充分条件与必要条件·典型例题

合集下载

充分条件与必要条件·典型例题

充分条件与必要条件·典型例题

充分条件与必要条件·典型例题能力素养例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x 1+x2=-5,则p是q的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分不为1,-6,∴x1+x2=1-6=-5.因此选A.讲明:判定命题为假命题能够通过举反例.例2 p是q的充要条件的是[ ]A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,因此,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;D p q q p p q p q D⇒⇒⇔对.且,即,是的充要条件.选.讲明:当a=0时,ax=0有许多个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔∵是成立的充要条件,∴③C B C B由①③得A C④由②④得A D.∴D是A成立的必要条件.选B.讲明:要注意利用推出符号的传递性.例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的[ ]A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5. ∵0<x <5-1<x <5,但-1<x <50<x <5∴甲是乙的充分不必要条件,选A .讲明:一样情形下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件AB 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件分析 能够结合图形分析.请同学们自己画图.∴A (B ∪C).然而,当B =N ,C =R ,A =Z 时, 明显A (B ∪C),但AB 不成立,综上所述:“AB ”“A(B ∪C)”,而 “A (B ∪C)”“AB ”.即“A B ”是“A (B ∪C)”的充分条件(不必要).选A .讲明:画图分析时要画一样形式的图,专门形式的图会掩盖真实情形.例6 给出下列各组条件: (1)p :ab =0,q :a2+b2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有 [ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .讲明:ab =0指其中至少有一个为零,而a2+b2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分不作等价变形,观看两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <b e ≤f ”,则“c≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题),∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤de ≤f 即c ≤d 是e ≤f 的充分条件.答 填写“充分”.讲明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax2+2x +1=0至少有一个负实根的充要条件是 [ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采纳一般方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa 2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442a a 综上所述a ≤1.即ax2+2x +1=0至少有一个负实根的充要条件是a ≤1. 讲明:专门值法、排除法差不多上解选择题的好方法.例10 已知p 、q 差不多上r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分不是q 的什么条件?分析 画出关系图1-21,观看求解.解 s 是q 的充要条件;(s r q ,q s)r 是q 的充要条件;(r q ,q sr) p 是q 的必要条件;(q s rp)讲明:图能够画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x 的不等式 |x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}. A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13 B ={x|3a +1≤x ≤2} A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.讲明:集合的包含关系、命题的真假往往与解不等式紧密有关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy - 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy 故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x y x y xy 0()x y xy 0⎧⎨⎩ 2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y 讲明:分类讨论要做到不重不漏. 例13 设α,β是方程x2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系咨询题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q pp q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.讲明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ]A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观看之.答:选A.讲明:抽象命题之间的逻辑关系通常靠画图观看比较方便。

高一数学典型例题分析充分条件与必要条件

高一数学典型例题分析充分条件与必要条件

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔充分条件与必要条件·典型例题能力素质例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴qp .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ]A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件. 分析2:画图观察之. 答:选A .说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

高中数学 典型例题 充分条件与必要条件 新课标

高中数学 典型例题 充分条件与必要条件 新课标

充分条件与必要条件例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;D p q q p p q p q D⇒⇒⇔对.且,即,是的充要条件.选.说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件.例5 设A 、B 、C 三个集合,为使A (B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件分析 可以结合图形分析.请同学们自己画图.∴A (B ∪C).但是,当B =N ,C =R ,A =Z 时,显然A (B ∪C),但A B 不成立,综上所述:“A B ”“A (B ∪C)”,而“A (B ∪C)”“A B ”.即“A B ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根;(4)p :|x -1|>2,q :x <-1.其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质.解 (1)p 是q 的必要条件(2)p 是q 充要条件(3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系. 解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上. 例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题),∴c ≤d a <b(逆否命题).而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件.答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422a a 2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442a a综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s)r 是q 的充要条件;(r q ,q s r)p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0A B A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a .解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x y x y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩ (1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件. 说明:本题中的讨论内容在二次方程的根的分布理论中常被使用. 例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和需要条件之五兆芳芳创作解释:如果有事物情况A,则必定有事物情况B;如果没有事物情况A,则必定没有事物情况B,A就是B的充分需要条件(简称:充要条件). 复杂地说,满足A,必定B;不满足A,必定不B,则A是B的充分需要条件.(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”. 2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”.3. A=“付了足够的钱”;B=“能买到商店里的东西”. 例子中A都是B的充分需要条件:其一、A必定导致B;其二,A是B产生必须的.区分:假定A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且需要条件)由A可以推出B~由B不成以推出A~~则A是B的充分不需要条件由A不成以推出B~由B可以推出A~~则A是B的需要不充分条件由A不成以推出B~由B不成以推出A~~则A是B的不充分不需要条件复杂一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论.此条件为需要条件如果既能由结论推出条件,又能有条件推出结论.此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b其实不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的.2.需要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件.我们把前面一个例子倒过去:地面湿了,天下雨了.我这里在复杂说下哲学上的充分条件和需要条件1. 充分条件是指按照提供的现有条件可以直接判断事物的运行成长结果.充分条件是事物运行成长的必定性条件,体现必定性的哲学内涵.如父亲和儿子的关系属于亲情关系吗?答必定属于.2. 需要性条件.事物的运行成长有其纪律性,需要性条件是指一些外在或内在的条件合适该事物的运行纪律的要求,但不克不及推动事物纪律的最终运行.如亲情关系和父子关系,亲情关系合适父子关系的一种现象表达,但不克不及推倒出亲情关系属于父子关系.荟萃暗示:设A、B是两个荟萃,A是B的充分条件,即满足A的必定满足B,暗示为A包含于B;A是B的需要条件,即满足B的必定满足A,暗示为A包含B,或B包含于A;A是B的充分不需要条件,即A是B的真子集,暗示为A 真包含于B;A是B的需要不充分条件,即B是A的真子集,暗示为A 真包含B,或B真包含于A;A是B的充分需要条件,即A、B等价,暗示为A=B.其中包含与真包含的符号打不出,自己写吧.不过这种暗示办法很是的不严格,实际中A、B两荟萃的元素未必是同一各类,而只是有一定的逻辑关系,所以这种暗示法也只能在特此外情况下适用.例题:例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]A.充分但不需要条件B.需要但不充分条件C.充要条件D.既不充分也不需要条件阐发利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值辨别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ]A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线相互垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解阐发逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不需要条件;对B.p q但q p,p 是q的充分非需要条件;对C.p q且q p,p是q的需要非充分条件;说明:当a=0时,ax=0有无数个解.例3 若A 是B成立的充分条件,D是C成立的需要条件,C是B成立的充要条件,则D是A成立的[ ]A.充分条件B.需要条件C.充要条件D.既不充分也不需要条件阐发通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的需要条件,∴C D②由①③得A C④由②④得A D.∴D是A成立的需要条件.选B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的[ ]A.充分不需要条件B.需要不充分条件C.充要条件D.既不充分也不需要条件阐发先解不等式再判定.解解不等式|x-2|<3得-1<x<5.∵0<x<5 -1<x<5,但-1<x<5 0<x<5∴甲是乙的充分不需要条件,选A.说明:一般情况下,如果条件甲为x∈A,条件乙为x∈B.当且仅当A=B时,甲为乙的充要条件.例5 设A、B、C三个荟萃,为使 A (B∪C),条件 A B是[ ]A.充分条件B.需要条件C.充要条件D.既不充分也不需要条件阐发可以结合图形阐发.请同学们自己绘图.∴A (B∪C).但是,当B=N,C=R,A=Z时,显然 A (B∪C),但A B不成立,综上所述:“A B”“A (B∪C)”,而“A (B∪C)”“A B”.即“A B”是“A (B∪C)”的充分条件(不需要).选A.说明:绘图阐发时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p:ab =0,q:a2+b2=0;(2)p:xy≥0,q:|x|+|y|=|x+y|;(3)p:m>0,q:方程x2-x-m=0有实根;(4)p:|x-1|>2,q:x<-1.其中p是q的充要条件的有[ ]A.1组B.2组C.3组D.4组阐发使用方程理论和不等式性质.解 (1)p是q的需要条件(2)p是q充要条件(3)p是q的充分条件(4)p是q的需要条件.选A.说明:ab=0指其中至少有一个为零,而a2+b2=0指两个都为零.阐发将前后两个不等式组辨别作等价变形,不雅察两者之间的关系.例8 已知真命题“a≥b c>d”和“a<b e≤f”,则“c≤d”是“e≤f”的________条件.阐发∵a≥b c>d(原命题),∴c≤d a <b(逆否命题).而a<b e≤f,∴c≤d e≤f即c≤d是e≤f的充分条件.答填写“充分”.说明:充分利用原命题与其逆否命题的等价性是罕有的思想办法.例9 ax2+2x+1=0至少有一个负实根的充要条件是[ ]A.0<a≤1 B.a<1C.a≤1 D.0<a≤1或a<0阐发此题若采取普通办法推导较为庞杂,可通过选项提供的信息,用排除法解之.当a=1时,方程有负根x=-1,当a=0时,x=当a≠0时综上所述a≤1.即ax2+2x+1=0至少有一个负实根的充要条件是a≤1.说明:特殊值法、排除法都是解选择题的好办法.例10 已知p、q都是r的需要条件,s是r的充分条件,q是s 的充分条件,那么s,r,p辨别是q的什么条件?阐发画出关系图1-21,不雅察求解.解s是q的充要条件;(s r q,q s)r是q的充要条件;(r q,q s r)p是q的需要条件;(q s r p)说明:图可以画的随意一些,关头要体现各个条件、命题之间的逻辑关系.例11 关于x的不等式阐发化简A 和B,结合数轴,机关不等式(组),求出a.解A={x|2a≤x≤a2+1},B={x|(x-2)[x-(3a+1)]≤0}B={x|2≤x≤3a +1}.B={x|3a+1≤x≤2}说明:荟萃的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.要条件?阐发将充要条件和不等式同解变形相联系.说明:分类讨论要做到不重不漏.例13 设α,β是方程x2-ax+b=0的两个实根,试阐发a>2且b>1是两根α,β均大于1的什么条件?阐发把充要条件和方程中根与系数的关系问题相联系,解题时需∴q p.上述讨论可知:a>2,b>1是α>1,β>1的需要但不充分条件.说明:本题中的讨论内容在二次方程的根的散布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的需要条件,丙是乙的充分条件,但不是乙的需要条件,那么[ ]A.丙是甲的充分条件,但不是甲的需要条件B.丙是甲的需要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的需要条件阐发1:由丙乙甲且乙丙,即丙是甲的充分不需要条件.阐发2:绘图不雅察之.答:选A.说明:抽象命题之间的逻辑关系通常靠绘图不雅察比较便利。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。

2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。

3. A=“付了足够的钱”;B=“能买到商店里的东西”。

例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。

如父亲和儿子的关系属于亲情关系吗答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。

如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。

充分条件与必要条件(经典练习及答案详解)

充分条件与必要条件(经典练习及答案详解)

充分条件与必要条件1.设x∈R,则“1<x<2”是“1<x<3”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】“1<x<2”⇒“1<x<3”,反之不成立.所以“1<x<2”是“1<x<3”的充分不必要条件.故选B.2.(2020年佛山高一期末)“x=1”是“x2-4x+3=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x =1或x=3,不是必要条件.故选A.3.(2021年荆州期末)x2<9的必要不充分条件是()A.-3≤x≤3 B.-3<x<0C.0<x≤3 D.1<x<3【答案】A【解析】x2<9即-3<x<3.因为-3<x<3能推出-3≤x≤3,而-3≤x≤3不能推出-3<x<3,所以x2<9的必要不充分条件是-3≤x≤3.4.(多选)对任意实数a,b,c,下列命题中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.“a>b”是“a2>b2”的充分条件D.“a<5”是“a<3”的必要条件【答案】BD【解析】因为A中“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac =bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;因为B中“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;因为C中“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;因为D中{a|a<5}{a|a<3},故“a<5”是“a <3”的必要条件,故D为真命题.故选BD.5.(多选)已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,下列命题正确的是()A.r是q的充要条件B.p是q的充分条件而不是必要条件C.r是q的必要条件而不是充分条件D.r是s的充分条件而不是必要条件.【答案】AB【解析】由已知有p⇒r,q⇒r,r⇒s,s⇒q,由此得r⇒q且q⇒r,A正确,C不正确,p⇒q,B正确,r⇒s且s⇒r,D不正确.故选AB.6.“m=9”是“m>8”的________条件,“m>8”是“m=9”的________条件(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”).【答案】充分不必要条件必要不充分条件【解析】当m=9时,满足m>8,即充分性成立,当m=10时,满足m>8,但m=9不成立,即必要性不成立,即“m=9”是“m>8”的充分不必要条件,“m>8”是“m=9”的必要不充分条件.7.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.【答案】{a|a<1}【解析】p:x>1,若p是q的充分不必要条件,则p⇒q,但q⇒/ p,即p对应集合是q对应集合的真子集,所以a<1.8.下列说法正确的是________(填序号).①“x>0”是“x>1”的必要条件;②“a3>b3”是“a>b”的必要不充分条件;③在△ABC中,“a>b”不是“A>B”的充分条件.【答案】①【解析】①中,当x>1时,有x>0,所以①正确;②中,当a>b时,a3>b3一定成立,但a3>b3也一定能推出a>b,即“a3>b3”是“a>b”的充要条件,所以②不正确;③中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以③不正确.9.指出下列各命题中,p是q的什么条件,q是p的什么条件.(1)p:x2>0,q:x>0.(2)p:x+2≠y,q:(x+2)2≠y2.(3)p:a能被6整除;q:a能被3整除.(4)p:两个角不都是直角;q:两个角不相等.解:(1)p:x2>0,则x>0或x<0,q:x>0,故p是q的必要条件,q是p的充分条件.(2)p:x+2≠y,q:(x+2)2≠y2,则x+2≠y,且x+2≠-y,故p是q的必要条件,q是p的充分条件.(3)p:a能被6整除,故也能被3和2整除,q:a能被3整除,故p是q的充分条件,q 是p的必要条件.(4)p:两个角不都是直角,这两个角可以相等,q:两个角不相等,则这个角一定不都是直角,故p是q的必要条件,q是p的充分条件.B级——能力提升练10.设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】因为a 2≥0,而(a -b )a 2<0,所以a -b <0,即a <b ;由a <b ,a 2≥0,得到(a -b )a 2≤0,(a -b )a 2可以为0,所以“(a -b )a 2<0”是“a <b ”的充分不必要条件.11.已知a ,b 为实数,则“a +b >4”是“a ,b 中至少有一个大于2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】“a +b >4”⇒“a ,b 中至少有一个大于2”,反之不成立.所以“a +b >4”是“a ,b 中至少有一个大于2”的充分不必要条件.故选A .12.设p :12≤x ≤1;q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则a 的取值范围是________.【答案】⎩⎨⎧⎭⎬⎫a ⎪⎪0≤a ≤12 【解析】因为q :a ≤x ≤a +1,p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧ a ≤12,a +1>1,解得0≤a ≤12. 13.(2020年大庆高一期中)已知p :-4<x -a <4,q :2<x <3.若q 是p 的充分条件,则实数a 的取值范围为________.【答案】{a |-1≤a ≤6} 【解析】因为p :-4<x -a <4,即a -4<x <a +4,q :2<x<3.若q 是p 的充分条件,则{x |2<x <3}⊆{x |a -4<x <a +4},则⎩⎪⎨⎪⎧a -4≤2,a +4≥3,即-1≤a ≤6.所以实数a 的取值范围为{a |-1≤a ≤6}.14.若集合A ={x |x >-2},B ={x |x ≤b ,b ∈R },试写出:(1)A ∪B =R 的一个充要条件;(2)A ∪B =R 的一个必要不充分条件;(3)A ∪B =R 的一个充分不必要条件.解:(1)集合A ={x |x >-2},B ={x |x ≤b ,b ∈R }.(1)若A ∪B =R ,则b ≥-2,故A ∪B =R 的一个充要条件是b ≥-2.(2)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个必要不充分条件可以是b≥-3.(3)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个充分不必要条件可以是b≥-1.C级——探究创新练15.已知关于x的实系数二次方程x2+ax+b=0有两个实数根α,β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设y=x2+ax+b,则y=x2+ax+b的图象是开口向上的抛物线.又|α|<2,|β|<2,所以当x=2时,y>0且当x=-2时,y>0,即有-(4+b)<2a<4+b.因为|b|<4,所以4+b>0,即2|a|<4+b.(2)必要性:令y=x2+ax+b,由2|a|<4+b,得当x=2时,y>0且当x=-2时,y>0,因为|b|<4,所以方程y=0的两根α,β同在{x|-2<x<2}内或无实根.因为α,β是方程y=0的实根,所以α,β同在{x|-2<x<2}内,即|α|<2且|β|<2.。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。

2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。

3. A=“付了足够的钱”;B=“能买到商店里的东西”。

例子中A 都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B 的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A 是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。

如父亲和儿子的关系属于亲情关系吗?答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。

充分条件与必要条件经典练习及答案详解

充分条件与必要条件经典练习及答案详解

[基础巩固]1.“x>0”是“x≠0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析由“x>0”⇒“x≠0”,反之不一定成立.因此“x>0”是“x≠0”的充分不必要条件.答案 A2.“a>b”是“a>|b|”的()A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件解析由a>|b|⇒a>b,而a>b推不出a>|b|.答案 B3.“函数y=x2-2ax+a的图象在x轴的上方”是“0≤a≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析函数y=x2-2ax+a的图象在x轴的上方,则Δ=4a2-4a<0,解得0<a<1,由集合的包含关系可知选A.答案 A4.设a,b是实数,则“a+b>0”是“ab>0”的________条件.解析若a+b>0,取a=3,b=-2,则ab>0不成立;反之,若ab>0,取a=-2,b=-3,则a+b>0也不成立,因此“a+b>0”是“ab>0”的既不充分也不必要条件.答案既不充分也不必要5.若“x2>1”是“x<a”的必要不充分条件,则实数a的最大值为________.解析由x2>1,得x<-1或x>1.又“x2>1”是“x<a”的必要不充分条件,则由“x <a”可以推出“x2>1”,但由“x2>1”推不出“x<a”,所以a≤-1,所以实数a的最大值为-1.答案-16.求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.证明假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.(1)证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a·12+b·1+c=0,即a+b+c=0.(2)q⇒p,即证明充分性.由a+b+c=0,得c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.[能力提升]7.(多选)在整数集Z中,被5除所得作数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.则下列结论正确的是()A.2022∈[2]B.Z=[0]∪[1]∪[2]∪[3]∪[4]C.-3∈[3]D.整数a,b属于同一“类”的充要条件是“a-b∈[0]”解析A:2022除以5,所得余数为2,满足[2]的定义,故正确;B:整数集Z就是由除以5所得余数为0,1,2,3,4的整数构成的,故正确;C:-3=5×(-1)+2,故-3∉[3],故错误;D:设a=5n1+m1,b=5n2+m2,n1,n2,∈Z,m1,m2∈{0,1,2,3,4},则a-b=5(n1-n2)+m1-m2;若整数a,b属于同一“类”,则m1-m2=0,所以a-b∈[0];反之,若a-b∈[0],则m1-m2=0,即m1=m2,a,b属于同一“类”.故整数a,b属于同一“类”的充要条件是“a-b∈[0]”,正确.故选ABD.答案ABD8.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=________.解析当m=-2时,f(x)=x2-2x+1,其图象关于直线x=1对称,反之也成立,所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.答案-29.已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的________条件.解析因为|a+b|=|a|+|b|⇔a2+2ab+b2=a2+2|ab|+b2⇔|ab|=ab⇔ab≥0,而由ab≥0不能推出ab>0,由ab>0能推出ab≥0,所以由|a+b|=|a|+|b|不能推出ab>0,由ab>0能推出|a+b|=|a|+|b|.答案必要不充分10.求证:关于x的方程x2+mx+1=0有两个负实根的充要条件是m≥2.证明 (1)充分性:∵m ≥2,∴Δ=m 2-4≥0,方程x 2+mx +1=0有实根,设x 2+mx +1=0的两根为x 1,x 2,由根与系数的关系知:x 1x 2=1>0,∴x 1,x 2同号,又∵x 1+x 2=-m ≤-2,∴x 1,x 2同为负根.(2)必要性:∵x 2+mx +1=0的两个实根x 1,x 2均为负,且x 1·x 2=1,∴m -2=-(x 1+x 2)-2=-⎝⎛⎭⎫x 1+1x 1-2 =-x 21+2x 1+1x 1=-(x 1+1)2x 1≥0. ∴m ≥2.综上(1),(2)知命题得证.[探索创新]11.已知方程x 2-2(m +2)x +m 2-1=0有两个大于2的根,试求实数m 的取值范围. 解析 由于方程x 2-2(m +2)x +m 2-1=0有两个大于2的根,设这两个根为x 1,x 2,则有⎩⎪⎨⎪⎧ Δ=4(m +2)2-4(m 2-1)≥0,(x 1-2)+(x 2-2)>0,(x 1-2)(x 2-2)>0.结合⎩⎪⎨⎪⎧x 1+x 2=2(m +2),x 1x 2=m 2-1. 解得m >5.所以当m >5时,方程x 2-2(m +2)x +m 2-1=0有两个大于2的根.所以,m 的取值范围是(5,+∞).。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。

2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。

3. A=“付了足够的钱”;B=“能买到商店里的东西”。

例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。

如父亲和儿子的关系属于亲情关系吗?答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。

如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。

高一数学典型例题分析充分条件与必要条件

高一数学典型例题分析充分条件与必要条件

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔充分条件与必要条件·典型例题能力素质例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析先解不等式再判定.解解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴qp .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ]A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件. 分析2:画图观察之. 答:选A .说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

充分条件与必要条件典型例题

充分条件与必要条件典型例题

充分条件与必要条件·典型例题能力素质例1 已知p :x 1,x 2是方程x 2+5x -6=0的两根,q :x 1+x 2=-5,则p 是q 的[ ]A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 分析 利用韦达定理转换.解 ∵x 1,x 2是方程x 2+5x -6=0的两根, ∴x 1,x 2的值分别为1,-6, ∴x 1+x 2=1-6=-5.因此选A .说明:判断命题为假命题可以通过举反例. 例2 p 是q 的充要条件的是[ ]A .p :3x +2>5,q :-2x -3>-5B .p :a >2,b <2,q :a >bC .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .p :a ≠0,q :关于x 的方程ax =1有惟一解 分析 逐个验证命题是否等价.解 对A .p :x >1,q :x <1,所以,p 是q 的既不充分也不必要条件; 对B .p q 但q p ,p 是q 的充分非必要条件; 对C .pq 且qp ,p 是q 的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D ⇒⇒⇔说明:当a =0时,ax =0有无数个解.例3 若A 是B 成立的充分条件,D 是C 成立的必要条件,C 是B 成立的充要条件,则D 是A 成立的[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件分析 通过B 、C 作为桥梁联系A 、D . 解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e≤f ”的________条件.分析∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa 2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s)r 是q 的充要条件;(r q ,q s r)p 是q 的必要条件;(q s r p) 说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴qp .上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

充分条件与必要条件练习题及答案

充分条件与必要条件练习题及答案

例1 已知p :x 1,x 2是方程x 2+5x -6=0的两根,q :x 1+x 2=-5,则p 是q 的[ ]A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 分析 利用韦达定理转换.解 ∵x 1,x 2是方程x 2+5x -6=0的两根, ∴x 1,x 2的值分别为1,-6, ∴x 1+x 2=1-6=-5.因此选A .说明:判断命题为假命题可以通过举反例. 例2 p 是q 的充要条件的是[ ]A .p :3x +2>5,q :-2x -3>-5B .p :a >2,b <2,q :a >bC .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .p :a ≠0,q :关于x 的方程ax =1有惟一解 分析 逐个验证命题是否等价.解 对A .p :x >1,q :x <1,所以,p 是q 的既不充分也不必要条件; 对B .p q 但q p ,p 是q 的充分非必要条件; 对C .p q 且q p ,p 是q 的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D ⇒⇒⇔说明:当a =0时,ax =0有无数个解.例3 若A 是B 成立的充分条件,D 是C 成立的必要条件,C 是B 成立的充要条件,则D 是A 成立的[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 通过B 、C 作为桥梁联系A 、D . 解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得AD .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|; (3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a0ax2x100 21a0a12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a0ax2x100 221a21a1a02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a≤1.即ax2+2x+1=0至少有一个负实根的充要条件是a≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s,r,p分别是q的什么条件分析画出关系图1-21,观察求解.解 s是q的充要条件;(s r q,q s)r是q的充要条件;(r q,q s r)p是q的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x的不等式|x|x3(a1)x2(3a1)0AB A B1a3a12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a+-⊆121222分析化简A和B,结合数轴,构造不等式(组),求出a.解 A={x|2a≤x≤a2+1},B={x|(x-2)[x-(3a+1)]≤0}当≤+即≥时,23a1a13B={x|2≤x≤3a+1}.A B2a2a+13a+11a323a1a2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B={x|3a+1≤x≤2}A B2a3a+1a+12a1A B a11a3A B1a3a12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

充分条件和必要条件(含区分和例题)

充分条件和必要条件(含区分和例题)

充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。

简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。

(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。

2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。

3. A=“付了足够的钱”;B=“能买到商店里的东西”。

例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。

区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。

此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。

此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。

2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。

我们把前面一个例子倒过来:地面湿了,天下雨了。

我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。

充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。

如父亲和儿子的关系属于亲情关系吗?答必然属于。

2. 必要性条件。

事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。

如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。

充分条件与必要条件·典型例题

充分条件与必要条件·典型例题

充分条件与必要条件·典型例题能力素质例1 已知p :x 1,x 2是方程x 2+5x -6=0的两根,q :x 1+x 2=-5,则p 是q 的[ ]A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 分析 利用韦达定理转换.解 ∵x 1,x 2是方程x 2+5x -6=0的两根, ∴x 1,x 2的值分别为1,-6, ∴x 1+x 2=1-6=-5.因此选A .说明:判断命题为假命题可以通过举反例. 例2 p 是q 的充要条件的是[ ]A .p :3x +2>5,q :-2x -3>-5B .p :a >2,b <2,q :a >bC .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .p :a ≠0,q :关于x 的方程ax =1有惟一解 分析 逐个验证命题是否等价.解 对A .p :x >1,q :x <1,所以,p 是q 的既不充分也不必要条件; 对B .p q 但q p ,p 是q 的充分非必要条件; 对C .pq 且qp ,p 是q 的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D ⇒⇒⇔说明:当a =0时,ax =0有无数个解.例3 若A 是B 成立的充分条件,D 是C 成立的必要条件,C 是B 成立的充要条件,则D 是A 成立的[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 通过B 、C 作为桥梁联系A 、D .解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴CD ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题).而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p) 说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴qp .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

高一数学典型例题分析充分条件与必要条件

高一数学典型例题分析充分条件与必要条件

生命是永恒不断的创造,由于在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来.--- 泰戈尔充分条件与必要条件•典型例题水平素质例1 p: x1, x2是方程x2+5x—6= 0的两根,q: x1 + x2=—5,那么p是q的[]A .充分但不必要条件B .必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解 .「x1, x2是方程x2+5x—6 = 0的两根,x1, x2的值分别为1, — 6,. . x1 + x2 =1 — 6 = — 5.说明p= q.但q导p,事实上只要取旃21叼=-3作为反例即可说明这一点.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[]A. p: 3x+2>5, q: -2x-3>-5B. p: a>2, bv2, q: a>bC. p:四边形的两条对角线互相垂直平分, q:四边形是正方形D. p: aw0, q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A . p: x>1, q : x< 1,所以,p是q的既不充分也不必要条件;对B. p=q但q= p, p是q的充分非必要条件;对C. p\>q且q= p, p是q的必要非充分条件;XtD. p q且q p,即p q, p是q的充要条件.选D .说明:当a= 0时,ax= 0有无数个解.例3假设A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,那么D是A成立的[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解 ..力是B的充分条件,... A = B①D是C成立的必要条件,,c n D②.•.C是B成立的充要条件,C B③由①③得A=C④由②④得A=D.,D是A成立的必要条件.选 B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0VXV5,命题乙为|x—2|<3,那么甲是乙的[]A .充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件分析先解不等式再判定.解解不等式|x—2|<3得一1 vxv 5.「0 v x v 5= — 1 vxv 5,但一1vxv510V x<5,甲是乙的充分不必要条件,选 A.说明:一般情况下,如果条件甲为xCA,条件乙为xCB.当且仅当A B时,甲为乙的充分条件;当且仅当A B时,甲为乙的必要条件;当且仅当A = B时,甲为乙的充要条件.例5 设A、B、C三个集合,为使A^=(B U C),条件A§^B是[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析可以结合图形分析.请同学们自己画图.解V 而B 匚0 U C),••.A^(B U C).但是,当 B = N, C=R, A=Z 时,显然A频(BU C),但A聂B不成立,综上所述:“A^B〞 = “A^(B U C)〞,而“A 或BUC)〞节“A^B〞.即“A^B〞是“A呈(B U C)〞的充分条件(不必'要).选A.说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6给出以下各组条件:(1)p : ab= 0, q: a2+b2=0;(2)p: xy>0, q: |x|十|y|=|x+y|;A. 0V a< 1B. a<1(3)p : m>0, q :方程 x2—x —m = 0 有实根; (4)p : |x- 1|>2, q : xv — 1. 其中p 是q 的充要条件的有[A. 1组B. 2组C. 3组D. 4组分析使用方程理论和不等式性质. 解(1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选 A .说明:ab=0指其中至少有一个为零,而a 2+b 2=0指两个都为零.x 1 3 x 1 x 26 例71是12 的 条件.x 2> 3 x 1x 2> 9----------------分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解 x 1>3M x 2>3 x 1 + x 2>6且x 1x 2>9,但当取 x 1 = 10, x 2= 2时,x1 x 2>6 , _ x1 >3 , , 一一 ~ 一〃、八1 2 成立,而 1 不成立(x 2 = 2与x 2>3矛盾),所以填 充分不 x 1x 2>9 x 2>3必要〞.(x 「3)+仅2 —3)>0 (x 1一 3)(x 2 —3)>0 x 1 + x 2 > 6x 1x 2— 3(x 1 + x 2) + 9> 0点击思维例 8 真命题 " a>b=c>d 〞 和“ av b=>e<f",那么 “ gd 〞 是 “ ewf 〞 的 条件. 分析 .「a>b = c>d (原命题), cw d =>av b(逆否命题). 而 a< b — e< f,cw d = ew f 即c< d 是ew f 的充分条件. 答填写“充分〞.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x+ 1 = 0至少有一个负实根的充要条件是说明:x 1>3 x 2> 3x 1 -3>0 x 2-3>0这一等价变形方法有时会用得上.C. a<1D. 0vaw 1 或a<0分析此题假设采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a= 1时,方程有负根x=-1,当a= 0时,x =1——.故排除A、B、D选C.21解常规方法:当a=0时,x=--.2当aw 0时1. a>0,那么ax2+2x+1 = 0至少有一个负实根—2———4a < 02a2j'1 —a <2 0<a< 1.2. a<0,那么ax2+ 2x+1 = 0至少有一个负实根2 '4一4a < 02a2>211—a> 2 1-a>1 a< 0.综上所述a< 1.即ax2+ 2x + 1 = 0至少有一个负实根的充要条件是a< 1.说明:特殊值法、排除法都是解选择题的好方法.例10p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s, r, p分别是q的什么条件?分析画出关系图1 — 21,观察求解.图1-21解s是q的充要条件;(s=r=,q, q=s)r是q的充要条件;(r=q, q=s=r)p是q的必要条件;(q = s= r=-p)说明:图可以画的随意一些,关键要表达各个条件、命题之间的逻辑关系. 例11关于x的不等式(a 1)2(a 1)2|x -2尸2与x — 3(a+1)x + 2(3a+1) 00的解集依次为A 与B,问“ A B〞是“ 1&a& 3或2= — 1〞的充要条件吗?分析化简A和B,结合数轴,构造不等式(组),求出a.解A={x|2a<x<a2+1}, B = {x|(x - 2)[x- (3a+ 1)] < 0}, … 1 ,当2032+1即2) 一时, 3B = {x|2<x<3a+1}.2aA 2,* 1 ,当 2>3a+ 1 即a< —时,3B = {x|3a + 1WxW2}2aA 3a+1 A B 2a=T.a +1 < 2综上所述:A B a= - 1或1Wa03.:“A B 〞是“ 102&3或2= — 1〞的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要 理清思路,表达准确,推理无误.学科渗透一一 1 1 ,,例12 x >y, xy> 0是一 < 一的必要条件还是充分条件,还是充 x y要条件?分析将充要条件和不等式同解变形相联系.解1,当1 <3时,可得 1 —」< 0即x < 0x y x y xyxy<0 xy>0,日门 x<y — x>y即 一或、八xy< 0 xy>0,一 1 1 故一< 一不能推得x> y 且xy>0〔有可能得到 x y、…1 1 ,, 一一>0并非-< 一的必要条件.x yx>y x>y2.当x>y 且xy>0那么分成两种情况讨论:x>0或x< 0 y>0 y< 011不管哪一种情况均可化为一< 一.x y一 一 1 1 ,,x>y 且xy>0是一 <一的充分条件.a 2+ 1 w 3a + 11<a< 3y- x>0或 y — x< 0 x< y ),xy<0 即x>y 且xyx y说明:分类讨论要做到不重不漏.例13 设“,3是方程x2—ax+b=0的两个实根,试分析a> 2且b>1是两根〞,3均大于1的什么条件?分析把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件p与结论q分别指什么.然后再验证是p q还是q p还是p q-a>2解据韦达止理得:a= a + B , b= a B ,判止的条件是p:b>1一、… a >1 ___ _ , , 一一、“一,、- 9结论是q: B还要注息条件p中,a, b需要湎足大刖提A=a —4b>0)a > 1⑴由0>[得2=0€ + B> 2, b= a B > 1,• ・ q=p.(2)为了证实P]q,可以举出反例,取口=4, p=;,它满足软二Q +0= 4+J>2. = 2>1,但q 不成立.U U上述讨论可知:a>2, b>1是a> 1, 3 > 1的必要但不充分条件.说明:此题中的讨论内容在二次方程的根的分布理论中常被使用.tWj考巡礼例14设甲、乙、丙是三个命题,如果甲是乙的必要条件, 丙是乙的充分条件, 但不是乙的必要条件,那么[]A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙二•乙二甲且乙%丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比拟方便。

高中_充分条件与必要条件·典型例题

高中_充分条件与必要条件·典型例题

充分条件与必要条件·典型例题能力素质例1 p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,那么p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔D p q q p p q p q D对.且,即,是的充要条件.选.说明:当a=0时,ax=0有无数个解.例3 假设A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,那么D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B 〞“A(B ∪C)〞,而“A (B ∪C)〞“AB 〞.即“AB 〞是“A (B ∪C)〞的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出以下各组条件:(1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 真命题“a ≥bc >d 〞和“a <be ≤f 〞,那么“c ≤d 〞是“e ≤f 〞的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题).而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分〞.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题假设采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p) 说明:图可以画的随意一些,关键要表达各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x yx 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴qp .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:此题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比拟方便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

充分条件与必要条件·典型例题能力素质例1 已知p :x 1,x 2是方程x 2+5x -6=0的两根,q :x 1+x 2=-5,则p 是q 的[ ]A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 分析 利用韦达定理转换.解 ∵x 1,x 2是方程x 2+5x -6=0的两根, ∴x 1,x 2的值分别为1,-6, ∴x 1+x 2=1-6=-5.因此选A .说明:判断命题为假命题可以通过举反例. 例2 p 是q 的充要条件的是[ ]A .p :3x +2>5,q :-2x -3>-5B .p :a >2,b <2,q :a >bC .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .p :a ≠0,q :关于x 的方程ax =1有惟一解 分析 逐个验证命题是否等价.解 对A .p :x >1,q :x <1,所以,p 是q 的既不充分也不必要条件; 对B .p q 但q p ,p 是q 的充分非必要条件; 对C .pq 且qp ,p 是q 的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D ⇒⇒⇔说明:当a =0时,ax =0有无数个解.例3 若A 是B 成立的充分条件,D 是C 成立的必要条件,C 是B 成立的充要条件,则D 是A 成立的[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 通过B 、C 作为桥梁联系A 、D .解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题).而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p) 说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴qp .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

相关文档
最新文档