2.1.1简单随机抽样(三种抽样方法)

合集下载

抽样方法

抽样方法

题型探究
类型一 简单随机抽样的基本思想
例1 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按 次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽 样方式是不是简单随机抽样?为什么? 解答
不是简单随机抽样.因为简单随机抽样的实质是逐个地从总体中随机抽取 样本,而这里只是随机确定了起始牌,其他各张牌虽然是逐张搬牌,但 是各张在谁手里已被确定,所以不是简单随机抽样.
反思与感悟
一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个 体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.
跟踪训练2 从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5 架钢琴. 解答
第一步 将20架钢琴编号,号码是01,02,…,20. 第二步 将号码分别写在相同的纸条上,揉成团,制成号签. 第三步 将得到的号签放入一个不透明的袋子中,并步 与所得号码对应的5架钢琴就是要进行质量检查的对象.
按学段分层抽样 [由于三个学段学生的视力情况差别较大,故需按学 段分层抽样.]
引例:某校高中部有学生 950 人,其中高一年级学生 350 人、高二年级
学生 400 人,其余为高三年级学生.若采用分层抽样的方法从高中部所有学
生中抽取一个容量为 190 的样本,则从每个年级中应抽取多少人?
[解析] 采用分层抽样,抽取时要按各部分所占的比进行抽取.
类型二 抽签法
例2 某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医 疗小组去参加救治工作,请用抽签法设计抽样方案. 解答
方案如下: 第一步,将18名志愿者编号,号码为01,02,03,…,18. 第二步,将号码分别写在相同的纸条上,揉成团,制成号签. 第三步,将得到的号签放到一个不透明的盒子中,充分搅匀. 第四步,从盒子中依次取出6个号签,并记录上面的编号. 第五步,与所得号码对应的志愿者就是医疗小组成员.

三种抽样方法(全)

三种抽样方法(全)
(3)系统抽样比简单随机抽样的应用范围更广.
8
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号. 25
二、分层抽样的步骤: (1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。 练习:分层抽样又称类型抽样,即将相似的个 体归入一类(层),然后每层抽取若干个体构 成样本,所以分层抽样为保证每个个体等可能 入样,必须进行 (c ) A、每层等可能抽样 B、每层不等可能抽样 16 C、所有层按同一抽样比等可能抽样

2.1.1 简单随机抽样课件(马清芹,2013.12.23)

2.1.1 简单随机抽样课件(马清芹,2013.12.23)
一般地,设一个总体的个体数为 N,如果通过逐个 抽取的方法从中抽取一个样本,且每次抽取时各个个体 被抽到的机会相等,就称这样的抽样为简单抽签法
随机数表法
注:随机抽样并不是随意或随便抽取,因为随意或
随便抽取都会带有主观或客观的影响因素.
为了扩大调查面,使调查结果更符合学校实际, 问题2: 学校要求将调查面扩大到全校学生,学校现有 学生3387名,要求从中抽取114人进行抗病原调 查,你将如何抽取样本?
18,38,58,……,978,998 .
问题⑵:为了了解参加某种知识竞赛的1003名学生的成 绩,应采用什么样的抽样方法恰当?
解:⑴ 随机将这1003个个体进行编号1,2,3,
……,1003 . ⑵ 利用简单随机抽样,先从总体中剔除3个 个体(可以用随机数表法),剩下的个体数 1000能被50整除,然后按系统抽样的方法进 行.……
抽样方法(一)--简单随机抽样
高密三中 高一数学组
问题 2006年春节联欢晚会结束后,中央电视台想在较短时间内 得到节目的收视率,请问如何调查得出合理的结果呢? 一个水库养了某种鱼10万条 ,如何调查它们的体重情况
从中捕捞了20条,称得它们的体重(单位:kg)如下: 2.3 2.1 2.2 2.1 2.2 2.6 2.5 2.4 2.3 2.4 2.4 2.3 2.2 2.5 2.4 2.6 2.3 2.5 2.2 2.3
系统抽样时,将总体中的个体均分后的每一段进 行抽样时,采用简单随机抽样;系统抽样每次抽样时, 总体中各个个体被抽取的机会也是相等的;如总体的个体 数不能被样本容量整除时,可以先用简单随机抽样从总 体中剔除几个个体,然后再按系统抽样进行。需要说明 的是整个抽样过程中每个个体被抽到的机会仍然相等。

2.1.1《简单随机抽样》PPT课件(新人教A版必修3)

2.1.1《简单随机抽样》PPT课件(新人教A版必修3)
候选人 查兰顿 罗斯福 预测结果 57 43 选举结果 38 62
思考:你认为预测结果出错的原因是什么? 原因是:用于统计推断的样本来自少数富人,只能代表富人 的观点,不能代表全体选民的观点(样本不具有代表性)。
诱思探究4
在调查中,你认为抽样调查和普查有什么不同?
抽样调查 节省人力、物力和财力 可以用于带有破坏性的检查 结果与实际情况之间有误差 普查 需要大量的人力、物力和财力 不能用于带有破坏性的检查 在操作正确情况下,能得到准 确结果
诱思探究2
要了解全国高中生的视力情况,在全国抽取了15所中学 你知道考察对象是什么吗? 的全部高中生15000人进行视力测试。 全国高中生的视力 全国每位高中学生的 视力情况。 这15000名学生的视力 情况又组成一个集体 15000 在统计中,我们把所要考察的对象 的全体叫做总体 把组成总体的每一个考察的对象叫 做个体 从总体中取出的一部分个体的集体 叫做这个总体的一个样本。 样本中的个体的数目叫做样本 的容量。
诱思探究5
假设你作为一名食品卫生工作人员,要对某食品 店内的一批小包装饼干进行卫生达标检验,你准备怎 样做? 显然,你只能从中抽取一定数量的饼干作为检验 的样本.(为什么?)那么,应当怎样获取样本呢?
设计抽样方法时,在考虑样本的代表性的前提下, 应努力使抽样过程简便易行. 得到样本饼干的一个方法是,将这批小包装饼干 放入一个不透明的袋子中,搅拌均匀,然后不放回地摸 取(这样可以保证每一袋饼干被抽中的机会相等),这 样我们就可以得到一个简单随机样本,相应的抽样方 法就是——简单随机抽样. 一.简单随机抽样: (一)简单随机抽样的概念:一般地,设一个总体含 有N个个体,从中逐个不放回地抽取n个个体作为样本 (n≤N),如果每次抽取时总体内的各个个体被抽到的 机会都相等,这种抽样方法叫做简单随机抽样.

随机、系统抽样

随机、系统抽样

用随机数法抽取样本的步骤: 用随机数法抽取样本的步骤: ①将总体中的所有个体编号 每个号码位数一致 将总体中的所有个体编号(每个号码位数一致 编号 每个号码位数一致); ②在随机数表中选定开始的数字 确定行数列数 在随机数表中选定开始的数字(确定行数列数 选定开始的数字 确定行数列数); 按一定方向读数 ③从选定的数开始按一定方向读数,若得到的号 从选定的数开始按一定方向读数,若得到的号 码大于总体编号或与前面所取出的号码重复的去 或与前面所取出的号码重复 码大于总体编号或与前面所取出的号码重复的去 如此进行下去,直到取满为止; 掉,如此进行下去,直到取满为止 ④根据选定的号码抽取样本。 根据选定的号码抽取样本。 抽取样本
第一步:确定抽样比,即样本容量与总体容量之比为1:1000; 第一步:确定抽样比,即样本容量与总体容量之比为1 1000; 第二步:确定各层个数,利用抽样比确定各地区学生数为 第二步:确定各层个数,利用抽样比确定各地区学生数为357、 、 222、258、226、134、113、112、43、6; 、 、 、 、 、 、 、 ; 第五步:利用系统抽样法分别在城市小学、县镇小学、农村小 第五步:利用系统抽样法分别在城市小学、县镇小学、 城市初中、县镇初中、农村初中、城市高中、县镇高中、 学、城市初中、县镇初中、农村初中、城市高中、县镇高中、 农村高中的学生中抽取357、 、 农村高中的学生中抽取 、222、258、226、134、113、112、 、 、 、 、 、 43、6人,然后合在一起,就是要抽取的样本。 、 人 然后合在一起,就是要抽取的样本。
2.随机数法 2.随机数法
袋牛奶中抽取60袋进行质量检查 例:从800袋牛奶中抽取 袋进行质量检查,利用 袋牛奶中抽取 袋进行质量检查, 随机数法设计抽样方案。 随机数法设计抽样方案。

1简单随机抽样、系统抽样、分层抽样含答案

1简单随机抽样、系统抽样、分层抽样含答案

1简单随机抽样、系统抽样、分层抽样含答案2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类?抽签法?简单随机抽样???随机数法3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.NN(2)确定分段间隔k,对编号进行分段.当(n是样本容量)是整数时,取k=;nn(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B- 1 -解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( ) A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )***-*****A.,B.,C.,D.,***-**********答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32 答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B. 7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( ) A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D 8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2700答案B 由于=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=7020(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ) - 2 -A.5个B.10个C.20个D.45个*****答案A解析由题意知每=10(个)球中抽取一个,现有50个红球,应抽取=5(个).*****11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.*****答案7,4,6解析应抽取的亩数分别为210×=7,120×=4,180×=6.***-*****016.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k×100=20.5k+3k+2k17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例2+3+5+1是一致的.所以,样本容量n=×16=88.2- 3 -。

2.1.1 简单随机抽样

2.1.1 简单随机抽样
【答案】①③②
配人教版 数学 必修3
简单随机抽样的概念 【例1】 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取50个个体作为样本; (2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进 行质量检查; (3)某连队从200名党员官兵中,挑选出50名最优秀的官兵 赶赴青海参加抗震救灾工作;
配人教版 数学 必修3
2.1 随机抽样 2.1.1 简单随机抽样
配人教版 数学 必修3
目标定位
重点难点
1.理解随机抽样的必要性和重 要性. 2.会用简单随机抽样方法从总 体中抽取样本.
重点:理解随机抽样的必要性 和重要性,用抽签法和随机数 法抽取样本. 难点:抽签法和随机数法的实 施步骤.
配人教版 数学 必修3
配人教版 数学 必修3
第二步,从“7”开始向右每次读取三位,凡在600~999中 且不与已读出的数重复的数保留,否则跳过去不读,依次得 753,724,688,770,721,763,676,630,785,916.
第三步,以上号码对应的10个零件就是要抽取的对象.
配人教版 数学 必修3
利用随机数表法抽样时应注意的问题 1.编号要求位数相同,若不相同,需先调整到一致再进 行抽样,如当总体中有100个个体时,为了操作简便可以选择 从00开始编号,那么所有个体的号码都用两位数字表示即可, 从00~99号.如果选择从1开始编号那么所有个体的号码都必 须用三位数字表示,从001~100.很明显每次读两个数字要比 读三个数字节省读取随机数的时间. 2.第一个数字的抽取是随机的. 3.当随机数选定,开始读数时,读数的方向可左,可 右,可上,可下,但应是事先定好的.
配人教版 数学 必修3
D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000 亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量

简单随机抽样系统抽样分层抽样含答案

简单随机抽样系统抽样分层抽样含答案

2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。

数学:2.1.1《简单随机抽样》课件(3)(新人教B版必修3)

数学:2.1.1《简单随机抽样》课件(3)(新人教B版必修3)
2.1.1简单随机抽样 2.1.1简单随机抽样
阅读第44~ 页内容 页内容, 阅读第 ~48页内容,回答下列问题 :
(1)什么是简单随机抽样? )什么是简单随机抽样? (2)简单随机抽样有几种? )简单随机抽样有几种? (3)简单随机抽样的特点是什么? )简单随机抽样的特点是什么?
答(ቤተ መጻሕፍቲ ባይዱ)简单随机抽样 )
随机数表法设计方案的步骤
第一步:将总体中的所有个体编号( 第一步:将总体中的所有个体编号(每个号码位数 一致); 一致); 第二步:在随机数表中任选一个数作为开始; 第二步:在随机数表中任选一个数作为开始; 第三步:从选定的数开始按一定的方向读下去, 第三步:从选定的数开始按一定的方向读下去,得 到的数码若不在编号中,则跳过;若在编号中, 到的数码若不在编号中,则跳过;若在编号中,则 取出。得到的数码若在前面已经取出,则跳过。 取出。得到的数码若在前面已经取出,则跳过。如 此进行下去,直到取满为止; 此进行下去,直到取满为止; 第四步:根据选定的号码抽取样本。 第四步:根据选定的号码抽取样本。
一般地,用抽签法从容量为 的总体中抽取一个 一般地,用抽签法从容量为N的总体中抽取一个 容量为n的样本的步骤为 的样本的步骤为: 容量为 的样本的步骤为: 第一步:给总体中的所有个体编号( 第一步:给总体中的所有个体编号(号码可以从 1到N; 到 ; 第二步: 个号码写在形状、 第二步:将1~N这N个号码写在形状、大小相同的 这 个号码写在形状 号签上; 号签上; 第三步:将号签放到一个不透明的容器中, 第三步:将号签放到一个不透明的容器中,搅拌 均匀; 均匀; 第四步:从容器中每次抽取一个号签, 第四步:从容器中每次抽取一个号签,并记录其编 连续抽取n次 号,连续抽取 次; 第五步: 第五步:从总体中将与抽到的编号一致的个体取出

211简单随机抽样(三种抽样方法)ppt课件

211简单随机抽样(三种抽样方法)ppt课件

确定抽取的样本量n,通常要求n远小 于N,且n和N都是已知的;
对样本进行必要的检查和调整,确保 样本的代表性。
简单随机抽样优缺点
优点
简单易行,样本具有较好的代表性,能够客观地反映总体情况;每个单位被抽 中的概率相等,保证了抽样的公正性;
缺点
当总体容量N较大时,样本的抽取比较困难;需要对总体中的所有单位进行编 号,工作量较大;如果总体中单位特征差异较大,简单随机抽样可能导致样本 的偏差。
整群抽样
将总体分成若干群,随机抽取部 分群,对抽中群进行全面调查。
优点
便于组织和管理,节省人力物力。
缺点
抽样误差可能较大,样本代表性可 能较差。
抽样方法选择依据
研究目的
明确研究目的和需求, 选择最合适的抽样方法

总体特征
了解总体的分布、异质 性等特征,以便选择合
适的抽样方法。
资源限制
考虑时间、人力、物力 等资源限制,选择可行
分层抽样步骤
确定分层变量
选择能够反映总体个体差异的变量作为分层 变量。
确定各层的样本量
根据各层的权重、样本量分配比例等因素, 确定各层的样本量。
对总体进行分层
根据分层变量的取值范围,将总体分成若干 个互不重叠的层。
在各层内进行随机抽样
在各层内分别采用简单随机抽样、系统抽样 等方法抽取样本。
分层抽样优缺点及适用场景
02
03
简单随机抽样
每个样本被选中的概率相 等,完全随机。
优点
简单易行,无偏性,一致 性。
缺点
可能产生较大抽样误差, 样本分布可能不均匀。
三种抽样方法比较
分层抽样
将总体分成若干层,每层 内进行简单随机抽样。

2.1 系统抽样课件

2.1 系统抽样课件

4.你认为系统抽样有哪些优点与缺点? 答:优点:(1)简便易行; (2)当对总体结构有一定了解时,充分利用已 有信息对总体 中的个体进行排除后再抽样,可 以提高抽样效率;
(3)当总体中的个体存在自然编号(如生产线 上产品的质量控制)时,便于施行系统抽样法。
缺点:在不了解样本总体的情况下,所抽出的 样本可能有一定偏差。
温故知新
一.简单随机抽样:
(一)简单随机抽样的概念:一般地,设一个总体含有N个个体, 从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽 取时总体内的各个个体被抽到的机会都相等,这种抽样方法 叫做简单随机抽样. (二)最常用的简单随机抽样方法: 1.抽签法(抓阄法) (1)抽签法一般步骤: ①编号:将总体中的N个个体编号; ②写号签:将这N个号码写在形状、大小相 同的号签上; ③号签均匀搅拌:将号签放在同一箱中,并搅拌均匀;
2.某单位共有老、中、青职工430人,其中青年职工160人,中 年职工人数是老年职工人数的2倍。为解职工身体状况,现 采用分层抽样方法进行调查,在抽取的样本中有青年职工32 人,则该样本中的老年职工人数为( B) (A)9 (B)18 (C)27 (D) 36
3.某公司在甲、乙、丙、丁四个地区分别有150个、 120个、180个、150个销售点,公司为了调查产品销 售的情况,需从这600个销售点中抽取一个容量为 100的样本,记这项调查为①;在丙地区中有20个特 大型销售点,要从中抽取7个调查其销售收入和售后 服务等情况,记这项调查为②.完成①②这两项调查 采用的抽样方法依次为 ( B ). A.分层抽样法、系统抽样法 B.分层抽样法、简单随机抽样法 C.系统抽样法、分层抽样法 D.简单随机抽样法、分层抽样法
诱思探究1
1.在此问题中总体中有几个个体?样本容量是多少? 答:总体中的个体数为:2400+10900+11000=24300;

随机抽样1简单随机抽样

随机抽样1简单随机抽样

2.简单随机抽样的分类 简单随机抽样抽 随签 机法 数法
3.随机数法的类型 随机数表法
随机数法随机数骰子 计算机产生的随机数
思考讨论 有同学认为:“随机数表只有一张,并且读数时只能按 照从左向右的顺序读取,否则产生的随机样本就不同了,对 总体的估计就不准确了”,你认为正确吗?
2.使用随机抽样方法抽取样本应注意的几个问题 (1)目标要准确. 必须清楚地知道要收集的数据是什么.例如,在食品质
量检验中,为了了解一批袋装牛奶(总体)的细菌超标情况, 从中随机抽取了 n 袋,并测出了每一袋的细菌含量 ai(i= 1,2,…,n),这里 ai(i=1,2,…,n)就是我们要收集的数据.
例 4 一个学生在一次竞赛中要回答的 8 道题是这样产 生的:从 15 道物理题中随机抽取 3 道;从 20 道化学题中随 机抽取 3 道;从 12 道生物题中随机抽取 2 道.请选用合适 的方法确定这个学生所要回答的三门学科的题的序号(物理 题的编号为 1~15,化学题的编号为 16~35,生物题的编号 为 36~47).
变式训练 2
某大学为了选拔世博会志愿者,现从报名的 18 名同学 中选取 6 人组成志愿小组,请用抽签法确定志愿小组成员.
[解] 第一步,将 18 名同学编号,号码是 01,02,…,18; 第二步,将号码分别写在一张纸条上,揉成团,制成号签; 第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀; 第四步,从袋子中依次抽取 6 个号签,并记录上面的编号; 第五步,所得号码对应的同学就是志愿小组的成员.
[解法二] 随机数表法
第一步,将物理题的编号对应地改成 01,02,…,15, 其余两门学科的题的编号不变;
第二步,在随机数表中任选一个数作为开始,任选一个 方向作为读数方向,例如选出第 10 行第 2 列的数 7,向右读;

【课程案例】简单随机抽样(30张)

【课程案例】简单随机抽样(30张)

【名师点评】 要判断所给的抽样方法是否是 简单随机抽样,关键是看它们是否符合简单随 机抽样的定义,即简单随机抽样的四个特点.
自我挑战1 下列抽样方法是简单随机抽样的 是________(填序号). ①坛子中有一个大球,4个小球,从中摸出一 个球,搅均匀后,随机取出一个球; ②在校园里随意选三名同学进行调查; ③在剧院里为抽取三名观众调查,将所有座号 写在同样的纸片上,放入箱子搅匀后逐个抽取, 共取三张; ④买彩票时随手写几组号.
解析:(1)第7行第5个数为1,每两位为一个号码的 读取,第1个适合的号码17,第2个号码53,第3个 号码31. (2)将编号扩充为3位,如10变为010,11变为011,从 第7行第5个数开始每三位作为一个号码,第1个号 码为175(适合≤500),第2个号码为331(适合),第3 个号码为572(不适合),则第3个合适号码为455. 答案:31 455
自我挑战3 如图表是随机数表的一部分(第6~10 行) 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28

2.1.1简单随机抽样

2.1.1简单随机抽样

当随 机 地 选定开始的数后 读数的方向可以向右也可以向左、 , , 向上、向下等 . 用随机表法抽取样本的步骤是:
1对总体中的个体进行编号 每个号码位Байду номын сангаас一致; 2在随机表中任选一个数作为开始;
例如, 可从抛掷一根大头针落 在随机表上针尖所指的 数开始.
3从选定的数开始按一定的方向读下去, 若得到的数码在编
一般地 , 用抽签法从个体个数 样本的步骤为 :
N 的总体中抽取一个容量
为 k的
1将总体中的所有个体编号 号码可以从1 到 N ; 2将1 到 N 这 N 个号码写在形状、大小相同的号签上 ( 号签
可以用小球、卡片、纸条等制作 ) ;
3将号签放在同一箱中,并搅拌均匀; 4 从箱中每次抽取1 个号签, 并记录其编号, 连续抽取 k 次; 5从总体中将与抽到的签的编号一致的k个个体取出.
87 35 20 96 43 21 76 33 50 25 12 86 73 58 07 15 51 00 13 42 90 52 84 77 27
84 26 34 91 64 83 92 12 06 76 44 39 52 38 79 99 66 02 79 54 08 02 73 43 28
33 21 12 34 29 57 60 86 32 44
第2 章


只有将数学应用于社会 科学的研究 之后, 才能使得文明社会的发 展成为 可控制的现实 .
怀特
黄建忠制作
灯泡厂要了解生产的灯 泡的使用寿命 需要将所有灯泡 , 逐一测试吗? 保险公司对人寿保险制 定适当的赔偿标准需要了解人 , 口的平均寿命 怎样获得相关数据 , ?
国际奥委会2003 年 6 月29日决定,2008 年北京奥运会的 举办日期将比原定日期 迟两周 改 在 8 月8日至 8月24 推 , 日举行.原因是 7 月末 8 月初北京地区的气温高 8 月中 于 下旬.这一结论是如何得到的呢 ?

2.1.1简单随机抽样

2.1.1简单随机抽样
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 1 9 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
练习4.
某学校高一年级共有 200 名学生 , 为了了解 这些学生的身高状况 , 从中抽取一个容量为 15 的 样本 .
012 234 409 987 001 333 761 078 142 765 020 769 999 456 132 001 667 089 034 072 134 407 207 051 146 657 456 001 149 876 010 639 911 117 169 119 110 667
请同学们自己试一试
当随机地选定开始的数后 , 读数的方向可以向左 , 也可以向右、向上、向下等. 由此可见,用随机数表法抽取样本的步骤是: (1) 对总体中的个体进行编号( 每个号码位数一致 ); (2) 在随机数表中任选一个数作为开始 ;
(3) 从选定的数开始按一定的方向读下去, 得到的数 码若不在编号中,则跳过;若在编号中, 则取出;如果得 到的号码前面已经取出, 也跳过;如此继续下去,直到 取满为止 ; (4) 根据选定的号码抽取样本 . 从个体数为N的总体中不重复地取出 n 个个体 ( n N ) ,每个个体都有相同的机会被取到 . 这样的抽样方法 称为简单随机抽样 .
从 01 , 02 , 03 , , 09 , 10 , 11 , 12 , 13 , 14 , 15 中随机抽出 3 道 ;

2.1.1简单随机抽样(三种抽样方法)

2.1.1简单随机抽样(三种抽样方法)
(2)分层抽样是建立在简单随机抽样或系统抽样的基础
上的,由于它充分利用了已知信息,因此它获取的样本更 具代表性,在实用中更为广泛。
第28页,共36页。
2、分层抽样的抽取步骤:
第1页,共36页。
笑一笑,十年少
一天,爸爸叫儿子去买一盒火柴,临出门 前,爸爸嘱咐儿子要买能划燃的火柴,儿子拿 着钱出门了,过了好一会儿,儿子才回到家。
“火柴能划燃吗?”爸爸问。 “都能划燃。” “你这么肯定?”
儿子递过一盒划过的火柴,兴奋地说: “我每根都试过啦。”
问:这则笑话中,儿子采用的是什么调查方式?这其 中的全体是什么?这种调查方式好不好?
性是( )C 。
A.与第几次抽样有关,第一次抽的可能性最大 B.与第几次抽样有关,第一次抽的可能性最小 C.与第几次抽样无关,每次抽到的可能性相等 D.与第几次抽样无关,与抽取几个样本无关
第20页,共36页。
问题某:校高一年级共有20个班,每班有50名学生。
为了了解高一学生的视力状况,从这1000人中抽 取一个容量为100的样本进行检查,应该怎样抽样?
中任意拿出一个零件进行质量检验后,再把它放回盒子里;
4. ③从8台电脑中不放回的随机抽取2台进行质量检验(假设8台电脑已编好号,
对编号随机抽取)
5. A.① B.② C.③
D.以上都不对
四个特点:①总体个数有限;②逐个抽取;③不 放回;④每个个体机会均等,与先后无关。
第10页,共36页。
B 2.在简单随机抽样中,某一个个体被抽中的可能性是( )
为了解1200名学生对学校教改试验的意见打算从中抽取一个容量为30的样本考虑采用系统抽样则分段间隔k2某商场新进3000袋奶粉为检查其三聚氰胺是否超标先采用系统抽样的方法从中抽取150检查若第一组抽取号码是11则第61组抽出的号码2采用系统抽样的方法从个体数为1003的总体中抽取一个容量50的样本则在抽样过程中被剔除的个体数为抽样间隔为1某工厂生产产品用传送带将产品送放下一道工序质检人员每隔十分钟在传送带的某一个位置取一件检验则这种抽样方法是a

第二章统计简单随机抽样知识梳理简...

第二章统计简单随机抽样知识梳理简...

第二章统计2.1 随机抽样2.1.1 简单随机抽样知识梳理:1.简单随机抽样的含义一般地,设一个总体含有N个个体,从中________地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会________,就把这种抽样方法叫做简单随机抽样。

2.简单随机抽样的方法(1)抽签法(抓阄法)一般地,抽签法就是________,把号码写在号签上,把号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(2)随机数法随机数法:利用________、________或________产生的随机数进行抽样。

思考探究:1.简单随机抽样有哪些特点?2.在用随机数法抽样时,如果题目所给的编号数不一致,该如何处理?自主测评:1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1 000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是1002.在简单随机抽样中,某一个个体被抽到的可能性()A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与抽取几个样本有关3.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回4.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件进行检查,对100件产品采用下面编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…99。

其中最恰当的序号是________。

典例探究突破:类型一:简单随机抽样的概念例1:下面抽取样本的方式是简单随机抽样吗,为什么?(1)从无限多个个体中抽取50个个体作为样本;(2)箱子里共有100个零件,今从中选取10个零进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里;(3)从50个个体中一次性抽取5个个体作为样本;(4)某班45名同学指定个子最高的5名同学参加学校组织的某项活动。

简单随机抽样

简单随机抽样
第二章 统 计
2.1 随机抽样
2.1.1 简单随机抽样
请看下面几个例子:
• 例1:厨师为了知道饼熟了没有,从刚出锅的饼 •
上切下一小块尝尝,如果这一小块熟了,那么可 以估计整张饼熟了。 例2:农科站要了解农田中某种病虫害的灾情, 会随机地选定几块地,仔细地检查虫卵数,然后 估计一公顷农田大约平均有多少虫卵,会不会发 生病虫害。 例3:某部队要想知道一批炮弹的杀伤半径,会 随机地从中选取一些炮弹进行发射实验,以考察 这一批炮弹的杀伤半径。
随机数 1. 将100件轴编号为00,01,…99 表法: 2.在随机数表中选定一个起始位置,如取第21行第1
个数开始 3.选取10个为68,34,30,13,70,55,74,77, 40,44,这10件即为所要抽取的样本.
小结
1.简单随机抽样的概念
一般地,设一个总体的个体数为N,如果通过逐个 抽取的方法从中抽取一个样本,且每次抽取时各个个体 被抽到的概率相等,就称这样的抽样为简单随机抽样。
第四步,每次从中抽取一个号签,连续抽取n次,就 得到一个容量为n的样本.
抽签法的应用
例1:某卫生单位为了支援玉树抗震救灾,要在18名志愿者中 选取6人组成医疗小组去玉树参加救治工作,请用抽签法设计 抽样方案.
分析:编号→制签→搅匀→抽签→定样.
解:方案如下: 第一步,将18名志愿者编号,号码为:01,02,03,…,18. 第二步,将号码分别写在相同的纸条上,揉成团,制成号签. 第三步,将得到的号签放到一个不透明的盒子中,充分搅匀. 第四步,从盒子中依次取出6个号签,并记录上面的编号. 第五步,所得号码对应的志愿者就是医疗小组成员.
思考:你认为抽签法有哪些优点和缺点?当总体
中的个体数很多时,用抽签法方便吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三步,从选定的数7开始向右读(读数 的方向也可以是向左、向上、向下等),得到 一个三位数785,由于785<799,说明号码785 在总体内,将它取出;继续向右读,得到916, 由于916>799,将它去掉,按照这种方法继续 向右读,又取出567,199,507,…,依次下 去,直到样本的60个号码全部取出,这样我们 就得到一个容量为60的样本。
知识要 点 随机法定义
一般地,利用随机数表、随机数骰子或 计算机产生的随机数进行抽样,叫随机数法。
(2)用随机数表进行抽样的步骤:
将总体中个体编号;
选定开始的数字;
获取样本号码。
怎样利用随机数表产生样本呢? 假设我们要考察某公司生产的500克袋装牛奶的 质量是否达标,现从800袋牛奶中抽取60袋进行检验. 利用随机数表抽取样本时,可以按照下 面的步骤进行: 仔细观察 过程!
一般地,抽签法就是把总体中的N个个 体编号,把号码写在号签上,将号签放在一 个容器中,搅拌均匀后,每次从中抽取一个 号签,连续抽取n次,就得到一个容量为n的 样本。
归纳
抽签法的一般步骤: (总体个数N,样本容量n) (1)将总体中的N个个体编号; (2)将这N个号码写在形状、大小相同的号签上; (3)将号签放在同一箱中,并搅拌均匀; (4)从箱中每次抽出1个签不放回,连续抽出n次; (5)将总体中与抽到的号签编号一致的n个个体取出。 简记为:编号;搅匀;抽取个体。
教学重难点
重点
正确理解简单随机抽样的概念,掌握抽签 法及随机数法的步骤。
难点
能灵活应用相关知识从总体中抽取样本。
要了解全国高中生的视力情况,在全国抽取了 15所中学的全部高中生15000人进行视力测试。
考察对象是什么?
全国每位高中学生的视力。
在统计中,我们把所要考察的对象的全体叫做 总体, 把组成总体的每一个考察的对象叫做个体
1. 下列抽取样本的方式是属于简单随机抽样的是(
C)
②盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操 作时,从中任意拿出一个零件进行质量检验后,再把它放回盒 子里;
③从8台电脑中不放回的随机抽取2台进行质量检验(假设8台电脑 已编好号,对编号随机抽取)
A.① B.② C.③ D.以上都不对
从总体中取出的一部分个体的集体叫做这个总 体的一个样本。 这15000名学生的视力情况就组成一个样本
样本中的个体的数目叫做样本的容量。15000
知识要 点 简单随机抽样
一般地,设一个总体含有N个个体,从 中逐个不放回地抽取n个个体作为样本 (n≤N),如果每次抽取时总体内的各个个体 被抽到的机会都相等,就把这种抽样方法叫 做简单随机抽样,这样抽取的样本,叫做简 单随机样本。
3、从总体为N的一批零件中抽取一个容量 为30的样本,若每个零件被抽取的可能性 为25%,则N=____. 120 4、为了了解全校240名学生的身高情况, 从中抽取40名学生进行测量。下列说法正 确的是( D ) A 总体是240 C 样本是40名学生 B 个体是每一个学生 D 样本容量是40
知识要 点 抽签法定义
简记为:编号;制签;搅匀;抽签;取个体。
用随机数表法抽取样本的步骤:
简记为:编号;选数;读数;取个体。
四个特点:①总体个数有限;②逐个抽取; ③不放回;④每个个体机会均等,与先后 无关。
2.在简单随机抽样中,某一个个体被抽中的可能性是( A.与第n次抽样无关,第一次抽中的可能性大一些; B.与第n次抽样无关,每次抽中的可能性都相等; C.与第n次抽样无关,最后一次抽中的可能性大一些;
B)
D.与第n次抽样无关,每次都是等可能抽样,但每次抽中的可 能性不一样;
2. 要从编号为1到100的100道选择题中随机 抽取20道组成一份试卷,请你用抽签法完成 这一工作。
3. 一个总体中共有200个个体,用简单随 机抽样的方法从中抽取一个容量为20的样本, 则某一特定个体被抽到的可能性是_____ 1/10 。
4.人们玩牌时,将洗好的扑克牌随机确定一 张为起始牌,这时按次序搬牌时,对任何一家 来说,都是从52张牌中抽取13张牌,问这种抽 样方法是否是简单随机抽样?
一种新的抽法 随机数法
1. 要考察某种品牌的850颗种子的发芽率,从 中抽取50颗种子进行试验,利用随机数表法, 先将850颗种子按001,002,…,850进行编号, 如果从随机数表第3行第6列的数开始向右读, 请依次写出最先检验的4颗种子的编号 _______________。(请参考课本103页第一行 至第五行)
简单随机抽样特点
(1)简单随机抽样要求被抽取的样本的总体个数N 是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。 (4)简单随机抽样是一种不放回的抽样。 (5)简单随机抽样的每个个体入样的可能性均为 n/N。
例题:
①从无限多个个体中抽取100个个体作样本;
第一步,先将800袋牛奶编号,可以编为
000,001,…,799。 第二步,在随机数表中任选一个数,例如
选出第8行第7列的数7(为了便于说明,下面
摘取了附表1的第6行至第10行)。
16 22 77 94 39 84 42 17 53 31 63 01 63 78 59 33 21 12 34 29 57 60 86 32 44 87 35 20 96 43 21 76 33 50 25 12 86 73 58 07 15 51 00 13 42 90 52 84 77 27 49 54 43 54 82 57 24 55 06 88 16 95 55 67 19 78 64 56 07 82 09 47 27 96 54 84 26 34 91 64 83 92 12 06 76 44 39 52 38 79 99 66 02 79 54 08 02 73 43 28 17 37 93 23 78 77 04 74 47 67 98 10 50 71 75 52 42 07 44 38 49 17 46 09 62
为了了解高二(10)班52名同学的视力 情况,从中抽取10名同学进行检查。
(1)随机的将 52名学生编号为1,2,3...51,52; 问:( 1)此例中总体、个体、样本、 (2)将这52个号码写在形状、大小相同的 样本容量分别是什么? 号签上; (32 )将号签放在同一箱中,并搅拌均匀; ( )如何抽取呢?
小结
1.统计中的基本概念 2.简单随机抽样的概念
一般地,设一个总体的个体数为 N ,如果通过逐个 抽取的方法从中抽取一个样本,且每次抽取时各个个体 被抽到的概率相等,就称这样的抽样为简单随机抽样。
3.简单随机抽样操作办法:
抽签பைடு நூலகம்(总体个数较少) 随机数表法(总体个数较多)
用抽签法抽取样本的步骤:
(4)从箱中每次不放回的抽出1个签,连续 抽出10次; 抽签法 (5)将总体中与抽到的号签编号一致的10 个同学取出,组成样本进行检查。
问题2:考查某公司生产的500克袋装牛奶的质 量是否达标,现从800袋牛奶中抽取60袋,进 行检验,应如何抽样?
简单随机抽样法之二——随机数表法
制作一个数表,其中的每个数都是用随机方法 产生的,这样的表称为随机数表。只要按一定的 规则到随机数表中选取号码就可以了。这种抽样 方法叫做随机数表法。
相关文档
最新文档