数学建模常见评价模型简介 (2)
数学建模中的模型评价
数学建模中的模型评价数学建模是一种以数学方法和技巧解决实际问题的过程。
在实际应用中,我们往往需要选取和评价不同的模型,以确定最适合解决问题的模型。
本文将介绍数学建模中常用的模型评价方法,并分析其优缺点。
一、模型评价方法在数学建模中,常用的模型评价方法有以下几种:1. 残差分析法残差分析法是通过对模型的预测值与实际观测值之间的偏差进行统计分析,以评估模型的拟合程度。
残差是指模型的预测值与实际观测值之间的差值,利用残差可以判断模型是否存在系统误差或者随机误差。
2. 相对误差法相对误差法是通过计算模型预测值与实际观测值之间的相对误差,来评估模型的准确性。
相对误差是指模型预测值与实际观测值之间的差值与实际观测值的比值。
相对误差越小,说明模型的预测能力越强。
3. 决定系数法决定系数是通过计算模型预测值和实际观测值之间的相关性来评估模型的拟合优度。
决定系数的取值范围在0到1之间,越接近1表示模型的拟合效果越好。
4. 参数估计法参数估计法是利用统计学方法对模型中的参数进行估计,以评估模型的可靠性。
参数估计法主要通过最小二乘法来求解最佳参数值,使得模型的拟合误差最小化。
二、模型评价的优缺点每种模型评价方法都有其独特的优缺点,我们需要根据具体问题和模型的特点来选择合适的方法。
残差分析法的优点是可以直观地观察模型预测值和实际观测值之间的差异,可以发现模型中存在的问题,便于模型的改进。
然而,残差分析法也存在一些局限性,比如无法判断模型中存在的误差类型以及无法量化模型的拟合程度。
相对误差法的优点是可以量化模型的准确性,通过计算相对误差可以对比不同模型的预测能力。
然而,相对误差法没有考虑到误差的方向,只是简单地计算模型预测值与实际观测值之间的比值,可能忽略了误差值的正负。
决定系数法是一种常用的模型评价方法,可以直接判断模型的拟合优度,其计算简单直观。
然而,决定系数只考虑了模型预测值与实际观测值之间的相关性,没有考虑到其他可能的误差来源。
数学建模评价模型
数学建模评价模型1.准确性评价:这是评估模型与实际数据的契合程度。
准确性评价可以通过计算模型预测结果与实际数据之间的差异来实现。
常见的准确性评价指标有均方根误差(RMSE)、平均绝对误差(MAE)等。
均方根误差是模型预测值与真实值之间的差值的均方根,平均绝对误差是模型预测值与真实值之间的差值的平均值。
准确性评价越小,则模型准确性越高。
2.可靠性评价:可靠性评价是评估模型在不同数据集上的稳定性。
通过将模型应用于不同的数据集,观察模型预测结果的变化情况,可以评估模型的可靠性。
常见的可靠性评价方法包括交叉验证和蒙特卡洛模拟。
交叉验证将数据集分为训练集和测试集,通过多次重复实验,观察模型预测结果的稳定性。
蒙特卡洛模拟则是通过随机生成不同数据集,观察模型预测结果的分布情况。
3.灵敏度分析:灵敏度分析是评估模型对输入参数变化的敏感性。
建模时,经常需要设定各种参数值,而不同参数值可能导致不同的结果。
灵敏度分析可以帮助确定哪些参数对模型输出的影响最大。
常见的灵敏度分析方法包括单因素灵敏度分析和多因素灵敏度分析。
单因素灵敏度分析是将一个参数保持不变,观察模型结果的变化情况。
多因素灵敏度分析则是将多个参数同时变化,并观察模型结果的变化情况。
4.适用性评价:适用性评价是评估模型在特定问题上的适用性。
不同的问题可能需要不同的数学模型,评价模型的适用性可以帮助确定模型是否适用于特定问题。
适用性评价可以通过将模型应用于类似的问题,并进行验证来实现。
在实施数学建模评价模型时,需要根据具体问题的特点和需求来选择合适的评价指标和方法。
同时,在建立数学模型之前,需要确定评价指标的合理范围,以便在评估结果时进行比较和判断。
总之,数学建模评价模型是一种用于评估数学建模结果的方法。
通过准确性评价、可靠性评价、灵敏度分析和适用性评价,可以评估模型的优劣、准确性和可靠性,为实际问题的解决提供参考。
数学建模中的常见模型
数学建模中的常见模型数学建模综合评价模型是一种通过对各个评价指标进行量化,并将它们按照权重进行加权,最终得到一个综合评价值的方法。
这个模型可以应用于多指标决策问题,用于对被评价对象进行排名或分类。
常见的数学建模综合评价模型包括模糊综合评价模型、灰色关联分析模型、Topsis(理想解法)、线性加权综合评价模型、熵值法和秩和比法等。
模糊综合评价模型是一种基于模糊数学理论的方法,它将评价指标的模糊程度考虑在内,得到一个模糊评价结果。
该模型的步骤包括确定评价指标及其权重、构建模糊评价矩阵、进行模糊运算、得到模糊评价结果。
灰色关联分析模型是一种用于分析指标间关联性的方法,它可以帮助我们确定各个指标对被评价对象的影响程度。
该模型的步骤包括确定关联度计算方法、计算各个指标的关联度、得到综合关联度。
Topsis(理想解法)是一种基于距离的方法,它通过计算每个评价对象与理想解的距离,得到一个综合评价值。
该模型的步骤包括确定正负理想解、计算距离、得到综合评价值。
线性加权综合评价模型是一种常用的多指标决策方法,它将各个评价指标的权重与指标值线性组合起来,得到一个综合评价值。
该模型的优点是简单易操作,计算方便,可以对各个指标的重要性进行量化,并将其考虑在评价中。
但是,该模型的权重确定较为主观,且假设指标之间相互独立,不考虑相关性。
熵值法是一种基于信息熵理论的方法,它通过计算每个指标的熵值,得到一个综合评价值。
该模型的步骤包括计算指标的熵值、计算权重、得到综合评价值。
秩和比法是一种用于处理多指标决策问题的方法,它通过计算指标的秩和比,得到一个综合评价值。
该模型的步骤包括编秩、计算秩和比、得到综合评价值。
根据具体的评价需求和问题特点,我们可以选择合适的数学建模综合评价模型来进行评价。
每个模型都有其优点和缺点,需要根据具体情况进行选择和应用。
<span class="em">1</span><spanclass="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [数学建模——评价模型]()[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_sourc e":"vip_chatgpt_mon_search_pc_result","utm_medium":"di stribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_itemstyle="max-width: 100%"] [ .reference_list ]。
数学建模四大模型总结(K12教育文档)
数学建模四大模型总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学建模四大模型总结(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学建模四大模型总结(word版可编辑修改)的全部内容。
四类基本模型1优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS传播模型.1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。
1.5 组合优化经典问题●多维背包问题(MKP)背包问题:n个物品,对物品i,体积为w,背包容量为W。
如何将尽可能多的物i品装入背包。
多维背包问题:n个物品,对物品i,价值为p,体积为i w,背包容量为W。
如何i选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP难问题。
●二维指派问题(QAP)工作指派问题:n个工作可以由n个工人分别完成。
工人i完成工作j的时间为d.ij如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n台机器要布置在n个地方,机器i与k 之间的物流量为f,位置j与l之间的距离为jl d,如何布置使费用最小.ik二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城市的巡ij回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
数学建模素养评价模型与案例分析
数学核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现.《普通高中数学课程标准(2017年版)》(以下简称《标准》)明确指出,数学课程的重要目标之一是在学习数学和应用数学的过程中,发展学生的数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析数学学科核心素养.在《标准》的学业质量评价中,重点是核心素养评价,将每个核心素养划分为三个水平,每个水平有相关描述以及实例说明.仔细分析这些水平描述,感觉比较笼统、可操作性不够强,对实际教学缺乏有效的指导,尤其是作为六大数学核心素养之一的数学建模素养的评价,更是感觉不便操作.而考试评价对高中教师的导向功能是不得不重视的.也正是基于这样的现实,要想落实数学建模素养培养,首先要做的工作应该是让教师弄清楚管理部门或高考是如何评价和考查这种核心素养的,以此来引导教师重视数学建模素养的培养.为此,本文试以数学建模素养评价为例,探讨学业质量评价中如何对数学建模素养水平进行评价.一、数学建模素养的内涵一般认为,数学模型是研究者依据研究目的,将所研究的客观事物的过程和现象的主要特征和主要关系,采用形式化的数学语言,概括或近似地表达出来的一种结构.数学建模是把现实世界中的实际问题进行提炼,抽象为数学模型,求出数学模型的解,验证数学模型的合理性,并用数学模型提供的结论再来解释实际问题的一种应用过程.这个过程可以具体表示为:理解问题—简化问题—建立模型—计算求解—解释结果—修改模型—得出结论.数学建模过程结构图如图1所示.1.理解问题2.简化问题3.建立模型4.计算求解5.解释结果6.修改模型7.得出结论数学建模过程结构图图1收稿日期:2020-02-24基金项目:宁波市教育规划重点课题——基于学生视角的新高考改革的调查与思考(2018YZD002).作者简介:邵光华(1964—),男,教授,主要从事数学教育研究.数学建模素养评价模型与案例分析邵光华摘要:已有数学建模素养评价模式有三种:横向评价、纵向评价和模型创新性评价.《普通高中数学课程标准(2017年版)》将数学建模素养划分为三个水平,用“情境与问题、知识与技能、思维与表达、交流与反思”四个维度加以区分与体现.分析了数学建模素养教学与评价案例中并未按照数学建模素养划分的三个水平的四个维度进行说明而导致的理论划分与案例例说不一致的冲突.基于数学建模素养的三个水平的划分维度以及每个水平的表现,结合已有数学建模能力评价模式,重新构建了与数学建模素养划分水平具体要求与表现相一致的数学建模素养评价模型,并举案例说明,合理解决了数学建模素养科学评价问题.关键词:数学建模;素养水平;评价··3《标准》将数学建模提升为数学核心素养之一.素养是一种稳定的内在心理品质,是知识、能力、行为习惯等人格化特征的综合集中反映.数学建模素养被看成是“对现实问题进行数学抽象,用数学语言表达问题,用数学方法构建模型解决问题的素养”.具体而言,数学建模素养可以理解为以下四个方面的综合体现:建立模型解决问题时必备的数学基础知识与方法等建模知识;相关的诸如阅读理解、抽象概括、数学运算、逻辑推理、数学应用等数学能力;抽象和转化等重要建模思想;在建模过程中体现的情感、态度与价值观.二、《标准》中数学建模素养的评价指南1.数学核心素养水平划分维度《标准》将每一种数学学科核心素养都划分为三个水平,并对每一个水平通过数学学科核心素养的具体体现和体现数学学科核心素养的四个维度给予表述.这四个维度为情境与问题、知识与技能、思维与表达、交流与反思,具体说明如表1所示.表1:反映数学学科核心素养的四个维度维度情境与问题知识与技能思维与表达交流与反思说明情境主要是指现实情境、数学情境、科学情境;问题是指在情境中提出的数学问题,分为简单问题、较复杂问题、复杂问题能够帮助学生形成相应数学学科核心素养的知识与技能数学活动过程中反映的思维品质,表述的严谨性与准确性能够用数学语言直观地解释与交流数学的概念、结论、应用和思想方法,并能进行评价、总结与拓展2.《标准》中数学建模素养的评价模型《标准》通过情境与问题、知识与技能、思维与表达、交流与反思四个维度对数学建模素养的三个水平进行区分与体现.数学建模素养的评价模型如表2所示.表2:数学建模素养的评价模型维度情境与问题知识与技能思维与表达交流与反思水平一了解熟悉的数学模型的实际背景及其数学描述,了解数学模型中的参数、结论的实际含义知道数学建模过程包括提出问题、建立模型、求解模型、检验结果、完善模型.能够在熟悉的实际情境中,模仿学过的数学建模过程解决问题对于学过的数学模型,能够举例说明数学建模的意义,体会其蕴涵的数学思想;感悟数学表达对数学建模的重要性在交流的过程中,能够借助或引用已有数学建模的结果说明问题水平二能够在熟悉的现实情境中,发现问题并转化为数学问题,知道数学问题的价值与作用能够选择合适的数学模型表达所要解决的数学问题,理解模型中参数的意义,知道如何确定参数,建立模型,求解模型;能够根据问题的实际意义检验结果,完善模型,解决问题能够在关联情境中,经历数学建模的过程,理解数学建模的意义,能够运用数学语言,表述数学建模过程中的问题以及解决问题的过程和结果,形成研究报告,展示研究成果在交流的过程中,能够用模型思想说明问题水平三能够在综合的科学情境中,运用数学思维进行分析,发现情境中的数学关系,提出数学问题能够运用数学建模的一般方法和相关知识,创造性地建立数学模型,解决问题能够理解数学建模的意义和作用,能够运用数学语言,清晰、准确地表达数学建模的过程和结果在交流的过程中,能够通过数学建模的结论和思想阐释科学规律和社会现象··4可以看出,“情境与问题”维度涉及的是数学建模问题的层次,情境由熟悉到综合,问题由简单到复杂.“知识与技能”维度涉及的是数学建模的过程与模型创新性层次,先模仿学过的模型解决问题,然后选择已知的模型解决问题,最后创造性地建立模型解决问题.“思维与表达”维度涉及的是模型评价与报告撰写水平,由要求举例说明学过的模型的意义,到要求用数学语言表述数学建模的过程,形成研究报告,再到强调学生真正理解数学建模的作用,得出问题的结论.“交流与反思”维度是对数学建模素养的本质的要求程度,由简单的借助模型结果说明问题,到能用模型思想说明问题,再到运用模型思想解决社会现实问题.从数学教育的角度来讲,数学思想是更高层次的理性认识,关于数学内容和方法的本质的认识是对数学内容和方法的本质的进一步概括.数学模型作为一种重要思想被学生理解是非常有意义的.评价模型中,“情境与问题”维度针对的是问题的难易程度与情境的复杂程度,是教师设置考查学生数学建模素养的试题的参考依据.但是,“数学模型的实际背景、熟悉的现实情境、综合的科学情境”三类情境的定义却未明确,“简单问题、复杂问题、较复杂问题”的区分标准也未提及,以及情境、问题两者有何关联,这些都可能增加教师设置测试问题的难度.“知识与技能”维度以考查学生数学建模知识与数学建模过程为主,量化评价的可操作性较弱,应该增加对该维度的量化评价细节.“思维与表达”与“知识与技能”两个维度相辅相成,“思维与表达”是对“知识与技能”的成果的呈现形式予以说明,因此评价时也采用量化评价方式.“交流与反思”维度是数学建模完成之后的交流、反思活动,考查形式可以采用生生、师生交流或组织学生公开答辩,亦可以采用具体量化评价方式.3.《标准》中用于评价的满意原则和加分原则的说明《标准》列举了“鞋号问题、包装彩绳问题、体重与脉搏问题、估计考生总数问题”四个案例用来说明如何评价数学建模素养水平,目的是想通过这些案例给学业水平考试与高考命题以指导.这些案例都是应用问题、开放性问题或探究性问题,可以同时考查学生的思维过程、实践能力和创新意识.《标准》同时指出,在具体评价数学建模素养水平层次时,除了按照前面的评价模型标准外,还需要遵循满意原则和加分原则.所谓“满意原则”就是不一定追求真正的“最优”,只要教师认可就行了,这种寻求“满意性”的系统方案的方法,虽然不如找“最优化”方案方法那么严格、精确,但是它比较灵活.而“加分原则”可以理解为针对数学建模过程的完整性、数学建模方法的创新性、模型的创新性、语言表达的准确性等方面进行加分.结合满意原则和加分原则,四个案例水平综合评价结果如表3所示.表3:四个案例的水平层次判定及评判根据案例鞋号包装彩绳体重与脉搏估计考生总数素养水平水平一水平二水平二水平一水平二水平二水平二水平三水平一水平二评价缘由得出简单模型模型创新数学建模过程完整提出猜想得出模型语言表达准确情境复杂,表达准确方法创新,模型创新体现统计思想过程表述清楚满意原则加分原则加分原则满意原则满意原则加分原则满意原则满意原则加分原则满意原则满意原则4.《标准》中数学建模素养评价模式不足的细化分析通过分析《标准》中案例的评价方式,不难发现,它是横向评价、纵向评价,以及“满意原则”和“加分原则”三个方面相结合的综合评价模式.“横向评价模式”是根据学生解决的不同水平的数学建模问题的情况来裁定其数学建模素养的层次.“纵向评价模式”是将数学建模素养分解为过程要素,具体过程为确定变量、探索关系、建立模型、计算系数、分析结论,根据学生解决问题达到过程中的哪一步来判断其数学建模素养水平.对于“满意原则”和“加分原则”,若学生已经完成数学建模过程中的某一步,根据满意原则直接判定其达到该步骤对应的数学建模素养水平;若学生未完整完成数学建模过程中的某一步,根据加分原则适当加分.例如,对于水平一的数学建模问题,··5数学建模过程完整、模型有创新,根据加分原则,评定为水平二.水平二的数学建模问题,模型合理,数学建模过程不完整,根据满意原则,评定为水平一;模型创新,过程完整,根据加分原则,评定为水平三.水平三的建模问题,提出问题,有思路,根据满意原则,评定为水平一;模型合理,数学建模过程不完整,根据满意原则,评定为水平二.综合起来,可以得出如图2所示的数学建模素养水平评价模型.数学建模素养水平评价模型数学建模素养水平水平一水平二水平三简单问题较复杂问题复杂问题图2根据该评价模型,《标准》提供的数学建模素养案例中,“鞋号问题”“彩绳包装问题”“估计考生总数问题”是数学建模素养水平一、水平二的评定案例,“体重与脉搏问题”是数学建模素养水平二、水平三的评定案例.仔细分析这些数学建模素养水平评定案例,发现似乎存在需要完善的地方.一是评定没有遵循数学建模问题与数学建模水平呈一一对应原则,案例是通过一个数学建模问题评定两个乃至三个数学建模素养水平.二是在评价数学建模素养水平的过程中未对数学建模素养的相关维度的具体表现进行表述.三是通过对数学建模素养划分为过程要素来评价.一方面,破坏了数学建模过程的整体性,难以凸显学生的数学建模素养.因为数学建模是问题解决的一部分,学生用数学建模的思想与方法去解决问题的根本点是是否真正解决了问题,解决问题的过程与问题的结果同等重要,而得出结果则需要经历完整的数学建模过程.因此,根据数学建模过程要素评定不合理.另一方面,忽略高中生认知水平的差异性.例如,数学建模素养达到水平一的学生未能完成关于水平二的问题的任何数学建模步骤,按照过程要素评价方式,将评定该学生的数学建模素养不能达到数学建模素养水平一.事实上,按照过程要素得出的评价结果与学生真实的素养水平会大相径庭.三、基于四个维度的数学建模素养评价模型的构建鉴于《标准》中关于数学建模素养评价的操作不甚明晰,下面,笔者重新构建更具操作性的评定设计方案,并通过案例给予说明.1.数学建模核心素养评价应该坚持两个原则针对《标准》中数学建模素养水平评价方案的不足,我们提出评价学生数学建模素养水平应该遵循的两个基本原则.原则1:基于数学建模情境与问题维度.为方便教师编制对应的数学建模素养水平测试题,数学建模问题与数学建模素养水平需要呈一一对应关系.事实上,能够通过数学建模解决的实际问题的难度水平在一定意义上能够显示一个人的数学建模素养水平的高低.基于此,我们提出数学建模素养水平与数学建模问题的难度应该呈一一对应关系.简单问题对应数学建模素养水平一,较复杂问题对应数学建模素养水平二,复杂问题对应数学建模素养水平三.简单问题包括一般的应用题,以及数量关系较明显的实际问题.该类问题较易入手,容易找到量与量之间的··6关系,结果也比较简单,不需要过多的分析、整理.较复杂问题主要指从社会生产、生活的实际中来的问题,背景较为复杂,不容易切入,较难下手,需要经过分析与判断做出适当假设,量与量之间的关系也较容易发现,得到的结果并不要求精确,但是需要做出一定的分析、说明,进行简单评价.复杂问题指从实际生活中来而且未经数学化的问题,解决它不仅需要相应的数学知识,还需要了解非数学领域的知识,这类问题难以切入,不容易发现其中的量与量之间的关系,在求解中除了应用数学知识外,还需要运用计算机进行模拟、试算、检验,并需要对模型进行分析与评价,结果要求是最优解,没有标准答案,需要以科技论文呈现.原则2:数学建模素养水平评价需要体现情境与问题、知识与技能、思维与表达、交流与反思四个维度.《标准》中给出的这四个维度能够切实综合反映学生的数学建模素养水平,为了更准确地反映水平层次,需要将这四个维度量化.2.基于四个维度的数学建模核心素养评价模型的方案设计结合每个水平的具体表现,我们将这四个维度划分为相应的子维度,记分法则参照文献[11]中的“数学建模能力评价量表”.由此设计并构建了数学建模核心素养评定方案,如表4所示.可以规定,获得相应数学建模素养水平问题总分的60%,就可以认定学生达到了该水平.表4:基于四个维度的数学建模素养评价方案维度情境与问题知识与技能思维与表达交流与反思子维度提出问题做出假设定义变量、参数使用的数学方法问题结果模型分析与评价写作与组织结果报告理想情况简洁、确切地表明该模型的问题是什么.(3分)主要的假设确切、合理且易于理解.(3分)合理列出重要的参数和变量,并做出相关解释.(3分)呈现了合理的数学方法和数学结果,提供了合理的解释.(4分)清晰地提出解决方案,还包含有用的可视化辅助(表格、图形),并进行解释.(4分)提供了解决方案的可行性和可靠性.例如,与其他解决方案相比,本模型怎样?(3分)论文格式很好,可顺利地阅读,选择最佳可视化辅助且易于理解.(5分或4分)语言表达流畅,易于理解,针对听众的疑问给予合理解释.(5分或4分)符合要求问题的陈述很容易识别,但是不够精确.(2分)指出主要假设,但是缺乏合理性或可读性.(2分)合理列出重要参数和变量,没有确切的解释.(2分)陈述了数学方法,但是难以令人理解.(3分或2分)陈述了答案,但是解决方案的各个方面难以理解或不完整.(3分或2分)分析缺乏适当的维度.例如,忽略了所述结果的明显后果.(2分)格式符合要求,行文流畅,缺乏可视化辅助说明,不易理解.(3分或2分)语言表达流畅,未对听众的疑问给予合理解释.(3分或2分)需要改进问题的陈述难以理解或被隐藏在原文中.(1分)给出假设并说明其合理性,但是与问题不贴切.(1分)设置了部分变量、参数.(1分)陈述了数学方法,但是包含可以解决的数学错误.(1分)给出了答案,但是没有给出适当的图形、恰当的单位等.(1分)提供了一些分析,但是没有任何从整体出发看问题的意识.(1分)论文格式符合要求,行文不流畅.(1分)用自然语言流畅表达,但是听众难以理解.(1分)未完成没有给出问题陈述.(0分)没有假设,或缺乏假设的理由.(0分)没有确定变量或参数.(0分)没有提出模型,或提出的模型包含重大错误.(0分)未提供解决方案.(0分)文章中不包含任何的模型分析或评估.(0分)论文格式不符合要求.(0分)无法用自然语言流畅表述模型.(0分)··7四、基于四个维度数学建模核心素养评价模型的案例分析有关数学建模素养水平评价的问题编制或选取与“情境与问题”“知识与技能”两个维度的要求密切相关.下面我们主要根据这两个维度进行分析说明.说明的形式是先解析《标准》的要求,再解释本文选择的问题为何符合要求.1.数学建模核心素养水平一案例分析情境与问题维度要求:教师可以将教材中涉及的数学模型作为原材,选取适时的背景编制问题.可以为一般的应用问题或数量关系较明显的实际问题.知识与技能维度要求:问题需要设置参数或条件假设.水平一的问题是已经适度数学化的问题,学生经历从学过的数学模型中选取合适的模型,求解模型、检验模型、完善模型.情境:人社部拿出延迟退休方案,采取渐进式延迟退休年龄政策,采取小步慢走,渐进到位.男性延迟退休年龄的具体方案如表5所示.表5:男性延迟退休年龄方案出生年份退休年龄出生年份退休年龄出生年份退休年龄196160.00196861.75197563.50196260.25196962.00197663.75196360.50197062.25197764.00196460.75197162.50197864.25196561.00197262.75197964.50196661.25197363.00198064.75196761.50197463.25198165.00问题:男性的退休年龄随出生年份逐步调整的计算模型是什么?在情境与问题层面,该情境是学生熟悉的情境,问题是已经数学化的问题.从表格里的数据可知,调整过程中男性的出生年份与退休年龄均成等差数列,等差数列模型是学生学过的数学模型.在知识与技能层面,学生只需要通过模仿等差数列模型,设置模型相关参数,建立男性的退休年龄随出生年份逐步调整的计算模型,经历建立模型的过程.具体建模过程如下.由表5中的数据不难看出,数据呈等差数列特征.假设调整过程中的男性的出生年份为数列{}y n,退休年龄为数列{}a n,模型分别设为y n=y0+nd1,a n=a0+nd2.在2021年年龄为60岁的男性出生年份y0=1961,d1=1;目前的退休年龄a0=60,d2=0.25;从表5中可知,数列的长度n为从开始调整年龄到预定的退休年龄65岁的年龄跨度是20年,且作为连接男性出生年份与退休年龄数学关系的桥梁,即an-a0d2=y n-y0d1,再结合a0,d2,y0,d1的值,得到男性的退休年龄随出生年份逐步调整的计算模型an=60+0.25()y n-1961.2.数学建模核心素养水平二案例分析情境与问题维度要求:这种问题从社会的生产、生活实际中来,不容易切入,难以下手,需要学生将现实问题数学化,知道问题的价值与作用.知识与技能维度要求:该类问题需要经过分析与判断,量与量之间的关系容易被发现;可以跨学科寻找与解决此问题类似的模型;仍然需要在数学建模之前,做出适当假设,且理解设置参数的意义;得到的结果不一定精确,需要进行一定的分析、说明,简单评价,解决问题.情境:一辆小汽车在普通路面上行驶,得九组关于车速、反应距离、刹车距离的数据,如表6所示.反应距离即驾驶员做出反应动作到刹车制动开始起作用汽车行驶的距离.刹车距离即从刹车制动开始起作用到汽车完全停止这段时间内汽车行驶的距离.表6:车速与反应距离、刹车距离对应数据表车速/km·h-1324048566472808895反应距离/m6.78.510.111.913.415.216.818.620.1刹车距离/m6.18.512.31621.928.23645.355.5问题:对于这辆小汽车与这位驾驶员,分别建立反应距离关于车速的函数模型、刹车距离关于车速的函数模型.··8在情境与问题层面,该情境是学生熟悉的现实情境,是跨学科的问题,需要学生将问题数学化.将汽车运动问题转化为具体的路程与速度问题.在知识与技能层面,该问题是物理学科的匀速与减速问题,在物理学科中有类似的模型.通过观察数据并分析量与量之间的关系,学生选择路程与速度模型:匀速运动模型s=vt,匀减速运动模型s=v 22a.学生需要经历模型参数的假设,并且对结果进行分析.(1)假设驾驶员的反应时间为t,反应距离为s1,刹车距离为s2,车速为v.选取匀速运动模型s1=vt,计算驾驶员做出反应动作到刹车制动开始起作用汽车行驶的时间.将九组车速与反应距离的数据代入匀速运动模型,通过计算发现九组反应时间t非常接近,t的均值tˉ=0.7584,t的方差为2.0927×10-5,驾驶员的反应时间可以设定为定值0.7584,对于这辆小汽车与这位驾驶员,反应距离关于车速的函数模型为s1= 0.7584t.(2)假设这辆小汽车的减速度为a,选取匀减速运动模型s2=v22a.将九组车速与刹车距离数据代入匀减速运动模型,通过计算发现九个12a的值非常接近,12a的均值是0.072,12a的方差是1.7617×10-5,12a可以设定为定值0.072.对于这辆小汽车与这位驾驶员,刹车距离关于车速的函数模型s2=0.072v2.3.数学建模核心素养水平三案例分析情境与问题维度要求:情境是综合的科学情境,问题是现实生活中未经过数学化的问题.难以切入问题,不容易发现量与量之间的关系.知识与技能维度要求:这类问题没有能运用或者模仿的模型.学生在理解题意,将现实问题数学化的基础上,运用学习过的数学知识创造性地建立数学模型.在求解步骤中除了数学知识,还需要运用计算机进行模拟、试算、检验,解决问题.情境:储药柜的结构类似于书橱,从上到下有若干层横向隔板.每一层称为一个储药槽,每个储药槽内用竖向隔板隔开,形成若干个存放药盒的储药格,一个储药槽内只能摆放同一种药品,如图3所示.图3问题:为保证药品在储药槽内顺利出入,要求药盒与两侧竖向隔板之间、与上下两层横向隔板之间应留2mm的间隙,同时还要求药盒在储药槽内推送的过程中不会出现并排重叠、侧翻或水平旋转.表7给出了20种药盒的尺寸规格,给出能够存放这些药盒且满足上述要求的储药格宽度类型最少的设计方案.表7:药盒规格表药盒编号长度/mm宽度/mm厚度/mm药盒编号长度/mm宽度/mm厚度/mm112076241195553321257220121086218312576211395553349171151413476205125722115955533612085201685464671173726171257533878652018116761691175656191001001010744740201317738在情境与问题层面:问题从实际生活中来,未经过数学化处理,难以切入问题,不容易发现量与量之间的关系,是综合情境复杂问题.在数学建模过程中,实际问题抽象为数学问题,需要借助于几何直观.模型求解运用不等式,通过解不等式寻找储药格宽度与存储药盒厚度的关系,划分药盒的厚度间隔.在知识层面上,学生遇到的困难大.在知识与技能层面,该问题无已知的模型可以直接运用,需要学生有数学建模素养水平三的能力,建立模型,解决问题.问题数学化分析如下.(1)药盒在储药槽内推送的过程中不会出现并排重叠,即药槽的宽度小于药盒宽度的两倍.··9。
数学建模教师评价模型 模糊模型
数学建模-教师评价模型班级:14-2组员:(01)(03)(04)(05)教师评价模型一、 摘要学校是一个公平充满正能量的场所。
是一个较为公平客观评价人的场所,每时每刻都在对各个人进行评价。
毫不夸张地说评价教师是学校里每个人的“日常功课”,也是提高学校教学质量的重要途径。
由于教师职业劳动的特殊性,它是光荣的劳动,复杂的劳动。
不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。
评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。
所以教师评价的确定就显的很重要。
新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。
那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从学生角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。
本模型主要用了模糊数学模型进行建模分析。
从学生对教师的评价角度出发,通过量化,加权,得出结果。
在学生评价方面采用的数学模型如下:表明以学生为主体,体现了模型的客观性,公平、公开的原则。
9ji ij i d c a ==∑ija=ijnuija=A (U ,V )( U 为评价的主要因素,V 为评价因素分等。
C i 为学生对教师的各项评价要求所付的权重 N 为填写有效调查表的人数)模型的优点和不足和推广: 优点:(1)采用模糊数学建模,充分考虑许多因素。
评价尽量客观,真实,全面 (2)采用加权,分等。
使教师之间互相的竞争,同时也保护了教师的积极性 (3)模型以学生评价为主真正体现评价的客观性、发展性和促进性。
不足:(1)没有大量的数据来调整模型的系数,使模型更加贴进现实。
(2)对于结果有效性范围的确定不是很准确,采用人为划定。
(3)如果这次评价无效,其后的处理方法不太详细。
评价类数学模型
一种能有效处理这类问题的实用方法。
层次分析法(Analytic Hierarchy Process, AHP)这是 一种定性和定量相结合的、系统化的、层次化的分析方法。 过去研究自然和社会现象主要有机理分析法和统计分析法两 种方法,前者用经典的数学工具分析现象的因果关系,后者
以随机数学为工具,通过大量的观察数据寻求统计规律。近
二 层次分析法的基本步骤
1 建立层次结构模型
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型 买钢笔 质 量 颜 色 价 格 外 形 实 用 目标层
准则层
方案层
可供选择的笔
例2 层次结构模型
选择 旅游地 目标层Z
景 色
费 用
居 住
饮 食
旅 途
准则层A
苏州、杭州、 桂林 方案层B
例3 择业
面临毕业,可能有高校、科研单位、企业 等单位可以去选择,一般依据工作环境、 工资待遇、发展前途、住房条件等因素择 业。
例4 科研课题的选择
由于经费等因素,有时不能同时开展几个 课题,一般依据课题的可行性、应用价值、 理论价值、被培养人才等因素进行选题。
面临各种各样的方案,要进行比较、判断、评价、最后 作出决策。这个过程主观因素占有相当的比重给用数学方法 解决问题带来不便。T.L.saaty等人20世纪在七十年代提出了
检验。若检验通过,特征向量(归一化后)即为权向量;
若不通过,需要重新构造成对比较矩阵。
4.计算总排序权向量并做一致性检验 计算最下层对最上层总排序的权向量。 利用总排序一致性比率
a1CI1 a2CI 2 amCI m CR a1 RI1 a2 RI2 am RIm
数学建模模型常用的四大模型及对应算法原理总结
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模中综合评价模型
综合评价模型的未来发展方向
01
02
智能化
多元化
随着人工智能和大数据技术的不断发 展,综合评价模型将更加智能化,能 够自动进行数据筛选、处理和模型构 建,提高评价的准确性和效率。
未来综合评价模型将更加多元化,不 仅局限于某一特定领域或问题,而是 能够广泛应用于各个领域,满足不同 需求的评价任务。
03
综合性
综合评价模型能够综合考虑多个因素或指标,避免单一指标评价的片 面性。
客观性
综合评价模型采用数学方法进行数据处理和评估,能够减少主观因素 的影响。
可比性
综合评价模型所得出的评价结果可以进行横向和纵向的比较。
综合评价模型的重要性
提高决策的科学性
综合评价模型能够提供全面、客 观的评价结果,有助于提高决策 的科学性和准确性。
建立数学模型
根据选择的评价方法和评价指标体系,建立相应的数学模型,确保 模型能够客观、准确地反映评价对象的实际情况。
模型验证与优化
对建立的数学模型进行验证和优化,确保模型的准确性和可靠性。
04
CATALOGUE
综合评价模型的优化与改进
优化评价指标体系
评价指标的选取
在选择评价指标时,应遵循科学性、系统性、可操作性和可比较性等原则,确保评价指 标能够全面反映评价对象的特征和状况。
03
02
环境领域
用于评估环境质量、生态系统的健 康状况等。
科技领域
用于评估科技成果的创新性和实用 性等。
04
02
CATALOGUE
综合评价模型的分类
主观评价模型
专家打分法
根据专家对各指标的权重和评分进行综合评 价,主观性强,但易受专家知识水平和经验 的影响。
数学建模评价模型方法
数学建模评价模型方法数学建模评价模型方法一、关于评价指标所谓指标就是用来评价系统的参量。
例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标。
一般说来,任何—个指标都反映和刻画事物的—个侧面。
从指标值的特征看,指标可以分为定性指标和定量指标。
定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值。
例如,旅游景区质量等级有 5A、 4A、 3A、 2A 和 1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标。
从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:(1) 极大型指标 ( 又称为效益型指标 ) 是指标值越大越好的指标;(2) 极小型指标 ( 又称为成本型指标 ) 是指标值越小越好的指标;(3) 居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4) 区间型指标是指标值取在某个区间内为最好的指标。
例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标。
再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化范围一般是× 标的价,超过此范围的都将被淘汰,因此投标报价为区间型指标。
投标工期既不能太长又不能太短,就是居中型指标。
在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换1 评价指标的处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便。
为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理。
1 . 指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一。
初中数学建模30种经典模型
初中数学建模30种经典模型初中数学建模是培养学生综合运用数学知识解决实际问题的一种教学方法和手段。
以下是初中数学建模中的30种经典模型,并对每种模型进行简要介绍:1.线性规划模型:通过建立线性目标函数和线性约束条件,优化解决线性规划问题。
2.排队论模型:研究排队系统中的等待时间、服务能力等问题,以优化系统效率。
3.图论模型:利用图的概念和算法解决实际问题,如最短路径、网络流等。
4.组合数学模型:应用组合数学的方法解决实际问题,如排列组合、集合等。
5.概率模型:利用概率理论分析和预测事件发生的可能性和规律。
6.统计模型:收集、整理和分析数据,通过统计方法得出结论和推断。
7.几何模型:运用几何知识解决实际问题,如图形的面积、体积等。
8.算术平均模型:利用算术平均数来描述和分析数据的集中趋势。
9.加权平均模型:利用加权平均数考虑不同数据的重要性来得出综合结论。
10.正态分布模型:应用正态分布来描述和分析数据的分布情况。
11.投影模型:通过投影的方法解决几何体在平面上的投影问题。
12.比例模型:利用比例关系解决实际问题,如物体的放大缩小比例等。
13.数据拟合模型:根据已知数据点,通过曲线或函数拟合来推测未知数据点。
14.最优化模型:寻找最大值或最小值,优化某种指标或目标函数。
15.路径分析模型:研究在网络或图中找到最优路径的问题。
16.树状图模型:通过树状图的结构来描述和解决问题,如决策树等。
17.随机模型:基于随机事件和概率进行建模和分析。
18.多项式拟合模型:利用多项式函数对数据进行拟合和预测。
19.逻辑回归模型:通过逻辑回归分析,预测和分类离散型数据。
20.回归分析模型:分析自变量和因变量之间的关系,并进行预测和推断。
21.梯度下降模型:通过梯度下降算法来求解最优解的问题。
22.贪心算法模型:基于贪心策略解决最优化问题,每次选择当前最优解。
23.线性回归模型:通过线性关系对数据进行建模和预测。
24.模拟模型:通过构建模拟实验来模拟和分析实际情况。
学生成绩综合评价模型(数学建模)
对于每名学生基于其四个学期成绩及成绩变化做单因素评价:
首先我们确定优良中差的比例固定为1:4:4:1,这样就能使学生评价处于平均,增强学生的学习动力。
1、对于平均分
因为不同基础的同学对某一得分同学的评价不同,所以当一名学生得60分时,得分大于80分的同学会认为其基础差。所以对学生的分数进行优良中差的比例分类:
预测成绩表
学生序号1 2 3 4 5 6 7 8 9 10
第5学期74.64 81.1866.6477.4878.7276.3467.7859.0367.4370.71
第6学期77.97 78.9669.7176.6777.8275.6168.3760.0671.9270.11
最后,我们对我们所建立的模型进行了客观的比较,并对其应用前景进行了展望。
4符号的说明
:学期
:学生序号
D:总评价得分
:第i个学生的第j学期的原始成绩。
:第 个决策单元
:因素集
:评语集
其他主要符号将在模型建立的时候详细说明。
5模型的建立
5.1数据标准化
为了避免现行评价方式中仅根据“绝对分数”评价学生学习状况,设计出一种新型的发展性目标分析法,必须考虑到户律基础条件的差异,学生原有的学习基础,也注意到学生学习的进步因素。
在本题中,附件给出了 名学生连续四个学期的综合成绩。要求我们做到以下三点:
1.根据附件数据,对这些学生的整体情况进行分析说明;
2.根据附件数据,采用两种及以上方法,全面、客观、合理的评价这些学生的学习状况;
3.根据不同的评价方法,预测这些学生后两个学期的学习情况。
数学建模常见评价模型简介
数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。
数学建模常见评价模型简介完整版
数学建模常见评价模型简介HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标与指标比较相对重要性用上述之一数值标度,则指标与指标的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A 显然,A 是正互反阵。
数学建模评价类模型——模糊综合评价
数学建模评价类模型——模糊综合评价文章目录•o一级模糊综合评价应用o1)模糊集合o2)隶属度、隶属函数及其确定方法o3)因素集、评语集、权重集o1、模糊综合评价法的定义o2、应用模糊综合评价法需要的一些小知识oo3、模糊综合评价法的应用(实例)oo4、最后总结1、模糊综合评价法的定义先来看看官方标准定义:模糊综合评价法是一种基于模糊数学的综合评价方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
初次看,是不是觉得有点懵懵懂懂的?(偷笑)我来用非官方的语言解释一遍,或许你就明白了。
大家想想,生活中,是不是有很多模糊的概念。
比如班级要评三好学生,那评价的标准一般就是学习成绩好不好、思想品德好不好、身体好不好(我查了下百度才发现三好学生竟然要身体好!?感情身体不好还不行)。
学习成绩好或者不好、思想品德好或者不好、身体好或者不好听起来是不是就很模糊?怎么样就算学习成绩好了或者思想品德好了或者身体好了?对,其实这些指标就是模糊的概念。
模糊综合评价法是什么呢?其实就是对评价对象就评价指标进行综合评判,最后给每个评价对象对于每个指标一个隶属度。
(有点绕口,用三好学生的例子再来阐述一下)比如现在有个学生参与评判三好学生。
标准假如就是评上和评不上。
用模糊综合评价法得到的最终结果就是这名学生对于评上的隶属度和评不上的隶属度。
假如评上的隶属度高一些,那这名学生肯定是被评上咯。
(反之亦然)我这样介绍一下,是为了让大家知道我们这个模糊综合评价到底是干嘛的,不要嫌我啰嗦(吃手手)2、应用模糊综合评价法需要的一些小知识1)模糊集合① 定义:(我觉得这段话不错,来自360百科)这段话其实就举了模糊的一些概念,和经典集合(就是有明确数字的,高中学的那个集合)的区别及其历史。
数学建模的评价模型方法模型的评价
数学建模的评价模型方法模型的评价如果把业务上的二分类问题(例如信用评分中的“好”与“坏”、“拒绝”与“接受”)从统计角度理解,都在于寻找一个分类器(classifier),这个分类器可能是logistic模型,也可以是多元判别模型(Edward Altman1968年发展的基于财务指标建立的企业破产识别z得分模型),还可以使其它复杂形式的模型。
一、ROC曲线ROC,英文全称Receiver Operating Curve,翻译成中文,简称受试者工作特征曲线。
其在统计实务中应用甚广,尤其应用于处理医学研究中的“正常组”和“异常组”区分建模问题,用于评价分类模型的表现能力。
(一)ROC曲线原理。
要说清楚ROC曲线的原理,我们从一个简单的分类实例问题说起。
假如我们有了基于商业银行企业贷款数据建立违约-非违约的业务分类模型,比如说我们是预测的所有样本的违约概率或者信用评级得分,比如信用评级得分,我们获得了关于两类样本的分布图形:图3.1 两类样本的违约率经验分布1.基本假设上面的图例可以看成一个基于银行债务人违约率分类的分类器。
左边的分布表示历史样本数据中违约者预测得到的违约率的分布;右边的分布相应表示非违约者的分布,其中C点表示决策者做出决断的切分点(cutoff),对于该点有这样的经济意义:一旦我们确定了C 点,不考虑其他业务处理,的样本被预测为违约者,反之被预测为非谓语这。
对于一个固定的Cutoff点,我们可得到一些有实际意义的量化指标:HR(C)=,表示在C点左边,对Defaulters的信用得分分布中,基于C点做决策时候,被正确命中的比率,这里H(C)表示被正确预测的违约者的样本个数,ND表示违约样本的总数。
HR(C)=,表示在C点左边,对non-Defaulters的信用得分分布中,基于C点做决策时候,被错误预测的比率,这里F(C)表示被错误预测的违约者的样本个数,NND表示非违约样本的总数。
教师评价模型_数学建模
教师评价模型_数学建模work Information Technology Company.2020YEAR教师评价模型一、摘要学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。
毫不夸张地说评价教师是学校里每个人的“日常功课”。
由于教师职业劳动的特殊性,它是复杂劳动。
不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。
评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。
所以教师评价的确定就显的很重要。
新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。
那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。
本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。
从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。
然后确定三方面的比重来评价教师。
同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。
在各个方面采用的数学模型如下:1、 教师对自己的评价:教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积极性。
161160iii P Q D ==∑ ( i ∈[1,16]) (Q 表示教师自评的得分Pi 表示教师对自己各项符合度而打的分数Di 表示对教师自评要求各项所加给的权重)2、 学生对教师的评价:表明以学生为主体,体现了模型的客观性,公平、公开的原则。
90j i ij i d c a ==∑ ij a =ij n u ij a =A (U ,V )( U 为评价的主要因素,V 为评价因素分等。
C i 为学生对教师的各项评价要求所付的权重N 为填写有效调查表的人数)3、 由专家组成通过听课对教师的评价:表明专家对教师指导性,帮助教师提高教学水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。
标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A1135131112513131211714155712334211A 显然,A 是正互反阵。
步骤3计算被比较元素对于该准则的相对权重 (1)一致阵的定义与性质 一致阵的定义要由A 确定n C C C ,,,21 对目标O 的权向量,我们首先考察一致矩阵的性质。
称满足n k j i a a a ik jk ij ,,2,1,,, 的正互反阵为一致阵。
例如n n n n n n w w w w w w w w w w w w w w w w w w A212221212111一致矩阵的性质矩阵A 的秩为1,A 的唯一非零特征根为n 。
矩阵A 的任一列向量是对应于n 的特征向量。
矩阵A 的归一化特征向量可作为权向量。
然而,我们构造的成对比较矩阵1135131112513131211714155712334211A 中,由212112C C a ,43113 C C a 可以得到83223 C Ca ,而事实上723 a 。
因此矩阵A 并不是一致阵,事实上在大多情况下我们构造的成对比较矩阵都不是一致阵。
对于这样的矩阵我们如何来确定权向量呢?我们通常的作法是:对于不一致(但在允许范围内)的成对比较阵A ,建议用对应于最大特征根 的特征向量作为权向量。
(2)一致性检验(确定成对比较阵不一致的允许范围),计算权向量。
已知n 阶一致阵的唯一非零特征根为n ,可证:n 阶正互反阵最大特征根n , 且n 时为一致阵。
一致性指标:1n nCI ,CI 越大,不一致性越严重。
随机一致性指标:随机产生多个矩阵,将每个矩阵的一致性指标相加然后取平均值得到RI 。
n 1 2 3 4 5 6 7 8 9 10 11 RI0.580.901.121.241.321.411.451.491.51表2 Saaty 的随机一致性指标注:标2中的n 表示成对比较阵的维数。
一致性比率 如果1.0RICICR ,构造的成对比较矩阵A 通过一致性检验。
步骤4计算组合权向量记第2层(准则层)对第1层(目标层)的权向量为Tnw w w )2()2(1)2(,, 同样求第3层(方案层)对第2层每一元素(准则层)的权向量n k w w w Tkmk k ,,2,1,,,)3()3(1)3( 构造矩阵)3()3(1)3(,,n w w W则第3层(方案层)对第1层(目标层)的组合权向量)2()3()3(w W w以此类推,第s 层对第1层的组合权向量)2()3()1()()(w W W W w s s s其中 p W 是由第p 层对第p -1层权向量按列组成的矩阵。
层次分析法的应用1、应用领域:经济计划和管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等。
2、处理问题类型:决策、评价、分析、预测等。
3、建立层次分析结构模型是关键一步,要有主要决策层参与。
4、构造成对比较阵是数量依据,应由经验丰富、判断力强的专家给出。
层次分析法的若干问题2. 当层次结构不完全或成对比较阵有空缺时怎样用层次分析法?不完全层次结构上层每一元素与下层所有元素相关联,这种层次结构称为完全层次结构,否则称为不完全层次结构,不完全层次结构又分为两种,一种为不完全层次出现在准则层与子准则层之间,这种不完全结构容易处理,我们将不支配的那些因素的权向量分别简单的置0,就可以用完全层次结构的办法处理,但如果不完全结构出现在准则层与方案层之间,则处理起来就有些麻烦,我们看下面的例子。
例 评价教师贡献的层次结构(图3),该图中21,C C 支配元素的数目不等,此层次结构称为不完全层次结构。
设第2层对第1层权向量Tw w w 22212, 已定,第3层对第2层权向量 Tw w w w 0,,,31331231131 ,T w w w 32432332,,0,0 已得,讨论由 323132,,w w W w 计算第3层对第1层权向量 3w 的方法。
图3评价教师贡献的层次结构我们首先考察一个特例:若21,C C 重要性相同, 则Tw21,212,4321,,,P P P P 能力相同,TTw w21,21,0,0,0,31,31,313231,则公正的评价应为:1:2:1:1:::4321P P P P 。
若不考虑支配元素数目不等的影响,仍用)2()3()3(w W w 计算,则贡献O教学C 1 科研C 2P 2 P 1 P 3 P 4Tw41,125,61,613 意味着支配元素越多权重越大,显然是不合理的。
用支配元素数21,n n 对2w 加权修正,修正为2w ,再计算 3w 。
令)2(22)2(11)2(22)2(11)2((,~w n w n w n w n wT,再用)2()3()3(~wW w 计算。
本例中Twn n 52,53~,2,3)2(21,计算得 Tw51,52,51,513,表明支配元素越多权重越小与公正的评价相吻合。
成对比较阵残缺时的处理专家或有关人士由于某种原因会无法或不愿对某两个因素给出相互对比的结果ij a ,于是成对比较阵出现残缺。
如何对此作修正,以便继续进行权向量的计算呢?例 设一成对比较阵为121212121 A , 为残缺元素,试对此残缺阵进行处理。
解 构造辅助矩阵1212121211331w w w w C ,因此由 w Cw w Aw (1)但是,C 中包含未知量31,w w ,(1)式无法求解,进而将A 修正为22102121022A ,不难验证w w A ,进而求得T w 1429.0,2857.0,5714.0,3 。
注:一般地,由残缺阵 ij a A 构造修正阵ij a A 的方法是令模糊综合评价模模糊数学是从量的角度研究和处理模糊现象的科学。
这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性。
比如用某种方法治疗某病的疗效“显效”与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高”与“较高”等等。
从一个等级到另一个等级间没有一个明 确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡。
由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性。
模糊综合评价是以模糊数学为基础。
应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法。
一、单因素模糊综合评价的步骤(1)根据评价目的确定评价指标(Evaluation Indicator )集合m u u u U ,,,21例如:评价某项科研成果,评价指标集合为={学术水平,社会效益,经济效益}。
(2)给出评价等级(Evaluation Grade )集合n v v v V ,,,21例如:评价某项科研成果,评价等级集合为={很好,好,一般,差}。
(3)确定各评价指标的权重(Weight )m w ,,,21权重反映各评价指标在综合评价中的重要性程度,且1i例如:假设评价科研成果,评价指标集合={学术水平,社会效益,经济效益}其各因素权重设为4.0,3.0,3.0 w(4)确定评价矩阵R请该领域专家若干位,分别对此项成果每一因素进行单因素评价(One-Way Evaluation ),例如对学术水平,有50%的专家认为“很好”,30%的专家认为“好”,20%的专家认为“一般”,由此得出学术水平的单因素评价结果为0,2.0,3.0,5.01 R同样如果社会效益,经济效益两项单因素评价结果分别为1.0,2.0,4.0,3.02 R 2.0,3.0,2.0,2.03 R那么该项成果的评价矩阵为2.03.02.02.01.02.04.03.002.03.05.0321R R R R(5)进行综合评价通过权系数矩阵W 与评价矩阵R 的模糊变换得到模糊评判集S 。
设m j W 1)( ,n m ji r R )(那么n mn m m n n m s s s r r r r r r r r r R w S ,,,,,,2121222211121121其中“ ”为模糊合成算子。
进行模糊变换时要选择适宜的模糊合成算子,模糊合成算子通常有四种 (1)),( M 算子n k r r s jkj mj jk j m j k ,,2,1,,min max )(11=,符号“ ”为取小,“ ”为取大。