跨临界循环二氧化碳制冷系统论文
两级节流跨临界CO2引射制冷系统性能模拟及实验研究
两级节流跨临界CO2引射制冷系统性能模拟及实验研究CO2作为一种天然制冷剂,其ODP值为0、GWP值为1,非常符合我们对环境保护的要求。
传统跨临界二氧化碳制冷系统压力高,节流损失较大,因此提升系统COP意义重大。
本文采用针阀和引射器两种节流装置对系统进行两级节流,其中第一节流装置用来控制高压侧压力,第二节流装置控制蒸发温度并回收部分膨胀功。
本文主要对系统中的第二节流装置引射器进行了数值模拟和实验研究,研究了不同工况条件下的系统性能,分析了系统性能的影响因素;实验对比了第二节流装置采用引射器和使用传统节流装置对系统性能的影响。
本文使用ANSYS CFX对不同尺寸的引射器内部流动及性能进行了数值模拟,分别模拟了不同引射器进口压力条件下引射器内部速度场、温度场、压力场及引射比。
模拟结果表明:二氧化碳在引射器中速度整体上呈先增加后减小的趋势;压力、温度在第二喷嘴喉部处出现快速下降;对喷嘴距分别为0mm、9mm、15mm 的引射器内部的速度分布、压力分布、温度分布及引射比等参数的模拟。
结果表明,喷嘴距为9mm时引射器的引射比最大。
同时,对混合室长度分别为92mm、124mm的引射器模拟结果表明,混合室长度为124mm的引射器性能高于于混合室长度92mm的引射器性能。
实验数据表明,在固定蒸发压力和气冷器出口温度时,压缩机功耗随排气压力的增加呈增加趋势,制冷量及系统性能系数随排气压力的增加呈先增加后减小的趋势,在排气压力为9MPa时系统性能达到最值。
对于不同的工况条件,系统性能系数随喷嘴距的增加呈先增加后减小的趋势,在喷嘴距为9mm时系统性能系数取得最大值。
混合室长度分别为92mm、124mm的引射器实验数据表明,使用混合室长度为124mm引射器的系统性能系数大于混合室长度92mm引射器的系统性能系数。
这些结论与数值模拟结论是一致的,但引射器引射比模拟值要高于实验值。
引射器节流与传统节流的比较结果表明,在相同的实验工况条件下,使用引射器节流装置减少了的二氧化碳节流损失,提升了二氧化碳制冷系统性能。
CO2跨临界循环在热泵热水器中的应用研究
CO2跨临界循环在热泵热水器中的应用(郑州轻工业学院机电工程学院)摘要全球正面临着严重的温室效应和臭氧层破坏问题,各国都致力于研究出氟利昂的替代制冷剂。
CO2是一种天然工质,它优于其它常用制冷剂的性能表现正好符合现在的环境要求,是热泵热水器系统最具潜力的替代工质之一。
分析目前市场上出现的各种热水供应设备,将CO2和其他制冷剂做性能比较,给出了CO2跨临界循环的典型流程和特点;对CO2跨临界特性、设备的开发以及循环的可靠性和安全性进行综合分析。
说明CO2跨临界循环在热泵热水器中应用的优越性,以及该技术在国内的应用前景和方向。
关键词二氧化碳跨临界循环热泵热水器A Study on The Application of CO2 Transcritical Cycle inHeat Pump Water Heater(College of Mechanical and Electrical Engineering in Zhengzhou University of LightIndustry)Abstract We are facing serious whole world green-house effect and the ozone layer destroyed in recent years, every country is focusing on the research of a replaced refrigerant of the HFC.CO2is a natural substance, it has a more excellent performance than the other refrigerants, which is competent for the enviromental request nowadays. So it can be the most potential refrigerant in heat pump water heater to replace the HFC. By analysing a series of devices, providing hot water, saled in the markets, and comparing CO2 with the the other refrigerants, this article tells the typical diagram and the characteristic of the CO2transcritical cycle and anlyses the properties of CO2refrigeration transcritical cycle, the equipment exploitation and the security and reliability of the CO2transcritical system.The aim is to introduce the superiority of the application of CO2 transcritical cycle in heat pump water heater, and tell us the potentiality and the direction of CO2 transcritical cycle technology in China. Keywords CO2 transcritical cycle heat pump water heater0前言二氧化碳作为制冷剂已经超过100年。
二氧化碳制冷循环的应用
二氧化碳制冷循环的应用【摘要】随着经济发展和人们环境保护和节能意识的增强,以CO2为代表的自然工质越来越广泛的在制冷空调行业应用,文章对CO2制冷循环有关问题进行探讨,以便实际应用。
【关键词】二氧化碳跨临界循环制冷系统原理应用The Application of Carbon Dioxide Refrigeration cycleBy Gao Xinhua* Gao yun【Abstract】With the development of economy and the people’s increasing care about environment protection and energy-saving, carbon dioxide as a natural refrigerant has been widely used in refrigeration and air-conditioning industries. This essay tries to study and discuss carbon dioxide refrigeration cycle and system principle to help its practical application.【New words】carbon dioxide transcritical cycle refrigeration system principle application随着经济发展和人民生活水平的提高,人们的环保节能意识不断增强,制冷空调行业制冷工质的选择也越来越重视工质的环保节能特性。
以CO2和NH3为代表的自然工质制冷系统已经大量应用,本文试对CO2为工质的制冷循环进行探讨,以利实际应用。
1. CO2 制冷工质的特性1.1环保特性。
CO2 制冷工质属于环保型制冷工质,它的破坏臭氧层潜能值ODP=0,地球温室效应潜能值WMP=1。
跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究
跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究一、本文概述随着全球能源需求的不断增长和环境保护的日益紧迫,高效、清洁的储能技术已成为能源领域的研究热点。
跨临界压缩二氧化碳储能系统作为一种新型的储能技术,具有储能密度高、系统效率高、环境友好等优点,因此受到了广泛关注。
本文旨在深入研究跨临界压缩二氧化碳储能系统的热力学特性及技术经济性,为其在实际应用中的推广和优化提供理论依据和技术支持。
本文将首先介绍跨临界压缩二氧化碳储能系统的基本原理和工作流程,包括压缩、储存、释放和膨胀等关键步骤。
在此基础上,本文将重点分析该系统的热力学特性,包括能量转换效率、热损失、系统稳定性等方面,并通过理论计算和实验验证相结合的方法,探究不同操作条件对系统性能的影响。
本文还将对跨临界压缩二氧化碳储能系统的技术经济性进行评估。
通过构建系统的成本模型和经济分析框架,综合考虑设备投资、运行维护、能源价格等因素,评估该技术在不同应用场景下的经济竞争力。
本文还将探讨如何通过技术创新和系统优化,降低储能成本,提高系统效率,从而推动跨临界压缩二氧化碳储能技术的商业化应用。
本文将对跨临界压缩二氧化碳储能技术的发展前景进行展望,分析其在可再生能源并网、智能电网建设、分布式能源系统等领域的应用潜力,并提出相应的政策建议和研究方向,以促进该技术的持续发展和广泛应用。
二、跨临界压缩二氧化碳储能系统热力学特性研究跨临界压缩二氧化碳储能系统是一种新型的储能技术,其热力学特性研究对于系统的优化设计和运行至关重要。
本研究主要围绕跨临界压缩二氧化碳储能系统的热力学特性展开,深入探讨了其在不同工况下的性能表现。
我们建立了跨临界压缩二氧化碳储能系统的热力学模型,详细描述了系统中各组件的工作原理和热力学过程。
通过对系统内部能量的转换与传递过程进行分析,揭示了其在能量存储和释放过程中的热力学本质。
我们利用热力学模型对系统在不同工况下的性能进行了模拟分析。
通过改变系统的运行参数,如压力、温度等,观察了系统性能的变化趋势。
跨临界二氧化碳制冷技术现状研究
)
)&!
制冷系统设备设计进展
制冷压缩机 制冷压缩机对整个系统的效 率 和 可 靠 性 影 响 最
#776年6月 (总 >$ 期) 第 #$ 卷第 # 期
制
冷
具有较大的潜力。
"!
性和振动特性;瑞士的苏黎世大 学 对应 用 在 家庭 热 水器上的半封闭小型无油活塞式 压缩 机 进 行了 开 发 研究,气缸容积仅为 ! " #$%&’ ;日本 ()*+*, 设 计 开 发了 -.# 摆动活塞压缩机,用于 -.# 冷媒热 水 器 和 汽车 空 调; 还 有 日 本 /)0-./ 公 司 推 出 的 -.# 单 级螺杆压缩机,主要应用于 冷冻、 空 调系 统, 整 个 机组的设计是冷热同时利用,压 缩 机 的排 气 用 来加 热热水,机组设油水蓄热槽,低温 -.# 用于制冷。 国内对跨临界循环技术的研 究 也已 经 开 始, 但 起步相对较晚,且大多数以理论 分析 为 主。 西安 交 通大学、长沙铁道学院等对 -.# 跨临界 循 环 系统 进 行了理论分析和研究;天津大学 在国 家 自 然科 学 重 点基金的资助下,对 -.# 跨临界循环系 统 在 热泵 中 的应用进行了理论和试验研究, 并建 立 了 热泵 试 验 台;上海交通大学车用空调工程 中 心 与上 海 易 初通 用机器有限公司合作,在上汽集 团 的 支持 下, 开 展 了 -.# 跨临界循环应用于汽车空调 的 研制。 但 有 关 -.# 压缩机的研究,目前的报道还较少。 1"# 热交换器 -.# 汽车空调系 统 热 交 换 器 包 括 蒸 发 器、 气 体 冷却器和吸气热交换器,占有整 个 系统 质 量 的一 半 及大部 分 体 积, 具 有 高 效、 紧 凑、 重 量 轻 的 特 点, 以满足汽车空调的特殊要求。 1"#"! 气体冷却器 制冷循环中的散热由气体 冷却 器 完 成, 其作 用 相当传统制 冷 循 环 中 的 冷 凝 器。 在 气 体 冷 却 器 中, 二氧化碳工作在超临界状态下, 始 终处 于 气 态, 并 不发生一般冷凝器中的冷凝液化过 程。 受 二 氧化 碳 物性的制约,空气冷却器中制冷 剂 侧压 力 很 高,达 2 " 1 3 !# /45 左 右。 另 外, 由 于 二 氧 化 碳 处 于 超 临 界状态,出口温度独立于出口压 力, 使 它可 以 有 较 大的压降。因此,制冷剂侧往往 设 计 成较 大 的 流量 密度 (677 3 !#7789&
跨临界二氧化碳汽车空调系统的研究与分析
[ y r s C b ndo ie C osst arfiea o c ; tmo i r o dt nn ytm Kewod ] a o i d; rs-ril e gr inc l Auo blAic n io igS se r x ic r t ye e - i
L u J a g a LO u s a o in y n Uh ah n (. p. f uo bl E gn eig ,Gu g i nv ri f e h oo y 1 De t o A tmo i n ie r e n n a x ies yo T n lg ,L u h u, 5 0 : U t c i o 5 0 6 z 4
O 引言
随温 室效 应和 环境 污染 问题 的 日益 加剧 , 们 人
1 C2 o跨临界制冷循环
图l C 2 是 O 跨临界制冷循环原理图,图 ( ) a 中压 缩机 、蒸 发器 、节 流 机 构 的作用 与普 通制 冷 循 环 系统相 同, 体冷 却器 的 作用 相 当于普 通 制冷 循 气
跨 临界 二氧 化碳汽 车空调 系统 的研 究与分析
楼 江 燕 楼 华 山
(. 西工学院汽车工程 系 柳 州 55 0 2柳 州职 业技 术 学院 柳 州 550 ) 1广 4 06;. i 406
【 摘
引起 要 】 随温 室效应 日益加剧 ,二氧化碳制冷 剂重新回到人们 的视野, 广泛关注 。介绍 了跨 临界二氧化 碳汽车 空调系统 的组 成及 热力循环模 型,并阐述 了系统 主要 部件压缩机 、气体冷却器 、蒸发器、
第 2 2卷 第 6期 20 0 8年 1 2月
制 冷 与 空 调
Re rg r to n r n i o i g fi e ai n a dAi Co dt n n i
二氧化碳跨临界循环的理论分析与研究
二氧化碳跨临界循环的理论分析与研究乔丽李树林西安建筑科技大学710055摘要:本文主要对自然工质二氧化碳的替代进行研究。
对其热力性质、循环特性进行分析研究,以求进一步完善R744循环。
关键词:自然工质跨临界循环热泵气体冷却器Theoretical Studies and analysis on Transcritical CO2 CyclesAbstract: This paper studies the CO2which one of natural refrigerant, analyzes its thermal properties, the character of CO2 cycle, to make transcritical CO2 cycle more perfectly.Keywords: natural refrigerant, transcritical system, heat pump, gas cooler1前言当前环境问题已成为一个重要的全球问题,其中臭氧层破坏和温室效应问题直接关系到人类的健康和生存,引起了人们的高度重视。
在制冷及热泵装置中广泛使用的CFCs、HCFCs工质是引起臭氧层破坏的主要原因,而且,这些工质为温室气体,已列入逐步被淘汰之列。
制冷空调行业为了适应CFCs和HCFCs制冷工质的淘汰,纷纷转轨使用HFCs,人们一直认为HFCs 是CFCs制冷工质的长期替代物。
现在《京都议定书》又将HFCs列入了温室气体清单中,要对它们的排放加以控制。
国内外制冷空调行业均在探索如何总结历史经验,寻求正确、科学地解决由于环保要求提出的制冷工质替代问题,力争少走弯路。
为了应对环保要求的挑战,在寻找、开发替代制冷工质的过程中,逐渐形成了两种替代路线:即以美国、日本为首的国家仍主张使用HFCs[1],包括开发纯组分的新一代制冷工质或二元、三元共沸和非共沸混合物;德国、瑞士等欧洲国家主张使用自然工质,包括HCs、CO2、NH3等。
二氧化碳跨临界制冷循环
二氧化碳跨临界制冷循环摘要:CO2是一种环保型的自然工质,它对臭氧层不产生任何破坏作用且具有较小的温室效应。
本文概述跨临界C02制冷循环的原理,提出几个影响该循环的技术关键。
介绍跨临界CO2循环的相关应用领域,指出CO2作为性能良好的自然工质有着很好的发展前景。
关键词:二氧化碳;制冷;跨临界循环引言由于制冷剂中氯原子对大气臭氧层有破坏作用,《蒙特利尔协议》规定R12 等CFCS(氯氟碳)在制冷工质中被禁用,危害程度较小的R22 等HCFCS(氢氯氟碳)的禁用日期也一再提前。
目前已获应用的R134a,R410A,R407C 等HFCS (氢氟碳)仍是一类新的化学合成物,它们不仅制造成本昂贵,而且已被证明能产生较为严重的温室效应。
另外,随着研究的深入,有可能证明HFCS 在其它方面也有危害。
因此,在制冷系统中对地球生物圈中原来就有的“自然工质”进行研究,已成为近年来的前沿课题之一。
二氧化碳(R744)目前被称作是一种被遗忘的制冷剂,它在19世纪被广泛地使用,从20世纪30年代后被冷落。
现在,大家认为:已经到了使用现代的高新技术重新利用二氧化碳的时候了。
1.CO2制冷二氧化碳基本上不会引起环境问题,它无毒不燃,具有氨和烃类制冷剂所不可及的一些优点。
另外它价廉,与一般的制冷设备和润滑系统都相容。
它可以高度压缩,因此可以利用先进设备及设计大大减小压缩机的体积和管道直径。
它在高压下良好的传热效果是该制冷剂的另一个优点。
总而言之,在满足制冷要求的情况下,使用二氧化碳制冷剂可以大大降低设备的投资。
2.工作原理跨临界蒸汽压缩式制冷循环是利用气体液化后可吸收蒸发(汽化)潜热的特性以达到制冷的目的。
跨临界系统由压缩机C ,气体冷却器G ,内部热交换器I,节流阀V ,蒸发器E 与储存器A组成封闭回路,以CO2为工作介质,气体工质在压缩机C 中升压至超临界压力P2,在T 一S 图上为过程1一2 ,然后进入气体冷却器G 中,被冷却介质(空气或冷却水)所冷却。
商用制冷应用的二氧化碳跨临界制冷系统开发
商用制冷应用的二氧化碳跨临界制冷系统开发摘要本文探讨了一种商用制冷应用的二氧化碳跨临界制冷系统的开发。
二氧化碳作为环境友好型的自然冷媒已经成功的应用于商用制冷领域,在多种复杂的场合发挥着重要的作用,其应用系统型式多样。
首先,本文对传统制冷系统的不足进行了简要介绍,并提出了采用二氧化碳跨临界制冷系统的优点。
随后,本文详细介绍了该系统的设计原理、工作流程和关键组成部分,包括压缩机、冷凝器、蒸发器和节流阀等。
然后,本文对该系统的性能和效果进行了分析和评估,实验结果表明该系统具有较高的制冷效率和环保性能。
最后,本文讨论了该系统的未来发展方向和展望,并总结出本文的研究结论。
通过本论文的研究,我们可以发现二氧化碳跨临界制冷系统是一种非常优秀的制冷系统,可以提高制冷效率和降低环境污染,具有广阔的应用前景和市场潜力。
本文介绍了CO2跨临界制冷循环系统研究发展过程,针对系统主要部件的研究及问题进行了分析,总结了CO2跨临界制冷循环系统在商用食品冷冻冷藏、汽车空调、热泵系统、人工冰场等领域应用研究现状,并且展望了CO2跨临界制冷循环系统的发展前景。
关键词:二氧化碳,跨临界制冷系统,商用制冷引言随着全球环境问题的日益严重和能源价格的不断攀升,制冷系统的节能和环保已经成为制冷技术发展的主要方向。
二氧化碳跨临界制冷系统是一种新型的高效、环保的制冷系统,其具有较高的热效率和较低的环境污染,已经成为了制冷技术领域的研究热点。
本文基于此,介绍了一种商用制冷应用的二氧化碳跨临界制冷系统,并对其进行了详细的设计、分析和实验研究。
一、基本原理二氧化碳跨临界制冷系统是一种基于二氧化碳的制冷技术,其原理基于二氧化碳在超临界状态下具有较高的压缩性、传热性和流动性能。
超临界状态是指当二氧化碳的压力和温度超过了其临界点(7.38 MPa和31.1℃)时,二氧化碳就处于超临界状态。
二氧化碳跨临界制冷系统的基本组成部分包括压缩机、换热器、膨胀阀和冷凝器等。
国家速滑馆超大冰面二氧化碳跨临界制冷系统关键技术研究和示范应用
国家速滑馆超大冰面二氧化碳跨临界制冷系统关键技术研究和示范应用-概述说明以及解释1.引言1.1 概述在这篇长文中,我们将详细讨论国家速滑馆超大冰面二氧化碳跨临界制冷系统的关键技术研究和示范应用。
本文旨在探究该系统的技术特点、实验结果以及其对相关领域的意义和影响。
超大冰面二氧化碳跨临界制冷系统是一种基于二氧化碳(CO2)的制冷技术。
该系统以国家速滑馆的冰面为应用背景,利用CO2作为制冷剂,通过跨临界制冷技术来实现冰面的保持和控制。
在本文接下来的章节中,我们将详细介绍国家速滑馆超大冰面二氧化碳跨临界制冷系统的技术原理和关键技术要点。
首先,我们将对该系统的整体结构和各个组成部分进行介绍,包括CO2的选择、制冷装置的设计和系统控制策略等。
随后,我们将重点关注该系统的关键技术研究,包括CO2的适应性研究、系统运行参数的优化以及设备的安全性研究等方面。
在示范应用章节中,我们将介绍该系统在国家速滑馆的实际运行情况,并分析其效果和优势。
最后,本文将对研究成果进行总结,并展望该技术在未来的应用前景。
我们还将探讨该系统对相关领域的意义和影响,例如在大型体育场馆的节能与环保方面的推广价值。
此外,我们还将提出一些后续研究方向,以期进一步完善该系统的性能和应用范围。
通过本文的撰写和研究,我们将深入了解国家速滑馆超大冰面二氧化碳跨临界制冷系统的技术特点和应用价值,为相关领域的技术发展和推广提供重要参考。
1.2文章结构1.2 文章结构本文主要通过对国家速滑馆超大冰面二氧化碳跨临界制冷系统的关键技术进行研究和示范应用,以期达到以下几个目的。
首先,引言部分将对文章的背景和意义进行概述,说明本研究的重要性。
其次,正文部分将详细介绍国家速滑馆超大冰面二氧化碳跨临界制冷系统的整体结构、工作原理和关键技术的研究内容。
其后,我们将展示该系统在实际应用中的示范效果,并进行结果和讨论。
最后,结论部分将对本研究的成果进行总结,并展望该技术在未来的应用前景和对相关领域的意义和影响。
CO2制冷剂及其跨临界循环系统的开发与研究
质的物质, 如水、 空气、 氮、 氦、 碳氢化合物、 氨和二氧化 碳等都大量存在且均可作为制冷剂。低沸点物质, 即
行的主要内容如下:
该领域的研究同样 由挪威 S T F研究所的 IE N P es, ts Nk Jeeo a Ptr n等人率先发起 ,德 国的 Jol , Kh r e P e , hi, u 等人对 c : Hy ES md H r e l Lc t K s o 跨临界循环在 热泵干燥方面应用的可行性、在热泵供热系统中的应 用前景进行了分析与讨论, 并认为 C : O 热泵在该领域 的使用不仅能有效地减少 C : O 的排放, 而且热泵性能
,
.
J.
万方数据
1
j
. .
.
N .瓜〔 o1 幻5
. .
总第11 第2勒 0翔 6
专题研讨
验等多方面进行了全面的研究与探索。他们的研究结 果都表明:O 跨临界循环用于车辆空调, C: 不仅具有环 境方面的优势, 而且系统效率也具有提高的潜力。 2. .2在各种热泵中的应用,尤其是在热泵热水器方 2
如氨、 碳氢化合物、0、 空气等物质。 C2 水、 1 H C 类制冷剂替代过程中存在的问 . Fs 1 题
本世纪 3 0 04 年代,F s H F s C 和 C C 制冷剂一经 C
出现, 就能够淘汰 C : O 等老式制冷剂, 迅速占领大部 分市场, 关键在于在经过了广泛的物性测试后, 安 以“ 全无毒性”作为其优点的有力证据下才开始投入使用 的。但到了本世纪 8 年代末 9 年代初, 年的使用 0 0 5 0 却产生了足够的证据表明其所谓的“ 安全无毒性” 是错 误的。这不仅在于许多人在一些特定的空间因CC Fs 或 H Fs CC 而窒息死亡, 其他人则受到其分离产物的伤 害。 也在于对大气臭氧层的损害最终导致了“ 蒙特利尔
二氧化碳跨临界制冷研究
凝器,而称为气体冷却器(简称气冷器)【8j。 跨临界制冷循环是当前C02制冷循环研 究中最为活跃的领域;
图1为典型的跨临界二氧化碳制冷系 统流程图,图1为相对应的制冷循环压一 焓图。气体工质在压缩机中压缩后压力升 至超临界压力以上。在p—h图上为过程 f—a;然后进入气体冷却器,被冷却介质 冷却(a—b过程);为提高COP,从气体 冷却器出来的气体在内部回热器中进一步 被压缩机回汽冷却(b—c和e—f过程); 再经过节流降压(c—d过程).部分气体 液化,湿蒸汽进入蒸发器汽化(d—e过 程),吸收周围介质热量而制冷。储液器
起汽液分离(蒸发器出口不过热)、补充 制冷剂等作用删。
2二氧化碳压缩机研究关键点 压缩机的安全可靠性与性能价格比。 是C02循环压缩机推广应用的关键问题 也是众多研究机构的研究的重点。 C02压缩机的进排气压力差为 5.OMPa一8 OMPa。在大压差下运行.要
求在压缩腔设计和压缩机尺寸的确定的 影响。较高的运行工作压力,并不会成为 C02作为制冷工质推广应用障碍。
三、二氧化碳压缩机的若干关键技 术问题
1润滑油问题 二氧化碳跨临界循环系统选择润滑油 面临许多困难;超临界状态的二氧化碳容
2器l_|’℃液讣凼嚣 ;, 图1 二氧化碳跨临界回热循环流程图
易溶解于润滑油中,稀释后的润滑油粘度 会大大降低;压缩机承受压力负荷较高。 润滑油膜可能会被流动的超临界状态的二 氧化碳破坏;润滑油膜可能会被溶解在润 滑油中的二氧化碳汽化所破坏;超临界状 态的二氧化碳可能会与润滑油发生化学反 应及腐蚀。
带喷射器的跨临界CO2水源热泵空调系统性能研究
带喷射器的跨临界CO2水源热泵空调系统性能研究带喷射器的跨临界CO2水源热泵空调系统性能研究随着全球气候变暖和能源消耗的增加,人们对节能环保技术的需求越来越迫切。
空调系统作为能耗较高的设备之一,其效能的提高和能源利用的优化是当前研究的重点之一。
本文将对一种新型的带喷射器的跨临界CO2水源热泵空调系统进行性能研究。
跨临界CO2水源热泵空调系统是一种结合了CO2和水源热泵技术的新型系统。
CO2作为制冷剂,具有零臭氧潜能和较低的全球变暖潜能,更加环保。
而水源热泵则利用了地下水或湖水等水源的恒定温度进行热交换,既节省了能源又减少了环境污染。
首先,对系统的热泵循环性能进行了研究。
通过数值模拟和试验验证,得到了不同工况下系统的制冷量、制热量和COP (制冷能力系数)等参数。
结果表明,在不同冷暖负荷和水源温度的变化下,该系统能够稳定地提供所需的制冷和供热能力,并且COP较传统空调系统有较大的提高。
其次,对带喷射器的系统性能进行了研究。
喷射器是一种利用高压液体使制冷剂蒸汽膨胀的装置,可以提高系统的制冷性能。
通过调整喷射器的参数,如供液量和喷射孔直径等,得到了不同喷射器工况下的系统性能曲线。
结果表明,喷射器的使用可以显著提高系统的制冷效果,减少能耗,并且对系统的运行稳定性没有明显影响。
最后,对整体系统的能源利用情况进行了综合分析。
考虑到系统在不同季节和工况下的运行需求,综合比较了该系统与传统空调系统的能源消耗情况。
结果显示,带喷射器的跨临界CO2水源热泵空调系统在绝大多数情况下具有更低的能耗,更高的能源利用效率,且更加环保。
综上所述,带喷射器的跨临界CO2水源热泵空调系统具有良好的工作性能和能源利用效果。
随着节能环保技术的不断发展,相信这种新型系统将会在未来得到广泛应用,并为人们提供更加舒适和环保的室内环境。
对于气候变暖和能源消耗问题,这将是一个重要的解决方案综合以上研究结果可以得出结论,带喷射器的跨临界CO2水源热泵空调系统具有稳定的制冷和供热能力,并且相比传统空调系统具有更高的能源利用效率和更低的能耗。
浅谈二氧化碳制冷技术
浅谈二氧化碳(2CO )制冷技术 摘 要:由于CFC 类制冷剂对臭氧层的破坏作用,大部分CFC 与HCFC 类工质将被逼退出使用。
制冷工质的替代和环保问题自然成为制冷空调行业的关注焦点。
自然制冷工质如CO 2受到越来越多的关注。
文中简述了2CO 作为制冷剂的发展历史和它退出历史舞台的原因; 根据2CO 作为制冷剂的相关热物理和化学性质以及三种可能的2CO 制冷循环,说明了采用2CO 为替代CFC 与HCFC 类工质、采用跨临界循环的优越性和必要性; 对各国采用2CO 为制冷剂的制冷、空调、热泵系统的应用及其研究情况进行了综述,浅谈研究发展的方向。
关键词:2CO 跨临界循环 工质 制冷前言:自从人类发明利用制冷设备制冷来为生活、生产和科研等服务以来,制冷剂就伴随着制冷系统和制冷技术的改进而发展。
从最初采用的O H 2、3NH 、2CO 等自然工质到上世纪30年代,CFC 与HCFC 类物质就开始大量作为制冷工质,以其优越的循环性能,很快就取代了过去的自然工质.但随着大气臭氧层空洞的出现和全球气候的变暖,人们终于认识到制冷空调行业所使用的CFC 与HCFC 类制冷剂对大气具有破坏臭氧层负作用和产生温室效应。
更在上世纪80年代发现南极上空的臭氧空洞后,世界上引发了环境问题新高潮,保护臭氧层的蒙特利尔议定书的签署正式生效,一系列CFC 与HCFC 类工质被列入受控表。
这使到全世界的制冷空调行业面临严重的挑战,CFC 与HCFC 类工质的替代早已成为当前国际性的热门话题。
今年已到2010年,根据的蒙特利尔议定,一系列受控的CFC 与HCFC 类工质在今年必须淘汰使用,制冷工质的替代问题更是破在眉睫。
面对以上问题,国内外制冷空调行业均在探索总结历史经验,寻求正确、科学、环保的制冷工质。
在环境保护与替代制冷工质的研究进程中,有学者认为选用自然工质是解决环境温度最终方案。
一批具有特定的物理性质的自然物质又开始得到了重视和研究。
跨临界循环二氧化碳制冷系统研究进展
跨临界循环二氧化碳制冷系统研究进展 Development on the Study of CO2 Transcritical CycleRefrigeration System中船重工集团公司第七O四研究所 季建刚 黎立新 蒋维钢 摘 要 二氧化碳作为一种自然制冷剂,可以根本上解决制冷系统的CFCs工质替代问题。
文章介绍了二氧化碳跨临界循环制冷系统及其关键设备—制冷压缩机、气体冷却器、蒸发器的研究进展情况。
关键词 二氧化碳 跨临界 制冷 研究进展 Abstract As a refrigerant, CO2 can basically solve the problem of CFCs replacement problem in refrigeration systems. The paper introduces CO2 transcritical cycle refrigeration system and the development on the study of its key equipment, such as refrigeration compressor, gas cooler and evaporator.Keywords CO2, transcritical, refrigeration, study development1 前言目前,制冷空调的能源与环境问题已成为世界性的研究课题。
大量使用的氯氟烃工质对于臭氧层的破坏作用很大,而且多数氯氟烃工质是温室气体,温室气体引起的气候变化是目前科技界乃至全人类极为关注的环境问题之一[1~3]。
自从蒙特利尔议定书签订以来,各国开展了寻求CFCs和HCFCs替代物的广泛研究,主要提出了包括R134a、R404a、R407c 等在内的若干HFC及其混合物来代替R12、R22 和R502等,但是人们发现新工质并没有达到“长期”替代物的要求,大部分新工质都仍具有较高的温室效应指数(GWP)或者其它缺陷。
《机械辅助过冷CO2跨临界制冷循环的热力性能分析》范文
《机械辅助过冷CO2跨临界制冷循环的热力性能分析》篇一摘要:本文对机械辅助过冷CO2跨临界制冷循环进行了热力性能分析。
通过建立数学模型,分析了循环过程中的关键参数和性能指标,探讨了过冷技术对制冷循环的影响。
研究结果表明,机械辅助过冷CO2跨临界制冷循环在热力性能方面具有显著优势,为制冷技术的发展提供了新的方向。
一、引言随着人们对节能减排和环境保护的日益关注,制冷技术的研究与发展愈发受到重视。
CO2作为一种环保型制冷工质,其跨临界制冷循环技术因其高效、环保的特点而备受关注。
本文重点研究机械辅助过冷CO2跨临界制冷循环的热力性能,以期为制冷技术的进步提供理论支持。
二、机械辅助过冷CO2跨临界制冷循环原理机械辅助过冷CO2跨临界制冷循环是指通过机械装置辅助CO2工质在跨临界状态下进行制冷的过程。
该过程中,CO2工质在高压下完成压缩、冷凝、膨胀和蒸发等过程,实现制冷效果。
机械辅助过冷技术的应用,进一步提高了制冷循环的效率。
三、数学模型建立与分析为了深入分析机械辅助过冷CO2跨临界制冷循环的热力性能,我们建立了数学模型。
该模型考虑了循环过程中的关键参数,如压力、温度、焓值等,以及机械辅助过冷技术对循环的影响。
通过模拟计算,我们得出以下结论:1. 机械辅助过冷技术能够显著提高CO2工质的冷却能力和热效率;2. 循环过程中的压力和温度变化对制冷效果具有重要影响;3. 适当调整循环参数,可以进一步提高制冷循环的效率。
四、过冷技术对制冷循环的影响过冷技术是指通过降低工质温度,使其在蒸发过程中吸收更多热量,从而提高制冷效果。
在机械辅助过冷CO2跨临界制冷循环中,过冷技术的应用进一步提高了工质的冷却能力和热效率。
具体表现在以下几个方面:1. 提高蒸发过程中的吸热量:过冷技术使得CO2工质在蒸发过程中吸收更多热量,从而提高了制冷效果;2. 优化循环过程:过冷技术有助于平衡循环过程中的压力和温度变化,使循环更加稳定;3. 提高能效比:通过过冷技术的应用,机械辅助过冷CO2跨临界制冷循环的能效比得到了显著提高。
二氧化碳工程机械论文
二氧化碳工程机械论文一、二氧化碳制冷优势及其应用现状1二氧化碳制冷应用现状二氧化碳制冷目前已成功应用于商业建筑、冷藏库、热泵系统、汽车空调以及工程机械等领域。
1.1商业建筑1995年瑞典成功安装了第一个二氧化碳超市制冷系统。
截至2011年,瑞典至少有180个超市采用了二氧化碳系统。
丹麦于2004年安装了第一套超市二氧化碳跨临界循环制冷系统。
2007年,泰国安装了亚洲的第一套超市二氧化碳复叠制冷系统。
1.2冷藏库目前我国食品加工与冷藏业中的大中型冷库80%都采用氨作为制冷剂。
氨有毒性,需要增加安全保护措施。
截至2005年,美国的冷库中氨仍然是一种主要的制冷剂,但二氧化碳已经在冷库制冷系统中得到实际应用。
采用二氧化碳/氨复叠式制冷系统的大型冷藏库已经投入使用。
1.3汽车空调目前汽车空调中主要采用R134a。
1996年德国生产的以二氧化碳为工质的公交客车空调投入运行。
2003年欧洲已有部分汽车装备了二氧化碳空调系统。
1.4热泵系统中的应用1994年由挪威SINTEF率先对二氧化碳跨临界循环在热泵上的应用进行了理论和实验研究。
在1995年,日本开发了二氧化碳为工质的家用热泵热水器。
2二氧化碳制冷剂优势二氧化碳是碳的最高氧化状态,具有非常稳定的化学性质,即使在高温下也不分解产生有害气体。
作为制冷剂其优点在于无毒、来源丰富、与普通润滑油相溶、容积制冷量大;同时具有优良的热力特性、安全特性和环保特性的天然制冷工质。
二氧化碳制冷剂跨临界循环的放热过程可以和变温热源相匹配,从而可得到较高的能效。
与其它制冷剂相比,二氧化碳具有下列优点2.1环境性能优良二氧化碳是自然界天然存在的物质,它的臭氧层破坏潜能(ODP)为零,温室效应潜能极小(GWP=1)。
二氧化碳大多为化工行业的副产品,用它做制冷剂正好回收了原来排向大气的废物,从而使其温室效应为零。
目前国际上已商业化使用或提出的潜在的环保工质氢氟烃(HFC)及其混合物不但会增加温室效应,还会产生其他未知的副作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跨临界循环二氧化碳制冷系统研究摘要:本文对co2跨临界制冷循环的典型流程与特点进行了阐述;并从超临界co2特性的研究、co2制冷设备的研究和开发以及co2跨临界循环系统安全和可靠性方面展开论述,分析了二氧化碳跨临界循环制冷的发展趋势。
关键词:二氧化碳;跨临界循环;制冷
中图分类号:tq116.3文献标识码: a 文章编号:
前言:
作为最早的制冷剂之一,co2在19世纪得到了广泛的应用。
到19世纪30年代,世界上约80%的船舶采用了co2制冷,但是当时的co2制冷效率不够高,功耗极大,并逐渐被同期出现的以r12为代表的氟氯烃制冷剂代替。
近年来,制冷剂对臭氧层破坏加剧,且造成了全球温室效应等诸多环保问题,co2作为制冷剂重新出现在公众视野中。
本文将对co2跨临界循环制冷的研究现状和进展进行介绍。
一、co2跨临界制冷循环流程及其特点
co2跨临界制冷循环基本流程
co2跨临界制冷系统流程图如图1所示,压缩机对气体工质进行压缩,使其压力升至超临界压力之上,(f—a过程),进而在气体冷却器内由冷却介质对其进行冷却(a—b过程);为使制冷压缩机的性能系数(cop)有所提高,在内部回热器中,压缩机将进一步对从气体冷却器中释放的气体进行回气冷却(b—c,e—f过程);最后
进行节流降压(c—d过程),部分液体发生液化,在进入蒸发器后,湿蒸气发生汽化(d—e过程)进而对附近的介质热量进行吸收,最终达到了制冷目的。
储液器的作用是进行液气分离并负责制冷剂的补充。
图1 co2跨临界制冷系统流程图
本系统的最显著特点是工质的吸热和放热过程在相对应的亚临界区和超临界区分别进行,压缩机的吸气压力要比临界压力低,临界温度高于蒸发温度,循环吸热过程依然在亚临界状态下发生,通过潜热完成换热过程。
但是临界压力低于压缩机的排气压力,所以工质的冷凝过程不同于其在亚临界状态下的过程,而是通过显热实现换热过程。
co2跨临界制冷循环特点
co2跨临界的优点
co2具有无毒、来源丰富、制冷量大等优点。
这是唯一一种天然的、兼备热力特性、环保特性、安全特性的制冷工质。
co2跨临界循环的高能效
在co2跨临界循环系统在运行状态下具有较高的工作压力,但是其压比相对较低,且压缩机的工作效率较高;在超临界状态下,流体所具备的特殊热物理性质使其在流动和换热方面具有极大的
优势,采用co2作为制冷剂使得整个制冷系统能效很高。
在气体冷
却器中,co2 有很大的温度变化,气体冷却器进口处的空气温度有可能近似接近于出口制冷剂的温度,从而减少了高压侧不可逆转传热导致的损失。
co2跨临界循环具有最好的排气压力
co2的临界点为31℃(7.38mpa),其临界温度较低,在采用跨临界循环制冷时,制冷循环的排热过程并不是一个冷凝过程,压缩机的冷却温度和排气压力分别是两个独立的数据。
通过研究表明,循环的cop随着高压侧压力的变化存在一个最大值。
所以,co2跨临界制冷循环系统在各种工况下,存在了与最大cop值相对应的最佳排气压力。
co2跨临界循环对热泵效率有提升作用
在大多数传统的空调系统中,冷凝热都被当作废热直接排放出去,这样不仅对局部环境造成了热污染,也浪费了能量。
在超临界区工质密度持续升高的情况下,循环的放热过程在面对跨临界循环必然有很大的温度滑移。
这种温度滑移匹配于与所需的变温热源,属于劳伦兹循环中特殊的一种,在将其用于热回收过程中,必然会产生很高的放热效率。
这是一种独特的优势,能较好地应用于高温和温差较大所需要的热回收。
co2这种大幅度的温度变化非常适用于水的加热,热泵的效率因此较高。
二、co2跨临界循环设备的研究和开发
在co2跨临界循环中,气体冷却器、制冷压缩机、蒸发器和膨胀机或膨胀阀是其主要设备;辅助设备包括回热器、中间冷却器和
储液器等等。
制冷压缩机
在整个系统运转中,制冷剂对其效率和可靠性影响最大。
容积效率、指示效率是压缩机工作性能的衡量指标。
在压缩过程中,这两个数值主要受气阀和气腔的压力损失、气体与气缸传热、气缸泄露等因素影响。
在诸多因素中,气缸泄露对压缩机性能影响最大。
气缸泄露分为活塞与气缸间隙泄露和出口气阀泄露,在这其中,活塞间隙泄露又是影响压缩机工作状态的最重要因素。
要降低泄露,首先要减小密封长度,然后采取有效措施进行补漏。
(二)气体冷却器
根据超临界状态下co2的特性,以紧凑式微通道换热器为中心展开对气体冷却器的研究和开发。
在超临界状态下,co2的压力较高,出口温度并不依赖于出口压力,所以较大的压降是允许的。
在超临界状态下,co2具有非常好的热传导性,因此制冷剂的流量密度设计相对较大(600—
1200kg/m2s),所采用的管径也比较小。
(三)蒸发器
制冷剂的物性特点是促使蒸发器向小管径、流量高密度和高换热系数方向发展的主要原因。
“平行流”式的蒸发器性能较高,是蒸发器今后的主要发展方向。
co2平行微管式蒸发器由平行微管、积液管和微管之间的空气肋片构成,与空气冷却器的结构形式相同。
但在蒸发器内,co2的
密度变化幅度高于气体冷却器,所以用于蒸发器的微管数相对也比较多。
(四)膨胀机
对于co2跨临界制冷循环系统来说,膨胀机的设计开发是其中比较困难的一步。
膨胀比的确定、泄露和耐压问题是需要解决的关键问题。
在膨胀机内,co2由超临界状态发生膨胀后转入液态,并进一步膨胀至气液两相区,膨胀机内co2的相态由此变化复杂,且在超临界状态下,co2的物理参数在其向液态转变时会有不稳定性,膨胀比因此很难进行确定。
通过大量的研究报告发现,co2膨胀机在其研制过程中,最关键的就在于其耐压与泄露问题的解决。
三、co2跨临界循环系统的安全与可靠性
co2制冷系统的安全性尚待我们进一步的证明。
首先要对其高压的安全性予以保障。
这要求各个系统部件和管道的设计要满足承压要求,并且在超压状况下系统运行的安全性;其次对co2和润滑油的相互作用的研究需要进一步加强,对co2和橡胶的渗透与爆发性解压作用的研究有待进一步深入,以避免泄漏问题的发生,提高系统安全性与可靠性。
四、结束语
(一)co2制冷循环系统的特点
co2是一种兼备良好的热力特性、环境特性和安全性的自然工质;co2在跨临界状态下循环运行,工作压力较高,但是压比相对
较低,压缩机也有相对较高的效率;在不同工况下,co2跨临界制冷循环中存在与最大cop值相对应的最佳排气压力;co2跨临界制冷循环用于高温和较大温差所需要的热回收具有其特有的优势。
(二)对co2特性在超临界状态下的研究
在超临界下co2特性基本特性已经得到证实与认可,但要想对co2特性在超临界状态下有更精确的掌控,大量的基础性研究工作尚需开展。
(三)对co2制冷设备和系统安全可靠性的开发与研究:
在投入了大量的研究后,co2跨临界制冷循环设备的应用日渐成熟,并逐步向商业化过渡,但仍需进一步的改进与完善。
参考文献:
[1] 武孟.二氧化碳跨临界循环特性及系统控制研究[d].中南大学,2009.
[2] 龚毅,侯峰,梁志礼等.跨临界 co2循环制冷系统的实验研究[j].制冷技术,2012,(1).
[3] 张伟江,杨亮,张春路等.二氧化碳跨临界制冷系统高压优化问题[c].//中国工程热物理学会2010年工程热力学与能源利用学术会议论文集.2010:1-10.
[4] 姜云涛,马一太,李敏霞等.二氧化碳跨临界循环系统用新型膨胀机的研发[j].制冷学报,2010,31(5):1-4.
[5] 李丽霞,姬长发,赵文秀等.co2制冷系统的技术进展[j].应用能源技术,2008
,(7):30-34.。