初中数学有理数知识点总结(精华)

合集下载

初中数学知识点汇总(整理完全版)

初中数学知识点汇总(整理完全版)

第二章、整式加减1、整式:⑴单项式:只含有数或字母的积的式子叫单项式。

(单独一个字母或数字也是单项式);系数:单项式中的数字因数;次数:单项式中,所有字母的指数和。

⑵多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

①项:每一个单项式(注意带符号)。

②次数:多项式里次数最高的项的次数。

2、同类项:所含字母相同,并且相同字母的指数也相同的项。

几个常数项也是同类项。

3、合并同类项:系数相加,字母和字母的指数不变。

4、去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

第三章、一元一次方程含有未知数的等式叫做方程,使方程左右两边相等的未知数的值叫做方程的解。

只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。

1、等式的性质一:等式两边加(或减)同一个数(或式子),结果仍相等。

等式的性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2、一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化为1。

注意:①去分母:两边同乘分母的最小公倍时,每一项都不能漏乘。

②去括号:“去正不变,去负全变”。

③移项:是从等号一端移到另一端,移项要变号。

④合并同类项:系数相加减做系数,字母和字母的指数不变。

⑤系数化为一列方程解应用题:(1)设未知数。

(2)找出相等的数量关系,(3)根据相等关系列几何图形:我们把从实物中抽象出的各种图形统称为几何图形。

立体图形:各部分不都在同一平面内,这种图形叫做立体图形。

平面图形:各部分都在同一平面内,这种图形叫做平面图形。

平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

三视图:指主视图、左视图、俯视图。

初一数学《有理数》知识点总结

初一数学《有理数》知识点总结

初一数学《有理数》知识点总结初一数学《有理数》知识点总结在学习中,相信大家一定都接触过知识点吧!知识点是指某个模块知识的重点、核心内容、关键部分。

哪些知识点能够真正帮助到我们呢?以下是店铺帮大家整理的初一数学《有理数》知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

初一数学《有理数》知识点总结1一、正数与负数在实际中表示意义相反的量上升5米记为5米;-8米则表示下降8米。

2.正数:大于0的数。

3.负数:在正数的前面加上“-”。

4.0的含义:①既不是正数也不是负数;②0在计数时表示没有,比如0元;③0表示某种量的基准,比如0℃表示温度的基准5.有理数的分类②分数概念(1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数;(2)无限不循环小数不属于有理数,如:π=3.141592...2.010010001...③、“非”的概念非负数:正数和0非正分数:负分数非正数:负数和0非负分数:正分数非负整数:正整数和0非正整数:负整数和0二、数轴1.三要素:原点、正方向、单位长度。

通常原点用“O”表示,向右的方向为正方向,单位长度为1.2.如何画数轴①画直线(一般画成水平的),定原点,标出原点“O”;②取原点向右的方向为正方向,并标出箭头;③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。

3.数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)左边的数<右边的数三、相反数①只有符号不同的两个数,叫做互为相反数。

0的相反数是0。

②a的相反数-a③a与b互为相反数:a+b=0④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b⑥求一个数的相反数方法:在这个数的前面加“-”号.⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

四、绝对值1.几何意义:从数轴上表示a的点到原点的距离即为︱a︱2.①一个正数的绝对值等于它本身;当a是正数时,︱a︱=a;②一个负数的绝对值等于它的相反数;当a是负数时,︱a︱=-a;③0的绝对值等于0。

初一数学有理数知识点总结

初一数学有理数知识点总结

初一数学第1章有理数知识点总结1.正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“ + ”,有时“ + ”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义40表示“没有”,如教室里有0个人,就是说教室里没有人;50是正数和负数的分界线,0既不是正数,也不是负数。

1.有理数的概念⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①n是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,- 6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数正有理数正分数有理数有理数(0不能忽视)负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

4.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

初中数学知识点总结之有理数

初中数学知识点总结之有理数

本文格式为Word 版,下载可任意编辑
第 1 页
初中数学知识点总结之有理数
初中数学学问点总结之有理数
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的'应用,
是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以
及相关学科学问的基础。

下面是我为大家带来的关于有理数的学问,欢迎阅读。

有理数
1.有理数:
(1)凡能写成q/p(q,p 为整数且p 不等于0〕
形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分
数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a 不肯定是负数,
+a 也不肯定是正数;p 不是有理数;
(2)有理数的分类:
有理数:
正有理数
零 负有理数
正有理数:正整数和负整数
负有理数:负整数和负分数
有理数:整数和分数
整数:正整数和负整数
分数:正分数和负分数
(3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个
数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数;a >0 a 是正数;a <0 a 是负数;
a ≥0 a 是正数或0 a 是非负数;a ≤ 0 a 是负数或0 a 是非正数
以上对数学有理数学问点的总结内容学习,信任同学们已经很好的把握了吧,
盼望同学们在考试中取得优异成果。

有理数知识点总结归纳

有理数知识点总结归纳

有理数知识点总结归纳一、有理数的定义有理数是可以表示为两个整数的商的数,形式为a/b,其中a和b是整数,且b不为零。

有理数集合包括所有整数、分数和它们的负数。

二、有理数的性质1. 封闭性:有理数集合在加法、减法、乘法和除法(除数不为零)运算下是封闭的。

2. 有序性:任何两个有理数都可以比较大小。

3. 稠密性:任何两个有理数之间都存在另一个有理数。

4. 可数性:有理数集合是可数的,即存在一种方法可以将所有有理数列成一个序列。

三、有理数的分类1. 正有理数:大于零的有理数。

2. 负有理数:小于零的有理数。

3. 零:唯一的一个既不是正数也不是负数的有理数。

4. 自然数:用于计数的数,包括0和所有正整数。

5. 整数:包括正整数、负整数和零。

6. 分数:表示为a/b的形式,其中a和b是整数,b不为零。

四、有理数的运算规则1. 加法:- 同号相加,取相同的符号,并将绝对值相加。

- 异号相加,取绝对值较大的数的符号,并将绝对值相减。

- 任何数与零相加,结果为该数本身。

2. 减法:- 减去一个数等于加上它的相反数。

3. 乘法:- 正数乘以正数得正数。

- 负数乘以负数得正数。

- 正数乘以负数得负数。

- 任何数乘以零得零。

4. 除法:- 除以一个不等于零的数,等于乘以它的倒数。

- 零除以任何非零的数都得零。

五、有理数的比较1. 正数都大于零。

2. 负数都小于零。

3. 正数大于所有负数。

4. 两个负数比较大小,绝对值大的反而小。

六、有理数的简化1. 分数的简化是将分子和分母除以它们的最大公约数。

2. 简化后的分数分子和分母互质。

七、有理数的实际应用有理数在日常生活中有广泛的应用,如计算价格、测量距离、统计数据等。

八、有理数与无理数的区别1. 无理数不能表示为两个整数的商。

2. 无理数是无限不循环小数,而有理数可以表示为有限小数或无限循环小数。

九、有理数的例题解析1. 计算:(3/4) + (-1/2)解:首先找到公共分母,然后将分数相加。

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

初一有理数的知识点归纳总结

初一有理数的知识点归纳总结

初一有理数的知识点归纳总结有理数是数学中一种重要的数类,是整数和分数的统称。

在初中数学中,有理数的概念常常会出现,学好有理数的相关知识点对于后续数学学习的顺利进行至关重要。

下面对初一学习的有理数相关知识点进行归纳总结。

一、有理数的定义及表示法1. 有理数是整数和分数的统称,可以表示为p/q的形式,其中p、q为整数且q≠0。

2. 有理数可以用数轴上的点表示,数轴上的0表示0,正方向表示正有理数,负方向表示负有理数。

二、有理数的大小比较1. 相反数:对于有理数a,存在一个有理数-b,使得a+b=0,称-b为a的相反数。

相反数具有相等的绝对值,但符号相反。

2. 绝对值:对于有理数a,如果a≥0,则a的绝对值为a;如果a<0,则a的绝对值为-a,记作|a|。

三、有理数的四则运算1. 加法和减法:- 同号数相加减:同号数相加减,绝对值不变,符号不变。

- 异号数相加减:异号数相加减,绝对值减小,结果的符号由绝对值大的数的符号决定。

2. 乘法和除法:- 同号数相乘除:同号数相乘除,结果为正数。

- 异号数相乘除:异号数相乘除,结果为负数。

- 0的乘法:任何数与0相乘,结果都为0,0除以任何非零数结果为0。

四、有理数的化简与还原1. 化简是指将一个有理数的分子和分母的公因数约分,从而得到一个和原有数等值的简化分数。

2. 还原是指将一个有理数的分子和分母经过运算,得到一个相对较大的数。

五、有理数的实际应用1. 有理数在数轴上的表示可以帮助我们了解数值的大小关系和相对位置关系。

2. 有理数在生活中的应用包括温度计的读数、海拔高度的标定等。

3. 有理数在数学问题中的应用包括解方程、分数的运算等。

六、有理数的乘方与开方1. 乘方:对于有理数a和正整数n,我们定义a的n次方为an,其中an=a*a*...*a(n个a的积)。

2. 平方根:对于非负有理数a,我们称b为a的平方根,当b*b=a 时。

3. 立方根:对于任意有理数a,我们称b为a的立方根,当b*b*b=a 时。

初中有理数知识点总结

初中有理数知识点总结

初中有理数知识点总结初中有理数的知识点总结如下:1.有理数的定义:有理数是整数和分数的统称。

其中,整数是正整数、负整数和0的统称;分数是整数与非零分母的真分数和假分数的统称。

2.有理数的比较和大小关系:当两个有理数的分母相同时,比较它们的分子的大小;当两个有理数的分母不同时,可以通过通分来比较它们的大小;对于正整数、负整数和0,它们的大小关系为:负整数 < 0 < 正整数。

3.有理数的加减运算:两个有理数的加减运算,要将它们的分母通分,然后按照通分后的分子进行运算,并化简到最简形式。

4.有理数的乘除运算:两个有理数的乘除运算,将它们的分子相乘或相除,分母也相乘或相除,并化简到最简形式。

5.有理数的约分与相反数:约分是将一个有理数的分子和分母同时除以它们的最大公因数,使得分数的分子和分母没有其他公因数。

相反数是与一个有理数分子相等,而分母相反的有理数。

相反数的特点是它们的和等于0。

6.绝对值与有理数的绝对值:绝对值是一个有理数到原点的距离,表示为|a|。

有理数的绝对值有以下几种情况:正整数的绝对值是它本身;负整数的绝对值是它的相反数;0的绝对值是0;分数的绝对值是分子的绝对值除以分母的绝对值。

7.有理数的倒数与零的倒数:一个非零有理数的倒数是指与它数值互为倒数的有理数,即a的倒数是1/a。

零的倒数没有定义。

8.有理数的乘方运算:一个数的正整数次幂可以通过多次乘以自己来得到,即a^n = a × a × … × a (n个a相乘)。

一个数的负整数次幂是指这个数的倒数的绝对值的正整数次幂,即a^(-n) = 1/(a^n)。

一个数的零次幂是1,除非这个数是0。

9.整数的倍数与整除:如果一个整数a除以另一个整数b的余数为0,那么a就是b的倍数,b就是a的因数。

如果一个整数a能被整数b整除,即a/b得到一个整数,那么a可以被b整除,b能整除a,a是b的倍数,b是a的因数。

有理数十五大知识点总结

有理数十五大知识点总结

有理数十五大知识点总结一、有理数的定义及性质有理数是可以表示为分数形式的数,包括整数、负整数和分数。

有理数的加、减、乘、除法满足封闭性,即两个有理数进行这四种运算得到的仍然是有理数。

二、有理数的比较有理数的大小可以通过绝对值的大小来比较。

对于两个有理数a和b,如果|a| > |b|,则a > b;如果|a| < |b|,则a < b。

三、有理数的运算1. 有理数的加法对于有理数a和b,它们的加法运算是将它们的分子通分后进行相加,然后化简得到结果。

2. 有理数的减法对于有理数a和b,它们的减法运算可以转化为加法的形式,即a - b = a + (-b)。

3. 有理数的乘法有理数a和b的乘法运算是将它们的分子和分母分别相乘得到结果。

4. 有理数的除法有理数a和b的除法运算可以转化为乘法的形式,即a ÷ b = a × (1/b)。

四、有理数的绝对值有理数a的绝对值(|a|)是a到0的距离,并且它具有非负性、单调性和三角不等式等性质。

五、有理数的乘方有理数的n次方是将这个有理数连续乘以自身n次,其中n是自然数。

六、有理数的逆运算有理数a的逆数是1/a,它满足乘法逆元的性质,即a × (1/a) = 1。

七、有理数的分数化简对于有理数的分数形式,我们可以通过化简得到最简形式,即分子和分母没有共同因子。

八、有理数的混合运算有理数的混合运算包括加减乘除等多种运算,我们需要根据具体的题目进行分析和解决。

九、有理数的小数有理数可以表示为有限小数和无限循环小数两种形式,我们可以通过逐步除以10或乘以10将有理数转化为小数形式。

十、有理数的比例对于含有有理数的比例,我们可以通过交叉乘积法则或取十法则等方法进行比例的计算和推导。

十一、有理数的线性方程对于含有有理数的线性方程,我们可以通过整理方程、去分母和解方程的方法进行求解。

十二、有理数的实际应用有理数在实际生活中应用非常广泛,涉及到金融、商业、科学等各个领域。

七年级有理数的所有知识点

七年级有理数的所有知识点

七年级有理数的所有知识点有理数是正整数、负整数和零的集合,可以表示为分数的形式,即分子是整数、分母不为零。

而在七年级的数学学习中,我们需要掌握有关有理数的所有知识点,包括有理数的四则运算、有理数的比较、有理数的绝对值等。

一、正数和负数在学习有理数之前,我们需要了解正数和负数的概念。

正数是大于零的数,而负数是小于零的数。

在数轴上,正数位于原点右边,负数位于原点左边。

二、有理数的表示法有理数可以用分数表示,分母不为零。

例如,1/2、-2/3、5/4都是有理数。

有理数也可以用小数表示,例如0.5、-0.3、1.25等都是有理数。

有些小数可以化成分数的形式,例如0.5可以化成1/2。

三、有理数的加减法有理数的加法可以分为同号相加和异号相加两种情况。

同号相加时,只需将两数绝对值相加,符号不变。

异号相加时,先将两数绝对值相减,再取绝对值较大的数的符号。

有理数的减法可以化为加法的形式。

例如a-b可以写成a+(-b)的形式,然后再按照加法的规则进行计算。

四、有理数的乘除法有理数的乘法可以分为同号相乘和异号相乘两种情况。

同号相乘时,积为正数;异号相乘时,积为负数。

有理数的除法可以化为乘法的形式。

例如a/b可以写成a乘以1/b的形式,然后再按照乘法的规则进行计算。

五、有理数的比较有理数的比较可以用大小符号表示,大于号表示“大于”,小于号表示“小于”,等于号表示“等于”。

有理数大小的比较规则如下:(1)同号的数,绝对值大的数大。

(2)异号的数,正数大于负数。

六、有理数的绝对值有理数的绝对值表示数与零点的距离。

有理数a的绝对值记作|a|,它的值分两种情况讨论:(1)若a≥0,则|a|=a。

(2)若a<0,则|a|=-a。

七、有理数的分数和小数互换将分数转换为小数,只需将分子除以分母即可。

例如4/5可以转换为0.8。

将小数转换为分数时,要将小数化为分数的形式,例如0.8可以转换为4/5。

以上就是七年级有理数的所有知识点,希望对大家的学习有所帮助。

初一数学有理数知识点总结

初一数学有理数知识点总结

初一数学有理数知识点总结有理数是初中数学学习的重要基础,它包括整数和分数。

掌握有理数的基本概念、性质、运算法则对于后续数学学习至关重要。

以下是初一数学有理数的知识点总结:1. 有理数的定义:有理数是可以表示为两个整数的比的数,即形式为\( \frac{p}{q} \)的数,其中p和q都是整数,且q不等于0。

2. 有理数的分类:有理数可以分为正有理数、负有理数和零。

正有理数是分子和分母同号的分数,负有理数是分子和分母异号的分数,零可以看作是分子为0的分数。

3. 有理数的性质:- 封闭性:有理数的加、减、乘、除(除数不为零)运算结果仍然是有理数。

- 有序性:有理数可以比较大小,正有理数大于零,零大于负有理数,正有理数大于负有理数。

- 可加性:任意两个有理数相加仍然是有理数。

- 可乘性:任意两个有理数相乘仍然是有理数。

4. 有理数的运算法则:- 加法:同号有理数相加,取相同符号,绝对值相加;异号有理数相加,取绝对值较大的数的符号,绝对值相减。

- 减法:减去一个数等于加上这个数的相反数。

- 乘法:同号得正,异号得负,绝对值相乘。

- 除法:除以一个数等于乘以这个数的倒数。

5. 有理数的运算律:- 交换律:加法和乘法都满足交换律,即a+b=b+a和ab=ba。

- 结合律:加法和乘法都满足结合律,即(a+b)+c=a+(b+c)和(ab)c=a(bc)。

- 分配律:乘法对于加法满足分配律,即a(b+c)=ab+ac。

6. 有理数的比较大小:- 正数大于零,零大于负数。

- 两个负数比较大小,绝对值大的反而小。

7. 有理数的四则运算:- 先算乘除,后算加减。

- 同级运算,从左到右进行。

- 有括号的先算括号里面的。

8. 有理数的化简:- 化简分数,使分子和分母没有公因数。

- 化简带分数,将带分数转换为假分数。

9. 有理数的近似计算:- 四舍五入法:根据需要保留的小数位数,从该位数的下一位开始,四舍五入得到近似值。

通过以上知识点的学习和掌握,可以为进一步的数学学习打下坚实的基础。

有理数的46个知识点总结

有理数的46个知识点总结

有理数的46个知识点总结一、有理数的概念。

1. 有理数的定义。

- 有理数是整数(正整数、0、负整数)和分数的统称。

例如,5是正整数属于有理数,-3是负整数属于有理数,(1)/(2)是分数属于有理数。

2. 有理数的分类。

- 按定义分类:有理数可分为整数和分数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数,如0.25(有限小数),0.3̇(无限循环小数)。

- 按正负性分类:有理数可分为正有理数、0、负有理数。

正有理数包括正整数和正分数,负有理数包括负整数和负分数。

3. 有理数与无理数的区别。

- 无理数是无限不循环小数,如π、√(2)等,而有理数是整数或分数。

有理数可以表示为两个整数之比,无理数则不能。

二、有理数的数轴表示。

4. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

原点表示0,原点右边表示正数,原点左边表示负数。

5. 有理数在数轴上的表示。

- 每一个有理数都可以用数轴上的一个点来表示。

例如,3在原点右边3个单位长度处, -2在原点左边2个单位长度处。

6. 数轴上点的移动规律。

- 向右移动为加,向左移动为减。

如点A表示2,向右移动3个单位长度后表示2 + 3=5;向左移动4个单位长度后表示2-4 = - 2。

三、相反数。

7. 相反数的定义。

- 绝对值相等,符号相反的两个数互为相反数。

例如,3和 - 3互为相反数,0的相反数是0。

8. 相反数的性质。

- 互为相反数的两个数相加为0,即a+(-a)=0。

如5+( - 5)=0。

- 在数轴上,互为相反数的两个数位于原点两侧,且到原点的距离相等。

四、绝对值。

9. 绝对值的定义。

- 一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,|3| = 3,| - 2|=2,|0| = 0。

10. 绝对值的性质。

- | a|≥slant0,即绝对值是非负的。

- 若| a|=| b|,则a = b或a=-b。

初中数学有理数常考必考知识点总结

初中数学有理数常考必考知识点总结

初中数学有理数常考必考知识点总结一、有理数的概念和性质有理数是整数和分数的统称,包括正数、负数和零。

有理数具有以下性质:1.有理数可以通过有限次四则运算(加、减、乘、除)得到。

2.有理数可以表示为分数形式,其中分子和分母都是整数。

3.有理数可以进行大小比较,即两个有理数可以比较大小,可以用“<”、“>”或“=”来表示大小关系。

二、有理数的加法和减法1.有理数的加法:同号相加,异号相减。

2.有理数的减法:减去一个有理数等于加上它的相反数。

三、有理数的乘法和除法1.有理数的乘法:同号得正,异号得负。

2.有理数的除法:除以一个非零有理数等于乘以它的倒数。

四、有理数的大小比较1.两个正数比较大小时,数值大的数较大。

2.两个负数比较大小时,数值小的数较大。

3.一个正数和一个负数比较大小时,数值大的正数较大。

4.两个正数或两个负数的绝对值相等时,数值大的数较大。

五、有理数的绝对值1.正数的绝对值等于它本身。

2.负数的绝对值等于它的相反数。

3.零的绝对值等于零。

六、有理数的数轴表示和相反数1.数轴可以用来表示有理数,数轴上每个点都对应一个唯一的有理数。

2.数轴上的零点是原点,正数在原点右侧,负数在原点左侧。

3.有理数的相反数表示为在数轴上关于原点对称的点。

七、有理数的四舍五入1.对于正数,四舍五入分两种情况:如果小数部分大于等于5,则整数部分加1;如果小数部分小于5,则保留整数部分。

2.对于负数,四舍五入的规则与正数相同,但是整数部分需要减去1八、有理数的分数表示1.有限小数可以表示为分数形式,将小数部分的每位数作为分子,分母为10的幂次(1、10、100等),最后将分子和分母化简。

2.循环小数也可以表示为分数形式,将循环部分的每位数作为分子,分子为循环节的位数,分母为9的幂次减1的值,最后将分子和分母化简。

九、有理数的实际应用1.温度计上的温度可以是正数、负数和零。

2.银行账户的余额可以是正数、负数和零。

初一数学有理数知识点归纳

初一数学有理数知识点归纳

初一数学有理数知识点归纳1. 有理数的定义有理数是可以表示为两个整数的比的数,包括正整数、负整数、零以及分数。

2. 有理数的表示有理数可以用分数表示,分子和分母都是整数,并且分母不为零。

3. 有理数的比较3.1 比较运算符有理数的比较可以使用以下运算符进行:小于(<)、大于(>)、小于等于(<=)、大于等于(>=)和等于(==)。

### 3.2 比较规则当两个有理数进行比较时,按照数轴上的大小关系来比较。

对于两个数a和b,如果a在b的左边,则a小于b;如果a在b的右边,则a 大于b。

当a等于b时,a等于b。

4. 有理数的四则运算4.1 加法有理数的加法遵循以下规则: - 正数加正数,结果为正数; - 负数加负数,结果为负数; - 正数加负数,结果的符号由绝对值大的数决定; - 零加任何数,都等于这个数本身。

4.2 减法有理数的减法可以通过加法来实现。

将减数取相反数,然后使用加法进行运算。

4.3 乘法有理数的乘法遵循以下规则: - 正数乘正数,结果为正数; - 负数乘负数,结果为正数; - 正数乘负数,结果为负数; - 零乘任何数,都等于零。

4.4 除法有理数的除法可以通过乘法来实现。

将被除数乘以除数的倒数,即可得到商。

5. 有理数的约分有理数可以进行约分,即将分数的分子和分母同时除以一个相同的数,得到一个等价的分数。

6. 有理数的逆元有理数a的逆元是指一个有理数b,满足a与b的乘积等于1。

对于非零有理数a,其逆元可以表示为1/a。

7. 有理数的绝对值有理数的绝对值表示这个数的大小,忽略符号。

对于一个非负数,其绝对值等于其本身;对于一个负数,其绝对值等于其去掉符号后的值。

8. 有理数的倒数有理数的倒数表示这个数的倒数值。

对于一个非零有理数a,其倒数表示为1/a。

9. 有理数的平方根对于一个正有理数a,其平方根表示为一个有理数b,满足b的平方等于a。

10. 有理数在数轴上的表示有理数可以用数轴上的点来表示。

初中数学有理数知识模块归纳总结(精选5篇)

初中数学有理数知识模块归纳总结(精选5篇)

初中数学有理数知识模块归纳总结(精选5篇)第一篇:初中数学有理数知识模块归纳总结初中数学有理数知识模块归纳总结第一章有理数1,2,3~~叫做自然数。

包括0和正整数。

⎧自然数:数0,⎪+”(读作“正”)号,通常可以省略不写。

⎪正数:大于零的数叫做正数。

正数前面常有“⎪复数:小于零的数,叫做负数,负数用“—”号标记(读作“负”)⎪⎪零既不是正数,也不是负数;它是正负数的分界线。

⎪整数:正整数、0、负整数统称整数。

⎪⎪分数:正分数、负分数统称分数⎪1、有理数的概念⎨有理数:整数和分数统称有理数。

⎪⎪无理数:无限不循环小数称为无理数。

⎪数轴:规定了原点,正方向和单位长度的直线叫做数轴。

(数轴三要素:原点,正方向和单位长度)⎪⎪相反数:在数轴上,原点左、右两边到原点距离相等的点所表示的有理数,只有符号不同,这样的一对数互为相反数。

⎪11⎪例如:6与-6,与-等。

(a的相反数是-a,这里a可以是正数、负数或0。

当a=6时,-a=-6;a=-6时,-a=(--6)=6。

⎪44⎪0的相反数是0,)⎩⎧⎧⎧⎧正奇数⎪⎪⎪正整数⎨|⎧⎧正整数⎪⎪⎩正偶数⎪⎪正有理数⎨⎪|⎪整数⎪零⎨⎩正分数⎪⎪⎪|⎪⎪⎪⎪2、有理数的分类⎨按整数和分数的关系分类⎨负奇数按正数、零和负数的关系分类⎨零⎪负整数⎧|⎨⎪⎪⎪⎪负偶数负整数⎩⎩⎪⎪⎪负有理数⎧|⎨⎪⎪⎪⎩负分数⎧正分数⎩|⎪⎪分数⎨⎪⎪⎩负分数⎩⎩1⎧⎪倒数:乘积为1的两个数互为倒数。

一般的,a的倒数为a,其中a≠0。

(0没有倒数,倒数等于它本身的数只有±1,乘⎪⎪积为-1的两个数互为互倒数。

)⎪绝对值:数轴上表示a的点与原点的距离,叫做数a的绝对值,记作|a|。

正数的绝对值是它本身;负数的绝对值是⎪⎪⎧a(a>0)⎪⎪0的绝对值是0,即:|a|=⎨0(a=0)⎪它的相反数;⎪-a(a<0)⎪⎩⎪⎪(任意有理数a的绝对值永远是非负数,或者说|a|≥0,0是绝对值之中最小的数;⎪-a|;⎪互为相反数的两个数的绝对值相等。

人教版初中数学知识点总结(精华)(最新最全)

人教版初中数学知识点总结(精华)(最新最全)

初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版)一、数的性质与运算1. 自然数与整数自然数是大于等于0的整数,而整数包括正整数、负整数和0。

2. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。

3. 实数实数包括有理数和无理数,可以用数轴表示。

4. 数的分类与运算规律数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。

二、代数表达式与简单方程1. 代数表达式代数表达式是用数、字母和运算符号表示的数学式子。

2. 同类项与合并同类项同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。

3. 方程与解方程方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。

三、平面图形与坐标系1. 点、直线、线段与射线点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。

2. 角与三角形角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。

3. 坐标系与坐标坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。

四、比例与相似1. 比例和比例的性质比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。

2. 类比与相似类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。

3. 相似三角形与比例定理相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。

五、数与代数1. 分式与整式分式是由分子和分母构成的,整式则不包含分式。

2. 一元二次方程与解方程一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。

六、函数与图象1. 函数的概念与函数的图象函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。

初中数学基础之有理数

初中数学基础之有理数

初中数学基础之有理数初中数学基础知识点总结之有理数1、数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

2、绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

3、有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

4、实数:①实数分有理数和无理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学有理数知识点总结(精华) 有理数
1、有理数的分类: ① ⎪⎪⎩
⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ⇔ a+b=0 .
4、.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)
0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;
5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a
1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数
(2)有理数减法法则::减去一个数等于加上这个数的相反数
(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;
②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘
(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;
②除以一个不为0的数,等于乘以这个数的倒数
7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;
(2)乘法的结合律:(ab )c=a (bc );
(3)乘法的分配律:a (b+c )=ab+ac .
8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数
(2)数轴上的点表示的有理数,左边的数总比右边的数小
(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小
(4)两数相乘(或相除),同号得正 > 0,异号得负 < 0
9、有理数乘方的法则:(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a
n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .
10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一
位的数,这种记数法叫科学记数法.
11、非负数的性质:若02=++c b a ,则000===c b a 且且。

相关文档
最新文档