(完整版)红外光谱和拉曼光谱分析详细对比

合集下载

红外线与拉曼光谱

红外线与拉曼光谱
横坐标是波长(单位为µm ),或波数(单位为cm-1) ▪ 波长与波数之间的关系为:
波数, cm-1 = 104 /( , µm )
2
红外光谱与拉曼光谱的区别:信号产生的方式不同
红外光谱为吸收光谱,拉曼光谱为散射光谱(一般信号很弱) 二者在研究分子结构上具有互补性
3
红外光谱法的特点
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有 共轭体系的有机化合物
红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没 有偶极矩变化的振动在拉曼光谱中出现)
除单原子和同核分子如Ne、He、O2、H2等外,几乎所有的 有机化合物在红外光谱区均有吸收;
除光学异构体,某些高分子量的高聚物以及在分子量上只有 微小差异的化合物外,凡是具有结构不同的两个化合物,其红外 光谱一定不相同
25
红外吸收峰的强度
e >100 L cm-1 mol-1 20 < e <100 10< e <20 1< e <10
非常强峰(vs) 强峰(s) 中强峰(m) 弱峰(w)
影响因素 振动能级的跃迁概率,跃迁时的偶极矩变化大小;而
偶极矩与分子结构的对称性有关
基频吸收峰:基态向第一激发态跃迁,概率大,峰较强 倍频吸收峰:基态向第二激发态跃迁,概率小,峰较弱
例如1: C-C、 CC、 CC三种碳碳键的质量相同, 键力常数的顺序是三键>双键>单键。因此在红外光谱中, CC的吸收峰出现在 2222 cm-1,而CC约在1667 cm-1 , C-C 在 1429 cm-1;
例如2: C-C、C-O、C-N键的力常数相近,但相对折合质量不 同: C-C < C-N < C-O,这三种键的基频振动峰分别出现在1430 cm-1 、1330 cm-1 、1280 cm-1附近

红外光谱和拉曼光谱的异同

红外光谱和拉曼光谱的异同

红外光谱和拉曼光谱的异同红外光谱和拉曼光谱是研究分子结构及组态、物质成分鉴定和结构分析的有力工具,由于具有无损伤、灵敏度高和时间短等特点,在物理、化学、生物学、矿物学、考古学和工业产品质量控制等领域中得到了广泛的应用,在物质结构分析中,极性基团如C=O,N-H及S-H 具有强的红外延伸振动,而非极性基团如C=C,C-C及S-S有强的拉曼光谱带,因此,红外光谱和拉曼光谱常常在一起,共同用于完成一个物质分子结构的完整分析。

通常,红外光谱适用于分析干燥的非水样品,拉曼光谱适合于含水的生物系统分析。

总体来说:红外光谱与拉曼光谱同属于分子振动光谱,但红外光谱是吸收光谱,拉曼光谱是散射光谱,二者机制不同,但互为补充。

红外光谱和拉曼光谱的联系和区别具体如下:(1)红外光谱常用于研究极性基团的非对称振动;拉曼光谱常用于研究非极性基团与骨架的对称振动。

红外吸收弱或无吸收的官能团在拉曼散射谱中均有强峰;反之,拉曼散射峰弱则红外吸收强。

例如,许多情况下C =C伸缩振动的拉曼谱带比相应的红外谱带较为强烈,C= O的伸缩振动的红外谱带比相应的拉曼谱带更为显著。

(2)拉曼光谱一次可以同时覆盖40-4000cm-1波数的区间,可对有机物及无机物进行分析。

若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器,(3)拉曼光谱可测水溶液,而红外光谱不适用于水溶液的测定。

(4)红外光谱解析中的定性三要素(即吸收频率、强度和峰形)对拉曼光谱解析也适用。

但拉曼光谱中还有去偏度P,通过测定P,可以确定分子的对称性。

光源红外光谱光源一、一般是黑体或者是通电碳化硅棒,黑体通常情况下是最佳的光源,原因是处在相同的温度的时候,黑体的辐射功率密度比其他热辐射红外光源都要大得多。

白炽灯泡也能被称为红外光源,有些朋友会觉得不解,白炽灯不是可见光源吗?其实不然,白炽灯可以把它75%的电能都转化成红外辐射光,因此也可以把它叫做红外光源,但因为白炽灯辐射出的红外辐射都被它外面的玻璃壳吸收掉了,所以呈现出来的红外线光并不多,所以说它是一种接近红外光线的光源。

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别
红外光谱和拉曼光谱是物质分析中常用的两种光谱技术,它们的主要区别在于所测定的谱线类型和分析的方法。

红外光谱涉及物质中的分子振动,通过测量分子在不同频率下的振动能量吸收情况来得到分子结构信息。

而拉曼光谱则是通过测量分子散射光的频率与强度来分析分子结构。

此外,红外光谱对称性较高的分子有较强的吸收,而拉曼光谱则对称性较低的分子有较强的信号。

因此,两种光谱技术通常结合使用,以便更全面地分析样品。

- 1 -。

红外光谱与拉曼光谱的异同点

红外光谱与拉曼光谱的异同点

红外光谱与拉曼光谱的异同点
作为检测物质构成的有效手段,红外光谱和拉曼光谱具有相似性和区别。

在相似之处,首先,它们都是物质分子振动光谱的重要手段之一。

红外光谱和拉曼光谱都是通过测量物质对特定频率的光吸收或散射来识别和定量化学物质。

其次,他们不仅可以用于定性分析,而且可以用于定量分析。

通过每种物质的红外光谱和拉曼光谱的独特性,可以对其进行准确鉴定。

它们也可以通过吸收或散射的光强度来测量物质的浓度。

还有,它们都可以通过在积分球中测量来进行全反射。

尽管他们有共同之处,但红外光谱和拉曼光谱之间也存在显着的差异。

比如,在分析技术上,红外光谱通常使用吸收法,而拉曼光谱使用散射法。

另一个不同点是,红外光谱更多的研究分子的振动模式,而拉曼光谱更重视的是研究分子的旋转模式。

此外,红外光谱受到水吸收的影响更大,而拉曼光谱较少受到水分影响。

在采样方面,拉曼光谱可以进行非接触式采样,而红外光谱通常需要将样品直接接触到探头。

在应用上,由于拉曼光谱对诸如配位化合物、有机化合物等物质的分析能力强,因此在化学、生物及材料科学中有着广泛的应用。

而红外光谱适用于碳氢化合物、无机化合物、有机化合物等物质的分析,在环境监测、食品安全和生物医学等诸多领域都有应用。

总的来说,尽管红外光谱和拉曼光谱在分析化学物质方面都非常有效,但它们在测量技术、影响因素、采样方式以及应用领域等方面存在着显著的异同。

红外光谱IR和拉曼光谱Raman课件

红外光谱IR和拉曼光谱Raman课件

优缺点分析
IR光谱
优点是检测的分子类型广泛,可用于多种类型的化学分析;缺点是需要样品是固态或液态,且某些基团可能无法 检测。
Raman光谱
优点是无需样品制备,对气态、液态和固态样品都适用;缺点是检测灵敏度相对较低,可能需要更长的采集时间 和更强的光源。
选择与应用指南
选择
根据样品的类型和所需的化学信息,选择合适的分析方法。对于需要检测分子振动信息 的样品,IR光谱更为合适;而对于需要快速、非破坏性检测的样品,Raman光谱更为
领域的研究和应用。
04
CATALOGUE
红外光谱(IR)与拉曼光谱( Raman)比较相似性与差异性Fra bibliotek相似性
两种光谱技术都利用光的散射效应来 检测物质分子结构和振动模式。
差异性
IR光谱主要检测分子中的伸缩振动, 而Raman光谱则主要检测分子的弯曲 振动。此外,IR光谱通常需要样品是 固态或液态,而Raman光谱对气态和 液态样品也适用。
拉曼散射是由于物质的分子振动或转动引起的,散射光的频率与入射光的频率不同 ,产生拉曼位移。
拉曼散射的强度与入射光的波长、物质的浓度和温度等因素有关。
拉曼活性与光谱强度
拉曼活性是指物质在拉曼散射中的表 现程度,与物质的分子结构和对称性 有关。
在拉曼光谱实验中,可以通过控制入 射光的波长和强度,以及选择适当的 实验条件来提高拉曼光谱的强度和分 辨率。
红外光谱解析
特征峰解析
根据红外光谱的特征峰位置和强 度,推断出分子中存在的特定振
动模式。
官能团鉴定
通过比较已知的红外光谱数据,可 以鉴定分子中的官能团或化学键。
结构推断
结合其他谱图数据(如核磁共振、 质谱等),可以推断分子的可能结 构。

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别1)拉曼谱峰比较尖锐,识别混合物,特别是识别无机混合物要比红外光谱容易。

2)在鉴定有机化合物方面,红外光谱具有较大的优势,主要原因是红外光谱的标准数据库比拉曼光谱的丰富。

3)在鉴定无机化合物方面,拉曼光谱仪获得400cm-1以下的谱图信息要比红外光谱仪容易得多。

所以一般说来,无机化合物的拉曼光谱信息量比红外光谱的大。

4)拉曼光谱与红外光谱可以互相补充、互相佐证。

红外光谱与拉曼光谱的比较1、相同点对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。

因此,对某一给定的化合物,某些峰的红外吸收波数与拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。

2、不同点(1)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;(2)红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移;(3)两者的产生机理不同。

红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。

拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。

散射的同时电子云也恢复原态;(4)红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源;(5)用拉曼光谱分析时,样品不需前处理。

而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池;(6)红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子;(7)拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。

红外光谱和拉曼光谱的区别

红外光谱和拉曼光谱的区别

红外光谱和拉曼光谱的异同红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。

要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。

在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。

因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。

拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。

入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。

与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。

但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。

相同点:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。

因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。

拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。

不同点
本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。

拉曼光谱与红外光谱的区别

拉曼光谱与红外光谱的区别
拉曼光谱与红外光谱的区别
拉曼光谱和红外光谱是两种常用的光谱分析技术,它们在分子结构和化学成分分析方面有 一些区别。
1. 原理:拉曼光谱是通过测量样品散射光的频移来分析样品的分子振动和转动模式。而红 外光谱是通过测量样品吸收红外光的频率来分析样品的分子振动模式。
2. 能量变化:拉曼光谱是非弹性散射,测量的是光子与分子相互作用后的能量变化。红外 光谱是通过分子吸收红外光的能量来分析分子的振动模式。
拉曼光谱与红外光谱的区别
3. 可测量的范围:拉曼光谱可以测量分子的振动和转动模式,包括低频和高频振动。红外 光谱主要用于测量分子的振动模式,包括伸缩振动和弯曲振动。
4. 样品要求:拉曼光谱对样品的要求相对较松,可以测量固体、液体和气态。
5. 信息获取:拉曼光谱提供了关于分子的化学键和结构的信息,能够检测非常细微的结构 变化。红外光谱提供了关于分子的官能团和官能团之间的化学键的信息,能够确定化合物的 功能团。
拉曼光谱与红外光谱的区别
总的来说,拉曼光谱和红外光谱是两种互补的光谱技术,可以提供不同层面的分子结构和 化学成分信息。选择使用哪种技术取决于所需的分析目的和样品特性。

红外与拉曼的区别

红外与拉曼的区别

有机化合物的机构表征,即测定——从分子水平上认识物质的基本手段,是有机化学的重要组成部分。

过去主要是依靠化学手段来进行有机化合物的机构测定。

其缺点是费时费力费钱,且需要的样品量大。

例如吗啡碱结构的测定,从1805年开始研究,直至1952年才完全弄清楚,历时147年。

现在的结构测定则是采用现代仪器分析法,它具有省时省力省钱快速的优点。

它不仅可以研究分子的结构还可以探索分子间的各种聚集态的结构类型和构象的状况,对于人类面临的生命科学,材料科学的发展,是极其重要的。

这里我简单调研了两种比较有用的方法:红外光谱和拉曼光谱。

红外光谱分子的总能量有以下几种能量组成:。

其中电子能一般是紫外光谱和可见光谱,也正是电子能的存在才有了我们一般看到的各种化合物的颜色;而振动能和转动能一般所需的能量较低,波长较长,在不同的振动和转动得能级之间进行跃迁,而产生的在红外波段的光谱就是红外光谱。

即使是最简单的水分子,也有不同的振动模式,以最简单的不改变键角的沿轴振动为例,两个氢原子可以是对称地同时向氧原子靠近或离开,也可以是反对称一个靠近氧原子,一个离开氧原子。

当然,还会有其它形式的振动和转动,例如改变键角的剪式振动和摇摆振动。

下面是亚甲基的各种振动类型:由力学知识可知:由n个原子组成的分子有3n-6个(线性分子为3n-5个)振动模式,例如:上述振动虽然不改变极性分子中正、负电荷中心的电荷量,却改变着正、负电中心间的距离,导致分子偶极矩的变化。

相应这种变化,分子中总是存在着不同的振动状态,有着不同的振动频率,因而形成不同的振动能级。

能级间的能量差与红外光子的能量相当。

选择吸收当一束连续波长的红外光透过极性分子材料时,某一波长的红外光的频率若与分子中某一原子或基团的振动频率相同时,即发生共振。

这时,光子的能量通过分子偶极矩的变化传递给分子,导致分子对这一频率的光子的,从振动基态激发到振动激发态,产生振动能级的跃迁。

值得注意的是:正是由于偶极矩的变化才导致了红外吸收,所以对于那些对称原子组成的分子振动不会改变偶极矩,自然也就不会产生红外吸收,对于这样的分子,拉曼光谱方法会更有效,我会在下面讲到。

红外与拉曼比较

红外与拉曼比较

对称分子:
对称振动→拉曼活性。
不对称振动→红外活性
2024/10/15
4. 红外与拉曼谱图对比
红外光谱:基团; 拉曼光谱:分子骨架测定;
2024/10/15
红外与拉曼谱图对比
2024/10/15
5.选律 1 S C S
振动自由度:3N- 4 = 4
拉曼活性
2 S C S
红外活性
3 S C S
4
或键的强度没有很大差别。II. 羟基和甲基的质量仅相差2 单位。 III.与C-H和N-H谱带比较,O-H拉曼谱带较弱。
2024/10/15
2941,2927cm-1 ASCH2 2854cm-1 SCH2 1444,1267 cm-1 CH2
1029cm-1 (C-C) 803 cm-1环呼吸
2024/10/15
水可作为溶剂
水不能作为溶剂
样品可盛于玻璃瓶,毛细管等容器 中直接测定
不能用玻璃容器测定
固体样品可直接测定
需要研磨制成 KBR 压片
2024/10/15
二、拉曼光谱的应用
由拉曼光谱可以获得有机化合物的各种结构信息: 1)同种分子的非极性键S-S,C=C,N=N,CC产生强拉曼
谱带, 随单键双键三键谱带强度增加。 2)红外光谱中,由C N,C=S,S-H伸缩振动产生的谱带一
3060cm-1r-H) 1600,1587cm-1 c=c)苯环 1039, 1022cm-1单取代
1000 cm-1环呼吸 787 cm-1环变形
2024/10/15
三、激光Raman光谱仪
激光光源:He-Ne激光器,波长632.8nm;
Ar激光器, 波长514.5nm,
488.0nm; 散射强度1/4 单色器: 光栅,多单色器; 检测器: 光电倍增管, 光子计数器;

红外和拉曼光谱

红外和拉曼光谱
6
(3) 少数分子的振动即无红外活性,也无拉曼 活性。例如乙烯是平面对称分子,没有永久偶 极矩,在扭曲振动时,没有偶极矩的变化,也 没有极化率的变化,所以没有红外活性和拉曼 活性。当然,乙烯的其它振动形式,可能是拉 曼活性的。
一般来说,非对称振动产生强的红外吸收,而 对称振动则表现出显著的拉曼谱带。
17
由于某些化学键或基团处于不同结构的分子中, 它们的红外吸收光谱频率会发生有规律的变化。 利用这种变化的规律可以鉴定高聚物的分子链 结构。当高聚物的序态不同时,由于分子间的 相互作用力不同,也会导致红外光谱带的频率 变化或是发生谱带数目的增减或谱带强度的变 化,因此可用以研究高聚物的聚集态结构。
第二章 红外光谱与拉曼光谱
1
红外光谱与拉曼光谱在材料究中的作用与区别*
作用:主要用于材料的化学和物理结构的表 征; 区别:红外光谱对振动基团的偶极矩敏感, 可以鉴定极性基团,用于具有非对称结构的 物质测定;
拉曼光谱对振动基团的极化率敏感, 可以研究物质的骨架特征,用于具有对称结 构的物质测定;
2
红外和拉曼分析法结合
是在此期间,欧阳修在滁州留下了不逊于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属
确定分子结构: 根据红外光谱与分子结构的关系, 再通过图谱解析便可确定分子结构。
19
纯度的检查:样品中若含有杂质,则它的红外 光谱图与纯物质相比,会出现多余的吸收峰, 于是可以借比较物质提纯前后的红外光谱来了 解物质提纯过程中杂质的消除情况。提纯后由 于杂质的减少,红外光谱中杂质的吸收降减弱 或消失。

拉曼光谱与红外光谱的对比

拉曼光谱与红外光谱的对比

红外光谱与拉曼光谱的对比一.基本原理红外光谱:是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。

要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。

在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。

因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。

拉曼光谱:一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。

入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。

与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。

但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。

相同点:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。

因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。

拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级不同点:两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;二. 仪器构成1.红外光谱色散型红外光谱仪:1.1光源:通常是一种惰性固体,用电加热使之发射高强度的连续红外辐射。

1.2 吸收池1.3 单色器:由色散原件、准直镜和狭缝构成1.4 检测器:常用的是真空热电偶、热释电检测器和碲镉汞检测器Fourier变换红外光谱仪:没有色散元件,主要由光源(硅碳棒、高压汞灯)、Michelson干涉仪、检测器、计算机和记录仪组成。

2.激光Raman光谱仪:基本组成有激光光源、样品池、单色器和检测记录系统四部分,并配有微机控制仪器操作和处理数据。

拉曼和红外光谱的区别

拉曼和红外光谱的区别

拉曼和红外光谱的区别
拉曼光谱和红外光谱是常见的分析化学技术,它们都用于分析物质的结构和组成。

然而,它们之间存在一些重要的区别。

拉曼光谱是一种非破坏性的分析技术,它可以测量分子的振动模式。

当分子被激发时,它们会散射光线,而散射后的光线具有不同的频率。

拉曼光谱通过测量这些频率的差异来确定分子的振动模式,从而确定分子的结构和成分。

拉曼光谱对于无机和有机化合物都适用,并且可以用于分析固体、液体和气体样品。

红外光谱是一种测量分子振动的技术。

当分子处于高能态时,它们会吸收特定波长的红外光,这些波长与分子中的振动模式相关。

红外光谱通过测量吸收红外光的波长来确定分子的振动模式,从而确定分子的结构和成分。

红外光谱对于研究有机化合物非常有用,可以用于分析固体、液体和气体样品。

虽然拉曼光谱和红外光谱都可以用于分析物质的结构和成分,但它们的测量技术和应用范围是有所不同的。

拉曼光谱对于分析固体和液体样品非常有用,而红外光谱则对于分析有机化合物具有很高的灵敏度。

因此,在选择适当的分析技术时,需要考虑样品类型和分析目的。

- 1 -。

红外光谱和拉曼光谱分析详细对比

红外光谱和拉曼光谱分析详细对比
Analysis of elastic and viscous substances of insoluble, infusible, and or hard to crash natures
Examination of materials that are not amenable to the film analysis method
2 红外光区的划分(2)
近红外:0.76―2.5μm,13158―4000cm-1 主要为OH,NH,CH的倍频吸收
中红外:2.5―25μm,4000―400cm-1 主要为分子振动,伴随振动吸收
远红外:25―1000μm,400―10cm-1 主要为分子的转动吸收
其中,中红外区是研究的最多、最深的区 域,一般所说的红外光谱就是指中红外区的红 外吸收光谱。
41
FTIR spectra of the Zr/Al- pillared montmorillonite at room temperature(part is magnified in pane)
42
红外-拉曼
化学键 X-0H H2O NO3 CO3 BO3 SO4 SiO4
5 典型红外图谱(6)
可通过干涉条纹求吸收池厚度:
b

N 2n

1
1

2

右图
20
红外光谱测定中的样品处理技术 3
2溶液法
用固定液池进行测定
溶剂选择 易于溶解样品; 非极性,不与样品形成氢键; 溶剂的吸收不与样品吸收重合

21
红外光谱测定中的样品处理技术 4
22
红外光谱测定中 的样品处理技术 5
17
红外-拉曼

红外光谱和拉曼演示文稿

红外光谱和拉曼演示文稿

术和应用不同,习惯上又将红外光区分为 三个区:
波长(m) 近红外区: 0.75 ~ 2.5 波数(cm-1) 13330 ~ 4000
中红外区:
远红外区:
2.5 ~ 15.4
15.4 ~ 830
4000 ~ 650
650 ~ 12
由于低频骨架振动能灵敏地反映出结构变 红外光谱在可见光区和微波光区之间, 化,所以对异构体的研究特别方便。此外,还 波长范围约为 0.75 - 1000µm,根据仪器技 能用于金属有机化合物(包括络合物)、氢键、 术和应用不同,习惯上又将红外光区分为 吸附现象的研究。但由于该光区能量弱,除非 三个区: 其它波长区间内没有合适的分析谱带,一般不 波长(m) 波数(cm-1) 在此范围内进行分析。 近红外区: 0.75 ~ 2.5 13330 ~ 4000
⊕Θ⊕
2.3 红外光谱的峰位的影响因素
3. 样品的物理状态
同一样品在不同的物理状态下进行 测定,其吸收峰位也有差别.这是因为气 态一般无缔合现象(HF除外)
4.结晶形态,结晶粒子的大小
5.溶剂的影响
极性基团的伸缩振动频率随溶剂的极性增 加而降低
6.溶液浓度的影响

极性基团的伸缩振动频率随溶液的加大降 低,是由于氢键缔合的缘故.
2.4 红外光谱的峰强的的影响因素
1.分子振动时偶极矩的变化
红外吸收谱带的强度取决于分子振动时偶极矩
的变化,而偶极矩与分子结构的对称性有关。振
动的对称性越高,振动中分子偶极矩变化越小,
谱带强度也就越弱。
一般地,极性较强的基团(如C=0,C-X等) 振动,吸收强度较大;极性较弱的基团(如 C=C、C-C、N=N等)振动,吸收较弱。
红外光谱和拉曼光谱 简介

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别
红外光谱和拉曼光谱是两种常见的分析光谱技术。

它们在分析材料的化学成分和结构中都有广泛的应用。

然而,红外光谱和拉曼光谱的原理和应用领域不同,它们也有一些明显的区别。

红外光谱是通过分析物质在红外光线下与光的相互作用来对其
进行分析的技术。

这些相互作用包括物质分子振动和对称性的变化。

红外光谱可以提供有关分子中哪些键结合在一起的信息,因此可用于确定一个物质的分子结构。

常见的红外光谱仪使用的是可见光波长范围之外的光,通常在4000 cm^-1到400 cm^-1区域内进行测量。

拉曼光谱也是一种分析物质结构的技术,但是它是通过分析物质在激发光线下与光的相互作用来对其进行分析的。

与红外光谱不同,拉曼光谱是通过测量物质分子在激发光线下散射的光的能量来研究
分子结构的振动。

拉曼光谱可以为化学物质提供关于键的长度,角度和氧化状态等信息。

常见的拉曼光谱仪使用激光作为光源,通常在4000 cm^-1到80 cm^-1区域内进行测量,比红外光谱的测量范围更宽。

总的来说,虽然红外光谱和拉曼光谱都是分析物质结构的技术,但它们的原理和测量方法有所不同,因此它们也各自具有优势和局限性。

在实际应用中,科学家可以根据需要选择适当的技术,结合其他分析方法进行全面的分析。

- 1 -。

红外光谱和拉曼光谱分析物质结构

红外光谱和拉曼光谱分析物质结构

红外光谱:基团测定;拉曼光谱:分子骨架测定;拉曼光谱与红外光谱可以互相补充、互相佐证。
4.3互排与互允法则
STEP3
STEP2
STEP1
互排法则:有对称中心的分子其分子振动,对红外和拉曼之一有活性,则另一非活性。
互允法则:无对称中心的分子其分子振动,对红外和拉曼都是活性的。
相互禁阻规则:对于少数分子振动,其红外和拉曼光谱都是非活性的。即分子的振动既没有偶极距的变化也没有极化率的变化。
拉曼散射的产生原因是光子与分子之间发生了能量交换,改变了光子的能量。
瑞利散射和拉曼散射原理
物质分子总在不停地振动,这种振动是由各种简正振动叠加而成的。结构不对称的分子,具有偶极矩;结构对称的分子不产生偶极矩,但在容易被极化。
当简正振动能产生偶极矩的变化时,它能吸收相应的红外光,即这种简正振动具有红外活性;当分子在振动时产生极化度的变化,它与入射光子产生能量交换,使散射光子的能量与入射光子的能量产生差别,这种能量的差别称为拉曼位移(Raman Shift),它与分子振动的能级有关,拉曼位移的能量水平也处于红外光谱区。
红外和拉曼光谱分析物质结构
材料学: 梁晓峰(B080459)
2022 - 2023
主要内容
Catalogue
光学分析法
O1
拉曼散射光谱分析法
红外吸收光谱分析方法
红外光谱和拉曼光谱的异同
O2
O3
O4
1光是一种电磁辐射,其能量与其频率直接相关,与物质相互作用的方式有发射、吸收、反射、折射、散射、干涉、衍射等。基于电磁辐射与物质间作用而建立起来的一类分析方法,称为光学分析法。
物质晶格的振动对其最近邻周围非常敏感, 因而拉曼散射可以探测到如晶格空间量级范围的结构及其特性。在固体材料中拉曼激活的机制很多,反映的范围也很广:如分子振动,各种元激发(电子,声子,等离子体等),杂质,缺陷等晶相结构,颗粒大小,薄膜厚度,固相反应,细微结构分析,催化剂等方面的信息。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
红外-拉曼
3 红外吸收产生的原理(2)
8
红外-拉曼
3 红外吸收产生的原理(3)
分子的振动所需的能量远大于分子的转 动所需的能量,因此对应的红外吸收频率 也有差异:
远红外区:波长长,能量低,对应分子 的转动吸收
中红外区:波长短,能量高,对应分子 的振动吸收
近红外区:能量更高,对应分子的倍频 吸收(从基态--第二或第 三振动态)
6
红外-拉曼
3 红外吸收产生的原理(1) 红外光的能量:
与一般的电磁波一样,红外光亦具有波粒二像性: 既是一种振动波,又是一种高速运动的粒子流。
其波长表示为波数的形式 =1/(cm) = 104/ (m)
所具有的能量为: E=hc/ = hc
红外光所具有的能量正好相当于分子(化学键) 的不同能量状态之间的能量差异。因此才会发生对红 外光的吸收效应。
14
红外-拉曼
3 红外吸收产生的原理(8)
红外吸收产生的条件:
(B)偶极矩的变化: 分子在振动过程中,由于键长和键角的变化,
而引起分子的偶极矩的变化,结果产生交变的电场, 这个交变电场会与红外光的电磁辐射相互作用,从 而产生红外吸收。
而多非极性的双原子分子(H2,N2,O2),虽然 也会振动,但振动中没有偶极矩的变化,因此不产 生交变电场,不会与红外光发生作用,不吸收红外 辐射。称之为非红外活性。
H2O NO3 CO3 BO3 SO4 SiO4
1650-1600 900-800 900-700 800-600 680-580 560-420
13
红外-拉曼
3 红外吸收产生的原理(8)
红外吸收产生的条件:
(A) 振动的频率与红外光波段的某频 率相等。 即分子吸收了这一波段的光,可 以把自身 的能级从基态提高到某 一激发态。 这是产生红外吸收的必要条件。
记录红外光的百分透射比与波长关系的曲线, 即为红外光谱,所以又称之为红外吸收光谱。
3
红外-拉曼
1 概述(2) 红外光谱英文为 Infrared
Spectrometry (IR)
样品吸收红外辐射的主要原因是: 分子中的化学键
因此, IR可用于鉴别化合物中的化学键 类型,可对分子结构进行推测。既适用于结 晶质物质,也适用于非晶质物质。
(或重烃油法,Nujol法) 5薄膜法
KBr (400cm-1) NaCl (650 cm-1) CsI (150 cm-1)
23
红外光谱测定中的样品处理技术 6
气 体 池
24
红外光谱测定中的样品处理技术 7
7 特殊红外测定技术
1) 全反射法 ATR (Attenuated Total Reflection)
可通过干涉条纹求吸收池厚度:
b
N 2n
1
1
2
右图
20
红外光谱测定中的样品处理技术 3
2溶液法
用固定液池进行测定
溶剂选择 ➢易于溶解样品; ➢非极性,不与样品形成氢键; ➢溶剂的吸收不与样品吸收重合

21
红外光谱测定中的样品处理技术 4
22
红外光谱测定中 的样品处理技术 5
3压片法 4调糊法
17
红外-拉曼
4 红外分析方法(3)
18
4 红外分析方法(5)
红外光谱测定中的样品处理技术 1
液体样品 固体样品 气体样品
液膜法 溶液法 水溶液测定
压片法 调糊法(或重烃油法,Nujol法) 薄膜法 ATR法、显微红外、DR、PAS、RAS 气体池
19
红外光谱测定中的样品处理技术 2
1液膜法
用组合窗板进行测定
HBr
2559
H2O(结构水)(羟基) 3640
H2O(结晶水)
3200-3250
单键1195Fra bibliotek双键1685
三键
2070
11
红外-拉曼
3 红外吸收产生的原理(6) B)弯曲振动 亦称变形振动。记为。
12
红外-拉曼
3 红外吸收产生的原理(7)
一些化学键的弯曲振动对应的红外波数

波数 cm-1
XOH
1200-600
红外光谱分析 激光拉曼光谱分析
1
红外-拉曼
第一章 红外光谱
1 概述 2 红外光区的划分 3 红外吸收产生的原理 4 红外分析方法 5 典型红外图谱
2
红外-拉曼
1 概述(1) 红外光谱属于分子振动光谱。 当样品受到频率连续变化的红外光照射时,分
子吸收了某些频率的辐射,并使得这些吸收区域 的透射光强度减弱。
9
红外-拉曼
3 红外吸收产生的原理(4)
分子振动的类型
A)伸缩振动 分子沿成键的键轴方向振动,键的长度发生伸、缩
变化。分对称伸缩s和不对称伸缩sa。
10
红外-拉曼
3 红外吸收产生的原理(5)
一些化学键的伸缩振动对应的红外波数
键 分子
波数 cm-1
H-F HF
3958
H-Cl HCl
2885
H-Br H-O H-O C-C
近红外:0.76―2.5μm,13158―4000cm-1 主要为OH,NH,CH的倍频吸收
中红外:2.5―25μm,4000―400cm-1 主要为分子振动,伴随振动吸收
远红外:25―1000μm,400―10cm-1 主要为分子的转动吸收
其中,中红外区是研究的最多、最深的区 域,一般所说的红外光谱就是指中红外区的红 外吸收光谱。
➢Analysis of elastic and viscous substances of insoluble, infusible, and or hard to crash natures
➢Examination of materials that are not amenable to the film analysis method
4
红外-拉曼
2 红外光区的划分(1)
红外光区介于可见光与微波之间, 波长范围约为0.76-1000μm,为了便 于描述,引入一个新的概念——波数 (wave number)。 波数: ,波长的倒数,每厘米的波 长个数, 单位 cm-1
=1/(cm) = 104/ (m)
5
红外-拉曼
2 红外光区的划分(2)
15
红外-拉曼
4 红外分析方法(1)
红外辐射光源: a)能斯特灯:氧化锆、氧化钍、氧化钇的混
和物 b)硅碳棒:由合成的SiC加压而成 c)氧化铝棒:中间放置铂-铑加热丝的氧化
铝管棒 辐射源在加热1500-2000k时,会发射出 红外辐射光。
16
红外-拉曼
4 红外分析方法(2)
从光源发射的红外辐射,被均 分为两路,一路通过标准参比物 质(无明显红外吸收),一路通 过试样。当两路光的某一波数到 达检测器的强度有差异时,即说 明试样吸收了某一波数的红外光。
相关文档
最新文档