[课件]BigData数据大爆炸PPT
bigdata数据大爆炸
我们应该如何利用大数据? 大数据包含几个方面的内涵 1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处理。 2. 要求快速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析
也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。 3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理
随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。 如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等
商业大数据BI工具。
不同行业的数据有不同的自身特点,还需要结合自身的行业知识才能把大数据 转换为价值。
hadoop如何维护30天数据的问题?
建一个池子放30天数据,属于可能要更新的
如果想应对大数据时代,数据挖掘这门课是少不了的。此外对数据库,特别 是并行数据库、分布式数据库,最好了解点。至于机器学习和模式识别 ,这些总的来说和数据挖掘关系不太大,除了一些特殊的领域外。
总之,概念挺热,但大数据还很不成熟,无论从研究上还是商业化上。我目 前在作大数据背景下的算法研究,说实பைடு நூலகம்,目前基本没有拓展性非常强 的算法,所以未来大数据的发展方向,我也挺迷茫。
杂特性的信息中挖掘出用户所需的情报,难度较以往有了很大的提升.要在发 展中抢 占先机,在大数据时代获取竞争优势,就必须对原有的情报分析思路进 行必要的升级改造,以满足信息的情报属性.文章在介绍了大数据以及大数据 环境下情报内涵 转变的原因之后,提出了一种在
基于情报分析的“大数据”现象研究.pdf 本文首先对国内外期刊、报纸上发表的大数据相关文献进行分析,以关键词为
大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《 计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平 台需要具备的几个重要特性,对当前的主流实现平台———并行数据库、 MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足, 同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未 来研究做了展望。
最新Big-Data-大数据介绍(全英)ppt课件
Why ‘Big Data’ is a big Deal
Big data differs from traditional information in mind-bending ways: Not knowing why but only what The challenge with leadership is that it’s very driven by gut instinct in most cases Air travelers can now figure out which flights are likeliest to be on time, thanks to data scientists who tracked a decade of flight history correlated with weather patterns Publishers use data from text analysis and social networks to give readers personalized news. health care is one of the biggest opportunities, If we had electronic records of Americans going back generations, we'd know more about genetic propensities, correlations among symptoms, and how to individualize treatments.
Main steps in adopting an analytical system
(完整版)大数据介绍ppt
➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
2020/4/14
6
大数据的4V特性
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
数据挖掘基本方法
➢预测建模:将已有数据和模型用于对未 知变量的语言。(1)分类,用于预测离 散的目标变量(2)回归,用于预测连续 的目标变量
➢关联分析:反映一个事物与其他事物之 间的相互依存性和关联性。用来发现描述 数据中强关联特征的模式。
➢聚类分析:发现紧密相关的观测值组群, 使得与属于不同簇的观测值相比,属于同 一簇的观测值相互之间尽可能类似
-分布式文件系统(HDFS) -分布式数据库存储系统(Hbase) -分布式计算构架(MapReduce) ➢使用Java编写 ➢运行平台:Linux
HDFS 分布式文件系统
HDFS: - 分布式文件存储系统,存储海量的数 据;
- 数据冗余,硬件容错; - 流式的数据访问; - 存储大文件;
- 适合数据批量读写,吞吐量高;适 一次写入,多次读取,顺序读写。 - 不适合交互式应用,低延迟很难 满足不支持多用户并发写相同文件。
BIGDATA-大数据精品PPT课件
大数据的作用如何
• 谷歌的判断就建立在大 数据基础上:即以一种 特定方式,对海量数据 进行分析,获得有巨大 价值的产品和服务或深 刻的洞见。
大数据的作用如何
• 世界的本质是数据 • 案例1:2009年,甲型H1N1流感爆发的前几周,
谷歌的工程师在《自然》杂志上预测大型流感 传播即将到来。不需分发口腔试纸或调查医生, 他们建立了一个系统,在每天收到的数十亿条 搜索指令中关注特定检索词条(如“哪些是治 疗咳嗽和发热的药物”等)的频繁使用与流感 传播之间的联系,及时判断流感从哪里传出。 而疾控中心要到流感爆发一两周后才能确定。
19
大数据背后的价值
衍生于亚马逊、Google等互联网公司
互联网越来越智能 Google精确掌握用户行为、 获取需求
Facebook用户 产生内容,创造 需求。
Google分析用 户搜索信息,满 足用户需求 雅虎提供静态的 导航信息
告诉司机少左转
坐姿提醒你累了
蛋挞搭着飓风卖
错误数据也有用
混乱数据也有用
BIG DATA
分享人:
不知道BIG DATA?
你out了!
大数据
作
你
是
用
知
什
如
道么何吗 Nhomakorabea为
背
何
后
而
的
来
价
值
大数据是什么
除了上帝, 任何人都要用数据说话
Big Data时代到来
在web 2.0的时代,人们从信息的被动接受者变成了主动创造者
全球每秒钟发送 2.9 百万封电子邮件,一分钟读一篇的话,足够一个人昼夜不息的读5.5 年… 每天会有 2.88 万个小时的视频上传到Youtube,足够一个人昼夜不息的观看3.3 年… 推特上每天发布 5 千万条消息,假设10 秒钟浏览一条信息,这些消息足够一个人昼夜不息的浏览16
bigdata精品PPT课件
content
Cases of Big Data What’s Big Data How to Deal with Big Data More Apply on ’Big Data’ Risks of ’Big Data’
Case 1
Target(美国第二大百货商店)knows you are pregnant.
Taobao Index(淘宝指数) Function: for the seller, it’s a free market
adviser; for the customer, it helps make
decisions, grasp the current trends, the shopping tendency and characteristics of the same person.
Case 2
Beer and Diaper(尿布) Revenue had been increased by 30%through bunding sales.
What’s Big Data
Big data is a term applied to data sets whose size is beyond the ability of commonly used software tools to capture, manage, and process the data within a tolerable elapsed time.
characteristics: Volume(数据体量大)、Variety(数据类型
多)、 Velocity(价值密度低)、Variability(处理速
How to deal with Big Data
数据大爆炸课件
大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。 目前人们谈论最多的是大数据技术和大数据应用。工程和科学问题尚未 被重视。大数据工程指大数据的规划建设运营管理的系统工程;大数据 科学关注大数据网络发展和运营过程中发现和验证大数据的规律及其与 自然和社会活动之间的关系。
大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《 计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平 台需要具备的几个重要特性,对当前的主流实现平台———并行数据库、 MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足, 同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未 来研究做了展望。
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
资讯: 大数据大价值 爱尔兰新建国家大数据分析研究中心 大数据2014年五大趋势 人生,就是一场数据挖掘 大数据人才紧缺 拥抱大数据,盘点全球大数据公司 大数据时代 ,"数"中自有黄金屋 ——大数据与农业 ”新的石油“——怎样搭上“大数据”这班快车
大数据BigData培训课件(PPT 101页)
MapReduce 技术框架
• 分布式文件系统 • 并行编程模型 • 并行执行引擎
27
分布式文件系统
(Google file system)
• 分布式文件系统运行于大规模集群之上,集 群使用廉价的机器构建.
• 数据采用键/值对(key/value)模式进行存储.
• 整个文件系统采用元数据集中管理、数据 块分散存储的模式,通过数据的复制(每份数 据至少3 个备份)实现高度容错.
4
大数据时代
大规模数据主要来源2: 网站点击流数据
为了进行有效的市场营销和推广,用户在网 上的每个点击及其时间都被记录下来;利用 这些数据,服务提供商可以对用户存取模式 进行仔细的分析,从而提供更加具有针对性 的服务
5
大数据时代
大规模数据主要来源3: 移动设备数据
通过移动电子设备包括移动电话和PDA、 导航设备等,我们可以获得设备和人员的位 置、移动、用户行为等信息,对这些信息进 行及时的分析,可以帮助我们进行有效的决 策,比如交通监控和疏导系统
12
时间序列分析
– 比如在金融服务行业,分析人员可以开发针对性 的分析软件,对时间序列数据进行分析,寻找有 利可图的交易模式(profitable trading pattern), 经过进一步验证之后,操作人员可以使用这些交 易模式进行实际的交易,获得利润
13
大规模图分析和网络分析
• 社会网络虚拟环境本质上是对实体连接性 的描述.在社会网络中,每个独立的实体表示 为图中的一个节点,实体之间的联系表示为 一条边.
40
MapReduce应用领域的扩展
• 若干开发者发起了Apache Mahout 项目的 研究,该项目是基于Hadoop 平台的大规模 数据集上的机器学习和数据挖掘开源程序 库,为应用开发者提供了丰富的数据分析功 能
大数据时代背景(PPT 24张)
政府投入将形成示范效应,大大推动大数据的发展。
大数据的应用 ——热点:智慧城市
• 美国奥巴马政府在白宫网站发布《大数据研究和发展倡议》,提出“通过收集、处理庞大而复杂的 数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国国土安全 ,转变教育和学习模式” ; 中国工程院院士邬贺铨说道,“智慧城市是使用智能计算技术使得城市的关键基础设施的组成和服 务更智能、互联和有效,随着智慧城市的建设,社会将步入“大数据”时代。”
人类从依靠自身判断做决定到依靠数据做决定的转变,也是大 数据作出的最大贡献之一。——《大数据时代》
未来IT投资重心转移
结构化数据向非结 构化数据演进,使 得未来IT投资重点 不再是建系统为核 心,而是围绕大数 据为核心; 海量数据可以在各 个部门创造重大的 财物价值,未来投 资倾斜。
• • • • • • • • •
2、大数据不仅仅是“大”
多大? 至少PB 级
比大更重要的是 数据的复杂性, 有时甚至大数据 中的小数据如一 条微博就具有颠 覆性的价值
3、软件是大数据的引擎
和数据中心(Data Center) 一样,软 件是大数据的驱动力 ,软件改变世界
大数据生态:软件是引擎
4、大数据的应用不仅仅是精准营销
虑,解决高并发数据存取的性能要求及数
据存储的横向扩展,但对非结构化数据的 内容理解仍缺乏实质性的突破和进展,这
是实现大数据资源化、知识化、普适化的
核心 • 非结构化海量信息的智能化处理:自然语 言理解、多媒体内容理解、机器学习等
目录
大数据的定义
理解大数据
相关技术与应用
一些相关技术
分析技术:
• • • • 数据处理:自然语言处理技术 统计和分析:A/B test; top N排行榜;地域占比 ;文本情感分析 数据挖掘:关联规则分析;分类;聚类 模型预测:预测模型;机器学习;建模仿真
上课关于大数据的演讲ppt课件
…
…
微博、 Apps
移动互联
1.海量数据 + 复杂类型的数据
海量交易数据 海量交互数据 海量数据处理
2.沙里淘金,价值密度低
以视频为例,一部一小时的视 频,在连续不间断监控过程中,可能 有用的数据仅仅只有一两秒。
3.实时获取需要的信息
6
大数据时代全新的思维方式
分析事物时,依赖该事物的所有数据,不再 是进行样本分析,收集时需收集所有数据。
月:收录数据235TB ) 1EB = 4000倍美国国会图书馆存储的信息量
4
一天之间,互联网上要发生多少事
每天有2940亿封电子邮件发出,如果这些是纸质信件,在美国需要花费 两年时间处理;
每天有200万篇博客在网上发布,这些文章相当于《时代》杂志刊发770 年的总量;
每天有2.5亿张照片上传至社交网站Facebook,如果都打印出来,摞在一 起能有80个埃菲尔铁塔那么高;
3
大数据
《红楼梦》含标点87万字(不含标点853509字) 每个汉字占两个字节:1汉字=16bit = 2*8位
=2bytes 1GB 约等于671部红楼梦 1TB 约等于631,903 部 1PB 约等于647,068,911部 美国国会图书馆藏书(151,785,778册)(2011年4
GB
1PB = 2^50字节 1EB = 2^60字节 1ZB = 2^70字节
地球上至今总共的数据量:
在2006 年,个人用户才刚刚迈进TB时代, 全球一共新产生了约180EB的数据;
在2011 年,这个数字达到了1.8ZB。
而有市场研究机构预测: 到2020 年,整个世界的数据总量将会增长 44 倍,达到35.2ZB(1ZB=10 亿TB)!
大数据的介绍PPT课件
所谓大数据,是一个综合性概念,它包括: (1)因具备3V特征而难以进行管理的数据 (2)对这些数据进行存储、处理、分析的技术 (3)以及能够通过分析这些数据获得实用意义和观点的人才和组织
9
麻省理工与通货紧缩预测软件
美国劳工统计局的人员每个月都要公布消费物价指数(CPI),这是用来测试通货膨 胀率的。
30
VISA&MasterCard与商户推荐
像VISA和MasterCard这样的信用卡发行商,它们能够从自己的服务网获取更多的 交易信息和顾客的消费信息
它们的商业模式从单纯的处理支付行为转变成了收集数据
一个称为MasterCard Advisors的部门收集和分析了来自210个国家的15亿信用卡 用户的650亿条交易记录,用来预测商业发展和客户的消费趋势。然后,它把这些分 析结果卖给其他公司
5
大数据的典型特征(3V)
Volume(容量) 现在基本上是指从几十TB到几PB这样的数量级,未来,可能只有几EB数量级的数
据量才能称得上是大数据了。(1T=1024G,1P=1024T) Variety(多样性)
结构化和非结构化数据 Velocity(速度)
数据产生和更新的频率
6
广义的大数据
如数据代理益百利旗下的网页流量测量公司Hitwise,让客户采集搜索流量来揭示消 费者的喜好。
14
物联网
物联网(Internet of Things,缩写IOT)是一个基于互联网、传统电信网等信息承载 体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。
在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可 以查找出它们的具体位置。
疾控中心得到流感方面的信息往往会有一两周的滞后,这种滞后导致公共卫生机构 在疫情爆发的关键时期反而无所适从。
【精品推荐】精品完整版Big Data大数据技术交流分析【ppt版可编辑】
Big Data大数据技术交流目录❖1.大数据技术介绍❖2.Hadoop(HDFS,MapReduce)介绍❖3.Hadoop的最新发展❖4.流计算技术❖5.内存数据库❖6.列式数据库❖7.各技术适用的场合❖8.讨论什么是大数据?大数据指的是海量无法通过传统方式管理的数据。
Big Data作为一个专有名词成为热点,主要应归功于近年来互联网、云计算、移动和物联网的迅猛发展。
无所不在的移动设备、RFID、无线传感器每分每秒都在产生数据,数以亿计用户的互联网服务时时刻刻在产生巨量的交互……要处理的数据量实在是太大、增长太快了,而业务需求和竞争压力对数据处理的实时性、有效性又提出了更高要求,传统的常规技术手段根本无法应付。
大数据的4V 特性多样性Variety 速度Velocity 非结构化数据的超大规模和增长总数据量的80~90%比结构化数据增长快10倍到50倍是传统数据仓库的10倍到50倍大数据的异构和多样性很多不同形式(文本、图像、视频、机器数据)无模式或者模式不明显不连贯的语法或句义大量的不相关信息对未来趋势与模式的可预测分析深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、报告等)实时分析而非批量式分析数据输入、处理与丢弃立竿见影而非事后见效大数据技术分布式缓存、基于MPP 的分布式数据库、分布式文件系统、各种NoSQL 分布式存储方案,内存数据库等。
存储处理应用Map Reduce ,流计算HIVE,pig,R ,mahout 等查询统计,数据挖掘技术❖大数据的存储❖采用了一批新技术,主要包括分布式缓存、基于MPP的分布式数据库、分布式文件系统、各种NoSQL分布式存储方案等。
分布式数据库与传统数据库对比大规模并行处理MPP (Massively Parallel Processing)。
2024版大数据PPT完整版
02
加密技术
采用加密算法对敏感数据进行加密 存储和传输,确保数据在传输和存
储过程中的安全性。
04
访问控制
建立严格的访问控制机制,确保只 有授权用户能够访问敏感数据。
30
企业如何制定和执行安全策略
制定完善的安全管理制度
明确数据安全管理的目标、原则、流程和组织架构。
强化员工安全意识培训
定期开展数据安全培训,提高员工对数据安全的重视程度和操作技能。
推论性统计
通过样本数据推断总体特征,包括假设检验、方差分析、回归分 析等。
应用案例
电商平台的用户行为分析、金融领域的风险评估、医疗行业的疾 病预测等。
21
机器学习算法原理及实践
监督学习
通过已知输入和输出数据进行训练,得到模型后用于预测新数据。
无监督学习
对无标签数据进行学习,发现数据中的内在结构和规律。
2
01
大数据概述
2024/1/29
BIG DATA EMPOWERS TO CREATE A NEW ERA
3
大数据定义与特点
定义
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数 据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能 力的海量、高增长率和多样化的信息资产。
将原始数据通过特定算法映射到视觉元素(如颜 色、形状、大小等)。
视觉编码
利用视觉元素对数据进行编码,以便人们能够直 观地理解数据。
交互设计
提供丰富的交互手段,如缩放、拖拽、筛选等, 以便用户能够更深入地探索数据。
2024/1/29
25
常见数据可视化工具介绍
2024/1/29
Tableau
大数据时代背景(PPT 24页)
大数据的4V特征
Volume
Variety
Velocity
Value
“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是“ 大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。
大数据的构成
• 在安防领域,应用大数据技术,提高应急处置能力和安全防范能力;
• 在民生领域,应用大数据技术,提升服务能力和运作效率,以及个性化 的服务,比如医疗、卫生、教育等部门;
• 解决在金融,电信领域等中数据分析的问题:一直得到得极大的重视, 但受困于存储能力和计算能力的限制,只局限在交易数型数据的统计分 析;
•
37、相互了解是朋友,相互理解是知己 。
•
38、没有所谓失败,除非你不再尝试。
•
39、有时可能别人不在乎你,但你不能 不在乎 自己。
•
40、你必须成功,因为你不能失败。
•
41、羡慕别人得到的,不如珍惜自己拥 有的。
•
42、喜欢一个人,就该让他(她)快乐 。
软件被称为bigsheet,软件目的是帮助从大量数据中轻松、简单、直观的提取、批注相关信息 为金融,风险管理,媒体和娱乐等行业量身定做的行业解决方案
微软: • 2011年1月与惠普(具体而言是HP数据库综合应用部门) 合作目标是开发了一系列能够提升生产力和
提高决策速度的设备。
EMC: • EMC 斩获了纽交所和Nasdaq; • 大数据解决方案已包括40多个产品。
Oracle: • Oracle大数据机与Oracle Exalogic中间件云服务器、Oracle Exadata数据库云服务器以及Oracle
大数据基本介绍 ppt课件
21
大数据的应用
——企业在投入
行业拓展者,打造大数据行业基石:
IBM: • IBM大数据提供的服务包括数据分析,文本分析,蓝色云杉(混搭供电合作的网络平台);业务事件处
14
相关技术
相关技术
1
大数据时代的背景相关技术
大数据怎么用 2
云计算与大数据
3
大数据领的应用
15
什么是Big Data技术
企业用以分析的数据越全面,分析的结果就越接近于真实。大数据分析意味着企业能够从 这些新的数据中获取新的洞察力,并将其与已知业务的各个细节相融合
大数据技术将被设计用于 在成本可承受(economic ally)的条件下,通过非常 快速(velocity)的采集、 发现和分析,从大量化(v olumes)、多类别(vari ety)的数据中提取价值 (value),将是IT 领域新 一代的技术与架构
活数据资产的能力,挖掘价值性信息和预测性分析,为国家、企业、个人提供决策 和服务,是大数据核心议题,也是云计算的最终方向。
19
大数据与云计算
蓝蓝的天上白云飘
白云下面数据跑
如果数据是财富,那么大数据就是宝藏,而云计算就是挖掘和利用宝 藏的利器!没有强大的计算能力,数据宝藏终究是镜中花;没有大数 据的积淀,云计算也只能是杀鸡用的宰牛刀!
11
大数据的构成
大数据包括:
交易数据和交互数据 集在内的所有数据集
大数据 = 海量数据 + 复杂类型的数据
海量交易数据: 企业内部的经营交易信息主要包括联机交易数据和联机 分析数据,是结构化的、通过关系数据库进行管理和访 问的静态、历史数据。通过这些数据,我们能了解过去 发生了什么。
大数据介绍pptppt课件2024新版
据处理能力。
数据存储与管理技术
Hadoop HDFS
一个分布式文件系统,设计用来存储和处理大规模数据集,具有 高容错性和高吞吐量。
HBase
一个高可扩展性的列存储系统,用于存储非结构化和半结构化的 稀疏数据。
Cassandra
一个高度可扩展的NoSQL数据库,提供高可用性和无单点故障 的数据存储服务。
03
零售行业
通过分析消费者购买 行为和趋势,实现精 准营销和库存管理。
04
能源行业
利用大数据分析优化 能源生产和消费,提 高能源利用效率和可 持续性。
05
大数据挑战与未来趋势
Chapter
大数据面临的技术挑战
数据存储
随着数据量不断增长,如何有效地存储和管理这些数 据成为一大挑战。
数据处理
大数据处理需要高性能计算资源,如何优化算法和提 高处理效率是关键。
数据安全
保障大数据的安全性和隐私保护是亟待解决的问题。
大数据面临的业务挑战
01
数据质量
大数据中存在大量噪声和无效数 据,如何保证数据质量是一大挑 战。
数据整合
02
03
数据驱动决策
如何将不同来源、格式的数据进 行整合,以便更好地分析和应用 。
如何利用大数据分析结果指导业 务决策,提高决策的科学性和准 确性。
据库表,并提供简单的SQL 实时读写访问大规模数据集
查询功能。
。
Kafka是一个分布式流处理平 台,用于构建实时数据管道 和流应用。它提供高吞吐量 、可扩展性、容错性等特性 ,适用于实时数据流处理场
景。
Sqoop是一个用于在 Hadoop和结构化数据存储( 如关系型数据库)之间进行
数字大爆炸-大数据时代(PPT 61张)
数字生活
二、大数据将重构很多行业的商业思维 和商业模式
未来汽车行业遐想 家庭汽车 汽车数字化 汽车数据分享 保险公司 4S店的服务 驾驶者 数字生活 道路优化 停车场 政府 快递
大数据影响了什么?
大数据一定程度上将颠覆了企业的传统管理方式 改变了商业逻辑 全新的视角来发现新的商业机会和重构新的商业模式
信息定义
哲学上
人们所认知与感知对象的抽象
数学上
是确定性的度量,两次不定性之差,与随机对立
物理上
p ilog p i
是一种能量,与熵对立
数字生活
信息与数据
信息特性
无限性 共享性 创造性
数据
对现实世界中客观事物的符号表示 可以是数值数据,也可以是非数值数据,如声音、 图像等 计算机中数据
能输入计算机,并能为其处理的符号序列
数字生活
信息的转换
作业层
信息收集系统 原始信息
形 式 化 归 纳
信 息 转 换
转换层
数据转换
数据(数字)
渲染层
数据的渲染
可视化结果
数字生活
数据的新趋势-大数据
新趋向
应用由计算转向信息处理 数据量激增,并呈多样性
数字图书馆 交互视频 人类基因组 电子商务 Web …...
数字生活
第1讲
数字大爆炸--大数据时代
数字生活
提纲
1.1 大数据的由来 1.2 机遇与挑战 1.3 内在规律
数字生活
1.1 大数据由来
1.1.1 大数据案例
1.1.2大数据是什么
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据 ”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能 力的海量、高增长率和多样化的信息资产。 大数据”这个术语最早期的引用可追溯到apache org的开源项目Nutch。当时 ,大数据用来描述为更新网络搜索索引需要同时进行批量处理或分析的 大量数据集。随着谷歌MapReduce和GoogleFile System (GFS)的发布, 大数据不再仅用来描述大量的数据,还涵盖了处理数据的速度。
我们应该如何利用大数据? 大数据包含几个方面的内涵 1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处理。 2. 要求快速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析 也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。 3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理, 筛选等操作,变为结构数据。 4. 价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等 等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到 更真实全面的反馈。 很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数 据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都 会有大数据需求。
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型 的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点 至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。 目前人们谈论最多的是大数据技术和大数据应用。工程和科学问题尚未 被重视。大数据工程指大数据的规划建设运营管理的系统工程;大数据 科学关注大数据网络发展和运营过程中发现和验证大数据的规律及其与 自然和社会活动之间的关系。
随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。 如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等 商业大数据BI工具。 不同行业的数据有不同的自身特点,还需要结合自身的行业知识才能把大数据 转换为价值。
hadoop如何维护30天数据的问题? 建一个池子放30天数据,属于可能要更新的 最近再学习JSP ,现在涉及到了数据库,请问要是Mysql还是sql server 比较好? 如果你是学习用,看自己对那个更熟悉一点就选择哪个 如果公司商务上应用,请考虑成本,SQLSERVER是微软的,部署要收费的, mysql不同了,免费。 云计算,大数据,数据挖掘,机器学习,模式识别。这些概念之间的关系是 怎么样的? 给你解释一下这些术语: 云计算:就是个炒得很热的商业概念,其实说白了就是将计算任务转移到服 务器端,用户只需要个显示器就行了,不过服务器的计算资源可以转包。 当然,要想大规模商业化,这里还有些问题,特别是隐私保护问题。 大数据:说白了就是数据太多了。如今几兆的数据在20年前也是大数据。但 如今所说的大数据特殊在哪呢?如今的问题是数据实在是太多了,这已 经超过了传统计算机的处理能力(区别与量子计算机),所以对于大数 据我们不得不用一些折衷的办法(比如数据挖掘)有限,用数据挖掘的方法把这 些有限的知识提取出来就行了。·此外,数据抽样,数据压缩也是解决 大数据问题的一些策略。
什么叫大数据,与云计算有何关系? 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透 过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成 为帮助企业经营决策更积极目的的资讯。 大数据的4V特点:Volume、 Velocity、Variety、Veracity。大的数据需要特殊的技术,以有效地处理大 量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处 理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库, 云计算平台,互联网,和可扩展的存储系统。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分 析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化和 半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金 钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像 MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《 计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平 台需要具备的几个重要特性,对当前的主流实现平台———并行数据库、 MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足, 同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未 来研究做了展望。
Big_Data_数据大爆炸
资讯: 大数据大价值 爱尔兰新建国家大数据分析研究中心 大数据2014年五大趋势 人生,就是一场数据挖掘 大数据人才紧缺 拥抱大数据,盘点全球大数据公司 大数据时代 ,"数"中自有黄金屋 ——大数据与农业 ”新的石油“——怎样搭上“大数据”这班快车
问答: 大数据是什么? “大数据”作为时下最火热的IT行业的词汇,随之数据仓库、数据安全、数 据分析、数据挖掘等等围绕大数量的商业价值的利用逐渐成为行业人士 争相追捧的利润焦点。大数据[1]技术的战略意义不在于掌握庞大的数据 信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把 大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据 的“加工能力”,通过“加工”实现数据的“增值”。且中国物联网校 企联盟认为,物联网的发展离不开大数据,依靠大数据提供足够有利的 资源。
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB 级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视 频、图片、地理位置信息等等。第三,价值密度低,商业价值高。以视 频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四 ,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本 质的不同。业界将其归纳为4个“V”——Volume,Variety,Value, Velocity。 物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地 球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。