月。

苏科版数学八年级下《第11章反比例函数》单元测试题含答案

苏科版数学八年级下《第11章反比例函数》单元测试题含答案

苏科版数学八年级下《第11章反比例函数》单元测试题含答案(时间:90分钟 满分:120分)(班级: 姓名: 得分: )一、选择题(第小题3分,共30分) 1. 观察下列函数:2015y x =,2016x y =-,20181y x =-,2014y x-=.其中反比例函数有( )A. 1个B. 2个C. 3个D. 4个2. 反比例函数2018y x =,2016y x =-,12019y x=的共同特点是( )A. 图像位于相同的象限内B. 自变量的取值范围是全体实数C. 在第一象限内y 随x 的增大而减小D. 图像都不与坐标轴相交 3. 在反比例函数2015ky x -=图像的每一支曲线上,y 都随x 的增大而增大,则k 的值可以是( ) A .2016 B.0 C.2015 D.2016-4. 已知函数210(2)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是( )A.3B.3-C.3±D.13-5.如图,正比例函数y 1=k 1x 和反比例函数y 2=2kx的图像交于A (-1,2),B (1,-2)两点,若y 1 <y 2,则x 的取值范围是( )A.x <-1或x >1B. x <-1或0<x <1C. -1<x <0或 0<x <1D. -1<x <0或x >16.如果反比例函数=ky x的图像经过点A(-1,-2),则当x >1时,函数值y 的取值范围是( )A.y >1B. 0< y <2C. y >2D.0<y <17. 反比例函数2016y x=图像上的两点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( )A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定 8.当a ≠0时,函数y=ax+1与函数y=xa在同一坐标系中的图像可能是( )9.如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数x k 1y =(x >0)和xk2y =(x >0)的图像于点P 和Q ,连接OP ,OQ,则下列结论正确的是( )B.21K K QM PM= A.∠POQ 不可能等于900D. △POQ 的面积是)(|k ||k |2121+C.这两个函数的图像一定关于x 轴对称第9题图10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A,B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤8 B. 2≤k ≤9 C. 2≤k ≤5 D. 5≤k ≤8 二、填空题(第小题4分,共32分) 11.已知函数y=-12016x,当x <0时,y__________0,此时,其图像的相应部分在第__________象限.12. 若正比例函数y=kx 在每一个象限内y 随x 的增大而减小,那么反比例函数ky x=-在每一个象限内y 随x 的增大而_________.13. 在同一坐标系内,正比例函数20182015y x =-与反比例函数2016y x=-图像的交点在第_____象限 . 14. 若A (x 1,y 1),B(x 2,y 2),C (x 3,y 3)都是反比例函数y=-x1的图像上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是__________.15. 点A(2,1)在反比例函数y kx=的图像上,当1﹤x ﹤4时,y 的取值范围是 .16. 设函数2y x =与1y x =-的图像的交点坐标为() , a b ,则11a b -的值为________17. 如图,点A 在双曲线 1y x=上,点B 在双曲线 3y x =上,且AB ∥x 轴,点C 和点D 在x 轴上,若四边形ABCD 为矩形,则矩形ABCD 的面积为 . 18. 如图,直线y=k 1x+b 与双曲线y=2k x交于A,B 两点,其横坐标分别为1和5, 则不等式k 1x <2k x-b 的解集是 .三、解答题(共58分)19.(10分)已知y=y 1-y 2,y 1与x 成反比例,y 2与x-2成正比例, 并且当x=3时,y=5;当x=1时,y=-1. (1)y 与x 的函数表达式; (2)当1x =-时,求y 的值.20.(10分)已知一次函数y =3x+m 与反比例函数y =xm 3-的图像有两个交点.(1)当m为何值时,有一个交点的纵坐标为6?(2)在(1)的条件下,求两个交点的坐标.21.(12分)如图,直线y=k1x+b与双曲线y=2kx相交于A(1,2),B(m,-1)两点.(1)求直线和双曲线的表达式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系;(3)观察图像,请直接写出使不等式k1x+b>2kx成立的x的取值范围.22.(12分)某气球内充满了一定质量的气球,当温度不变时,气球内气球的压强p(千帕)是气球的体积V(米3)的反比例函数,其图像如图所示.(1)写出这个函数的表达式;(2)当气球的体积为0.8米3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少?23.(14分)已知一次函数mxy+=1的图像与反比例函数xy62=的图像交于A,B两点,当1>x时,21yy>;当10<<x时,21yy<.⑴求一次函数的表达式;⑵已知一次函数在第一象限上有一点C到y轴的距离为3,求△ABC的面积.参考答案一、1.B 2. D 3. A 4. B 5. D 6. B 7. D 8. C 9. D 10. B二、11.> 二 12. .减小 13. 二、四 14. .y 2<y 3<y 1 15. 12y <<216. 12- 17. 2 18.0<x <1或x >5三、19.解:(1)设()()112212,2 0k y y k x k k x==-≠,则y=x k 1-k 2(x-2).由题意,得⎪⎩⎪⎨⎧-=+=-.1,532121k k k k 解得⎩⎨⎧-==.4,321k k 所以y 与x 的函数表达式为y=x 3+4(x-2).(2)当1x =-时,()()3342412151y x x =+-=+--=--. 20.解:(1)把y =6分别代入y =3x+m 和y =xm 3-, 得 3x+m =6,xm 3-=6. 解得m =5. (2)由(1)得一次函数为y =3x+5,反比例函数为y =x 2. 解352y x y x =+⎧⎪⎨=⎪⎩得∴两个函数图像的交点为(-2,-1)和(31,6). 21.解:(1)∵双曲线y =2k x 经过点A (1,2),∴k 2=2.∴双曲线的表达式为y =2x. ∵点B(m ,-1)在双曲线y =2x上,∴m =-2,则B (-2,-1).由点A (1,2),B (-2,-1)在直线y =k 1x +b 上,得112,2 1.k b k b +=⎧⎨-+=-⎩解得11,1.k b =⎧⎨=⎩∴直线的表达式为y =x +1. (2)y 2<y 1<y 3.(3)x >1或-2<x <0.22. (1)96P v=(2)当 4.8v =米3时,961204.8P ==20千帕 (3)∵96144P v=≤,∴23v ≥.为了安全起见,气球的体积应不小于23米3.23.解:(1)根据题意知,点A 的坐标为(1,6),代人y 1=x+m , 得m=5.∴ 一次函数的表达式为y 1=x+5.(2)如图,过点B 作直线BD 平行于x 轴,交AC 的延长线于D. ∵点C 到y 轴的距离为3,∴C 点的横坐标为3.又C 在双曲线上,∴y=623=,即C (3,2). 解56y x y x =+⎧⎪⎨=⎪⎩得12126116x x y y =-=⎧⎧⎨⎨=-=⎩⎩,∴B (-6,-1). 设AC 的表达式为y=k 1x+b 1,把点A (1,6),点C (3,2)代入,得⎩⎨⎧=+=+.23,61111b k b k 解得k 1=-2,b 1=8.∴直线AC 的表达式为y=-2x+8. 当y=-1时-1=-2x+8, x=4.5,即点D (4.5,-1) ∴ABC ABD BCD S S S =-△△△=1211217-32222⨯⨯⨯⨯=21.。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、函数的图象经过点(1,-2),则函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2、函数y= 与y=kx-k在同一坐标平面内的图象大致是()A. B. C. D.3、如图,所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是( )A.第一象限B.第一、三象限C.第二、四象限D.第一、四象限4、如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.2+B.2+C.2+D.5、已知反比例函数的图象位于第一、第三象限,则k的取值范围是( )A. k>2B. k≥2C. k≤2D. k<26、如图,过反比例函数y= (x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为( )A.2B.3C.4D.57、点,点,在反比例函数的图象上,且,则()A. B. C. D.不能确定8、若点(-2,y1)、(-1,y2)、(1,y3)在反比例函数的图象上,则下列结论中正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y19、对于函数y=﹣,当x<0时,函数图像位于()A.第一象限B.第二象限C.第三象限D.第四象限10、反比例函数的图象如图所示,则k的值可能是()A.﹣1B.C.1D.211、下列函数中,正比例函数是()A.y=﹣8xB.y=C.y=8x 2D.y=8x﹣412、反比例函数的图像在每一个象限内,y都随x的增大而增大.则m的取值范围是 ( )A.m<-2B.m>-2C.m>2D.m<213、下列函数中,属于反比例函数的是()A. B. C. D.14、如图,,、,…是分别以、、,…为直角顶点,一条直角边在轴正半轴上的等腰直角三角形,其斜边的中点,,,…均在反比例函数()的图象上.则的值为()A. B.6 C. D.15、已知函数,下列说法:①函数图象分布在第一、三象限;②在每个象限内,y随x的增大而减小;③若两点在该图象上,且则.其中说法正确的个数是( )A.0B.1C.2D.3二、填空题(共10题,共计30分)16、点向左平移两个单位后恰好位于双曲线上,则________.17、已知点A在反比例函数的图象上,AB⊥y轴,点C在x轴上,S△=2,则反比例函数的解析式为________.ABC18、如图,反比例函数y=的图象经过点(﹣1,-2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,当=时,则点C 的坐标为________.19、若点(3,1)在双曲线y= 上,则k=________.20、如图,反比例函数(x>0)的图象和矩形ABCD在第一象限,AD∥x 轴,且AB=2,AD=4,点A的坐标为(2,6)。

苏科版数学八年级下册第11章反比例函数测试卷及答案

苏科版数学八年级下册第11章反比例函数测试卷及答案

苏科版数学八年级下册第11章考试试题评卷人得分一、单选题1.下列函数关系式中,y 是x 的反比例函数的是()A .y=2x ﹣1B .2x y =C .22y x =D .y=2x 2.下列等式中,表示y 是x 的反比例函数的是()A .y=21x B .xy=C .y=x ﹣1D .1y=3.在同坐标系中,函数ky x=(k≠0)与y=kx+k (k≠0)在同一坐标系中的大致图象是()A .B .C .D .4.如图,在同一直角坐标系中,正比例函数y=kx+3与反比例函数ky x=的图象位置可能是()A .B .C .D .5.如图,在平面直角坐标系中,等腰直角三角形ABC 的直角顶点A 的坐标为(2,0),顶点B 的坐标为(0,1),顶点C 在第一象限,若函数y=kx(x >0)的图象经过点C ,则k 的值为()A .2B .3C .4D .66.关于反比例函数y=﹣4x,下列说法正确的是()A .图象在第一、三象限B .图象经过点(2,﹣8)C .当x >0时,y 随x 的增大而减小D .当x <0时,y 随x 的增大而增大7.如图,已知点C 为反比例函数y=﹣6x上一点,过点C 向坐标轴引垂线,垂足分别为A ,B ,那么四边形AOBC 的面积为()A .﹣6B .3C .6D .128.如图,点A 是反比例函数y=(0)kx x图象上一点,AB 垂直于x 轴,垂足为点B ,AC 垂直于y 轴,垂足为点C ,若矩形ABOC 的面积为5,则k 的值为()A .5B .2.5C D .109.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x(mL )10080604020压强y(kPa )6075100150300则可以反映y 与x 之间的关系的式子是()A .y =3000xB .y =6000xC .y =6000xD .y =3000x10.某长方体的体积为100cm 3,长方体的高h(单位:cm)与底面积S 的函数关系式为()A .h =S 100B .h =100SC .h =100SD .h =10011.如图,若双曲线(0)ky k x=>与它的一条对称轴y x =交于A 、B 两点,则线段AB 称为双曲线(0)k y k x =>的“对径”.若双曲线(0)ky k x=>的对径长是,则k 的值为()A .2B .4C .6D .12.对于函数2y x-=,下列说法错误的是()A .这个函数的图象位于第二、第四象限B .当x >0时,y 随x 的增大而增大C .这个函数的图象既是轴对称图形又是中心对称图形D .当x <0时,y 随x的增大而减小13.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函数y=kx在第一象限内的图象与△ABC 有公共点,则k 的取值范围是()A.2≤k≤3B.2≤k≤4C.3≤k≤4D.2≤k≤3.514.若反比例函数y=21kx+的图象位于第一、三象限,则k的取值可以是()A.﹣3B.﹣2C.﹣1D.0 15.当k>0,x<0时,反比例函数y=的图象在()A.第一象限B.第二象限C.第三象限D.第四象限评卷人得分二、填空题16.反比例函数kyx=经过(-3,2),则图象在象限.17.若反比例函数y=2K1的图象有一支位于第一象限,则a的取值范围是_______.18.反比例函数y=﹣2x﹣1的图象在_______象限.19.司机老王驾驶汽车从甲地去乙地,他以80km/h的平均速度用6h达到目的地.当他按原路匀速返回时,汽车的速度v与时间t之间的函数关系式为_____.评卷人得分三、解答题20.如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2=nx的图象交于C、D两点,已知点C的坐标为(﹣4,﹣1),点D的横坐标为2.(1)求反比例函数与一次函数的解析式;(2)直接写出当x为何值时,y1>y2?(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.21.如图,已知一次函数y=x﹣2与反比例函数y=3x的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出一次函数值小于反比例函数值的x的取值范围;(3)坐标原点为O,求△AOB的面积.22.如图,已知直线y=﹣2x,经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=kx(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y>1时自变量x的取值范围.23.先列出下列问题中的函数表达式,再指出它们各属于什么函数.()1电压为16V时,电阻R与电流I的函数关系;()2食堂每天用煤1.5t,用煤总量()W t与用煤天数t(天)的函数关系;()3积为常数m的两个因数y与x的函数关系;()4杠杆平衡时,阻力为800N,阻力臂长为5cm,动力()y N与动力臂()x cm的函数关系(杠杆本身所受重力不计).24.画出下列反比例函数的图象:(1)y=12x;(2)y=﹣5 x.25.已知函数y=x+1x(x>0)的图象如图所示,其中当x=1时,函数取得最小值2,请结合图象,解答以下问题:(1)当x>0时,求y的取值范围;(2)当2≤x≤5时,求y的取值范围.参考答案1.D 【解析】【分析】根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),即可判定函数的类型.【详解】A.是一次函数,故此选项错误;B.是正比例函数,故此选项错误;C.不是反比例函数,故此选项错误;D.是反比例函数,故此选项正确.故选:D .【点睛】本题考查了反比例函数的定义,重点是掌握反比例函数解析式的形式为y=kx(k 为常数,k≠0)或y=kx -1(k 为常数,k≠0).2.B 【解析】【分析】根据反比例函数的定义,解析式符合y=kx(k≠0)的形式为反比例函数.【详解】A.y=21x中,y 是x 2的反比例函数,错误;C.y=x-1是一次函数,错误;D.1y中,y故选:B.【点睛】本题考查了反比例函数的定义,熟记并理解反比例函数是解题的关键.3.C【解析】【分析】首先由四个图象中一次函数的图象与y轴的交点在正半轴上,确定k的取值范围,然后根据k的取值范围得出反比例函数y=kx(k≠0)的图象.【详解】由一次函数的图象与y轴的交点在正半轴上可知k>0,故函数y=kx+k的图象过一、二、三象限,反比例函数y=kx经过第一、三象限,所以可以排除A,B,D.故选:C.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,掌握它们的性质是解题的关键.4.A【解析】【分析】先根据一次函数的性质判断出k取值,再根据反比例函数的性质判断出k的取值,二者一致的即为正确答案.【详解】当k>0时,有y=kx+3过一、二、三象限,反比例函数kyx=的过一、三象限,A正确;由函数y=kx+3过点(0,3),可排除B、C;当k<0时,y=kx+3过一、二、四象限,反比例函数kyx=的过一、三象限,排除D.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.【解析】【分析】作CD ⊥x 轴,构造△AOB ≌△CDA ,得到DC=OA=2,AD=BO=1,求出C 的坐标,把C 点坐标代入y=kx(x >0)即可求出k 的值.【详解】∵点A 的坐标为(2,0),顶点B 的坐标为(0,1),∴OA=2,OB=1,作CD ⊥x 轴与D ,∴∠BAO+∠CAD=90°,∵∠BAO+∠ABO=90°,∴∠CAD=∠ABO ,在△AOB 和△CDA 中,=90ABO CAD AOB ADC AB AC ∠∠⎧⎪∠∠︒⎨⎪⎩===,∴△AOB ≌△CDA ,∴DC=OA=2,AD=BO=1,∴DO=OA+AD=1+2=3;∴C 点坐标为(3,2),把(3,2)代入y=kx(x >0)得,k=6.故选D.【点睛】本题考查了反比例函数综合题,涉及全等三角形的判定、等腰直角三角形的性质、函数图象上点的坐标特征,熟练掌握这些性质是解题的关键.【解析】【分析】反比例函数y=kx(k≠0)中的k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,据此可解.【详解】A.因为k=-4<0,所以函数图象位于二、四象限,故本选项错误;B.因为k=-4≠-8×2,所以图象不过点(2,-8),故本选项错误;C.因为k=-4<0,所以函数图象位于二、四象限,在每一象限内y随x的增大而增大,故本选项错误;D.因为k=-4<0,所以函数图象位于二、四象限,在每一象限内y随x的增大而增大,故本选项正确;故选D.【点睛】本题考查了反比例函数图象的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.7.C【解析】【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S 是个定值,即S=|k|.【详解】由于点C为反比例函数y=-6x上的一点,则四边形AOBC的面积S=|k|=6.故选:C.【点睛】本题考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.8.A【解析】【分析】设点A的坐标为(x,y),用x、y表示OB、AB的长,根据矩形ABOC的面积为5,列出算式求出k的值.【详解】设点A的坐标为(x,y),则OB=x,AB=y,∵矩形ABOC的面积为5,∴k=xy=5,故选:A.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.9.C【解析】【分析】利用表格中数据得出函数关系,进而求出即可.【详解】解:此函数是反比例函数,设解析式为:y=kx,则xy=k=6000,故y与x之间的关系是y=6000 x.故选C.【点睛】此题主要考查了根据实际问题列反比例函数关系式.10.B【解析】【分析】根据等量关系“长方体的高=长方体的体积÷底面积”即可列出关系式.【详解】由题意得:长方体的高h (单位:cm )与底面积S 的函数关系式为h=100s.故选B .【点睛】本题考查了反比例函数在实际生活中的应用,解题的关键是找出题中的等量关系.11.B 【解析】根据题中的新定义:可得出对径AB =OA +OB =2OA ,由已知的对径长求出OA 的长,过A 作AM 垂直于x 轴,设A (a ,a )且a >0,在直角三角形AOM 中,利用勾股定理列出关于a 的方程,求出方程的解得到a 的值,确定出A 的坐标,将A 的坐标代入反比例解析式中,即可求出k 的值.解:过A 作AM ⊥x 轴,交x 轴于点M ,如图所示:设A (a ,a ),a >0,可得出AM =OM =a ,又∵双曲线的对径AB =,∴OA =OB =,在Rt △AOM 中,根据勾股定理得:AM 2+OM 2=OA 2,则a 2+a 2=()2,解得:a =2或a =−2(舍去),则A (2,2),将x =2,y =2代入反比例解析式得:2=2k ,解得:k =4.故选B.12.D 【解析】【分析】根据反比例函数的性质对各选项进行逐一判断即可.【详解】A.∵k=-2<0,∴这个函数的图象位于第二、第四象限,故本选项正确;B.∵k=-2<0,∴当x>0时,y随x的增大而增大,故本选项正确;C.∵此函数是反比例函数,∴这个函数的图象既是轴对称图形又是中心对称图形,故本选项正确;D.∵k=-2<0,∴当x<0时,y随x的增大而增大,故本选项错误.故选:D.【点睛】本题考查了反比例函数的性质,掌握反比例函数的增减性是解题的关键.13.B【解析】【分析】根据△ABC三顶点的坐标可知,当k最小是反比例函数过点A,当k取最大值时,反比例函数与直线相切,且切点在线段BC上,由点A的坐标利用反比例函数图象上点的坐标特征可求出k的最小值,再由点B、C的坐标利用待定系数法求出直线BC的解析式,将其代入反比例函数中,令△=0即可求出k的最大值,从而得出结论.【详解】当反比例函数过点A时,k值最小,此时k=1×2=2;∵1×3=3×1,∴反比例函数图象与直线BC的切点在线段BC上,设直线BC的解析式为y=ax+b,∴有3=a+b13a b ⎧⎨=+⎩,解得:a14b=-⎧⎨=⎩,∴直线BC的解析式为y=-x+4,将y=-x+4代入y=kx中,得:-x+4=kx,即x2-4x+k=0,∵反比例函数图象与直线BC只有一个交点,∴△=(-4)2-4k=0,解得:k=4.综上可知:2≤k≤4.故答案是:2≤k≤4.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及根的判别式,解题的关键是求出k的最小值与最大值.本题属于中档题,难度不大,解决该题型题目时,由点的坐标利用待定系数法求出直线解析式,将其代入反比例函数中利用相切求出k值是关键.14.D【解析】【分析】先根据反比例函数的性质列出关于k的不等式,求出k的取值范围,进而可得出结论.【详解】∵反比例函y=21kx的图象位于第一、三象限,∴2k+1>0,解得k>-1 2,∴k的值可以是0.故选:D.【点睛】本题考查了反比例函数的性质,掌握反比例函数的图象与系数的关系是解题的关键.15.C【解析】【分析】根据反比例函数的图象和性质即可求解.【详解】根据反比例函数的性质,k>0时,图象在第一三象限,又因为x<0,所以图象在第三象限.故选:C.本题考查了反比例函数的性质,掌握k >0,则其图象位于一三象限,反之则位于二四象限是解题的关键.16.二、四【解析】试题分析:先根据待定系数法求得函数关系式,再根据反比例函数的性质即可得到结果.∵反比例函数ky x=经过(-3,2)∴6-=k ∴图象在二、四象限.考点:反比例函数的性质点评:待定系数法求函数关系式是函数问题中极为重要的方法,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.17.a 【解析】试题分析:对于反比例函数y=,当k0时,图象位于一、三象限;当k0时,图象位于二、四象限.根据题意可得:2a-10,解得:a考点:反比例函数的性质18.二、四【解析】【分析】根据反比例函数的性质,利用k=-2<0,即可得出图象所在象限.【详解】∵反比例函数y=-2x -1,∴k=-2<0,∴反比例函数y=-2x -1的图象在第二、四象限.故答案为:二、四.本题考查了反比例函数的性质,根据已知得出k的符号,掌握反比例函数的性质是解题的关键.19.v=480 t【解析】【分析】根据速度×时间=路程,可以求出甲地去乙地的路程;再根据行驶速度=路程÷时间,得到v 与t的函数解析式.【详解】由已知得:vt=80×6,故汽车的速度v与时间t之间的函数关系式为:v=480t,(0<t<6);故答案为:v=480 t.【点睛】本题考查了根据实际问题列反比例函数关系式的知识,掌握程、速度、时间三者之间的关系是解题的关键.20.(1)y1=12x+1,y2=4x;(2)﹣4<x<0或x>2;(3)点P的坐标为(4,1)【解析】【分析】(1)由点C的坐标求出N的值,得出反比例函数解析式;求出点D的坐标,由待定系数法求出一次函数解析式即可;(2)由两个函数图象即可得出答案;(3)求出点A的坐标,由三角形面积求出m的值,即可得出点P的坐标.【详解】(1)把,C(﹣4,﹣1)代入y2=nx,得n=4,∴y2=4 x;∵点D的横坐标为2,∴点D的坐标为(2,2),把C(﹣4,﹣1)和D(2,2)代入y1=kx+b得,41 22k bk b-+=-⎧⎨+=⎩,解得:121 kb⎧=⎪⎨⎪=⎩,∴一次函数解析式为y1=12x+1.(2)根据图象得:﹣4<x<0或x>2;(3)当y1=0时,12x+1=0,解得:x=﹣2,∴点A的坐标为(﹣2,0),如图,设点P的坐标为(m,4 m),∵△APE的面积为3,∴12(m+2)•4m=3,解得:m=4,∴4m=1,∴点P的坐标为(4,1).【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式、三角形的面积,熟练掌握待定系数法求函数解析式是解题的关键.21.(1)A(3,1)、B(﹣1,﹣3)(2)x<﹣1或0<x<3(3)4【解析】试题分析:(1)联立方程组,解方程组即可得到A、B的坐标;(2)根据图像确定一次函数的图像在反比例函数的图像上的x范围即可;(3)过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,构造三角形,求三角形的面试题解析:(1)联立解得:或∴A(3,1)、B(﹣1,﹣3)(2)x的取值范围为:x<﹣1或0<x<3(3)过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,令y=0代入y=x﹣2∴x=2,∴E(2,0)∴OE=2∵A(3,1)、B(﹣1,﹣3)∴AC=1,BD=3,∴△AOE的面积为:AC•OE=1,△BOE的面积为:BD•OE=3,∴△ABC的面积为:1+3=4,22.(1)P′(2,4);(2)x<8.【解析】【分析】(1)将P(﹣2,a)代入y=﹣2x可得a;(2)将P′(2,4)代入y=,求出k;当y>1时,>1,自变量x的取值范围是x<8.(1)将P(﹣2,a)代入y=﹣2x得a=﹣2×(﹣2)=4,∴P′(2,4);(2)将P′(2,4)代入y=得4=,解得k=8,∴反比例函数的解析式为y=,∴当y>1时自变量x的取值范围是x<8.【点睛】本题考核知识点:反比例函数与一次函数.解题关键点:熟记反比例函数的一般性质. 23.(1)反比例函数关系;(2)正比例函数关系;(3)反比例函数关系;(4)反比例函数关系;【解析】【分析】(1)利用I=UR,进而得出答案;(2)利用煤总量W(t)=用煤天数t(天)×1.5,进而得出答案;(3)利用xy=m,进而得出答案;(4)动力大小×动力臂=阻力臂大小×阻力进而求出即可.【详解】()161IR=,故是反比例函数关系;()2W 1.5t=,故是正比例函数关系;()3由题意得:myx=,故是反比例函数关系;()4由题意得出:8005yx⨯=,∴4000yx=,故是反比例函数关系.【点睛】此题主要考查了正比例和反比例函数的定义,正确得出函数关系式是解题关键.24.见解析【解析】【分析】(1)、(2)找出x、y的对应值列出表格,画出函数图象即可.【详解】(1)列表:x﹣3﹣2﹣1123y 16-14-12-121416函数图象如图1,;(2)x﹣5﹣2﹣1125y1525﹣552-﹣1函数图象如图2,.【点睛】本题考查了反比例函数的图象,掌握反比例函数的图象是双曲线是解题的关键.25.(1)当x>0时,y≥2;(2)52≤y≤265【解析】【分析】(1)由题意可知当x=1时,y有最小值2,则可知在第一象限内y的取值范围;(2)当x>1时,y随x的增大而增大,则可求得y取值范围.【详解】(1)由图象可知当x>0时,函数最小值为2,∵当x=1时y有最小值2,∴当x>0时,y≥2;(2)由图象可知当x>1时,y随x的增大而增大,∴当2≤x≤5时,当x=2时,y有最小值,y=2+12=52,当x=5时,y有最大值,y=5+15=265,∴当2≤x≤5时,求y的取值范围为52≤y≤265.【点睛】本题考查了反比例函数的性质,求得当x>1时y随x的增大而增大是解题的关键.第21页。

苏科版数学八年级下册《第11章反比例函数》章末测试卷【含答案】

苏科版数学八年级下册《第11章反比例函数》章末测试卷【含答案】

苏科版数学八年级下册《第11章反比例函数》章末测试卷一.选择题(共10小题)1.下列函数中,y是x的反比例函数的是()A.=﹣1 B.xy=﹣C.y=x﹣p D.y=﹣52.下列函数中是反比例函数的是()A.y=﹣B.y=C.y=D.y=3.如果k<0,那么函数y=(1﹣k)x与y=在同一坐标系中的图象可能是()A.B.C.D.4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一平面直角坐标系中的大致图象为()(第4题图)A.B.C.D.5.已知m≠0,函数y=﹣mx2+n与y=在同一直角坐标系中的大致图象可能()A.B.C.D.6.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=﹣与正比例函数y=bx在同一坐标系内的大致图象是()(第6题图)A.B.C.D.7.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)8.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()(第8题图)A.2 B.4 C.6 D.89.下列函数:①y=,②y=﹣2x+8,③y=5x,④y=x2,⑤y=﹣(x+3)2(x<﹣3时)中,y 的值随x的值增大而增大的函数共有()A.1个B.2个C.3个D.4个10.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3B.k<3 C.k≥3D.k>3二.填空题(共7小题)11.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k= .(第11题图)12.已知反比例函数y=(x>0)的图象上有两点A(x1,y1)、B(x2,y2),如果x1<x2时,那么y1y2.(填“>”或“<”)13.如图,A(4,0),C(﹣1,3),以AO,OC为边作平行四边形OABC,则经过B点的反比例函数的解析式为.(第13题图)14.如图,在平面直角坐标系中,▱ABCO的顶点A、C的坐标分别为A(2,0)、C(﹣1,2),反比例函数y=(k≠0)(k≠0)的图象经过点B,则求反比例函数的表达式为.(第14题图)15.如图,AB⊥x轴,反比例函数y=的图象经过线段AB的中点C,若△ABO的面积为2,则该反比例函数的解析式为.(第15题图)16.京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的函数关系式是t= .17.某农业大学计划修建一块面积为2×106㎡的长方形实验田,该试验田的长y米与宽x 米的函数解析式是.三.解答题(共5小题)18.已知y是x的反比例函数,且点A(3,5)在这个函数的图象上.(1)求y与x之间的函数关系式;(2)当点B(﹣5,m)也在这个反比例函数的图象上时,求△AOB的面积.19.已知y=y1+y2,y1与成正比例,y2与x2成反比.当x=1时,y=﹣12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值.20.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点B的坐标及△AOB的面积;(3)观察图象直接写出使反比例函数值小于一次函数值的自变量x取值范围.(第20题图)21.某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出y与x之间的关系式,并求出x=5时,y的值.22.如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN 于C,设AD=x,BC=y,求y与x的函数关系式.(第22题图)参考答案一.1.B 2.C 3.C 4.D 5.B 6.D 7.A 8.D 9.B 10.D 二.11.12 12.> 13. y= 14.y= 15.y= 16. t=17. y=三.18.解:(1)设反比例函数解析式为y=,将点A(3,5)代入解析式得,k=3×5=15,y=.(2)将点B(﹣5,m)代入y=得,m==﹣3,则B点坐标为(﹣5,﹣3),设AB的解析式为y=kx+b,将A(3,5),B(﹣5,﹣3)代入y=kx+b得,,解得,,函数解析式为y=x+1,D点的坐标为(0,1),S△ABO=S△ADO+S△BDO=×1×3+=×1×5=4.(第18题答图)19.解:(1)设y1=k1,y2=,则y=k1+;∵当x=1时,y=﹣12;当x=4时,y=7.∴.解得.∴y与x的函数关系式为y=4﹣.∵x≥0,x2≠0,∴x的取范围为x>0;(2)当x=时,y=4×﹣=﹣254.∴y的值为﹣254.20.解:(1)∵一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,点A的坐标为(2,1).∴把A的坐标代入函数解析式得:1=2+m,k=2×1,解得m=﹣1,k=2;(2)两函数解析式为y=x﹣1,y=,解方程组得,.∵点A的坐标为(2,1),∴B点坐标为(﹣1,﹣2),y=x﹣1,当y=0时,0=x﹣1,解得x=1,即点C的坐标为(1,0),OC=1,所以△AOB的面积S=S△AOC+S△BOC==;(3)反比例函数值小于一次函数值的自变量x取值范围是x>2或﹣1<x<0.21.解:∵三角形的面积=边长×这边上高÷2,三角形的面积为15cm2,一边长为xcm,此边上高为ycm,∴;当x=5时,y=6(cm).22.解:作DF⊥BN交BC于点F.如答图.∵AM、BN与⊙O切于点定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y,∴FC=BC﹣BF=y﹣x;∵DE切⊙O于E,∴DE=DA=x CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,由勾股定理,得(x+y)2=(y﹣x)2+122,整理为,∴y与x的函数关系式是.(第22题答图)。

苏科版八年级数学下第11章《反比例函数》单元测试题含答案

苏科版八年级数学下第11章《反比例函数》单元测试题含答案

第十一章《反比例函数》单元检测班级姓名一、选择题(每题3分共30分)1、下列函数中,反比例函数是()A、y=x+1B、y=C、=1D、3xy=22、函数y1=kx和y2=的图象如图,自变量x的取值范围相同的是()3、函数与在同一平面直角坐标系中的图像可能是()。

4、反比例函数y=(k≠0)的图象的两个分支分别位于()象限。

A、一、二B、一、三C、二、四D、一、四5、当三角形的面积一定时,三角形的底和底边上的高成()关系。

A、正比例函数B、反比例函数C、一次函数D、二次函数6、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则()A、x1>x2>x3B、x1>x3>x2C、x3>x2>x1D、x3>x1>x27、如图1:是三个反比例函数y=,y=,y=在x轴上的图像,由此观察得到k1、k2、k3的大小关系为()A、k1>k2>k3B、k1>k3>k2C、k3>k2>k1D、k3>k1>k28、已知双曲线上有一点P(m,n)且m、n是关于t的一元二次方程t2-3t+k=0的两根,且P点到原点的距离为,则双曲线的表达式为()A、 B、 C、 D、9、如图2,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A、1B、C、2 D、10、如图3,已知点A是一次函数y=x的图象与反比例函数的图象在第一象限内的交点,点B 在x轴的负半轴上,且OA=OB,那么△AOB的面积为()A、2B、C、D、二、填空(每题3分共30分)1、已知y与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。

2、如果反比例函数的图象经过点(3,1),那么k=_______。

3、设反比例函数的图象经过点(x1,y1)和(x2,y2)且有y1>y2,则k的取值范围是______。

苏科版八年级数学下册第11章反比例函数综合测试卷(A)含答案

苏科版八年级数学下册第11章反比例函数综合测试卷(A)含答案

第11单元 反比例函数 综合测试卷(A)一、选择题(每题3分,共21分)1.下列式子中,y 是x 的反比例函数的是 ( )A .21y x =B .2x y =C .1x y x =+ D .1xy = 2.在反比例函数y =1k x-的图象的每一条曲线上,y 都随x 的增大而减小,则k 的取值范围是( ).A .k >1B .k >0C .k ≥1D .k <1 3.已知反比例函数ky x=的图像经过P (-1,2),则这个函数的图像位于( ) A .第二,三象限 B .第一,三象限 C .第三,四象限 D .第二,四象限 4.当a ≠0时,函数1y ax =+与函数ay x=在同一坐标系中的图像可能是 ( )5.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2).若反比例函数k y x= (k >0)的图像经过点A ,则k 的值为 ( )A .-6B .-3C .3D .66·如图,112233(,),(),()A x y B x y C x y 是函数1y x=的图像在第一象限分支上的三个点,且,X1<2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP ,它们的面积分别为1s 、2s 、3s ,则下列结论中正确的是 ( ) A .1s <2s <3s B .3s <2s <1s C .2s <3s <1s D .1s =2s =3s7.图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论中正确的是 ( )A .当x =3时,EC <EMB .当x 增大时,EC·CF 的值增大C .当y =9时,EC>EMD .当y 增大时,BE·DF 的值不变 二、填空题(每空2分,共24分)8.若梯形的下底长为x ,上底长是下底长的13÷,高为y ,面积为60,则y 与x 之间的函数表达式是 .(不考虑x 的取值范围)9.k y x =的图像是过点1(,4)2-的双曲线,则k = ,图像在第 象限. 10.一次函数1y kx =+的图像经过(1,2),则反比例函数ky x=的图像经过点(2, ).11.已知A 是2y x=-的图像上的点,过A 点作AH ⊥x 轴于H ,连接OA ,则AOH S = ,12.已知正比例函数y kx =,y 随x 的增大而减小,则对于反比例函数ky x=,当x<0时,Y 随x 的增大而 .13.已知点(1x ,一1),(2x ,2),(3x ,4),在函数(<0)ky k x=的图像上,则123,,x x x 从小到大排列为 (用“<”号连接).14.如果一个正比例函数的图像与一个反比例函数6y x=的图像交1122A(,),(()x y B x y , 那么2121()()x x y y --值为 . 15.如图,直线2x y =与反比例函数21y y x x==-和的图像分别交于A 、B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是 .16.如图,直线1y k x b =+与双曲线2k y x=交于A 、B 两点,其横坐标分别为1和5,则不等式走21<k k x b x-的解集是 . 17.如图,在平面直角坐标系中,直线6y x =-与函数4(>0)y x x=的图像相交于点A 、B ,设点A 的坐标为11(,)x y ,那么长为1x ,、宽为1y ,的矩形的面积为 ,周长为 . 三、解答题(共55分)18.(本题8分)已知反比例函数ky x=y 的图像经过点(一2,5). (1)求y x 与之间的函数表达式,当4y =-时,求x 的值; (2)这个函数的图像在第几象限?Y 随x 的增大怎样变化? (3)点11(,20)(,1)210A B --、在该函数的图像上吗?19.(本题8分)如图,在平面直角坐标系中,双曲线my x=和直线y kx b =+交于A 、B 两点,点,A 的坐标为(一3,2),BC ⊥y 轴于点C ,且OC=6BC . (1)求双曲线和直线的解析式;(2)直接写出不等式>kx+b mx解集.20.(本题9分)如图,一次函数1(0)y kx k =+≠与反比例函数(0)my m x=≠的图像有公 共点A(1,2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版八年级数学下册第11章《反比例函数》单元测试题满分100分班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.下列函数:①y=x﹣2,②y=,③y=x﹣1,④y=,y是x的反比例函数的个数有()A.0个B.1个C.2个D.3个2.若反比例函数y=(k≠0)的图象经过(2,3),则k的值为()A.5B.﹣5C.6D.﹣63.若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.14.已知反比例函数y=2x﹣1,下列结论中,不正确的是()A.点(﹣2,﹣1)在它的图象上B.y随x的增大而减小C.图象在第一、三象限D.若x<0时,y随x的增大而减小5.若点A(﹣2020,y1)、B(2021,y2)都在双曲线上,且y1>y2,则a的取值范围是()A.a<0B.a>0C.D.6.若ab>0,则一次函数y=ax﹣b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.7.如图,已知A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为()A.2B.﹣2C.4D.﹣48.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A.B.C.D.9.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,其中点A 的横坐标为2,则不等式ax<的解集为()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>210.如图,△DEF的三个顶点分别在反比例函数xy=n与xy=m(x>0,m>n>0)的图象上,若DB⊥x轴于B点,FE⊥x轴于C点,若B为OC的中点,△DEF的面积为2,则m,n的关系式是()A.m﹣n=8B.m+n=8C.2m﹣n=8D.2m+n=3二.填空题(共6小题,满分18分)11.若反比例函数y=的图象经过点A(﹣3,4)和点B(2,a)两点,则a=.12.已知点A(2,3)在反比例函数y=(k≠0)的图象上,当x>﹣2时,则y的取值范围是.13.课本上,在画图象之前,通过讨论函数表达式中x,y的符号特征以及取值范围,猜想出的图象在第一、三象限.据此经验,猜想函数的图象在第象限.14.如果正比例函数y=ax(a≠0)与反比例函数y=(b≠0)的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2)那么另一个交点的坐标为.15.如图,在平面直角坐标系中,BA⊥y轴于点A,BC⊥x轴于点C,函数y=(x>0)的图象分别交BA,BC于点D,E,当AD:BD=1:4且△BDE的面积为3.6时,则k 的值是.16.如图,在反比例函数y=(x≥0)的图象上,有点P1,P2,P3,P4,…,P n(n为正整数,且n≥1),它们的横坐标依次为1,2,3,4,…,n(n为正整数,且n≥1).分别过这些点作x轴与y轴的垂线,连接相邻两点,图中所构成的阴影部分(近似看成三角形)的面积从左到右依次为S1,S2,S3,…,S n﹣1(n为正整数,且n≥2),那么S1+S2+S3+S4+S5=.三.解答题(共6小题,满分52分)17.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.18.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A,B两点,过点A作AC垂直x轴于点C,连接BC.若△ABC的面积为2.(1)求k的值;(2)直接写出>2x时,自变量x的取值范围.19.在平面直角坐标系xOy中,函数y=(x>0)的图象与直线l1:y=x+k(k>0)交于点A,与直线l2:x=k交于点B,直线l1与l2交于点C.(1)当点A的横坐标为1时,求此时k的值;(2)横、纵坐标都是整数的点叫做整点.记函数y=(x>0)的图象在点A、B之间的部分与线段AC,线段BC围成的区域(不含边界)为W.①当k=3时,结合函数图象,求区域W内的整点个数;②若区域W内只有1个整点,直接写出k的取值范围.20.如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA 交x轴于点B,且AB=OA.(1)求双曲线的解析式;(2)连接OC,求△AOC的面积.21.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)22.小明根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣﹣1﹣023…y…m0﹣1n2…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:.②当函数值+1>时,x的取值范围是:.参考答案一.选择题(共10小题)1.【解答】解:①y=x﹣2,②y=,③y=x﹣1,④y=,y是x的反比例函数的是:②y=,③y=x﹣1,共2个.故选:C.2.【解答】解:∵反比例函数y=(k≠0)的图象经过(2,3),∴k=2×3=6,故选:C.3.【解答】解:依题意得:m2﹣2=﹣1且2m﹣1≠0,解得m=±1.故选:A.4.【解答】解:A、把(﹣2,﹣1)代入y=2x﹣1得:左边=右边,故本选项正确,不符合题意;B、k=2>0,在每个象限内,y随x的增大而减小,故本选项错误,符合题意;C、k=3>0,图象在第一、三象限内,故本选项正确,不符合题意;D、若x<0时,y随x的增大而减小,故本选项正确,不符合题意;不正确的只有选项B,故选:B.5.【解答】解:∵点A(﹣2020,y1),B(2021,y2)两点在双曲线y=上,且y1>y2,∴3+2a<0,∴a<﹣,∴a的取值范围是a<﹣,故选:D.6.【解答】解:A、根据一次函数可判断a>0,b<0,即ab<0,故不符合题意,B、根据一次函数可判断a<0,b>0,即ab<0,故不符合题意,C、根据一次函数可判断a<0,b<0,即ab>0,根据反比例函数可判断ab>0,故符合题意,D、根据反比例函数可判断ab<0,故不符合题意;故选:C.7.【解答】解:∵AB⊥y轴,∴S△OAB=|k|,∵△OAB的面积为1,∴|k|=1,∵k<0,∴k=﹣2.故选:B.8.【解答】解:∵当R=20,I=11时,∴电压=20×11=220,∴.故选:A.9.【解答】解:∵正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,∴A,B两点坐标关于原点对称,∵点A的横坐标为2,∴B点的横坐标为﹣2,∵ax<,∴在第一和第三象限,正比例函数y=ax的图象在反比例函数y=的图象的下方,∴x<﹣2或0<x<2,故选:B.10.【解答】解:设D(a,),则F(2a,),E(2a,),∵S△DEF=S梯形BCFD﹣S梯形BCED,△DEF的面积为2,∴2=(+)•a﹣(+),整理得,m﹣n=8,故选:A.二.填空题(共6小题)11.【解答】解:∵反比例函数y=的图象经过点A(﹣3,4)和点B(2,a)两点,∴﹣3×4=2a,解得:a=﹣6,故答案为:﹣6.12.【解答】解:∵点A(2,3)在反比例函数y=(k≠0)的图象上,∴k=2×3=6,∴y=,∴图象在一三象限,在每个象限内y随x增大而减小,当x=﹣2时,y==﹣3,∴当x>﹣2时,y<﹣3或y>0.故答案为:y<﹣3或y>0.13.【解答】解:x>0时,.此时函数在第一象限.x<0时,.此时函数在第二象限.故函数的图象在第一、二象限.故答案为:一、二.14.【解答】解:由题设知﹣2=a×(﹣3),(﹣3)×(﹣2)=b解得a=,b=6联立方程组得解得,所以另一个交点的坐标为(3,2).或:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).故答案为:(3,2).15.【解答】解:如图,过点D作DF⊥x轴于点F,过点E作EG⊥y轴于点G.设B(5a,b),E(5a,d).∵AD:BD=1:4,∴D(a,b).又∵△BDE的面积为3.6,∴BD=4a,BE=b﹣d,∴×4a(b﹣d)=3.6,∴a(b﹣d)=1.8,即ab﹣ad=1.8,∵D,E都在反比例函数图象上,∴ab=5ad,∴5ad﹣ad=1.8,解得:ad=0.45,∴k=5ad=2.25.故答案为:2.25.16.【解答】解:当x=1时,P1的纵坐标为4,当x=2时,P2的纵坐标为2,当x=3时,P3的纵坐标为,当x=4时,P4的纵坐标为1,当x=5时,P5的纵坐标为…则S1=×1×(4﹣2)=1=2﹣1;S2=×1×(2﹣)==1﹣;S3=×1×(﹣1)==﹣;∴S1+S2+S3=2﹣1+1﹣+﹣=2﹣=;S4=×1×(1﹣)==﹣;…S5=;∴S1+S2+S3+S4+S5=2﹣1+1﹣+﹣+﹣+=2﹣.故答案为.三.解答题(共6小题)17.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数;(3)由路程与时间的关系,得t=,即t=是反比例函数.18.【解答】解:(1)设点A的坐标为(m,n).∵点A在直线y=2x上,∴n=2m.根据对称性可得OA=OB,∴S△ABC=2S△ACO=2,∴S△ACO=1,∴m•2m=1,∴m=1(舍负),∴点A的坐标为(1,2),∴k=1×2=2;(2)如图,由点A与点B关于点O成中心对称得点B(﹣1,﹣2).结合图象可得:不等式>2x的解集为x<﹣1或0<x<1.19.【解答】解:(1)当x=1时,y==2,∴A(1,2),把A(1,2)代入y=x+k中,得2=+k,∴;(2)①当k=3时,则直线l1:y=x+3,与直线l2:x=3,当x=3时,y=x+3=4,∴C(3,4),作出图象如图1:∴区域W内的整点个数为3;②如图2,当直线l1:y=x+k过(2,3)点,区域W内只有1个整点,此时,3=+k,则k=,当直线l1:y=x+k过(0,2)点,区域W内没有整点,此时,2=0+k,则k=2,∴当2<k≤时,区域W内只有1个整点,故答案为:2<k≤.20.【解答】解:(1)作AH⊥OB于H,如图,∵AB⊥OA交x轴于点B,且AB=OA.∴△OAB为等腰直角三角形,∴OH=BH=AH,设A(t,t),把A(t,t)代入y=2x﹣2得2t﹣2=t,解得t=2,∴A(2,2),把A(2,2)代入y2=得k=2×2=4,∴双曲线的解析式为y2=;(2)当x=0时,y=2x﹣2=﹣2,则一次函数与y轴的交点坐标为(0,﹣2),解方程得或,则C(﹣1,﹣4),∴△AOC的面积=×(2+1)×2=3.21.【解答】解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.22.【解答】解:(1)由分式的分母不为0得:x﹣1≠0,∴x≠1;故答案为:x≠1.(2)当x=﹣1时,y=+1=,当x=时,y=+1=3,∴m=,n=3,故答案为:,3.(3)如图:(4)①观察函数图象,可知:函数图象经过原点且关于点(1,1)对称,故答案为:函数图象经过原点且关于点(1,1)对称.②观察函数图象,可知:当函数值+1>时,x的取值范围是1<x<3,故答案为:1<x<3.。

相关文档
最新文档