高一数学简单随机抽样2
简单随机抽样教学设计-高一下学期数学人教A版(2019)必修第二册
9.1.1简单随机抽样一、内容和内容解析内容:简单随机抽样的概念以及如何实施简单随机抽样.内容解析:本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第九章第1节第1课时的内容.本节内容是统计的初步内容——简单随机抽样,是其他抽样方法的基础,也是估计总体结果的前提,同时也是初中频率知识的延伸.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.二、目标和目标解析目标:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤.(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.(3)通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.目标解析:(1)简单随机抽样是一种简单且基本的抽样方法,是很多抽样方法的基础,在抽样理论中占有重要低位..(2)抽签法和随机数表法是实现简单随机抽样的两种方法,两种抽样都可以归纳为编号,抽取,成样三个步骤,明确两种方法的优劣,选择合适的方法进行抽取.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.简单随机抽样的教学中,利用利用抽样方法解决实际问题是进行数学建模教学的好机会.基于上述分析,本节课的教学重点定为:普查与抽查、简单随机抽样、总体平均数与样本平均数.三、教学问题诊断分析1.教学问题一:用样本估计总体或多或少会存在误差,从对总体估计的角度看,误差小的样本是“好”样本,误差大的样本是“坏”样本.如何获得一个好样本是学生理解的一个难点。
【课件】简单随机抽样+课件高一下学期数学人教A版(2019)必修第二册+
样本量为50的平均数 165.2 162.8 164.4 164.4 165.6 164.8 165.3 164.7 165.7 165.0
样本量为100的平均 数
164.4 165.0 164.7 164.9 164.6 164.9 165.1 165.2 165.1
165.2
下图中的红线表示树人中学高一年级全体学生身高的平均数.
(1)抽签法 (2)随机数法
(1)抽签法
开始 712名同学从1到712编号
制作编号为1到712的号签(共712个) 将712个号签搅拌均匀
随机从中逐一抽出n个号签
与所抽取号码一致的学生即被选中
结束
(2)随机数法 随机数法抽取样本的步骤
把总体的N个个体依次编号,例如按0,1,2,···,N-1编号,然 后利用随机数 工具产生0~N-1 范围內的整数随机数,产生的随机 数是几就是选几号个体,直到抽足样本所需的数量.
练习3. 下列抽样中,是简单随机抽样的( D ) A.从无数个个体中抽取50个个体作为样本; B.仓库中有1万只灯泡,从中一次性抽取100只灯泡进行质检; C.某年级从300名学生中挑选出20名最优秀的学生参加数学竞赛; D.从全班50名学生中任意选取5名进行家访.
总体均值与样本均值
P178
(1)总体均值
2.最常用的简单随机抽样 抽签法 随机数法(随机试验、信息技术)
3.总体均值与样本均值
Y
Y1 Y2 YN N
1 N
N
Yi
i1
4.加权平均数公式
y
y1
y2
n
yn
1 n
n i1
yi
统计学:
??? ?
是研究如何收集、整理、归纳和分析数据的学科,它可以为人
高一数学简单随机抽样
知识探究(一):简单随机抽样的基本思想
思考1:从5件产品中任意抽取一件,则 每一件产品被抽到的概率是多少?一般 地,从N个个体中任意抽取一个,则每 一个个体被抽到的概率是多少? 思考2:从6件产品中随机抽取一个容量 为3的样本,可以分三次进行,每次从中 随机抽取一件,抽取的产品不放回,这 叫做逐个不放回抽取.在这个抽样中,某 一件产品被抽到的概率是多少?
简单随机抽样的含义: 一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样 本(n≤N), 如果每次抽取时总体内 的各个个体被抽到的机会都相等, 则 这种抽样方法叫做简单随机抽样.
思考5:根据你的理解,简单随机抽样有 哪些主要特点?
(1)总体的个体数有限;
(2)样本的抽取是逐个进行的,每次 只抽取一个个体; (3)抽取的样本不放回,样本中无重 复个体; (4)每个个体被抽到的机会都相等, 抽样具有公平性.
方法一:抽签法; 方法二:随机数表法.
例3 利用随机数表法从500件产品 中抽取40件进行质检. (1)这500件产品可以怎样编号? (2)如果从随机数表第10行第8列的数 开始往左读数,则最先抽取的5件产品 的编号依次是什么?
小结作业
1.简单随机抽样包括抽签法和随 机数表法,它们都是等概率抽样,从 而保证了抽样的公平性.
第二章 统 计
2.1 随机抽样 2.1.1 简单随机抽样
问题提出
1.我们生活在一个数字化时代,时 刻都在和数据打交道,例如,产品的合 格率,农作物的产量,商品的销售量, 电视台的收视率等.这些数据常常是通 过抽样调查而获得的,如何从总体中抽 取具有代表性的样本,是我们需要研究 的课题.
2.要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断? 3.将锅里的汤“搅拌均匀”,品尝 一小勺就知道汤的味道,这是一个简 单随机抽样问题,对这种抽样方法, 我们从理论上作些分析.
高中数学(新人教A版)必修第二册同步习题:简单随机抽样(同步习题)【含答案及解析】
第九章统计9.1随机抽样9.1.1简单随机抽样基础过关练题组一统计学的有关概念1.下列调查中,可以用普查的方式进行调查的是()A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.调查某小组10名成员的业余爱好D.检验一批汽车的使用寿命2.为了解某班学生的会考合格率,要从该班70人中选30人进行考察分析,则70人的会考成绩的全体是,样本是,样本量是.3.某学校根据高考考场要求,需要给本校45个高考考场配备监控设备,该校高考前购进45套监控设备,现需要检查这批监控设备的质量,是全部检查还是抽取部分检查?谈谈你的想法和理由.深度解析题组二 简单随机抽样4.下列几个抽样中,简单随机抽样的个数是( )①仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;②某班从50名同学中选出5名数学成绩最优秀的同学代表本班参加数学竞赛;③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出7个号签;④为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾.A.0 B .1 C .2 D .35.(2020河南信阳高一下学期第一次月考)用简单随机抽样方法从含有10个个体的总体中抽取一个容量为3的样本,则某一特定个体“第一次被抽到”“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310 6.在总体量为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的概率为25%,则N 的值为 .题组三 抽签法和随机数法7.下列抽样试验中,适合用抽签法的是( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验8.为迎接2022年北京冬季奥运会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.9.为检验某公司生产的袋装牛奶的质量是否达标,需从800袋袋装牛奶中抽取50袋进行检验.试利用随机数法抽取样本,并写出抽样过程.题组四总体平均数与样本平均数10.下列判断正确的是()A.样本平均数一定小于总体平均数B.样本平均数一定大于总体平均数C.样本平均数一定等于总体平均数D.样本量越大,样本平均数越接近总体平均数11.用抽签法抽取一个容量为5的样本,样本数据分别为2,4,5,7,9,则该样本的平均数为()A.4.5B.4.8C.5.4D.612.从有400人参加的某项运动的达标测试中,通过简单随机抽样抽取50人的成绩,统计数据如下表,则这400人成绩的平均数的估计值是.分数54321人数5152055答案全解全析基础过关练1.C A.不能用普查的方式进行调查,因为这种试验具有破坏性;B.用普查的方式进行调查无法完成;C.可以用普查的方式进行调查;D.试验具有破坏性,且需要耗费大量的时间,普查在实际生产中无法实现.2.答案总体;所选30人的会考成绩;30解析为了强调调查目的,由总体、样本、样本量的定义知,70人的会考成绩的全体是总体,样本是所选30人的会考成绩,样本量是30.3.解析必须全部检查,即普查.因为高考是一件非常严肃、责任重大的事情,对高考的要求非常严格,所配设备必须全部合格,且这批设备数量较少,全部检查的方案是可行的,所以应该进行全部检查,这样可确保万无一失.深度剖析全面调查与抽样调查:方法特点全面调查抽样调查优点所调查的结果比较全面、系统1.迅速、及时;2.节约人力、物力和财力缺点耗费大量的人力、物力和财力获取的信息不够全面、系统适用范围1.调查对象很少;2.要获取详实、系统和全面的信息1.大批量检验;2.破坏性试验;3.不需要全面调查等4.B①不是简单随机抽样,虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”;②不是简单随机抽样,因为每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求;③是简单随机抽样,因为总体中的个体数是有限的,且是从总体中逐个进行抽取的,每个个体被抽到的可能性相同;④不是简单随机抽样,因为被抽取的总体中的个体数不确定.综上,只有③是简单随机抽样..5.A简单随机抽样中每个个体被抽取的机会均等,都为1106.答案120=25%=0.25,解得N=120.解析根据题意,得30N7.B A中总体容量较大,样本容量也较大,不适合用抽签法;B中总体容量较小,样本容量也较小,且同厂生产的两箱产品可视为搅拌均匀了,可用抽签法;C中甲、乙两厂生产的两箱产品质量可能差别较大,不能满足搅拌均匀的条件,不能用抽签法;D中总体容量较大,不适合用抽签法.8.解析①将30名志愿者编号,号码分别是1,2, (30)②将号码分别写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签;③将小纸片放入一个不透明的盒里,充分搅拌;④从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.9.解析①将800袋袋装牛奶分别编号,为1,2,3, (800)②利用随机数工具产生1~800范围内的整数随机数;③把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需的50袋.10.D由样本平均数的定义可知,样本量越大,其平均数越接近总体平均数.11.C样本的平均数为2+4+5+7+9=5.4.512.答案 3.2解析抽取的50人的成绩的平均数为1×(5×5+4×15+3×20+2×5+1×5)=3.2,所以这50400人成绩的平均数的估计值是3.2.。
9.1.1 简单随机抽样(课件)2022-2023学年高一数学同步备课(人教A版2019 必修第二册
A、从无数个个体中抽取50个个体作为样本; B、某车间工人加工一种零件100个,为了解这100个零件的直 径,从中不放回地依次抽取5个进行测量; C、从100名运动员中挑选10名优秀的运动员参赛; D、一彩民选号,从装有36个大小、形状都相同的号签的盒子 中不放回地逐个抽出7个号签.
注:若生成的随机数有重复,则需剔除重复的编号并重新新产生 随机数,直到产生的不同编号个数等于样本所需要的人数.
随机数法的特点:方便快捷,取到相同编号时要剔除. 随机数法一般适用于总体容量较大,但样本量不大的情形.
1.3简单随机抽样的方法——②随机数法
产生随机数的方法: 1.用随机试验产生随机数: 准备10个大小、质地一样的小球,小球上分别写上数字0,1,2 ,…,9, 把它们放入一个不透明的袋中. 从袋中有放回摸取3次 , 每次摸前充分 搅拌 , 并把第一、二、三次摸到的数字分别作为百、十、个位数,这 样就生成了一个三位随机数 . 若这个三位数在1~712范围内,就代表 对应编号的学生被抽中,否则舍弃编号. 注:这样产生的随机数可能会有重复.
2.总体均值和样本均值
上面我们通过简单随机抽样得到部分学生的平均身高,并把样本 平均身高作为树人中学高一年级所有学生平均身高的估计值.
概念
总体均值(总体平均数)
样本均值(样本平均数)
条件 总体中有N个个体,它们的变量 从总体中抽取一个容量为n的样本,
【问题1】树人中学高一年级有712名学生,通过简单随机抽样的方 法调查高一年级学生的平均身高. 1.编号:先给712名学生编号,例如1~712进行编号; 2.获取样本号码:用随机数工具产生1~712范围内的整数随机数, 把产生的随机数作为抽中的编号,使与编号对应的学生进入样本; 3.按所得号码抽取样本:重复上述过程,直到抽足样本所需要的人数.
9.1.2分层随机抽样课件-高一下学期数学人教A版必修第二册
在分层抽样中,按各层在总体中所占的比例分配样本量,即
每层样本量 = 该层个体数 × 总样本量 总体的个体数
每层样本量 该层个体数
=
总样本量 总体的个体数
抽样比k
在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本 量的分配方式为比例分配,此比例为抽样比.
则样本结构与总体结构具有一致性,每个个体被抽到的可能性都相等.
156.0 157.0 161.0 159.0 156.0 174.0 168.0 155.0 158.0 167.0
166.0 160.0 166.0 175.0 154.0 157.0 173.0 161.0 160.0 171.0
157.0 170.0 174.0 171.5 175.0 153.0 155.0 158.0 167.0 178.0
[解析] A中总体所含个体无差异且个数较少,适合用简单随机抽样;
C和D中总体所含个体无差异但个数较多,不适合用分层随机抽样;
B中总体所含个体差异明显,适合用分层随机抽样.
四.新知应用
例 2.一个单位有职工 160 人,其中有业务人员 112 人,管理人员 16 人,后勤服务人员 32 人,为了了解职工对单位的改革意见的某种情况,要从中抽取一个容量为 20 的样本,
总体平均数160.6
因此总样本平均数为 170.6×
23 +160.6× 50
27
= 165.2
170.6×
326 +160.6× 712
386
三.学习新知 2.总体平均数的估计
问题7:一般地,分层随机抽样中,是否可以直接用样本平均数估计总体平 均数?
第1层 第2层
包含的 各个个体 个体数 的变量值
简单随机抽样(第1课时(人教A版2019必修第二册)
可以剔除重复的编号并重新产生随机数,直到产生的不同
编号个数等于样本所需要的人数.
比较随机数法与抽
签法,它们各有什
么优点和缺点?
新知探索
(1)用随机试验生成随机数
准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,
把它们放入一个不透明的袋中.从袋中有放回摸取3次,每次摸取前充分搅拌,
第二步,将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;
第三步,将60个号签放入一个不透明的盒子里,充分搅匀;
第四步,从盒子中逐个抽取10个号签,并记录上面的编号;
第五步,所得号码对应的学生就是志愿小组的成员.
练习
方法技巧:
一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签
3.某工程从1000件产品中抽出40件进行质量合格检查,样本是40.(
)
4.抽签法和随机数法都适用于总体容量和样本容量较小时的抽样.(
)
)
)
5.利用随机数法抽取样本时,若一共有总体容量为100,则给每一个分别个体编号
为1,2,3,…,100.(
)
答案:√,×,×,√,×.
新知探索
辨析2:下列调查方式中,适合用普查的是(
并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个
三位随机数.如果这个三位数在1—712范围内,就代表对应编号的学生被抽中,
否则舍弃编号,这样产生的随机数可能会有重复.
新知探索
(2)用信息技术生成随机数
①用计算器生成随机数
进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机
A.调查春节联欢晚会的收视率
B.了解某渔场中青鱼的平均质量
简单随机抽样(教学课件)高一数学(人教A版2019必修第二册)
生的平均身高等.要正确阅读并理解这些数据,需要具备一些统计学的知
识.
统计的研究对象是数据,核心是通过数据分析研究和解决问题,因
此,首先要设法获取与问题有关的数据,从而为解决问题奠定基础.
温故知新
统计的相关概念
名称
定义
总体
所要 考察对象 的全体叫作总体
)
A.要求总体的个体数有限
B.从总体中逐个抽取
C.每个个体被抽到的机会不一样
D.这是一种不放回抽样
【解答】解:根据随机抽样的定义可知,要求总体的
个体数有限,为了保证抽样的公平性,
要求每个个体被抽到的机会是相同的.从总体
中逐个抽取,这是一种不放回抽样.
综合以上几点可知C错误.
故选:C.
变式训练
下列抽样方法是简单随机抽样的是(
过程,直到抽足所需要人数.
比较随机数法与抽签法,它们各有什么优点和缺点?
(1)随机数法的概念:
利用随机数工具产生的随机数进行抽样方法,叫做随机数法.
(2)随机数法的步骤:
①将总体的个体编号;
②在产生的随机数选择数字;
③读数获取样本号码.
如果生成的随机数有重复,即同与编号被多次抽到,
可以剔除重复的编号并重新产生随机数,直到产生的
个”抽取,故不是简单随机抽样;
故选:C.
解题技巧
判断所给的抽样是否为简单随机抽样的依据是简单随机抽样
的四个特征:
上述四点特征,如果有一点不满足,就不是简单随机抽样.
典例分析
题型二 抽签法的应用
例2.用抽签法从50个个体中选出5个个体,则共需制作号签的
个数为(
新人教A版高中数学必修2第九章统计的第一节第一课时—简单随机抽样-经典教学设计
(3)通过调查历城二中高一学生的平均身高来估计济南市高一学生的平均身高,请你写出此次调查的总体,个体样本和样本容量。
通过熟悉的生活情境引入普查、抽样调查的适用范围,回顾总体、样本、个体、样本容量的概念。
通过提问,从学生熟悉的具体问题入手,迅速吸引学生的注意力,体会到了抽样调查的必要性。
2.简单随机抽样的特点:
总体有限,逐个抽取,等概率抽样。
3.简单随机抽样的方法:
抽签法和随机数法
学生回顾本节课所学知识点。
小结本节课知识点,加深对知识点的记忆理解。总结提炼,理清脉络,有利于帮助学生建构知识体系,起到画龙点睛的作用。
6.课后作业
1.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).
此处设计遵循由特殊到一般的认知规律,让学生在观察中归纳,在具体问题中进行总结,自然而然地形成简单随机抽样的概念,培养数学抽象的学科核心素养,最终实现突破难点的目的。
2.实践探究,形成概念
请小组在全班范围内交流,教师在学生回答基础上完善补充,得到下列结论:
(1)一般地,设一个总体含有N(N为正整数)个个体,从中逐个不放回地抽取n(1≤n<N)个个体作为样本,每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样。如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单抽样。
高一数学必修3同步练习:2-1-1简单随机抽样
2-1-1简单随机抽样一、选择题1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100[答案] D[解析]1000名学生的成绩是统计中的总体,每个学生的成绩是个体,被抽取的100名学生的成绩是一个样本,其样本的容量为100.2.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是()A.40 B.50C.120 D.150[答案] C3.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关[答案] D[解析]简单随机抽样,除具有A、B、C三个特点外,还具有:是等可能抽样,各个个体被抽取的机会相等,与先后顺序无关.4.简单随机抽样的结果()A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定[答案] B[解析]据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关,∴选B.5.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,用随机抽取的方式确定号码的后四位为270 9的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中抽取3件进行质量检验[答案] D6.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则编号应为()A.1,2,3,4,5,6,7,8,9,10B.-5,-4,-3,-2,-1,0,1,2,3,4C.10,20,30,40,50,60,70,80,90,100D.0,1,2,3,4,5,6,7,8,9[答案] D7.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N 为( )A .150B .200C .100D .120[答案] D[解析] ∵每个个体被抽到机会相等,都是30N=0.25,∴N =120. 8.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性的大小关系是( )A .相等B .“第一次被抽到”的可能性大C .“第二次被抽到”的可能性大D .无法比较[答案] A9.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110 [答案] C[解析] 由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是310.10.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A.mN MB.mM NC.MN mD .N[答案] A[解析] 总体中带有标记的比例是N M,则抽取的m 个个体中带有标记的个数估计为mN M. 二、填空题11.采用简单随机抽样时,常用的方法有________、________.[答案] 抽签法 随机数法12.下列调查方式正确的是________.①为了了解炮弹的杀伤力,采用普查的方式②为了了解全国中学生的睡眠状况,采用普查的方式③为了了解人们保护水资源的意识,采用抽样调查的方式④对载人航天器“神舟飞船”零部件的检查,采用抽样调查的方式[答案] ③[解析] 由于①中的调查具有破坏性,则①不正确;由于全国中学生太多,则②不正确;③正确;④中考虑到安全性,④不正确.13.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.用抽签法设计抽样方案如下:第一步 将18名志愿者编号,号码为1,2, (18)第二步将号码分别写在一张纸条上,揉成团,制成号签;第三步将号签放入一个不透明的袋子中,并充分搅匀;第四步_____________________________________________;第五步所得号码对应的志愿者就是志愿小组的成员.则第四步步骤应为_____________________________________.[答案]从袋子中依次抽出6个号签,记录下上面的编号.14.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为6的样本,请从随机数表的倒数第5行(如下表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是________.95339522001874720018387958693281768026928280842539[答案]01,47,20,28,17,02[解析]读取的数字两个一组为01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,则抽取的样本号码是01,47,20,28,17,02.三、解答题15.(2011~2012.上海高一检测)2011年5月,西部志愿者计划开始报名,上海市闸北区共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.[解析]第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将所有号签放入一个不透明的箱子中,充分搅匀.第四步,一次取出1个号签,连取6次,并记录其编号.第五步,将对应编号的志愿者选出即可.16.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?[分析]重新编号,使每个号码的位数相同.[解析]第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.17.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,则摸到红球的学生成为啦啦队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何异同?[解析]选法一满足抽签法的特征,是抽签法;选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为140.18.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学、两所初级中学,在这所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?[分析]根据每种调查方案所提供的资料逐一分析,看哪一种调查方案合理.[解析]A中少年体校的男子篮球、排球运动员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确的反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.。
简单随机抽样(人教A版2019 必修第二册)
(1)关于简单随机抽样的特点有以下几种说
)
D.每个个体被抽到的机会不一样,与先后顺序有关
(2)下列问题中最适合用简单随机抽样方法的是(
)
A.某学校有学生1 320人,卫生部门为了了解学生身体发育
情况,准备从中抽取一个容量为300的样本
B.为了准备省政协会议,某政协委员计划从1 135个村庄中
抽取50个进行收入调查
(2)如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.
【解析】
(1)第一步,将500袋牛奶编号为001,002,…,500.
第二步,用随机数工具产生1~500范围内的随机数.
第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本.
第四步,重复上述过程,直到产生不同的编号等于样本所需要的数量.
A.与第几次抽样无关,第一次抽到的概率要大些
B.与第几次抽样无关,每次抽到的概率都相等
C.与第几次抽样有关,最后一次抽到的概率要大些
D.每个个体被抽到的概率无法确定
(二)简单随机抽样
知识点三 抽签法
先给总体中的N个个体 编号 ,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)
上作为号签,并将这些小纸片放在一个不透明的盒里, 充分搅拌
一件玩,玩后放回再拿一件,连续玩了5件它不是“逐个”抽取.②不是简单随机抽样.虽然“一次性抽取”和
“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样.因
为5名同学是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”
的要求.④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,等可能的抽
新人教版高中数学必修第二册《随机抽样》教案
随机抽样【教学目标】1.理解全面调查、抽样调查、总体、个体、样本、样本量、样本数据等概念2.理解简单随机抽样的概念,掌握简单随机抽样的两种方法:抽签法和随机数法3.理解分层随机抽样的概念,并会解决相关问题【教学重难点】1.抽样调查2.简单随机抽样3.分层随机抽样【教学过程】一、问题导入预习教材内容,思考以下问题:1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么?2.什么叫简单随机抽样?3.最常用的简单随机抽样方法有哪两种?4.抽签法是如何操作的?5.随机数法是如何操作的?6.什么叫分层随机抽样?7.分层随机抽样适用于什么情况?8.分层随机抽样时,每个个体被抽到的机会是相等的吗?9.获取数据的途径有哪些?二、基础知识1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W.(5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据.2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.(4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本.(5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.名师点拨(1)从总体中,逐个不放回地随机抽取n 个个体作为样本,一次性批量随机抽取n 个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数(1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i为总体均值,又称总体平均数.②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y - =1N ∑ki =1f i Y i W.(2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y - =y 1+y 2+…+y n n =1n∑ni =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑M i =1X i ,x - =x 1+x 2+…+x m m =1m ∑mi =1x i .②第2层的总体平均数和样本平均数分别为Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i,y - =y 1+y 2+…+y n n =1n∑ni =1y i .③总体平均数和样本平均数分别为W - =∑Mi =1X i +∑N i =1Yi M +N ,w - =∑mi =1x i +∑ni =1y i m +nW.(2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x - +N ×y -M +N =M M +N x - +N M +N y -估计总体平均数W - .(3)在比例分配的分层随机抽样中,m M =n N =m +nM +N ,可得M M +N x - +N M +N y -=m m +n x - +n m +n y -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w - 估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据三、合作探究总体、样本等概念辨析题例1:为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是()A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本量是100【解析】根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D .【答案】D[规律方法]此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.简单随机抽样的概念例2:下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.[规律方法]要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.抽签法及随机数法的应用例3:某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.[规律方法](1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.分层随机抽样中的有关计算例4:(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级高二年级高三年级泥塑a b c 剪纸xyz其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取人.【解析】(1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】(1)18(2)6[规律方法]分层随机抽样中有关计算的方法(1)抽样比=该层样本量n 总样本量N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.样本平均数的求法例5:(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】(1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8.(2)合在一起后的样本均值为10×5+8×610+8=50+4818=499.[规律方法]在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +nym +n.【课堂检测】1.在简单随机抽样中,每一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定解析:选B.在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1500米跑的成绩,得出相应的数值,在这项调查中,样本是指()A.120名学生B.1 200名学生C.120名学生的成绩D.1 200名学生的成绩解析:选C.本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.3.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层随机抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为()A.20B.25C.30D.35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D.4.在调查某中学的学生身高时,利用分层抽样的方法抽取男生20人,女生15人,得到了男生身高的平均值为170,女生身高的平均值为165.试估计该中学所有学生的平均身高是多少?解:20×170+15×16520+15=5 87535=16767.即该中学所有学生的平均身高为16767.第四步,把与号码相对应的人抽出,即可得到所要的样本.。
高一数学简单随机抽样2
[填空题]一台3000立方米的拱顶罐,上罐检尺应选用长度为()米的油尺为宜。 [问答题]八宝珍珠散功效与作用 [单选]将地面上的经线和纬线直接投射到与地球面相切或相割的平面上去的投影方法称为()。A.平面投影B.方位投影C.圆锥投影D.A和B [单选]关于细菌性肝脓肿的处理错误的是()A.非手术治疗适用于多发性肝小脓肿B.大剂量、联合应用抗生素C.经皮肝穿刺脓肿置管引流术适用于多发性肝小脓肿D.全身营养支持治疗E.经皮肝穿刺脓肿置管引流术适合于已液化的单个较大脓肿 [填空题]TND360型数控车床的回转刀架具有()工位 [单选,A型题]结核杆菌为抗酸菌,培养时最适pH为()A.5以下B.5.5C.6.5D.7.2E.8.4 [单选,A2型题,A1/A2型题]不属于控制的基本方法的是()A.目标控制B.质量控制C.进度控制D.预算控制E.结果控制 [单选]()是指为改善车辆的技术性能或延长车辆使用寿命,改变原车辆零部件或总成的工作。A.车辆技术改造B.车辆大修C.车辆小修D.车辆改装 [单选]X线照片上所指的关节间隙,代表解剖学上的()A.关节腔B.关节囊C.关节软骨D.关节囊和关节腔E.关节腔和关节软骨 [单选,A1型题]下列关于具有抗肿瘤作用的药物,错误的是()A.黄连B.苦参C.黄芩D.鱼腥草E.知母 [单选]为预防Rh阴性妇女发生致敏,下列哪些情况不适合预防性应用抗D球蛋白()A.第1次分娩Rh阳性婴儿后,于72小时内应用B.Rh(-)女婴出生时即应用C.流产(自然或人工流产)后D.在羊膜腔穿刺后E.产前出血、宫外孕、妊娠期高血压疾病 [单选]下述哪项不是吴又可的贡献?()A.编著了我国医学史上第一部温病专著--《温疫论》B.提出瘟疫致病的原因是时行之气C.指出瘟疫有强烈的传染性D.感邪途径是邪从口鼻而入 [多选]下列各项中,影响利润表“所得税费用”项目金额的有()。A.当期应交所得税B.递延所得税收益C.递延所得税费用D.代扣代交的个人所得税 [单选,A1型题]小儿活动期间佝偻病6个月内出现的颅骨体征是()A.颅骨软化B.方颅C.前囟迟闭D.肋骨串珠E.鸡胸或漏斗胸 [单选]可形成不完全吞噬的吞噬细胞是()A.树突状细胞B.中性粒细胞C.单核巨噬细胞D.γδT细胞E.NK细胞 [单选]罗素认为哲学是介于()和()之间的东西。A、论理学,科学B、神学,论理学C、神学,科学 [单选,A2型题,A1/A2型题]《本草纲目》为后人留下了较完备的医药知识,人们在秉承这些医药知识的同时,其作者在行医时常为病人送药、煎药、喂药的高尚医德更为后人所称道,此人为()A.孙思邈B.张仲景C.李时珍D.龚延贤E.喻昌 [单选]下列各项属于集体资产的是()。A.农户承包经营的土地B.家庭生产资料C.农户家庭生活资料D.农户承包经营中除土地以外的其它生产资料 [单选]人员密集场所应做到“三自”,下列选项中()是错误的。(易)A、消防安全自查B、火灾隐患自除C、违法行为自处D、消防安全责任自负 [单选]最适宜冬季施工采用的商品混凝土外加剂是()A、引气剂B、减水剂C、缓凝剂D、早强剂 [单选,A1型题]下肢静脉曲张晚期的临床表现中,最主要的是()A.小腿水肿B.色素沉着C.皮肤厚硬D.小腿下1/3内侧溃疡E.局部瘙痒 [单选]《部标》规定:快速列车始发前供电时间不少于()。A、2小时B、1.5小时C、0.5小时D、1小时 [单选]某运输企业欲购买新车,有AB两类车型可供选择,经预测A型车的寿命周期费用为330万元,系统效率为460万吨公里/车年,B型车的寿命周期费用为280万元,系统效率为375万吨公里/车年,则()为最优选择。A.车型AB.车型BC.两者均可D.无法确定 [单选]装置引蒸气时不用进行的操作有:()。A、排凝B、暖管C、检查保温D、检查流程 [单选]3DES在DES的基础上使用两个56位的密钥K1和K2,发送方用K1加密,K2解密,再用K1加密。接收方用K1解密,K2加密,再用K1解密,这相当于使用()倍于DES的密钥长度的加密效果。A.1B.2C.3D.6 [填空题]中共第一次全国代表大会召开的地点是() [判断题]在商品经济中,商品的价格取决于商品的价格,因此价格与价值始终是一致的。()A.正确B.错误 [单选,A1型题]对于病毒性脑膜脑炎引起的头痛,下列哪项治疗是不合适的()A.高渗脱水剂:如20%甘露醇B.血容量扩张剂:如低分子右旋糖酐C.激素:如地塞米松D.镇痛剂:如对乙酰氨基酚E.降温退热:如冰枕 [单选]屈曲型肱骨髁上骨折断端最常见的移位方向是()A.近折端向后下移位,远折端向前移位B.近折端向后上移位,远折端向前下移位C.近折端向前下移位,远折端向后上移位D.近折端向前下移位,远折端向桡侧移位E.近折端向后下移位,远折端向尺侧移位 [填空题]人类最早使用的工具是石器.考古学家根据石器的制造技术的发展和演进情况,将石器时代分为(),中石器,()三个时代. [单选]采用三叉神经感觉功能判断半月神经节射频温控热凝术时,下列哪种情况为达到最佳加热效果()A.痛觉、触觉消失,角膜反射保留B.痛觉、触觉、角膜反射均消失C.痛觉、触觉消失,味觉保留D.痛觉消失,触觉、角膜反射保留E.痛觉、味觉消失,触觉保留 [单选]根据《中华人民共和国广告法》,期刊不得发布()。A.酒类广告B.药品广告C.电影或电视节目广告D.烟草广告 [填空题]下列符号的中文名称分别是:PRPP();IMP();XMP(); [判断题]境内个人手持外币现钞汇出境外当日累计超过等值1万美元的,凭本人有效身份证件办理。A.正确B.错误 [单选]根据企业所得税法律制度的规定,下列关于企业提供劳务确认收入的表述中,不正确的是()。A.为特定客户开发软件的收费,应根据开发的完工进度确认收入B.包含在商品售价内可区分的服务费,在提供服务的期间分期确认收入C.广告制作费,应在相关的广告或商业行为出现于公众面前 [填空题]焦炉煤气中的硫化物的含量主要取决于()中的含硫量。 [单选]引起医源性营养不良是由于()A.对患者缺乏营养宣传B.医师处理不当C.进食太少D.住院时间短E.诊断不及时 [单选]最适宜装运袋装货物的托盘是()。A.平板托盘B.滚轮托盘C.箱形托盘D.柱型托盘 [单选]苏式点心是指()制作的面点A、长江流域B、江苏一带C、长江中下游江浙一带D、江苏上海一带 [填空题]石料的含水率是石料在()温度下烘至恒重时所失去水的质量与石料干质量的比值百分率。
高中数学必修二课件:简单随机抽样
课时学案
题型一 简单随机抽样的理解
例1 (1)【多选题】下列调查中,适宜采用抽样调查的是( AC ) A.调查某市中小学生每天的运动时间 B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查 C.农业科技人员调查今年麦穗的单穗平均质量 D.调查某快餐店中8位店员的生活质量情况 【解析】 选项B要普查,选项D容量小可以普查,选项A、C总体容量 大,用抽样调查.
1
球被抽出的可能性为____2____,第三次抽取时每一小球被抽出的可能性为
1
____4 ____.
【解析】 因为简单随机抽样每个个体被抽到的可能性为Nn ,所以第一个空
填
1 2
,而抽样是不放回的抽样,第一次抽取时每个小球被抽到的可能性为
1 6
,第
ห้องสมุดไป่ตู้
二次为15,第三次为14.
题型二 抽签法
例2 某省环保局有各地市报送的空气质量材料15份,为了了解全省的空气 质量,要从中抽取一个容量为5的样本,试确定用何种方法抽取,请具体实施操 作.
【解析】 样本的平均数为 -y =6×5+8×8+10×204+12×1+15×2=8.8, 样本中午餐费用不低于10元的比例为4+210+2=0.35, 所以估计该校高一全体学生每天午餐的平均费用为8.8元,午餐费用不低于 10元的学生所占的比例为0.35. 探究4 当总体容量很大时,一般用样本的平均数估计总体的平均数,用样 本中某类个体所占的比例估计该类个体在总体中所占的比例.
【解析】 总体容量小,样本容量也小,可用抽签法. 步骤如下: 第一步,将15份材料随机编号,号码是1,2,3,…,15; 第二步,将以上15个号码分别写在15张相同的小纸条上,揉成小球,制成 号签;
简单随机抽样,系统抽样,分层抽样 (2)
课 题 简单随机抽样,系统抽样,分层抽样 教学目标1.正确理解三种抽样方法的一般步骤和方法2.正确理解三中抽样方法间的区别和联系;重点、难点三种抽样方法概念的理解 2能够灵活应用三种抽样的方法解决统计问题。
考点及考试要求综合题考点一、简单随机抽样的概念一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是有限的。
(2)简单随机样本数n 小于等于样本总体的个数N 。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为Nn 。
思考:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
抽签法和随机数表法 1、抽签法的定义。
抽签法就是把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本。
【说明】抽签法的一般步骤:(1)将总体的个体编号。
(2)连续抽签获取样本号码。
思考:你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?2、随机数表法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。
【说明】随机数表法的步骤: (1)将总体的个体编号。
(2)在随机数表中选择开始数字。
(3)读数获取样本号码。
【例题精析】例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?[分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样。
人教版数学必修第二册9.1.1简单随机抽样课件
• 放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.
(2)简单随机抽样的特点
①总体个数有限:简单随机抽样要求被抽取样本的总体个数有限,这样便
于通过样本对总体进行分析.
②逐个抽取:简单随机抽样是从总体中逐个进行抽取,这样便于实际操作.
A.与第几次抽样有关,第一次抽到的可能性最大
B.与第几次抽样有关,第一次抽到的可能性最小
C.与第几次抽样无关,每一次抽到的可能性相等
D.与第几次抽样无关,与样本量也无关
√
2.下列调查:
①每隔5年进行人口普查; 普查
②报社等进行舆论调查;抽样调查
③灯泡使用寿命的调查;抽样调查
④对入学报名者的学历检查;普查
无法相互区分.
题型二 抽签法和随机数法
[例2 (2)某家具厂要为育才小学一年级新生制作新课桌椅,他们要事先了解全
体一年级学生的平均身高,以便设定可调节课桌椅的标准高度. 已知育才小
学一年级有165名学生,如果通过简单随机抽样的方法调查一年级学生的平
均身高,需抽取16人,需怎样抽取?
①先给165名学生编号,如编号为1~165;
⑤从20台电视机中抽出3台进行质量检查. 抽样调查
其中属于抽样调查的是( B )
A.①②③
B.②③⑤
C.②③④
D.①③⑤
3.一个总体中含有100个个体,以简单随机抽样方法从该总体
中抽取一个容量为5的简单随机样本,则指定的某个个体被抽到
1
的可能性为________.
20
简单随机抽样
每个个体被抽到的概率都相等
个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签
6.2.1简单随机抽样6.2.2分层抽样课件高一上学期数学
73 79 64 57 53 03 52 96 47 78 35 80 83 42 82 60 93 52 03 44 35 27 38 84 35(第5行)
81 05 01 08 05 45 57 18 24 05 35 30 34 28 14 88 79 90 74 39 23 40 30 97 32(第2行)
83 26 97 76 02 02 05 16 56 92 68 55 57 48 18 73 05 38 52 47 18 62 38 85 79(第3行)
() A.抽签法抽样 B.按性别分层抽样 C.按年龄段分层抽样 D.随机数法抽样
答案:C
解析:该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差 异,而男女差异不大,所以按年龄段分层抽样具有代表性,比较合理.
故选C.
题型2 简单随机抽样的应用 角度1 抽签法的应用 例2 要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选 择合适的抽样方法,写出抽样过程.
8 44 2 17 8 31 57 4 55 6
88 77 74 47 7 21 76 33 50 63
题型3 分层抽样的应用 例4 (1)甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学 生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个样 本量为90的样本,应在这三校分别抽取学生( ) A.30人、30人、30人 B.30人、45人、15人 C.20人、30人、40人 D.30人、50人、10人
方法归纳
一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二 是号签是否容易被搅匀.一般地,当总体容量和样本量都较小时可用 抽签法.若总体容量非常大,采用抽签法就比较费时、费力,也不方 便,搅拌不均匀有失公平性,从而产生代表性差的样本的可能性增 加.
(新教材)2020-2021学年高中人教A版数学必修第二册课件:9.1.1 简单随机抽样
(2)简单随机抽样的定义 一般地,设一个总体含有N(N为正整数)个个体,从中_逐__个__抽__取__n(1≤n<N)个个体 作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的_概__率__都__ _相__等__,我们把这样的抽样方法叫做_放__回__简__单__随__机__抽__样__;如果抽取是不放回的,且 每次抽取时总体内未进入样本的各个个体被抽到的_概__率__都__相__等__,我们把这样的 抽样方法叫做_不__放__回__简__单__随__机__抽__样__.放回简单随机抽样和不放回简单随机抽样 统称为简单随机抽样.
【类题通法】 简单随机抽样必须具备下列特点 (1)被抽取样本的总体中的个体数N是有限的. (2)抽取的样本是从总体中逐个抽取的. (3)简单随机抽样是一种等可能的抽样. 如果三个特征有一个不满足,就不是简单随机抽样.
【定向训练】
下列几个抽样中,简单随机抽样的个数是 ( )
①从无数个个体中抽取50个个体作为样本;
(3)抽样的必要性 第一,要考查的总体中个体数往往_很__多__,而且在时刻变化,逐一调查不可能.第二, 考查往往具有_破__坏__性__,所以逐一调查也不可取.这就需要抽查一部分,以此来估 计_总__体__. (4)简单随机抽样的两种常用方法:_抽__签__法__和_随__机__数__法__.
核心互动探究
【概念生成】 简单随机抽样 (1)抽样涉及的基本概念(以某地区高一学生身高为例) 为了了解某地区高一学生身高的情况,我们找到了该地区高一8 000名学生的体 检表,从中随机抽取了150张,表中有体重、身高、血压、肺活量等15类数据,那 么总体是指_该__地__区__高__一__8__0_0_0_名__学__生__的__身__高__数__据__,个体是指_该__地__区__高__一__某__个__学__生__ _的__身__高__,样本是指_被__抽__到__的__1_5_0_个__学__生__的__身__高__,样本量是_1_5_0_.
高一数学分层抽样2(201911整理)
3、某中学高一年级有学生600人,高 二年级有学生450人,高三年级有学生750 人,每个学生被抽到的可能性均为0.2,若 该校取一个容量为n的样本,则n=__3_6_0_.
4、某校有500名学生,其中O型血的有 200人,A型血的人有125人,B型血的有125 人,AB型血的有50人,为了研究血型与色 弱的关系,要从中抽取一个20人的样本, 按分层抽样,O型血应抽取的人数为__8__人
分层抽样
当已知总体由差异明显的几部分组成时,为了 使样本充分地反映总体的情况,常将总体分成几部 分,然后按照各部分所占的比例进行抽样。
1.其中所分成的各部分叫做层,在每一层中 实行简单随机抽样.
2.抽样比 p=n/N
3.每一层的样本数=这一层的总数X抽样比
ni = Ni×p
分层抽样步骤: (1)将总体分成互不交叉的层 (将相似的个体分为一类,在实际应用中按地理区域或
两项调查采用的抽样方法依次是( B )
A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机档法,分层抽样法
6、某单位有工程师6人,技术员12人,技工18 人,要从这些人中抽取一个容量为n的样本;如果采 用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加1个,则在采用系统抽样时,需要
统抽样
总体由 差异明 显的几 部分组
成
【能力提高】 1.(2004年全国高考天津卷)某工厂生
产A、B、C三种不同型号的产品,产品数量 之比为2:3:5,现用分层抽样方法抽取一个 容量为n的样本,样本中A型产品有16种,那 么此样本容量n=__8__0___.
2.(2004全国高考湖北卷)某校有老师 200人,男学生1200人,女学生1000人.现用 分层抽样的方法从所有师生中抽取一个容 量为n的样本,已知从女学生中抽取的人数 为80人,则n=__1_9_2__.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆时时计划人工
[单选]关于病原携带者的论述,正确的是()A.所有的传染病均有病原携带者B.病原携带者不是重要的传染源C.发生于临床症状出现之前者称为健康携带者D.病原携带者不显出临床症状而能排出病原体E.处于潜伏性感染状态者就是病原携带者 [问答题,案例分析题]某建设项目的一期工程基坑土方开挖任务委托给某机械化施工公司。该场地自然地坪标高-0.60m,基坑底标高-3.10m,无地下水,基坑底面尺寸为20×40(m2)。经甲方代表认可的施工方案为:基坑边坡1:m=1:0.67(Ⅲ类土),挖出土方量在现场附近堆放。挖土采用 [单选]关于稿件来源的说法,错误的是()。A.引进稿件是指通过著作权贸易或者出版交流而获得的稿件B.组织稿件是出版单位获得稿件的主要途径C.引进稿件一般都正式出版过,不需再进行审稿和编辑加工D.自投稿意味着作者主动将该作品的出版权授予出版单位 [问答题,简答题]皮肤接触氢氧化钠如何急救? [单选]突然敲门声,打断人的思路而分散注意力,属于下列()的干扰。A.随意注意B.不随意注意C.随意后注意D.注意的动摇 [名词解释]假胃腔 [单选]某双代号网络图中(以天为单位),工作Q的最早开始时间为6天,工作持续时间为4天,工作R的最迟完成时间为22天,工作持续时间为10天,工作S的最迟完成时间为20天,工作持续时间为5天,已知工作R、S是工作Q的仅有的两项紧后工作,工作Q的总时差为()天。A.3B.4C.2D.5 [问答题,简答题]我国《预算法实施条例》对国库管理做了哪些具体的规定? [判断题]在硅稳压管的简单并联型稳压电路中,稳压管应工作在反向击穿状态,并且应与负载电阻串联。并联A.正确B.错误 [填空题]石油主要是由()和()两种化学元素组成。 [单选,A2型题,A1/A2型题]典型心绞痛的发作性胸痛持续时间一般为()A.1~3分钟B.3~5分钟C.5~10分钟D.10~15分钟E.15分钟以上 [单选,A型题]结核杆菌为抗酸菌,培养时最适pH为()A.5以下B.5.5C.6.5D.7.2E.8.4 [填空题]高层建筑结构通常要考虑()、()、()、()等方面的验算。 [问答题,案例分析题]某工业引进项目,基础数据如下:1.项目的建设期为2年,该项目的实施计划为:第一年完成项目的全部投资40%,第二年完成60%,第三年项目投产并且达到100%设计生产能力,预计年产量为3000万吨。2.全套设备拟从国外进口,重量l850吨,装运船上交货价为460万美 [判断题]贷记卡是指发卡银行给予持卡人一定的信用额度,持卡人可以在信用额度内先消费,后还款。A.正确B.错误 [名词解释]沙漠 [问答题,简答题]什么是“抄表段”? [问答题,简答题]人工呼吸 [单选]关于非孕期成人正常子宫,下列说法错误的是()。A.子宫长7~8cmB.子宫容积约50mLC.子宫体位于骨盆腔中央D.子宫颈与子宫体相连处称为峡部,长约1cmE.正常子宫呈前倾前屈位 [单选]产后胎盘附着部位子宫内膜全部修复约需().A.2周B.3周C.4周D.5周E.6周 [问答题,简答题]加氢气密的基本要求有哪些? [单选,A2型题,A1/A2型题]郁证主要的病因是()A.情志内伤B.感受外邪C.饮食所伤D.胃失和降E.肝气上逆 [单选]当归采收加工中所用的干燥方法是A.烘干B.阴干C.煤火熏干D.晒干E.烟火慢慢熏干 [单选,A2型题,A1/A2型题]下列疾病需采用严密隔离的是()A.疟疾B.破伤风C.霍乱D.肺结核E.新生儿脓疱疮 [判断题]设备管道在气密试验时,压力降应不高于规定值。A.正确B.错误 [单选]诊断感染性心内膜炎的最重要方法是()A.免疫学检查B.心电图检查C.X线检查D.血培养E.常规生化检查 [单选]外业测量资料主要有()引测资料、各观测点的高程测量记录计算资料。A.观测点B.基准点C.仪器架设点D.立尺点 [单选,A3型题]某网吧内,上百台电脑前几乎坐满了人,近半数年轻人嘴里叼着香烟,空气中弥漫着呛人的烟草味。室内还连续不断的传来聊天声和游戏者的喊叫声。乳白色的键盘早已是油迹斑斑,常用的字母键呈现出清晰的手指形状的黑印,这些黑印正是长时间未擦拭留下的。透过键盘按键的 [单选]全球所面临的城市问题有()。A.住房拥挤、交通堵塞、水源短缺B.空气污浊、土地紧张C.住房拥挤、交通堵塞、水源短缺、空气污浊、土地紧张D.住房拥挤、交通堵塞、水源短缺、空气污浊E.以上都不是 [单选]先天性马蹄内翻足的患儿,1岁以内应采取的治疗措施为()A.全麻下矫正足跟内翻B.石膏矫正C.软组织松解手术D.反复多次行手法矫正,使患足外翻、外展及背伸E.三关节融合术 [单选]脏器功能测定、脏器显像以及体外放射分析等技术的共同原理是()A.放射性成像B.稀释法原理C.免疫反应D.示踪技术的原理E.动力学模型 [填空题]焦炉煤气中有毒的气体为()()。 [单选]强迫症包括强迫观念和()。A.怪异观念B.强迫行为C.强迫洗手D.强迫恐惧 [单选,A1型题]《母婴保健法》规定,在新生儿期进行筛查的遗传代谢内分泌疾病是()A.21-三体综合征、苯丙酮尿症B.21-三体综合征、先天性甲状腺功能减低症C.先天性甲状腺功能减低症、苯丙酮尿症D.先天性甲状腺功能减低症E.苯丙酮尿症 [单选,A2型题,A1/A2型题]抗人球蛋白直接反应阳性,常考虑为下列何种疾病()。A.血红蛋白病B.阵发性睡眠性血红蛋白尿C.自身免疫性溶血性贫血D.遗传性球形细胞增多症E.G-6-PD缺乏症 [单选,A2型题,A1/A2型题]关于吞咽神经检查,下列叙述哪项是正确的()。A.嘱患者伸舌,观察有无偏斜B.舌缘两侧厚薄不相等及颤动C.嘱患者张口,观察两侧软腭上抬是否有力,腭垂是否居中D.检查鼻唇沟及口角两侧是否对称E.嘱患者鼓腮或吹口哨,观察左右两侧差异 [单选]下列属于室外消火栓按其安装场合的分类的是()。A.承插式消火栓B.法兰式消火栓C.地上式消火栓D.100mm消火栓 [单选,A2型题,A1/A2型题]血清RF有IgG、IgA、IgM型。目前实验室采用散射比浊法检测的RF主要为()。A.IgGB.IgAC.IgMD.IgEE.IgD [单选]1993年美国政府提出“国家信息基础设施”建设,进而构筑“全球信息基础设施”,其中“国家信息基础设施”的英文简写是()。A.NIIB.GIIC.ISDND.ERP [单选]关于卡泊芬净,叙述错误的是()A.棘白菌素类代表药B.作用于细胞膜C.不良反应少于伊曲康唑D.不良反应少于伏立康唑E.首剂70mg,静脉注射