八年级数学平行四边形的识别2

合集下载

初中数学《平行四边形的识别》不同教学难点应对教案

初中数学《平行四边形的识别》不同教学难点应对教案

初中数学《平行四边形的识别》不同教学难点应对教案。

教学难点一:平行四边形的基本定义和性质平行四边形的基本定义是:具有两组相对平行的对边、而且对边长度相等的四边形。

如果学生对平行四边形的定义不够清晰,很难理解这个概念。

因此,在教学过程中,我们应该首先强调平行四边形的定义,帮助学生理解其中的关键点。

除此之外,平行四边形还有一些重要的性质,比如对角线互相平分、相邻角互补、对边平行等。

这些性质对于进一步理解平行四边形非常重要。

因此,在制定教案的时候,我们需要保证给学生足够的时间来学习这些性质,并且通过实例来帮助他们更好地理解和应用这些性质。

教学难点二:平行四边形的图形识别在初中数学中,图形的识别非常重要。

对于平行四边形这样的图形,学生需要清晰地了解它的形状,以便在实际问题中识别出来。

在这个过程中,有两个教学难点需要我们注意。

学生需要学会从图形中识别出平行线。

这需要他们对几何图形中的概念有一定的掌握。

我们可以通过多种方法来帮助学生理解平行线,比如通过直线上等角的概念或者通过举例子进行说明。

学生还需要学会如何区分不同的四边形。

他们需要知道平行四边形与其他四边形的区别和不同之处。

通过多加练习,我们可以帮助学生更好地掌握这些技能。

教学难点三:平行四边形的计算问题在学生掌握了平行四边形的基本概念之后,他们就需要学会如何进行计算了。

这对于学生来说是一个较为困难的环节,需要投入大量的时间和精力。

我们可以采用一些有针对性的教学方法,在解决平行四边形计算问题的过程中帮助他们更好地理解和应用概念。

比如,我们可以通过练习让学生分别计算平行四边形的面积和周长,以此检验他们是否已经掌握此内容;还可以采用模拟实际问题的方法来让学生更方便地理解和应用这些计算方法。

总结平行四边形的识别在初中数学中非常重要。

在教学过程中,我们需要针对不同教学难点制定相应的教案,以帮助学生更好地理解和应用概念。

通过采用一些有针对性的教学方法,帮助学生快速掌握这个概念,不仅可以提高他们的学习兴趣和成绩,还可以为他们今后的学习打下坚实的基础。

平行四边形对边相等对角相等

平行四边形对边相等对角相等

22.1 平行四边形的性质(2课时)学习目标1.知识目标(1)理解平行四边形的有关概念.(2)探索并掌握平行四边形的对边相等,对角相等,对角线互相平分的性质,(3)通过旋转体会平行四边形的中心对称性.2.能力目标能利用平行四边形的性质解决简单的实际问题.3.情感目标发展学生合理的推理意识,培养其主动探究的习惯.学习重点、难点重点:平行四边形的性质与应用难点:平行四边形性质的探究教师在这一问题中要强调平行四边形的书写符号.让学生通过观察、归纳得到平行四边形的性质,借助测量工具动手进行验证.加深学生对平行四边形的定义、对边相等、对角相等性质的理解.如图,在在教学过程中,一方面,要让学生自己动手,体会平行四边形的中心对称性,强化旋转变换特征的应用,体现前后知识的衔接;另一方面让学生多角度地对运用不同的方法验证得到的结论,并有条理的进行表述.利用平行四形的性质,让学生自主探索,丰富学生独立进行数学活动的经验,形成良好的思维习惯.通过这一组练习,巩固平行四边形:对角相等、对边相等,对角线互相平分等性质.巩固学生对平行四边形的对角线互相平分这一性质的应用,同时也培养学生综合运用数学知识的能力.附:板书设计22.2平行四边形的判定(2课时)学习目标1.知识目标(1)经历平行四边形识别条件的探究过程,使学生逐步掌握探究的方法.(2)掌握平行四边形的识别条件和应用.2.能力目标会综合运用平行四边形的识别方法和性质来解决问题.3.情感目标在学习过程中丰富学生从事数学活动的经验,发展合情推理的意识.学习重点、难点重点:平行四边形的识别方法及应用.难点:平行四边形的识别方法与性质定理的灵活应用.可以让学生用几根小木棒搭建平行四边形,然后于同学进行交流,引出要研究的问题.通过观察,对不同操作方法得到的四边形是否是平行四边形展开思考,让学生经历探索的过程.如图,已知它是平行四边形的性质与判定的综合运用,此题最好发展学生一题多证的发散性思维,•同时将上面的三种平行四边形的判定方法进行应用、归纳,形成切入点,但要注意采用最优证法.通过练习,让学生对平行四边形的识别条件建立比较完整的认识,进一步巩固所学知识.培养学生既动手又动脑的能力.通过本题,深化对本节知识的理解,提高学生的综合分析能力.本环节使知识更加系统化,帮助学生归纳,整理,有利于知识体系的形成.22.3三角形的中位线学习目标1.知识目标(1)了解三角形中位线的概念.(2)探索并掌握三角形中位线的性质.2.能力目标感受三角形与四边形的联系,提高学生分析问题、解决问题的能力.3.情感目标通过学生动手操作、观察、自主探索与合作交流的过程,激发学生的学习兴趣.学习重点、难点重点:三角形中位线性质及其应用.难点:三角形中位线性质的探索过程.课前准备三角形纸片,剪刀这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中。

第18章平行四边形典型题型总结课件课件2021—2022学年人教版数学八年级下册

第18章平行四边形典型题型总结课件课件2021—2022学年人教版数学八年级下册

△AOB的周长比△DOA的周长长5cm,求这个平行四边形
各边的长.
D
C
解:∵四边形ABCD是平行四边形,
O
∴OB=OD,AB=CD,AD=BC. A
B
∵△AOB的周长比△DOA的周长长5cm,∴AB-AD=5cm.
又∵ ABCD的周长为60cm,∴AB+AD=30cm.
则AB=CD=17.5cm,AD=BC=12.5cm. 提示:平行四边形被对角线分成四个小三角形,相邻两个 三角形的周长之差等于邻边边长之差.
∴∠BAE=∠DCF.
B
FC
又∵AE=CF,
∴ △ABE≌ △CDF.
∴BE=DF.
如图,小明用一根36m长的绳子围成了一个平行四边形的 场地,其中一条边AB长为8m,其他三条边各长多少?
A 8m B
D C
解:∵ 四边形ABCD是平行四边形, ∴AB=CD, AD=BC. ∵AB=8m, ∴CD=8m. 又AB+BC+CD+AD=36m, ∴ AD=BC=10m.
=S△AOB+S△COB=1 S
∴S四边形ANMB=S四边形CMND,
2
ABCD
.
即平行四边形ABCD被EF所分的两个四边形面积相等.
把一个平行四边形分成3个三角形,已知两个阴影三角形的面 积分别是9cm2和12cm2,求平行四边形的面积.
解:(9+12)×2 =21×2 =42(cm2)
答:平行四边形的面积是42cm2.
∴AB∥ CD , AD∥ BC.
∴四边形ABCD是平行四边形.
十一.利用两组对边分别相等识别平行四边形 如图,在Rt△MON中,∠MON=90°.求证:

人教版八年级下册数学平行四边形知识点总结

人教版八年级下册数学平行四边形知识点总结

平行四边形、矩形、菱形、正方形知识点总结杭信一中何逸冬一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形分成4个面积相等=⨯的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补对角:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.(3)识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=12 ab.③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .平行四边形 矩形 菱形 正方形 图形性质1.对边且 ;2.对角 ; 邻角 ;3.对角线; 1.对边且 ;2.对角且四个角都是 ;3.对角线;1.对边 且四条边都 ;2.对角 ; 3.对角线 且每 条对角线 ;1.对边 且四条边都 ;2.对角 且四个角都是 ; 3.对角线 且每条对角线 ;面积【素材积累】1、只要心中有希望存摘,旧有幸福存摘。

【最新版】八年级数学下册课件:18.1.2平行四边形的判定

【最新版】八年级数学下册课件:18.1.2平行四边形的判定

求证:四边形ABCD是平行四边形
证明:∵∠A=∠C,∠B=∠D(已知)
A
D
又∵∠A+ ∠B+ ∠C+ ∠D =360 °
∴ 2∠A+ 2∠B=360 °
B
C
即∠A+ ∠B=180 °
∴ AD∥BC (同旁内角互补,两直线平行)
同理可证AB∥CD
∴四边形ABCD是平行四边形(两组对边分别平行的 四边形是平行四边形)
A
D
A
D
几何语言:
在四边形ABCD中,
B
B
C
C
∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形.
探究新知
18.1 平行四边形/
素养考点 1 利用两组对边分别相等识别平行四边形 例1 如图,在Rt△MON中,∠MON=90°.求证: 四边形PONM是平行四边形.
证明:在Rt△MON中,
由勾股定理得(x-5)2+42=(x-3)2,
探究新知
18.1 平行四边形/
知识点 2 平行四边形的判定定理2 一天,八年级的李明同学在生物实验室做实验时,不小心 碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图 所示部分,他想去割一块赔给学校,带上玻璃剩下部分去玻璃店 不安全,于是他想把原来的平行四边形重新在纸上画出来,然 后带上图纸去就行了,可原来的平行四边形怎么画出来呢?
由上面的过程你得到了什么结论?
是平行四边形
B
两组对边分别相等的四边形是平行四边形 如何证明这
个结论呢?
探究新知
18.1 平行四边形/
已知: 四边形ABCD中,AB=DC,AD=BC. 你能用平行
求证: 四边形ABCD是平行四边形.

八年级数学特殊的平行四边形——正方形人教实验版知识精讲

八年级数学特殊的平行四边形——正方形人教实验版知识精讲

初二数学特殊的平行四边形——正方形人教实验版【本讲教育信息】一、教学内容:特殊的平行四边形——正方形1. 掌握正方形的定义,弄清楚正方形和平行四边形、矩形、菱形的关系.2. 掌握正方形的性质和判定方法.二、知识要点: 1. 正方形(1)定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形. (2)正方形的性质:正方形具有平行四边形、矩形和菱形的所有性质. ①正方形各边的性质:四条边相等,对边平行. ②正方形各角的性质:四个角都是直角.③正方形对角线的性质:正方形的对角线互相平分、互相垂直、相等,且每一条对角线平分一组对角.④正方形的对称性:正方形是轴对称图形,对边中点所在直线和对角线所在直线都是正方形的对称轴.B(3)正方形的识别:①有一组邻边相等的矩形是正方形; ②对角线互相垂直的矩形是正方形; ③一个内角是直角的菱形是正方形; ④对角线相等的菱形是正方形;⑤有一组邻边相等且互相垂直的平行四边形是正方形; ⑥对角线相等且互相垂直的平行四边形是正方形. 2. 平行四边形、矩形、菱形、正方形之间的关系平行四边形三、重点难点:本讲重点是正方形的性质,难点是平行四边形、矩形、菱形、正方形之间的共性,特性及从属关系.【典型例题】例1. 如图所示,已知正方形ABCD ,点E 是AB 延长线上一点,连结EC ,作AG ⊥EC 于G ,AG 交BC 于F ,求证:AF =CE.ABC DEFG分析:AF 、CE 分别在R t △ABF 与R t △CBE 中,可考虑证明它们全等,而四边形ABCD 为正方形,有相等的直角和相等的边,为证全等提供了条件.证明:因为四边形ABCD 是正方形, 所以AB =BC ,∠ABC =∠CBE =90°. 因为AG ⊥CE ,所以∠CGF =90°,所以∠BCE +∠CFG =90°,∠BCE +∠E =90°, 所以∠CFG =∠E ,又因为∠CFG =∠AFB , 所以∠E =∠AFB.所以△ABF ≌△CBE (SAS ). 所以AF =CE.例2. 把一X 矩形纸片像图中那样折一下,再沿CD 剪下,则纸片ABCD 是什么样的四边形?说明理由.分析:根据矩形的性质和图形折叠前后的变化规律判断四边形ABCD 的形状. 解:正方形. 理由如下:因为这是一X 矩形纸片,所以∠BAD =∠B =90°. △ADC 是△ABC 折叠得到的,即△ABC ≌△ADC. 所以∠ADC =∠B =90°, 所以四边形ABCD 是矩形. 又AB =AD ,所以纸片ABCD 是正方形.例3. 如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G. 试说明AE =FG .A BC DEFG分析:由EF ⊥BC ,EG ⊥CD 可得矩形EFCG ,则FG =EC ,再证△ABE ≌△CBE ,得AE =EC ,即可得到AE =FG .解:连结EC ,因为四边形ABCD 是正方形, EF ⊥BC ,EG ⊥CD ,所以四边形EFCG 为矩形. 所以FG =CE.因为BD 是正方形ABCD 的对角线. 所以∠ABE =∠CBE. 又BE =BE ,AB =CB , 所以△ABE ≌△CBE. 所以AE =EC , 所以AE =FG .评析:用CE 沟通AE 和FG 之间的联系.例4. (1)下列命题中正确的是( )A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线互相垂直且平分的四边形是正方形(2)如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是__________(只填一个条件即可).A DC BO第(2)题 (3)如图所示,在四边形ABCD 中,AD ∥BC ,∠D =90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________. (写出一种情况即可)AB CD分析:(1)这个问题可以这样考虑:对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相垂直平分的四边形是菱形;对角线互相垂直平分且相等的四边形是正方形. 故选A. (2)这个问题实际上是问什么样的菱形是正方形?有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,考虑角可补充的条件是∠BAD =90°或AD ⊥AB ;考虑对角线补充:AC =BD. (3)本题应考虑和角相关的矩形的识别方法,有一个角是直角的平行四边形是矩形;有三个角是直角的四边形是矩形. 可添加的条件是∠A =90°或∠B =90°,AD =BC ,AB ∥CD 等.解:(1)A (2)∠BAD =90°(或AD ⊥AB ,AC =BD 等)(3)∠A =90°或AD =BC 或AB ∥CD例5. 如图所示,正方形ABCD ,对角线AC 、BD 相交于点O ,菱形AEFC ,EH ⊥AC ,垂足为H ,求证:EH =12FC.ABC E FHDO分析:要证EH =12FC ,EH 在矩形OBEH 中,得EH =OB =12BD ,而FC 是菱形AEFC的边,CF =AC =BD ,所以EH =12FC ,问题的关键是要证四边形OBEH 是矩形.证明:由正方形ABCD 得AC =BD ,AC ⊥BD ,∠BOC =90°. 又因为EH ⊥AC ,所以EH ∥OB.又因为四边形AEFC 是菱形,得AC =CF ,AC ∥EF ,所以OH ∥BE. 因此四边形OBEH 是矩形,因此EH =OB =12BD =12AC =12FC.评析:综合考查了正方形、菱形的性质和矩形的判定方法.【方法总结】正方形是特殊的平行四边形,是特殊的矩形,是特殊的菱形. 它具有平行四边形、矩形、菱形的所有性质. 分清楚这几种图形的从属关系,从关系图中确定它们性质的相同点和不同点.平行四边形矩形菱形正方形【模拟试题】(答题时间:60分钟)一. 选择题1. 下列选项中,正方形具有而矩形不一定具有的性质是( )A. 四边都相等B. 四角都相等C. 对角线相等D. 对角线互相平分 2. 正方形的对角线长为a ,则它的对角线的交点到各边的距离是( )A. 22aB. 24aC. a 2D. 22a3. 正方形是轴对称图形,那么它的对称轴的条数为( )A. 2B. 3C. 4D. 54. 在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A. AC =BD ,AB ∥CD B. AD ∥BC ,∠A =∠CC. AO =BO =CO =DO ,AC ⊥BDD. AO =CO ,BO =DO ,AB =BC 5. 下列命题中,真命题是( ) A. 两条对角线相等的四边形是矩形 B. 两条对角线互相垂直的四边形是菱形C. 两条对角线互相垂直且相等的四边形是正方形D. 两条对角线互相平分的四边形是平行四边形6. 已知四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A. ∠D =90°B. AB =CDC. AD =BCD. BC =CD*7. 如图1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为( )A. 34cm 2B. 36cm 2C. 38cm 2D. 40cm 2图1二. 填空题1. 具有平行四边形、矩形和菱形性质的四边形是__________.2. 已知正方形ABCD 的对角线AC 、BD 相交于点O ,且AC =12cm ,•则BO =__________cm ,•∠OAB =__________度.3. 任意一个平行四边形,当它的一个锐角增大到_______度时,就变成了矩形;•当它的一组邻边变到_______时,就变成了菱形;当它的两条对角线变到______时,就变成了正方形.4. 矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:__________(填一条即可).5. 正方形的面积为49,则它的边长为__________,对角线长为__________.*6. 如图所示,在正方形ABCD 中,E 是BD 上一点,过E 作EF ⊥BC 于F ,EG ⊥CD 于G ,若正方形ABCD 的周长是a ,则四边形EFCG 的周长为__________.ABCDEF G**7. 如图所示,正方形ABCD 的边长为4,E 为BC 上的一点,BE =1,F 为AB 上的一点,AF =2,P 为AC 上的一动点,则当PF +PE 为最小值时,PF +PE =__________.ABC DPEF三. 解答题 1. 如图,正方形ABCD 的对角线AC 、BD 相交于点O ,OE =OF ,求证:•∠OCF =∠OBE.ABCDE FO2. 如图所示,在△ABC 中,∠C =90°,CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,垂足分别为点E 、F. 求证:四边形CFDE 是正方形.ABC DEF*3. 如图所示,点E 、F 分别为正方形ABCD 边AB 、BC 的中点,DF 、CE 交于点M ,CE 的延长线交DA 的延长线于G ,试探索:(1)DF 与CE 的位置关系; (2)MA 与DG 的大小关系.ABCDE F MG**4. 如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明; (2)求证:AE =FC+EF.ABCDE FG【试题答案】一. 选择题1. A2. B3. C4. C5. D6. D7. B二. 填空题1. 正方形2. 6,453. 90,相等,垂直且相等4. 对边平行、对角线互相平分、对角相等等 5. 7,7 2 6. 12a 7. 17三. 解答题1. 提示:证明△OCF ≌△OBE 可得2. 先证四边形DECF 是矩形,又∵DE =DF ,∴四边形CFDE 是正方形3. (1)DF ⊥CE 提示:先证△EBC ≌△FCD ,得∠ECB =∠FDC ,根据互余的关系,•求出∠CMF =90°即可. (2)由△GAE ≌△CBE 得GA =CB ,再根据直角三角形斜边上中线的性质,得MA =12DG .4. (1)ΔAED ≌ΔDFC. 因为四边形ABCD 是正方形,所以 AD =DC ,∠ADC =90°. 又因为 AE ⊥DG ,CF ∥AE ,所以 ∠AED =∠DFC =90°,所以 ∠EAD +∠ADE =∠FDC +∠ADE =90°,所以 ∠EAD =∠FDC. 所以 ΔAED ≌ΔDFC (AAS ).(2)因为 ΔAED ≌ΔDFC ,所以 AE =DF ,ED =FC. 因为 DF =DE +EF ,所以 AE =FC +EF.。

平行四边形的判定方法

平行四边形的判定方法

平行四边形的判定方法
平行四边形是指具有两组对边分别平行的四边形,它是几何学中的基本图形之一。

在日常生活和工程实践中,我们经常需要判定一个四边形是否为平行四边形。

下面将介绍几种判定平行四边形的方法。

1. 对角线互相平分。

判定一个四边形是否为平行四边形的一个简单方法是检查其对角线。

如果一个四边形的对角线互相平分,即相交于中点,那么这个四边形就是平行四边形。

这是因为平行四边形的对角线互相平分是其特征之一。

2. 对边互相平行。

平行四边形的定义就是具有两组对边分别平行的四边形。

因此,判定一个四边形是否为平行四边形的方法之一就是检查其对边是否互相平行。

如果一个四边形的对边分别平行,则它就是平行四边形。

3. 对角线长度相等。

另一个判定平行四边形的方法是检查其对角线的长度。

如果一个四边形的对角线长度相等,那么它就是平行四边形。

这是因为平行四边形的对角线长度相等是其特征之一。

4. 内角相等。

最后一个判定平行四边形的方法是检查其内角是否相等。

如果一个四边形的内角相等,那么它就是平行四边形。

这是因为平行四边形的内角相等是其特征之一。

综上所述,判定一个四边形是否为平行四边形有多种方法,可以根据具体情况选择合适的方法进行判定。

在实际应用中,可以结合多种方法进行判定,以确保结果的准确性。

希望以上介绍能够帮助您更好地理解和判定平行四边形。

18.1.2平行四边形的判定教案

18.1.2平行四边形的判定教案
其次,实践活动中的分组讨论,我发现有些小组在讨论时可能会偏离主题。这让我意识到,我需要在讨论前给出更明确的指导,比如提供一些具体的讨论问题或者案例,帮助学生集中思考。
在小组讨论的引导过程中,我发现开放性问题对于启发学生思考非常有效。他们提出了一些很有创意的想法,这让我感到很惊喜。但同时,我也注意到有些学生在讨论中比较沉默,可能是因为害羞或者不够自信。未来我需要找到方法,鼓励每个学生都参与到讨论中来,提高他们的参与度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
d.有一组对边平行且相等的四边形是平行四边形。
3.能够运用以上判定方法判断实际问题中是否存在平行四边形,并能够证明其正确性。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的空间观念和几何直观能力,使其能够从图形中抽象出平行四边形的性质,形成对平行四边形的直观认识。
2.提升学生的逻辑推理能力,通过学习平行四边形的判定方法,能够运用逻辑推理进行证明,并解决实际问题。
3.增强学生的数学建模能力,使其在解决实际问题时能够构建平行四边形的模型,运用所学知识进行求解。
4.培养学生的数学抽象能力,通过探究平行四边形的判定方法,学会从特殊到一般、从具体到抽象的思考方式。
5.激发学生的合作意识和探究精神,鼓励在小组讨论和合作中发现问题、解决问题,培养团队协作能力。

人教版数学八年级下册18.1平行四边形说课稿

人教版数学八年级下册18.1平行四边形说课稿
(二)学习障碍
在学习本节课之前,学生已经掌握了四边形的基本概念、一元一次方程、不等式等前置知识。然而,他们在学习平行四边形时可能遇到以下障碍:1.对平行四边形性质的理解不够深入,容易混淆;2.对平行四边形判定方法的掌握不够熟练,难以运用到实际问题中;3.空间想象能力和逻辑推理能力有限,导致解题困难。
1.知识与技能目标:掌握平行四边形的定义、性质及判定方法,能够运用这些知识解决实际问题。
2.过程与方法目标:通过自主探究、合作交流的方式,培养学生的空间想象能力、逻辑推理能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对几何学习的兴趣,培养学生的团队合作意识和勇于探索的精神。
(三)教学重难点
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.课堂练习:设计具有代表性的题目,让学生独立完成,及时巩固所学知识。
2.小组讨论:组织学生进行小组讨论,共同解决练习中的难题,培养学生的合作能力和解决问题的能力。
3.实践活动:让学生在课后观察生活中的平行四边形,并尝试运用所学知识解释其性质和判定方法。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设生活情境,让学生认识到平行四边形在实际生活中的广泛应用,从而激发他们的学习兴趣;
2.设计有趣的问题和例题,引导学生积极参与课堂讨论,培养他们的主动思考能力;
3.组织小组合作学习,让学生在互相交流、探讨中共同进步,提高合作能力;
此外,培养学生的空间想象能力和逻辑推理能力也是本节课的教学难点。在教学过程中,教师应注重引导学生观察、思考、总结,从而提高学生的几何素养。总之,本节课的教学难点在于让学生在掌握知识的同时,培养其几何思维能力。
二、学情分析导

初中数学第十八章平行四边形教案人教版

初中数学第十八章平行四边形教案人教版

目录第十八章平行四边形18.1 平行四边形18.1.1 平行四边形的性质第1课时平行四边形的性质(1)第2课时平行四边形的性质(2)18.1.2 平行四边形的判定第1课时平行四边形的判定(1)第2课时平行四边形的判定(2)18.2 特殊的平行四边形18.2.1 矩形第1课时矩形的性质第2课时矩形的判定18.2.2 菱形第1课时菱形的性质第2课时菱形的判定18.2.3 正方形第十八章平行四边形标定理,并能运用这些知识进行有关的证明和计算.(3)了解两条平行线之间距离的意义,能度量两条平行线之间的距离.探索并证明三角形中位线定理.2.过程及方法通过经历平行四边形、矩形、菱形、正方形的性质定理和判定定理的探索和证明过程,丰富学生从事数学活动的经验和体验,进一步培养学生的合情推理能力和演绎推理能力.3.情感、态度及价值观通过分析平行四边形及各种特殊平行四边形概念之间的联系及区别,使学生认识到特殊及一般的关系,体会事物间是互相联系又是互相区别的,进一步培养学生的辩证唯物主义观.教学重难点重点:1.平行四边形、特殊平行四边形的特征.2.平行四边形、特殊平行四边形的识别方法以及彼此之间的关系.难点:发展学生进一步推理和解决问题的能力.知识结构课题平行四边形的性质课时第1课时上课时间教学目标1.知识及技能(1)理解平行四边形的定义及有关概念.(2)能根据定义探索并掌握平行四边形的对边相等、对角相等的性质.(3)了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点:运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行以外,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想:平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图▱ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.续表探索新知合作探究分析:作▱ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)探究小结平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.【例】如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.教师指导1.归纳小结:(1)平行四边形:有两组对边分别平行的四边形叫做平行四边形.平行四边形用“▱”表示.(2)平行四边形的性质:①平行四边形的对边相等.②平行四边形的对角相等.2.方法规律:(1)只有一组对边平行的四边形不一定是平行四边形.(2)相关概念给出了平行四边形的一个重要性质:两组对边分别平行.(3)平行四边形具有四边形的一切性质.当堂训练1.在下列图形的性质中,平行四边形不一定具有的是( )(A)对角相等(B)对角互补(C)邻角互补(D)内角和是360°2.在▱ABCD中,如果EF∥AD,GH∥CD,EF及GH相交于点O,那么图中的平行四边形一共有( )(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.板书设计平行四边形的性质(1)1.平行四边形的定义2.平行四边形的性质3.应用平行四边形的性质解决线段或角的问题教学反思课题平行四边形的性质课时第2课时上课时间教学目标1.知识及技能(1)理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形对角线互相平分的性质,以及性质的应用.难点:综合运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入复习提问:1.什么样的四边形是平行四边形?四边形及平行四边形的关系是:2.平行四边形的性质:(1)具有一般四边形的性质(内角和是360°).(2)角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究请学生在纸上画两个全等的▱ABCD和▱EFGH,并连接对角线AC,BD和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将▱ABCD绕点O旋转180°,观察它还和▱EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O及AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.续表探索新知合作探究【例2】已知四边形ABCD是平行四边形,AB=10 cm,AD=8 cm,AC⊥BC,求BC,CD,AC,OA的长以及▱ABCD的面积.分析:由平行四边形的对边相等,可得BC,CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积公式计算.教师指导1.易错点:平行四边形的对角线互相平分,但不一定相等.2.归纳小结:平行四边形的对角线互相平分.3.方法规律:(1)利用平行四边形的对角线互相平分可以解决对角线或边的取值范围问题;(2)平行四边形被对角线分成的四个小三角形,相邻的两个小三角形周长之差等于邻边之差.当堂训练1.在四边形ABCD中,AC=6,BD=4,则AB的范围是.2.在平行四边形ABCD中,已知AB,BC,CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.3.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15 cm,AD=12 cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.板书设计平行四边形的性质(2)1.平行四边形对角线互相平分探究小结:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形.平行四边形判定方法2 两组对角分别相等的四边形是平行四边形.平行四边形判定方法3 对角线互相平分的四边形是平行四边形.2.取两根等长的木条AB,CD,将它们平行放置,再用两根木条BC,AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.续表探索新知合作探究【例1】已知:如图,A'B'∥BA,B'C'∥CB,C'A'∥AC.求证:(1)∠ABC=∠B',∠CAB=∠A',∠BCA=∠C';(2)△ABC的顶点分别是△B'C'A'各边的中点.【例2】已知:如图,▱ABCD中,E,F分别是AD,BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.教师指导1.归纳小结:平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.(2)一组对边平行且相等的四边形是平行四边形.(3)对角线互相平分的四边形是平行四边形.(4)两组对边分别相等的四边形是平行四边形.(5)两组对角分别相等的四边形是平行四边形.2.方法规律:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.当堂训练1.下列条件中能判断四边形是平行四边形的是( )(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等 (D)对角线互相平分2.在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD3.已知:如图,△ABC中,BD平分∠ABC,DE∥BC,EF∥AC,求证:BE=CF.板书设计平行四边形的判定(1)1.平行四边形的判定方法2.平行四边形性质和判定的应用教学反思课题平行四边形的判定课时第2课时上课时间教学目标1.知识及技能理解三角形中位线的概念,掌握它的性质定理;会证明三角形中位线定理,并能熟练地应用它进行有关的证明和计算.2.过程及方法经过探索三角形中位线定理的过程,理解它及平行四边形的内在联系,感悟几何学的推理方法.3.情感、态度及价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.教学重难点重点:三角形的中位线定理.难点:(1)作出简单平面图形关于直线的轴对称图形. (2)三角形的中位线定理的证明中添加辅助线的思想方法.教学活动设计二次设计课堂导入如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?探索新知合作探究自学指导实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?图中有几个平行四边形?你是如何判断的?合作探究【例1】如图,点D,E分别为△ABC的边AB,AC的中点,求证:DE∥BC且DE=BC.分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.定义:连接三角形两边中点的线段叫做三角形的中位线.探究讨论:(1)一个三角形的中位线共有几条?(2)三角形的中位线及中线有什么区别?(3)三角形的中位线及第三边有怎样的关系?【拓展】利用这一定理,你能证明在自学指导所设情境中分割出来的四个小三角形全等吗?续表探索【例2】新知合作探究已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.教师指导1.归纳小结:三角形的中位线(1)三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.2.方法规律:(1)中位线不是中线.(2)三角形中位线定理的特点:在同一题设下,有两个结论,一个结论表示位置关系,另一个结论表示数量关系.(3)三角形中位线定理的作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍数关系.当堂训练1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20 m,那么A,B两点的距离是 m,理由是.2.已知:三角形的各边分别为8 cm,10 cm和12 cm,求连接各边中点所成三角形的周长.3.如图,△ABC中,D,E,F分别是AB,AC,BC的中点,(1)若EF=5 cm,则AB= cm;若BC=9 cm,则DE= cm;(2)中线AF及DE中位线有什么特殊的关系?证明你的猜想.板书设计平行四边形的判定(2)1.平行四边形的判定方法2.平行四边形判定方法的选择3.中位线以及中位线定理教学反思课题矩形课时第1课时上课时间教学目标1.知识及技能(1)掌握矩形的概念和性质,理解矩形及平行四边形的区别及联系.(2)会初步运用矩形的概念和性质来解决有关问题.2.过程及方法经历探索矩形的概念和性质的过程,发展学生合情推理意识,掌握几何思维方法.3.情感、态度及价值在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的性质.难点:矩形的性质的灵活应用.教学活动设计二次设计课堂导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何动,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形.探索新知合作探究自学指导1.请用四根木棒拼成一个平行四边形,拼成的平行四边形形状唯一吗?2.试着改变平行四边形的形状,你能拼出面积最大的平行四边形吗?这时这个平行四边形的内角是多少度?3.观察图形特征,得出概念.叫做矩形.矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角;矩形的对角线;矩形是轴对称图形,它的对称轴是.合作探究问题一如图,矩形ABCD,对角线相交于O,观察对角线所分成的三角形,你有什么发现?问题二将目光锁定在Rt△ABC中,你能发现它有什么特殊的性质吗?【例1】已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB.求证:△AOB是等边三角形.(注意表达格式完整性及逻辑性)续表探索新知合作探究拓展及延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?【例2】在矩形ABCD中,两条对角线AC,BD相交于O,∠ACD=30°,AB=4.(1)判断△AOD的形状;(2)求对角线AC,BD的长.教师指导1.归纳小结:(1)矩形的概念有一个角是直角的平行四边形叫做矩形,也就是长方形.(2)矩形的性质①矩形的四个角都是直角.②矩形的对角线相等.③直角三角形斜边上的中线等于斜边的一半.(推论)2.方法规律:(1)矩形的概念是研究矩形的基础,既可以看做是矩形的性质,又可以视为矩形的判别方法.(2)矩形具有平行四边形的一切性质.(3)矩形既是中心对称图形,又是轴对称图形.对称中心为对角线的交点,对称轴为对边中点所在的直线.当堂1.下列说法错误的是( )(A)矩形的对角线互相平分训练(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形2.已知矩形的一条对角线长为10 cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm, cm,cm, cm.3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.板书设计矩形的性质1.矩形的定义2.矩形的性质及推理教学反思课题矩形课时第2课时上课时间教学目标1.知识及技能理解并掌握矩形的判定方法.2.过程及方法使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的判定.难点:矩形的判定及性质的综合应用.教学活动设计二次设计课堂导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?探索新知合作探究1.矩形是轴对称图形,它有条对称轴.2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10 cm,边BC=8 cm,则△ABO的周长为.3.想一想:矩形有哪些性质?在这些性质中哪些是平行四边形所没有的?列表进行比较.平行四边形矩形边角对角线思考:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?(得到矩形的一个判定)做一做:按照画“边―直角、边-直角、边-直角、边”这样四步画出一个四边形.判断它是一个矩形吗?说明理由.(探索得到矩形的另一个判定)合作探究下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.( )(2)四个角是直角的四边形是矩形.( )(3)四个角都相等的四边形是矩形.( )续表探索新知合作探究(4)对角线相等的四边形是矩形.( )(5)对角线相等且互相垂直的四边形是矩形.( )(6)对角线互相平分且相等的四边形是矩形.( )(7)对角线相等,且有一个角是直角的四边形是矩形.( )(8)一组邻边垂直,一组对边平行且相等的四边形是矩形.( )(9)两组对边分别平行,且对角线相等的四边形是矩形.( )【例1】已知▱ABCD的对角线AC,BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.【例2】已知:如图,▱ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.学重难点难点:菱形的性质及菱形知识的综合应用.教学活动设计二次设计课堂导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.探索新知合作探究自学指导我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.合作探究已知,如图:四边形ABCD是菱形.(1)AB及CD,AD及BC有怎样的关系?(2)∠ABC及∠ADC相等吗?∠BAD及∠BCD呢?菱形ABCD相邻的两个角又有怎样的关系呢?(3)OA及OC相等吗?OB及OD呢?对角线AC及BD有怎样的位置关系?(4)有人说∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8,你认为正确吗?(5)菱形是轴对称图形吗?它有几条对称轴?分别是什么?通过解决以上5个问题引导学生总结出菱形的性质(学生自主推导及老师点拨相结合,先做出来的教教还没做出来的同学,增加同学之间的交流及沟通,最后由老师点评一下)续表探索新知合作探究教师指导1.归纳小结:(1)菱形:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形的四条边都相等.②菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.方法规律:①菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.②菱形是特殊的平行四边形,其面积求法及平行四边形求法相同,其面积等于底乘以相应底上的高.而且菱形的两条对角线互相垂直平分,将菱形分成4个全等的直角三角形,因此菱形面积为4×××两条对角线长之积=×两条对角线长之积.当堂训练1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形ABCD的周长为20 cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.3.已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.板书设计菱形的性质1.菱形定义2.菱形的性质3.菱形的面积计算教学反思课题菱形课时1课时上课时间教学目标1.知识及技能(1)理解菱形的定义,掌握菱形的判定方法;会用这些判定方法进行有关的论证和计算.(2)在菱形的判定方法的探索及综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.2.过程及方法(1)尝试从不同角度寻求菱形的判定方法,并能有效地解决问题.(2)尝试比较不同判定方法之间的差异,并获得判定四边形是菱形的经验.3.情感、态度及价值观启发引导学生理解探索结论和证明结论的过程,掌握合情推理及演绎推理的相互依赖和相互补充的辩证关系,培养学生合作交流的能力,以及独立思考的良好习惯.教学重难点重点:探索证明菱形的两个判定方法,掌握证明的基本要求和方法.难点:明确推理证明的条件和结论,能用数学语言正确表达.教学活动设计二次设计课堂导入什么样的四边形是平行四边形?它有哪些判定方法?边:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.角:两组对角分别相等的四边形是平行四边形.对角线:对角线互相平分的四边形是平行四边形.那么,菱形的判定有什么方法呢?探索新知合作探究自学指导自学课本,回答以下问题1.有一组的平行四边形是菱形.2.对角线的平行四边形是菱形.3. 的四边形是菱形.合作探究1.由菱形的定义判定明确菱形的定义既是菱形的性质,又可作为菱形的第一种判定方法,即有一组邻边相等的平行四边形是菱形.2.除了运用菱形的定义,类比平行四边形的性质定理和判定定理,小组讨论能否找出判定菱形的其他方法?【做一做】用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?猜想:四边形的对角线互相平分.续表探索新知(2)继续转动木条,观察什么时候橡皮筋围成的四边形变成菱形?猜想1:当木条互相垂直时,平行四边形的一组邻边相等,此时四边。

19.1.2平行四边形的判定——中位线定理

19.1.2平行四边形的判定——中位线定理
∴HG∥AC,HG= AC(三角形中位线性质).
同理EF∥AC,EF= AC.
∴HG∥EF,且HG=EF.
∴四边形EFGH是平行四边形.
此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
检验学生对新知识的掌握,并让学生从中体验成功感
课堂练习
1、任意四边形ABCD各边中点分别分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是()
(1)若DE=5,则BC的长是,
(2)若BC=5,则DE的长是
2、三角形的三条中位线长是3cm,4cm,5cm,则这个三角形的周长是cm。
3、已知△ABC的周长是12,那么连接各边中点D、E、F所得△DEF的周长是。
练习用来巩固学生刚刚学的知识。
应用举例
已知:如图(1),四边形ABCD四边上的中点分别是E、F、G、H,求证:四边形EFGH是平行四边形。
平行四边形的判定方法从边来判定1两组对边分别平行的四边形是平行四边形2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形从角来判定两组对角分别相等的四边形是平行四边形从对角线来判定对角线互相平分的四边形是平行四边形请你识别下列四边形是不是平行四边形
19.1.2平行四边形的判定(第3课时)
三角形的中位线平行与三角形的第三边,且等于第三边的一半.
思考
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
答:一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.
拓展:利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?图中有多少个平行四边形?

平行四边形的判定(确定)

平行四边形的判定(确定)

70°
B

110°
C
A
4.8㎝
7.6㎝
D
4.8㎝
B
⑶ 7.6㎝ C
精品课件
例3 如图:平行四边形ABCD的对角线 AC、BD相交 于点O,E、F是AC上的两点, 并且AE=CF,求证: 四边形BFDE是平 行四边形。
A
D
E
OF
B
C
你还有其他 的证明方法
吗?
精品课件
变式
在上题中,若点E,F 分别在AC 两侧的延长线上,
对角线 平行四边形的对角线互相平
思考

你能说出它们的逆命题吗?
我们得到的这些逆命题都成立吗?这就是今天我们要一
起来探讨的问题:
精品课件
活动一: 如图将两组长度分别相等的木条做成一个 四边形,使等长的木条成为对边.转动这 个四边形,使它形状改变,在图形变化的 过程中,它一直是一个平行四边形吗?如 何验证它是平行四边形呢?
在数学的天地里,重要的 不是我们知道什么,而是 我们怎么知道什么。
——毕达哥拉

精品课件
第十八章 平行四边形
18.1.2 平行四边形的判定(1)
布尔津县布尔津镇初级中学

精品课件
王春
1、平行四边形的定义是什么?用符号语言表示? 2、平行四边形有哪些性质?
边 平行四边形的对边相等
平行四边形的性质: 角 平行四边形的对角相等
如图,其他条件不变,结论还成立吗?请证明你的结论.
E
A
D
O
B
C
F
精品课件
练习:如图,AB=DC=EF,AD=BC,
DE=CF,图中有哪些互相平行的线段?

初中数学重点梳理:平行四边形

初中数学重点梳理:平行四边形

平行四边形知识定位平行四边形在初中几何或者竞赛中占据非常大的地位,平行四边形是平面几何中最重要的图形,它的有关知识是今后我们学习特殊四边形、多边形乃至立体几何的重要基础。

平行四边形的证明性质以及应用,必须熟练掌握。

本节我们通过一些实例的求解,旨在介绍数学竞赛中平行四边形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

知识梳理一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“”表示平行四边形,例如:平行四边形ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S==⨯底高ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD 的四条相等. (3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角. (4)识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD 为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab . ③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a . ④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .例题精讲【试题来源】 【题目】如图所示.在ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:EF 与MN 互相平分.【答案】如下解析【解析】 证明:因为ABCD 是平行四边形,所以ADBC ,ABCD ,∠B=∠D .又AE ⊥BC ,CF ⊥AD ,所以AECF 是矩形,从而AE=CF.所以Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以△BEM≌△DFN(SAS),ME=NF.①又因为AF=CE,AM=CN,∠MAF=∠NCE,所以△MAF≌△NCE(SAS),所以 MF=NF.②由①②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.【答案】如下解析【解析】解:作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而△ABG≌△HBG(AAS),所以 AB=HB.①在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以△ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.下面证明四边形EHCF是平行四边形.因为AD∥GH,所以∠AEG=∠BGH(内错角相等).②又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以∠AGB=∠GEH.从而EH∥AC(内错角相等,两直线平行).由已知EF∥HC,所以EHCF是平行四边形,所以FC=EH=AE.【知识点】平行四边形【适用场合】当堂练习【难度系数】3【试题来源】【题目】如图2-34所示.ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.【答案】如下解析【解析】证明:延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,所以∠MDC=∠CMD,则∠MCF=∠MDC+∠CMD=2∠F.从而∠EMC=∠F+∠MCF=3∠F=3∠BEM【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.【答案】如下解析【解析】解:延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD.①又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以∠CHG=∠CFH+∠FCH=45°,所以∠CFH=45°-∠FCH.②由①,②∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有CA=CF.【知识点】平行四边形【适用场合】当堂练习题【难度系数】3【试题来源】【题目】设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:【答案】如下解析【解析】解:如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以FA=FH.设正方形边长为a,在Rt△ADF中,所以 Rt△ABG≌Rt△HCG(AAS),所以Rt△ABG≌Rt△ADE(SAS),【知识点】平行四边形【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.【答案】如下解析【解析】证明:因为DE BC,所以四边形BCED为平行四边形,所以∠1=∠4.又BD=FD,所以所以 BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以又所以∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.【知识点】平行四边形【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF ⊥AC于F,那么PE+PF的值为.【答案】60/13【解析】解:延长CD至M,使DM=CD,连接AM,过P作PN⊥AM,N为AM上的点.在△ACM中,AD⊥CM且CD=DM,则AD是△ACM的角平分线.则PF=PN.又在四边形ABDM中,AB平行等于DM.则为平行四边形.AM平行BD,故PE,PN在同一直线上.那么PE+PF=PE+PN=EN平行四边形ABDM面积S=ABxAD=BDxEN而BD=√(5x5+12x12)=13则EN=ABxAD/BD=5x12/13=60/13.【知识点】平行四边形【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD【答案】如下解析【解析】证明:∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°,∴CEPF是矩形(三角都是直角的四边形是矩形),∴OP=OF,∠PEF+∠3=90°,∴∠1=∠3,∵PG⊥EF,∴∠PEF+∠2=90°,∴∠2=∠3,∴∠1=∠2,∵△ABC是等腰直角三角形,∴∠A=∠ABC=45°,∴∠APE=∠BPF=45°,∴∠APE+∠2=∠BPF+∠1,即∠APG=∠CPB,∵∠BPD=∠APG(对顶角相等),∴∠BPD=∠CPB,又∵PC=PD,PB是公共边,∴△PBC≌△PBD(SAS),∴BC=BD,∠PBC=∠PBD=45°,∴∠PBC+∠PBD=90°,即BC⊥BD.故证得:BC⊥BD,且BC=BD【知识点】平行四边形【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()【答案】2【解析】解:延长AB,DC,过P分作PE⊥AE,PF⊥DF,则CF=BE,AP2=AE2+EP2,BP2=BE2+PE2,DP2=DF2+PF2,CP2=CF2+FP2,∴AP2+CP2=CF2+FP2+AE2+EP2,DP2+BP2=DF2+PF2+BE2+PE2,即AP2+CP2=DP2+BP2,代入AP,BP,CP得DP==2,【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE 和AD交于G,求证:GF∥AC.【答案】如下解析【解析】证明:连接EF.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C.∵BE、AF分别是∠ABC、∠DAC的平分线.∴∠ABG=∠EBD.∵∠AGE=∠GAB+∠GBA,∠AEG=∠C+∠EBD,∴∠AGE=∠AEG,∴AG=AE,∵AF是∠DAC的平分线,∴AO⊥BE,GO=EO,∵∴△ABO≌△FBO,∴AO=FO,∴四边形AGFE是平行四边形,∴GF∥AE,即GF∥AC.【知识点】平行四边形【适用场合】当堂练习题【难度系数】4习题演练【试题来源】【题目】如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.【答案】100°【解析】解:过D作DF∥BC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,∴BD=CF,DA∥FC,∴∠EAD=∠ECF,∵AD=CE,AE=BD=CF,∴△ADE≌△CEF(SAS)∴ED=EF,∵ED=BC,BC=DF,∴ED=EF=DF∴△DEF为等边三角形设∠BAC=x°,则∠ADF=∠ABC=,∴∠DAE=180°﹣x°,∴∠ADE=180°﹣2∠DAE=180°﹣2(180°﹣x°)=2x°﹣180°,∵∠ADF+∠ADE=∠EDF=60°∴+(2x°﹣180°)=60°∴x=100.∴∠BAC=100°.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】5【试题来源】【题目】如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE ⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论【答案】如下解析【解析】解:△MEF是等腰直角三角形.证明如下:连接AM,∵M是BC的中点,∠BAC=90°,AB=AC,∴AM=BC=BM,AM平分∠BAC.∵∠MAC=∠MAB=∠BAC=45°.∵AB⊥AC,DE⊥AC,DF⊥AB,∴DE∥AB,DF∥AC.∵∠BAC=90°,∴四边形DFAE为矩形.∴DF=AE.∵DF⊥BF,∠B=45°.∴∠BDF=∠B=45°.∴BF=FD,∠B=∠MAE=45°,∴AE=BF.∵AM=BM∴△AEM≌△BFM(SAS).∴EM=FM,∠AME=∠BMF.∵∠AMF+∠BMF=90°,∴∠AME+∠AMF=∠EMF=90°,∴△MEF是等腰直角三角形.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【答案】如下解析【解析】解:(1)证明:连接PD、PE、QD、QE.因为CE⊥AB,P是BF的中点,所以△BEF是直角三角形,且PE是Rt△BEF斜边的中线,所以PE=BF.又因为AD⊥BC,所以△BDF是直角三角形,且PD是Rt△BDF斜边的中线,所以PD=BF=PE,所以点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,所以QD=AC=QE,所以点Q也在线段DE的垂直平分线上所以直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别Rt△BDF和Rt△BEF的中线,所以PD=BF,PE=BF,所以PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,所以点Q在线段DE的垂直平分线上.所以直线PQ垂直平分线段DE.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM 与BN相交于P,求证:∠BPM=45°.【答案】如下解析【解析】解:如图,过M作ME∥AN,使ME=AN,连NE,BE,则四边形AMEN为平行四边形,∴NE=AM,ME⊥BC,∵ME=AN=CM,∠EMB=∠MCA=90°,BM=AC,∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2,∠3=∠4,∵∠1+∠3=90°,∴∠2+∠4=90°且BE=NE,∴△BEN为等腰直角三角形,∠BNE=45°,∵AM∥NE,∴∠BPM=∠BNE=45°【知识点】平行四边形【适用场合】随堂课后练习【难度系数】3。

初中数学《平行四边形的识别》案例分析教案

初中数学《平行四边形的识别》案例分析教案

初中数学《平行四边形的识别》案例分析教案案例分析教案一、教学目标1.了解什么是平行四边形,掌握它的基本概念,特征和性质。

2.认识平行四边形的分类,学会根据图形的特征,判断其是否为平行四边形。

3.学会分析和运用平行四边形的性质,完成相应的几何证明和问题解决。

二、教学重点平行四边形的定义、特征和性质。

三、教学难点由图形特征判断平行四边形的矩形与菱形。

四、教学步骤1.引入(6分钟)为了吸引学生的注意力和激发他们的兴趣,可以采用逆向思维的方法,通过给学生一些条件和图形,让他们自己发现并总结出构成平行四边形的性质,然后再介绍定义和相关知识。

2.概念讲解(15分钟)老师通过板书和图片给学生介绍平行四边形的基本概念和特征,便于学生更好地理解其性质和应用。

(1)定义:四边形ABCD中,若AD∥BC,那么称其为平行四边形。

(2)特征:① 对边平行;② 两对邻边相等;③ 对角线互相平分;④ 对角线长相等;⑤ 对角线互相垂直。

3.图形分类(20分钟)按照图形的特征进行分类,即正方形、长方形、菱形和梯形。

特别需要注意的是,长方形是一种特殊的矩形。

4.性质说明(30分钟)(1)对边平行。

通过画图,简单证明了对边平行的性质,便于学生理解其内在的几何本质。

(2)两对邻边相等。

根据两对邻边相等的性质,老师设计了一些用尺规画图和量角度的练习题,让学生在实践中加深对其掌握程度。

(3)对角线互相平分。

同样分别从画图和数学证明两个层面进行解释。

(4)对角线长相等。

通过以菱形为例,设计了一些作业题目,要求学生自己推导出其成立的原因。

(5)对角线互相垂直。

通过同样的方法,让学生自己思考和总结这一性质的结论和知识点。

5.应用练习(30分钟)为了巩固所学知识和提高解题能力,老师设计了多种应用类的练习题目,既有填空和选择等基础题型,也有解决实际问题和进行几何证明的综合难题。

并适时给出解答和点拨,及时纠正学生的答案和思路。

6.课后作业(5分钟)为了让学生更好地记忆和掌握这一知识点,老师布置了一些课后作业,要求学生认真完成并及时交回。

平行四边形的性质和判定教案

平行四边形的性质和判定教案

平行四边形的性质和判定教案教学目标知识技能目标1.运用投影的方法,通过学生的合作探究,得出结论平行四边形的认定方法.2.理解平行四边形的这两种判定方法,并学会简单运用.过程与方法目标1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.2 .在运用平行四边形的认定方法解决问题的过程中,进一步培育和发展学生的逻辑思维能力和推理小说论证的表达能力.情感态度价值观目标通过平行四边形辨别条的积极探索,培育学生直面挑战,敢于克服困难的意志,引导学生大胆尝试,从中获得成功的体验,唤起学生的自学热情.教学重点:教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.教学过程第一环节复习引入:( 3分钟,教师明确提出问题1,2,由学生独立思考,并口答得出结论定义正反两方面的促进作用,出来平行四边形的其他几条性质.)问题1(多媒体展示问题)1.平行四边形的定义就是什么?它存有什么促进作用?2.平行四边形还有哪些性质?问题2有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?第二环节积极探索活动(12分钟,学生动手探究,小组合作)活动1:工具:两根长度成正比的笔,两条平行线(可利用横格线).动手:恳请利用两根长度成正比的笔和两条平行线,摆以笔顶端为顶点的平行四边形吗?思考1.1:你能说明你所摆出的四边形是平行四边形吗?思索1.2:以上活动事实,能够用字语言表达吗?目的:得出结论平行四边形的一个性质:一组对边平行且成正比的四边形就是平行四边形.活动2工具:两根相同长度的细纸条.动手:能否用这两根细纸条在平面上思索2.1:你能够表明你们摆的四边形就是平行四边形吗?思考2.2:以上活动事实,能用字语言表达吗?目的:得出平行四边形的性质:对角线互相平分的四边形是平行四边形第三环节稳固练(20分钟,学生思索探讨再各自画图,图画不好后互相交流画法,教师巡回检查.对个别学生稍加指点)随堂练习:1.未知:在平行四边形abcd 中,点e、f在对角线ac上,并且oe=of.(1)oa与oc,ob与od相等吗?(2)四边形bfde就是平行四边形吗?(3)若点e,f在oa,oc的中点上,你能解决上述问题吗?2.再返回前问题:同学们想想看,是不是办法把原的平行四边形再次图画出来?(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨,最后请学生回答画图方法)学生想起的画法存有:(1)分别过a,c作bc,ba的平行线,两平行线相交于d;(2)分别以a,c为圆心,以bc, ba的短为半径画弧,两弧平行于d,相连接ad,cd;(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线ac,取ac的中点o,再连接bo,并延长bo到d,使bo=do,连接ad,cd.第四环节小结:(4分钟,学生提问问题)师生共同小结,主要围绕下列几个问题:(1)认定一个四边形就是平行四边形的方法存有哪几种?这些方法从什么角度回去考量的?(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?(3)投影、观测、积木、实验等都就是自学数学、辨认出结论的常用方法.第五环节布置作业:b、c组与(中等生和后三分之一生)本页习题4.3第1题、第2题a组(优等生):① 对于随堂练习题,若将g,h分别在ob ,od上移动至与b,d重合,e,f分别在oa,oc上移动,使ae=cf(如图),则结论还成立吗?② 对于随堂练习题,若e,f继续移动至oa,oc的延长线上,仍并使ae=cf(例如图),则结论还设立吗?一教学目标:1.在积极探索平行四边形的辨别条件中,认知并掌控用边、对角线去认定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培育用投影、逆向M18x及运动的思维方法去研究问题.二重点、难点2.难点:平行四边形的认定定理与性质定理的有效率应用领域.3.难点的突破方法:平行四边形的辨别方法就是本节课的核心内容.同时它又就是后面进一步研究矩形、菱形、正方形辨别的基础,更是发展学生合情推理小说及用笔的较好素材.本节课的教学重点为平行四边形的辨别方法.在本课中,可以积极探索活动为载体,并将论证做为积极探索活动的自然沿袭与必要发展,从而将直观操作方式与直观推理小说有机融合,达至突出重点、集中难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形存有四种认定方法,与性质相似,可以从边、对角线两方面展开记忆.必须特别注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只了解前两个认定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、悖论、检验、积极探索形成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节已经开始,就应当使学生轻易运用平行四边形的性质和认定回去解决问题,凡是可以用平行四边形科学知识证明的问题,不要再返回用三角形全系列等证明.必须对学生明确提出这个建议.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、认定都就是非常关键的基础知识,这些科学知识就是本章的重点内容,必须并使学生熟练地掌控这些科学知识.三例题的意图分析本节课精心安排了3个例题,基准1就是教材p96的基准3,它就是平行四边形的性质与认定的综合运用,此题最出色先使学生讲出证明的思路,然后老师总结并表示其最佳方法.基准2与基准3都就是补足的题目,其目的就是使学生能够有效率和综合地运用平行四边形的认定方法和性质去解决问题.基准3就是一道积木题,教学时,可以使学生动起来,边积木边表明道理,即为可以提升学生的动手能力和学生的思维能力,又可以提升学生的自学兴趣.例如使学生再用四个不等边三角形比拼一个例如图的大三角形,使学生表示图中所有的平行四边形,并表明理由.四课堂引入1.观赏图片、明确提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中存有一些木条,他想要通过适度的测量、割剪,钉制一个平行四边形框架,你能够帮忙他编出一些办法去吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能够适度挑选手中的硬纸板条构建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能够讲出你的作法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能够找到其他方法吗?从探究中得到:平行四边形认定方法1 两组对边分别成正比的四边形就是平行四边形。

八年级数学期中复习(一)平移与旋转、平行四边形华东师大版知识精讲

八年级数学期中复习(一)平移与旋转、平行四边形华东师大版知识精讲

初二数学期中复习(一)平移与旋转、平行四边形华东师大版【同步教育信息】一. 本周教学内容:期中复习(一)平移与旋转、平行四边形[教学目标]1. 理解平移、旋转的基本概念,掌握平移旋转的基本特征,并能利用轴对称、平移与旋转或它们的组合进行图案设计,以及应用图形的基本变换于实际生活中。

2. 认识平行四边形,掌握平行四边形特征及识别方法,并能根据图形特征及识别方法解决简单的推理与计算等问题,学会合情推理与数学说理。

二. 重点、难点:教学重点:1. 图形的平移变换、旋转变换、中心对称的基本特征。

2. 平行四边形的特征和识别方法。

教学难点:1. 能按要求作出简单的平面图形的平移后的图形,旋转后的图形,理解中心对称图形。

2. 综合利用平行四边形的特征和识别方法来解决实际问题。

[知识网络]图形之间的变换关系轴对称—连结对应点的线段被对称轴垂直平分平移—连结对应点的线段平行或在同一条直线上且相等对应线段平行或在同一条直线上,并且相等旋转对应点与旋转中心的距离相等每一点都绕旋转中心旋转了同样大小的角度旋转对称——中心对称在轴对称、平移、旋转这些图形变换下,线段的长度不变;角的大小不变()()⎧⎨⎪⎩⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪【典型例题】例1. 如图所示,请你先观察,然后确定第四张图形为()分析:首先观察图形,从(1)到(2)再到(3)是怎么变换得到的,按照规律确定(4)的图状。

解:C例2. 如图,这是两张大小、形状完全相同的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面的图案绕O点顺时针旋转,至少旋转____________度角后,两张图案构成的图形是中心对称图形。

分析:提示两点:1. 把图形抽象成线段;2. 目前图形是轴对称图形,要构造成旋转180°与自身重合的中心对称图形,该图应作何种变换→旋转→怎么转→至少多少度。

解:60例3. 如图,△ABC与△CDE都是等边三角形,D为AE上一点。

初中数学《平行四边形的识别》教案

初中数学《平行四边形的识别》教案

初中数学《平行四边形的识别》教案22.2平行四边形的识别教学目标1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。

2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。

3.培养学生独立思考的习惯。

教学重点与难点重点:探索平行四边形的识别方法。

难点:理解平行四边形的识别方法与应用。

教学准备方格纸、直尺、图钉、剪刀。

教学过程【一】提问。

1.平行四边形对边〔〕,对角〔〕,对角线〔〕。

2.( )是平行四边形。

【二】探索,概括。

1.探索。

(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。

步骤1:画一线段AB。

步骤2:平移线段AD到BC。

步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。

(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。

把两个四边形重合放在一起,重合的点分别记为A、B、C、D。

通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。

根据上述的过程,能否断定这个四边形是平行四边形?2.概括。

我们可以看到旋转后的四边形与原来的四边形重合,即C点与A 点重合,B点与D点重合。

这样,我们就可以得到_BAC=ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。

由此可以得到:一组对边平行且相等的四边形是平行四边形。

(一步一步的引导学生得出结论,然后让学生用自己的语言表达。

) 【三】应用举例。

例4 如图,在平行四边形ABCD中,点E和点F分别在AD和BC 上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。

【四】巩固练习。

如图,在平行四边形ABCD中,M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。

判定平行四边形的五种方法(最新整理)

判定平行四边形的五种方法(最新整理)

判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F在对角线AC上,且AE=CF,试说明四边形DEBF是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别图1图2AB C DEF图3例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=∠DAB ,∠2=∠BCD ,2121所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF .所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[单选]口腔霉菌感染漱口液选择()A.1%~2%龙胆紫B.1%~3%碳酸氢钠溶液C.0.1%利凡诺溶液D.0.02%呋喃西林E.朵贝尔溶液 [单选]室外楼梯临空高度在24m以下时,栏杆高度不应低于()m。A.1.00B.1.05C.1.10D.1.15 [单选]不能载货的专用作业车车辆按()收费。A.行驶证上的总质量B.改为按总质量折半后吨位计量收费C.原核载质量D.计重收费 [单选]原发单纯疱疹的特征性临床表现是()A.神经痛B.水疱C.大疱D.群集性小水疱E.局部淋巴结肿大 [单选]可有效激发机体抗肿瘤效应的佐剂为()A.福氏佐剂B.胞壁肽C.细胞因子D.羊毛脂E.多聚核苷酸 [单选]下列关于类风湿因子说法正确的是()。A.在大部分正常人类风湿因子可以出现低滴度阳性B.其滴度与类风湿关节炎病情活动性、严重性无关C.是属于IgM型的自身抗体D.在某些慢性感染性疾病及恶性肿瘤的患者血清中可出现阳性E.类风湿因子阴性可以排除类风湿关节炎的诊断 [单选,A1型题]下述不良反应哪项是胰岛素不具有的()。A.过敏B.低血糖C.急性耐受性D.慢性耐受性E.肝损伤 [单选]当并励发电机的负载变动时,如欲把它的端电压保持额定值不变,则可以通过()的方法来调节。A.增加电机的转速B.减小电机转速C.改变励磁变阻器RfD.调节电流 [单选,A1型题]下列各项,属于暑淫证临床表现的是()。A.头昏如裹B.胸闷脘痞C.肌肉酸痛D.头身疼痛E.卒然昏倒 [单选,A2型题,A1/A2型题]不属于直接化学发光免疫分析化学发光剂特点的是()A.氧化反应简单快速,不需要催化剂B.发光迅速,背景噪声低C.可直接标记抗原或抗体D.只需在酸性环境中即可进行E.为瞬间发光,持续时间短 [判断题]压缩线的唯一作用是排出调速系统中存积的空气,防止油管振动,减小油压波动。()A.正确B.错误 [判断题]任何单位和个人发现洗钱活动,有权向反洗钱行政主管部门或者公安机关举报。A.正确B.错误 [单选]下列哪一项不是卵巢实质性恶性肿瘤A.绒毛膜上皮癌B.纤维上皮瘤C.无性细胞瘤D.内胚窦瘤E.肉瘤 [多选]下列各项中属于企业社会责任的有()。A.对债权人的责任B.对消费者的责任C.对社会公益的责任D.对环境和资源的责任 [填空题]历史数据采集可以用不同的存储()间隔。 [单选]按计入指数的项目多少不同,指数可分为个体指数和()。A.综合指数B.数量指数C.质量指数D.加权指数 [单选]判断幽门螺杆菌是否根除首选的是()A.活组织幽门螺杆菌培养B.组织学检查找幽门螺杆菌C尿素酶呼气试验D.快速尿素酶试验E.血清抗幽门螺杆菌抗体检测 [单选]Inmarsat通信系统由()组成。A、卫星、地面站、移动站、网络协调站B、移动站、海岸电台、卫星、控制中心C、卫星、网络协调站D、陆地移动电台、移动站、地面站 [单选]不是Apgar评分范畴的体征是().A.体温B.喉反射C.心率D.呼吸E.肌张力 [单选,A1型题]下列各项中,不是热衰竭临床表现的是()。A.患者先有头痛、头晕、恶心B.典型表现为高热、无汗、昏迷C.热衰竭可有低钠、低钾血症D.热衰竭可有晕厥、抽搐E.热衰竭重者出现循环衰竭 [多选]社会交换论的主要代表人物有()A.霍曼斯B.帕累托C.布劳D.默顿 [问答题,简答题]粗氩塔冷凝器液空液位正管漏气时,工艺上会有哪些参数和调节阀发生变化? [问答题,简答题]离心泵启动时,为何先不开出口阀? [单选]类风湿关节炎最终导致的主要肾脏病变为()。A.肾小球基膜多种免疫复合物沉积B.肾脏淀粉样变性C.局灶节段坏死性肾小球肾炎D.肾小管酸中毒E.小动脉内皮细胞增生 [单选]冰区航行,应采用适当的安全航速,通常应采用()的航速。A.3~5knB.2~3knC.维持舵效的最低航速D.A+C [单选]自体微粒皮植皮,供受区面积最大宜在()A.1:5之内B.1:20之内C.1:15之内D.1:25之内E.1:40之内 [填空题]使用70°探头探测钢轨轨头核伤,若只有二次反射波说明核伤的倾斜方向与声波的入射方向()。 [名词解释]地球化学背景 [单选]“邪气淫泆”中“淫泆”的正确解释是()。A.浸淫扩散B.满溢C.充满D.流淫E.淫溢 [判断题]气密试验是清除一些重大的隐患及质量问题,确保一次化工操作开车成功。A.正确B.错误 [单选,A2型题,A1/A2型题]半抗原通常须与下列何种物质结合才具免疫原性()。A.羊毛脂B.免疫佐剂C.免疫增强剂D.液状石蜡E.载体 [单选]“哲学的”人生观与世界观是()和()两种因素的产物。A、传统的宗教与伦理观念,"科学的"那种研究B、传统的宗教观念,传统的伦理观念C、传统的伦理观念,"科学的"那种研究 [填空题]电动机按它所耗用电能种类的不同可分为()电动机和()电动机。 [多选]在编制资产负债表时根据总账科目期末余额与其备抵科目抵消后的数据填列的项目有()。A.预付账款B.应收账款C.在建工程D.无形资产E.存货 [单选]在胆囊扫查中,最容易显示胆囊、下腔静脉、右肾和胆总管的体位是A.直立位B.半侧卧位C.仰卧位D.侧卧位E.坐位 [单选]消化性溃疡慢性穿孔最常见的部位是()A.十二指肠前壁B.胃小弯C.胃窦D.十二指肠后壁E.幽门 [单选,A1型题]处理生理性黄疸最常用的方法是()A.光照治疗B.使用酶诱导剂,苯巴比妥C.应用白蛋白D.停喂母乳E.尽早喂奶 [填空题]分解住院包括()、()。 [单选,A1型题]世界卫生组织建议,纯母乳喂养可持续至婴儿()A.2个月B.4个月C.6个月D.9个月E.12个月 [单选]审计监督的本质特征是其有()的经济监督行为。A.行政性B.严肃性C.独立性D.强制性
相关文档
最新文档