北理工《概率论与数理统计》课程学习资料(六)38
概率论与数理统计(完整版)

32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定义 : 若B1,B2,,Bn一组事件 : 满足
(iB i) B j φ ,i ji,j, 12,.,.n .,,
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
A中 的 基 本 事k件 数 P(A)S中的基本事n件总数 15
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,相 则容
P(Bi |A)P(Bi |A.)
i1
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.
概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其统计规律的数学学科,在自然科学、工程技术、社会科学、经济管理等众多领域都有着广泛的应用。
以下是对概率论与数理统计中一些重要知识点的详细总结。
一、随机事件与概率1、随机试验随机试验是指在相同条件下可以重复进行,试验结果不止一个且事先不能确定的试验。
2、样本空间样本空间是随机试验所有可能结果组成的集合。
3、随机事件随机事件是样本空间的子集。
4、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。
5、概率的定义概率是对随机事件发生可能性大小的度量。
6、古典概型具有有限个等可能结果的随机试验。
7、几何概型样本空间是某个区域,且每个样本点出现的可能性与区域的面积、体积等成正比。
8、条件概率在已知某事件发生的条件下,另一事件发生的概率。
9、乘法公式用于计算两个事件同时发生的概率。
10、全概率公式将复杂事件的概率通过划分样本空间分解为简单事件的概率之和。
11、贝叶斯公式在已知结果的情况下,反推导致该结果的原因的概率。
二、随机变量及其分布1、随机变量用数值来描述随机试验的结果。
2、离散型随机变量取值可以一一列举的随机变量。
3、离散型随机变量的概率分布列出随机变量的取值以及对应的概率。
4、常见的离散型随机变量分布包括 0-1 分布、二项分布、泊松分布等。
5、连续型随机变量取值充满某个区间的随机变量。
6、连续型随机变量的概率密度函数用于描述连续型随机变量的概率分布。
7、常见的连续型随机变量分布包括均匀分布、正态分布、指数分布等。
8、随机变量的函数的分布已知随机变量的分布,求其函数的分布。
三、多维随机变量及其分布1、二维随机变量由两个随机变量组成的向量。
2、二维随机变量的联合分布函数描述二维随机变量的概率分布。
3、二维离散型随机变量的联合概率分布列出二维离散型随机变量的取值组合以及对应的概率。
4、二维连续型随机变量的联合概率密度函数用于描述二维连续型随机变量的概率分布。
概率论与数理统计课程电子版教材

第六章 数理统计的基本概念第一节 基本概念1、概念网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 2、重要公式和结论例6.1:从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大?第二节 重点考核点统计量的分布第三节 常见题型1、统计量的性质例6.2:设),,,(721X X X 取自总体)5.0,0(~2N X ,则=⎪⎭⎫⎝⎛>∑=7124i i X P。
例6.3:设总体X 服从正态分布),(21σμN ,总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21212121n n Y Y X X E n j j n i i .2、统计量的分布例6.4:设),,,(21n X X X 是来自正态总体),(2σμN 的简单随机样本,X 是样本均值,记,)(111221∑=--=ni i X X n S,)(11222∑=-=ni i X X n S,)(111223∑=--=ni i X n S μ,)(11224∑=-=ni i X n S μ则服从自由度为n-1的t 分布的随机变量是 (A ).1/1--=n S X t μ(B ).1/2--=n S X t μ(C )./3nS X t μ-=(D )./4nS X t μ-=[ ]例6.5:设总体X ~N (0,12),从总体中取一个容量为6的样本),,,(621X X X ,设26542321)()(X X X X X X Y +++++=,试确定常数C ,使随机变量CY 服从2χ分布。
第四节 历年真题数学一:1(98,4分) 从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大? [附表]:dt eZ t Z2221)(-∞-⎰=Φπ990.0975.0950.0900.0)(33.296.1645.128.1Z Z Φ2(01,7分) 设总体)0)(,(~2>σσμN X ,从该总体中抽取简单随机样本)2(,,,221≥n X X X n ,其样本的均值∑==ni i X n X 21,21求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望E (Y )。
概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
以下是对概率论与数理统计知识点的超详细总结。
一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
随机事件通常用大写字母 A、B、C 等来表示。
(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。
(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。
2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。
3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。
4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。
5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。
6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。
(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。
2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。
3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。
非常全面的《概率论与数理统计》复习材料

《概率论与数理统计》复习大纲第一章随机事件与概率事件与集合论的对应关系表古典概型古典概型的前提是Ω={ω1, ω2,ω3,…, ωn,}, n为有限正整数,且每个样本点ωi出现的可能性相等。
例1设3个球任意投到四个杯中去,问杯中球的个数最多为1个的事件A1,最多为2个的事件A2的概率。
[解]:每个球有4种放入法,3个球共有43种放入法,所以|Ω|=43=64。
(1)当杯中球的个数最多为1个时,相当于四个杯中取3个杯子,每个杯子恰有一个球,所以|A1|= C433!=24;则P(A1)=24/64 =3/8. (2) 当杯中球的个数最多为2个时,相当于四个杯中有1个杯子恰有2个球(C41C32),另有一个杯子恰有1个球(C31C11),所以|A2|= C41C32C31C11=36;则P(A2)=36/64 =9/16例2从1,2,…,9,这九个数中任取三个数,求:(1)三数之和为10的概率p1;(2)三数之积为21的倍数的概率p2。
[解]:p1=4C93=121, p2=C31C51+C32C93=314P(A)=A包含样本总个数样本点总数=|A||Ω|几何概型前提是如果在某一区域Ω任取一点,而所取的点落在Ω中任意两个度量相等的子区域的可能性是一样的。
若A⊂Ω,则P(A)=A的度量Ω的度量例1把长度为a的棒任意折成三段,求它们可以构成一个三角形的概率。
[解]:设折得的三段长度分别为x,y和a-x-y,那么,样本空间,S={(x,y)|0≤x≤a,0≤y≤a,0≤a-x-y≤a}。
而随机事件A:”三段构成三角形”相应的区域G应满足两边之和大于第三边的原则,得到联立方程组,⎩⎪⎨⎪⎧a-x-y<x+yx<a-x-y+yy<a-x-y+x解得0<x<a2, 0<y<a2,a2<x+y<a 。
即G={(x,y)| 0<x<a2, 0<y<a2,a2<x+y<a }由图中计算面积之比,可得到相应的几何概率P(A)=1/4。
《概率论与数理统计》第六章 讲义

最大似然估计提供了一种给定观察数据来评估模 型参数的方法,即:“模型已定,参数未知”。 简单而言,假设我们要统计全国人口的身高,首 先假设这个身高服从服从正态分布,但是该分布 的均值与方差未知。我们没有人力与物力去统计 全国每个人的身高,但是可以通过采样,获取部 分人的身高,然后通过最大似然估计来获取上述 假设中的正态分布的均值与方差。
Page 9
Chapter 6 参数估计
ˆ ˆ ( x ,, x ) 定义6.2.1 设 ∈Θ为未知参数, n n 1 n 是 的一个估计量,n 是样本容量,若对任何 一个ε>0,有
ˆ | ) 0 limn P(| n
ˆ 为 参数的相合估计。 则称
n
(6.2.1)
2
ˆ 1/ s 1
s 为样本标准差。这说明矩估计可能是不唯一的, 这是矩法估计的一个缺点,此时通常应该尽量采用 低阶矩给出未知参数的估计。
Page 7
Chapter 6 参数估计
例 6.1.3 x 1 , x 2 , … , x n 是来自 ( a,b ) 上的均匀分布 U(a,b)的样本,a与b均是未知参数,这里k=2, 由于 2
ˆ1 ) 2 , Var( ˆ2 ) 2 / n Var(
ˆ2 比 ˆ1 有效。这表明用全部数据的 显然,只要 n>1, 平均估计总体均值要比只使用部分数据更有效。
Page 20
Chapter 6 参数估计
例6.2.7 均匀总体U(0, )中 的极大似然估计是x(n) n Ex ,由于 x(n)不是 的无偏估计,而是 (n) n ,所以 1 的渐近无偏估计。经过修偏后可以得到 的一个 ˆ n 1 x 。且 无偏估计: 1 (n )
概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
华北理工大学2016-2017学年概率论与数理统计重点复习点与公式

连续型
f X ( x) f Y ( y)
f ( x, y )dy; f ( x, y )dx.
3.
条件分布
离散型
P(Y y j | X xi )
P( X x i | Y y j )
连续型
pij pi
p ij p j
;
,
f ( x | y)
(b a) 2 12
1
1
n 0
2
2
2n
N ( , 2 )
2 分布
t 分布 4. 协方差
n (n>2) n2
cov( X ,Y ) E[(X E(X ))(Y E(Y ))] E(XY ) E(X )E(Y )
5.
相关系数
对于随机变量 X 与 Y,如果 D(X)>0, D(Y)>0,则称
4. 独立性 一般型 离散型 连续型
f ( x, y) f ( x, y) ; f ( y | x) f Y ( y) f X ( x)
F(X,Y)=FX(x)FY(y)
pij pi p j 有零不独立
f(x,y)=fX(x)fY(y) 直接判断,充要条件: ①可分离变量 ②正概率密度区间为矩形
f ( x)dx
。
P(X=1)=p, P(X=0)=q
k k nk P( X k ) Pn(k ) Cn p q
X ~ B ( n, p ) 。
泊松分布
X ~ P( )
P( X k )
k
k!
e , 0 , k 0,1,2 ,
超几何分布
P( X k )
北京理工大学《概率论与数理统计》课件-第6章样本及抽样分布-2

注:
(1)统计量是不含未知参数的样本的函数。
(2)统计量是随机变量的函数,故统计量 是随机变量。
例1
设 X1 ,…,Xn 为来自总体 X ~ N(μ,σ2) 的一个样本, 其中μ,σ2未知,问下列随机变量中哪些是统计量
1 n
Xn n i1 Xi
1
n
n i 1
Xi
S 2
1 n1
n i 1
对标准正态密度函数( x)有
sup pn( x) ( x) 0.0041
x
45
t分布的性质 定理2.5: 如果Z~N(0,1) , ~ 2(n), 且Z与 相互独立,则有
Z ~ t(n)
n
46
正态总体的抽样分布(2)
定理 2.6 如果X1,X2,…,Xn是来自正态总体 N (, 2 )
)
(E(
Xi
))2
1
Var(
X
2 i
)
E
(
X
4 i
)
[
E
(
X
2 i
)]2
3
1
2,
i 1, 2,
n
n
n
所以 E( ) E(
X
2 i
)
E
(
X
2 i
)
n.
i 1
i 1
n
n
Var( ) Var(
X
2 i
)
Var(
X
2 i
)
2n.
i 1
i 1
36
证明:(2)设X1, X2, , Xnm是来自总体N (0,1)的样本
样本是联系二者的桥梁
总体分布决定了样本取值的概率规律,也 就是样本取到样本值的规律,因而可以由样本 值去推断总体。
数理统计_北京理工大学中国大学mooc课后章节答案期末考试题库2023年

数理统计_北京理工大学中国大学mooc课后章节答案期末考试题库2023年1.一个参数的矩估计是唯一的.参考答案:错误2.在假设检验中,【图片】表示原假设,【图片】表示备择假设,则称为第一类错误的是参考答案:为真,接受3.现有以下结论(1)泊松分布族【图片】是指数族. (2) 二项分布族{b(n,p),0参考答案:34.一项研究表明,司机在驾车时因为接打电话而发生交通事故的概率p超过15%,针对该问题提出如下原假设和备择假设H0:p<15%,H1:p≥15%.参考答案:错误5.设总体【图片】,其中【图片】未知,【图片】是从总体X中抽取的样本,在显著性水平【图片】下接受原假设【图片】,则当【图片】时,下列结论( )正确.参考答案:接受6.分别来自两个总体的两个样本,当样本容量充分大时,样本均值差的抽样分布近似服从正态分布.参考答案:正确7.假设总体服从泊松分布,从该总体抽取容量为200的样本,则样本均值近似服从正态分布.参考答案:正确8.假设检验中,α和β分别表示犯第一类错误和第二类错误的概率,则当样本容量给定时,下列说法正确的是( ).参考答案:α和β不能同时减小9.在假设检验中,当我们做出拒绝原假设时,表示原假设一定是错误的参考答案:错误10.在正态总体的假设检验中,能用“≥”代替拒绝域的表达式中的“>”.参考答案:正确11.在假设检验中,检验两个正态总体方差是否相等利用()进行检验.参考答案:F 分布12.下列哪一个()不成立参考答案:均匀分布族是指数族13.设总体【图片】,其中【图片】未知,【图片】已知,则【图片】的置信水平【图片】置信区间的区间长度L与【图片】的关系是【图片】越小,区间长度L越小.参考答案:正确14.相互独立正态随机变量的线性组合服从()分布.参考答案:正态15.设总体【图片】,【图片】为来自总体X的简单随机样本,则样本二阶中心矩【图片】是总体方差【图片】的矩估计.参考答案:正确16.大样本性质和小样本性质的差别在于样本个数的多少.参考答案:错误17.设总体 X服从两点分布b(1,p),其中0参考答案:错误18.设总体【图片】,其中【图片】未知,【图片】已知,则【图片】的置信水平【图片】置信区间的区间长度L与【图片】的关系是【图片】越小,区间长度L不变.参考答案:错误19.在假设检验中,如果我们相信原假设是真的,而犯第二类错误又不会造成太大的影响,此时,检验的显著性水平应该取().参考答案:小些20.设总体X服从正态分布【图片】,【图片】为来自总体X的简单随机样本,记【图片】,则【图片】的值与n有关.参考答案:正确21.对显著性水平为α的检验结果而言,犯第一类错误的概率( ).参考答案:不超过α22.检验单个正态总体方差所使用的分布是().参考答案:卡方分布23.在一个确定的假设检验问题中,如果拒绝域给定,与判断结果无关的因素是( ).参考答案:总体均值24.设总体X服从正态分布【图片】,【图片】为来自总体X的简单随机样本,记【图片】,则【图片】的值为【图片】.参考答案:错误25.设【图片】,【图片】则【图片】参考答案:正确26.设总体【图片】,【图片】为来自总体X的简单随机样本,则样本方差【图片】是总体方差【图片】的矩估计.参考答案:错误27.Neyman-Pearson提出了假设检验的一条原则,通常是在限制犯第一类错误概率的条件下,寻找犯第二类错误概率尽可能小的检验.参考答案:正确28.设总体【图片】,其中【图片】均未知,如果样本容量n和置信水平【图片】都不变,对于不同的样本观测值,总体均值μ的置信区间的长度( ).参考答案:不能确定29.设【图片】为来自总体X的简单随机样本,下面不成立的是().参考答案:总体X服从均匀分布,,则()是充分完全统计量.30.在假设检验中,增大样本容量,可以使第一类和第二类错误的概率同时减小.参考答案:正确31.假设检验的基本原则通常是控制犯第一类错误的概率不超过α ,然后,尽可能的减少第二类错误的发生.参考答案:正确32.显著性水平α的选取,对拒绝和接受原假设H0没有影响.参考答案:错误33.自由度为n的χ2变量的概率密度函数曲线随着n的增大趋于对称.参考答案:正确34.上α分位数是α的单调()函数.参考答案:减35.如果把置信水平从95%增加到97.5%,则置信水平为1-α的样本均值的置信区间的长度将().参考答案:增加36.设总体【图片】,其中【图片】未知,【图片】已知,则【图片】的置信水平【图片】置信区间的区间长度L与【图片】的关系是【图片】的大小与区间长度L无关.参考答案:错误37.对于非正态总体,在大样本条件下,求总体均值区间估计所使用的分布是().参考答案:正态分布38.设假设检验【图片】:新工艺不比旧工艺好,【图片】:新工艺比旧工艺好,则下列属于犯第二类错误的是().参考答案:新工艺较好,保留旧工艺39.t分布与标准正态分布的区别是t分布的密度函数图形是不对称的,标准正态分布的密度函数图形是对称的.参考答案:错误40.正态总体的样本均值和样本方差的关系是相互().参考答案:独立41.设总体【图片】,其中【图片】未知,【图片】已知,则【图片】的置信水平【图片】置信区间的区间长度L与【图片】的关系是【图片】越小,区间长度L越大.参考答案:错误42.设总体【图片】,其中【图片】未知,【图片】是从总体X中抽取的样本,为使得【图片】是【图片】的置信水平为95%的置信区间,则样本容量至少为( ).参考答案:6243.设总体【图片】,其中【图片】均未知,记【图片】,【图片】,则当【图片】的置信区间为【图片】时,其置信水平为().参考答案:0.9544.利用两个相互独立的小样本求两个正态总体均值之差的区间估计,当两个正态总体的方差未知但是相等时,所使用的分布是().参考答案:t分布45.设总体【图片】,【图片】为来自总体X的简单随机样本,记【图片】,【图片】,则()成立.参考答案:S是的相合估计46.设总体【图片】,【图片】为来自总体X的简单随机样本,记【图片】,【图片】,则()不成立.参考答案:是的无偏估计.47.设随机变量X和Y都服从标准正态分布, 下列结论中一定正确的是( ).参考答案:和都服从分布48.设总体【图片】,其中【图片】未知,【图片】是从总体X中抽取的样本,在显著性水平【图片】下拒绝原假设【图片】,则当【图片】时,下列结论( )正确.参考答案:拒绝49.利用两个相互独立的大样本求两个总体均值之差的区间估计,当两个总体的方差未知且不相等,样本容量也不相同时,所使用的分布是().参考答案:正态分布50.给定样本之后,降低置信水平会使得置信区间的长度().参考答案:减少51.设总体X服从正态分布【图片】,【图片】为来自总体X的简单随机样本,记【图片】,则【图片】的值为【图片】.参考答案:正确52.所谓小概率原理是指发生概率很小的随机事件,在试验中不可能发生.参考答案:错误53.在假设检验中,【图片】表示原假设,【图片】表示备择假设,则称为第二类错误的是参考答案:不真,接受54.设总体X服从正态分布【图片】,【图片】为来自总体X的简单随机样本,记【图片】,则【图片】的值与【图片】有关.参考答案:错误55.设总体【图片】,【图片】为来自总体X的简单随机样本,记【图片】,【图片】,则【图片】和【图片】分别是【图片】和【图片】的相合估计.参考答案:正确56.设总体【图片】,σ已知,问抽取容量n最少应为( ),才能使μ的置信水平为0.95的置信区间长度不超过k.参考答案:+1。
概率论与数理统计知识点总结(PDF)

概率论与数理统计 知识点总结一、随机事件与概率1.随机事件(1)事件间的关系与运算● 事件的差:A B A AB AB -=-= ● 对立事件:,AA A A =∅⋃=Ω ● 完备事件组:设12,,,,n A A A 是有限或可数个事件,如果其满足:① ,,,1,2,i j A A i j i j =∅≠=; ②i iA =Ω,则称12,,,,n A A A 是一个完备事件组.(2)随机事件的运算律 ● 求和运算:①A B B A +=+(交换律)②()()A B C A B C A B C ++=++=++(结合律) ● 求交运算:①AB BA =(交换律)②()()AB C A BC ABC ==(结合律) ● 求和运算与求交运算的混合:①()()()A B C AB AC +=+(第一分配律) ②()()()A BC A B A C +=++(第二分配律) ● 求对立事件的运算:()A A =(自反律) ● 和及交事件的对立事件:①A B AB +=(第一对偶律) ②AB A B =+(第二对偶律)2.随机事件的概率(1)概率的公理化定义● 公理1:()1P Ω=;公理2:对任意事件A ,有()0P A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A P A ∞∞===∑.(2)概率测度的其他性质 ● 性质1:()0P ∅=性质2(有限可加性):12,,,n A A A 是两两互不相容的,则有11()()nni i i i P A P A ===∑性质3:()1()P A P A =-性质4:()()()P A B P A P AB -=-特别地,若A B ⊃,则①()()()P A B P A P B -=-;②()()P A P B ≥ 性质5:0()1P A ≤≤性质6:()()()()P A B P A P B P AB +=+-推论:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+3.古典概型与几何概型(1)古典概型● 古典概型的概率测度:()==A A P A Ω中元素个数使发生的基本事件数中元素个数基本事件总数(2)几何概型● 几何概型的概率测度:()()()S A P A S =Ω 4.条件概率(1)条件概率的数学定义 ●()()(()0)()P AB P B A P A P A =>● ()1()P B A P B A =- ●()1()P B A P B A =-● 条件概率测度满足概率的三条公理:公理1:()1P A Ω=;公理2:对任意事件B ,有()0P B A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A A P A A ∞∞===∑.(2)乘法公式 ● ()()(),()0P AB P A P B A P A => ● ()()(),()0P AB P B P A B P B => ● ()()()()P ABC P A P B A P C AB = ●12121312121()()()()()n n n P A A A P A P A A P A A A P A A A A -=(3)全概率公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且i iA =Ω,则对任意事件B ,有()()()i i iP B P A P B A =∑.(4)贝叶斯公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且1i i A ∞==Ω,则对任意事件B , ()0P B >,有()()()()()()()i i i i j j jP A P B A P A B P A B P B P A P B A ==∑. 5.事件的独立性(1)两个事件的独立性 ●()()()P AB P A P B =(2)有限个事件的独立性● 两两独立:()()()i j i j P A A P A P A = ● 相互独立:1212()()()()k k i i i i i i P A A A P A P A P A =(3)相互独立性的性质 ● 性质1:如果n 个事件12,,,n A A A 相互独立,则将其中任何(1)m m n ≤≤个事件改为相应的对立事件,形成的新的n 个事件仍然相互独立. 性质2:如果n 个事件12,,,n A A A 相互独立,则有1111()1(1())n n ni i i i i i P A P A P A ===⎛⎫=-=-- ⎪⎝⎭∏∏(4)伯努利概型● 伯努利定理:在一次试验中,事件A 发生的概率为(01)p p <<,则在n 重伯努利试验中,事件A 恰好发生k 次的概率为:(;,)C k k n kn b k n p p q-=,其中1q p =-. ● 在伯努利试验序列中,设每次试验中事件A 发生的概率为p ,“事件A 在第k 次试验中才首次发生”(1)k ≥,这一事件的概率为1(,)k g k p q p -=.二、随机变量的分布与数字特征1.随机变量及其分布(1)离散型随机变量的概率分布● 离散型随机变量的概率分布满足性质:①()0,1,2,i p x i ≥=②()1iip x =∑● 一旦知道一个离散型随机变量X 的概率分布{}i p x (),便可求得X 所生成的任何事件的概率.特别地,对任意a b ≤,有{}({}){}()i i i i i i a x ba x ba x bP a X b P X x P X x p x ≤≤≤≤≤≤≤≤=====∑∑.一般地,若I 是一个区间,则{}=()i ix IP X I p x ∈∈∑.(2)分布函数● 随机变量的分布函数性质:①单调性,若12x x <,则12()()F x F x ≤; ②()lim ()0x F F x →-∞-∞==,()lim ()1x F F x →+∞+∞==;③右连续性,(0)()F x F x +=. (3)连续型随机变量及其概率密度 ●(){}()xF x P X x f t dt -∞=≤=⎰,()f x 为X 的概率密度函数.● 密度函数性质:①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.● {}()()()b aP a X b F b F a f x dx <≤=-=⎰● {}0P X x ==(连续型)●'()()F x f x =2.随机变量的数字特征(1)离散型随机变量的数学期望 ●1=i i i EX x p ∞=∑(2)连续型随机变量的数学期望 ●()EX xf x dx +∞-∞=⎰(3)随机变量函数的数学期望● 设X 是一个随机变量,()g x 是一个实函数.①若X 为离散型随机变量,概率分布为{},1,2,i i P X x p i ===.且1()iii g x p∞=<∞∑,则()Eg X 存在,且1()()i i i Eg X g x p ∞==∑.②若X 为连续型随机变量,()f x 是其密度函数,且()()g x f x dx +∞-∞<∞⎰,则()Eg X 存在,且()()()Eg X g x f x dx +∞-∞=⎰.(4)数学期望的性质● ①对任意常数a ,有Ea a =;②设12,αα为任意实数,12(),()g x g x 为任意实函数,如果12(),()Eg X Eg X 均存在,则11221122[()()]()()E g X g X Eg X Eg X αααα+=+;③如果EX 存在,则对任意实数a ,有()E X a EX a +=+. (5)随机变量的方差 ● 离差:X EX -● 方差:2()DX E X EX =-● ● ①若X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,则22()()i i iDX E X EX x EX p =-=-∑②若X 为连续型随机变量,()f x 为其密度函数,则22()()()DX E X EX x EX f x dx +∞-∞=-=-⎰③22()DX EX EX =-● 方差的基本性质:设X 的方差DX 存在,a 为任意常数,则 ①0Da =;②()D X a DX +=; ③2()D aX a DX =.(6)随机变量的矩与切比雪夫不等式● 矩定义:X 为一个随机变量,k 为正整数,如果kEX 存在(即kE X<∞),则称kEX 为X的k 阶原点矩,称kE X 为X 的k 阶绝对矩.定理:随机变量X 的t 阶矩存在,则其s 阶矩(s t <为正整数)也存在. 推论:设k 为正整数,C 为常数,如果kEX 存在,则()kE X C +存在,特别地,)k E X EX -(存在.● 中心矩定义:X 为一个随机变量,k 为正整数,如果k EX 存在,则称()kE X EX -为X 的k阶中心矩,称kE X EX -为X 的k 阶绝对中心矩.● 定理:设()h x 是x 的一个非负函数,X 是一个随机变量,且()Eh X 存在,则对任意0ε>,有(){()}Eh X P h X εε≥≤.推论1(马尔可夫不等式):设X 的k 阶矩存在(k 为正整数),即kE X <∞,则对任意0ε>有{}kkE XP X εε≥≤.推论2(切比雪夫不等式):设X 的方差存在,则对任意0ε>有2{}DXP X EX εε-≥≤.推论3:随机变量X 的方差为0当且仅当存在一个常数a ,使得{}=1P X a =.3.常用的离散型分布,n),n kp -,ndef(,),g k p k =几何分布的无记忆性:设{P X二项分布可作为超几何分布的近似,即1212C C Ck n kk n kN N k n nNN N C N N --⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭.这一近似关系的严格数学表述是:当N →∞时,1N →∞,2N →∞,且1N p N →,21Np N→-,则对任意给定的n 和k ,有()12C C lim1Ck n kn kN N k kn nN NC p p --→∞=-.泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关),如果n →∞时,n np λ→(0λ>为常数),则对任意给定的k ,有lim (;,)e !kn n b k n p k λλ-→∞=.当二项分布(,)b n p 的参数n 很大,而p 很小时,可以将它用参数为np λ=的泊松分布来近似,即有()(;,)e !k npnp b k n p k -≈.4.常用的连续型分布正态分布● 定理:设2~(,),,,X N Y aX b a b μσ=+为常数,且0a ≠,则22~(,)Y N a b aμσ+.推论1:如果2~(,)X N μσ,则~(0,1)X N μξσ-=.ξ通常称为X 的标准化.推论2:2~(,)X N μσ的充要条件是存在一个随机变量~(0,1)N ξ,使得X σξμ=+. 推论3:设2~(,),(),()X N x x μσϕΦ分别为其分布函数与密度函数,00(),()x x ϕΦ是标准正态分布的分布函数和密度函数,则有00()(),1()().x x x x μσμϕϕσσ-Φ=Φ-=● 一般正态分布的概率计算:【例】已知2~(,)X N μσ,求()a Φ. 解 0(){}{}{}()X a X a P X a P P b b μμμσσσ---Φ=≤=≤=≤=Φ5.随机变量函数的分布(1)离散型随机变量函数的分布● 离散型随机变量函数的概率分布的一般方法:先根据自变量X 的可能取值确定因变量Y 的所有可能取值,然后对Y 的每一个可能取值(1,2,)i y i =确定相应的{()}i j j i C x g x y ==,则有{}{()}{},{}{}{},j ii i i i i jx C Y y g X y X C P Y y P X C P X x ∈====∈==∈==∑从而求得Y 的概率分布. (2)连续型随机变量函数的分布● 连续型随机变量函数的概率分布的一般方法:一般地,已知X 的分布函数()X F x 或密度函数()X f x ,为求()Y g X =的分布函数,有()(){()}{},Y x F x P Y x P g X x P X C =≤=≤=∈其中{()}x C t g t x =≤.而{}x P X C ∈往往可由X 的分布函数()X F x 来表达或用其密度函数()X f x 的积分来表达:{}()xx X C P X C f t dt ∈=⎰.进而,Y 的密度函数,可直接从()Y F x 导出.三、随机向量1.随机向量的分布(1)随机向量及其分布函数 ●1212{,}P x X x y Y y <≤<≤22122111(,)(,)(,)(,)F x y F x y F x y F x y =--+● 由(联合)分布函数的定义得出性质:①0(,)1F x y ≤≤;②(,)F x y 关于x 和y 均单调非降、右连续; ③(,)lim (,)0,x F y F x y →-∞-∞==(,)lim (,)0,y F x F x y →-∞-∞==(,)(,)(,)lim (,)0,x y F F x y →-∞-∞-∞-∞== (,)(,)(+,+)lim(,) 1.x y F F x y →+∞+∞∞∞==●(,)F x y 的边缘分布函数:(){}{,}(,)X F x P X x P X x Y F x =≤=≤<+∞=+∞, (){}{,}(,)Y F y P Y y P X Y y F y =≤=<+∞≤=+∞.(2)离散型随机向量的概率分布● 离散型随机向量的概率分布{,},,1,2,i i ij P X x Y y p i j ====,ij p 满足性质:①0,,1,2,ij p i j ≥=;②1ijijp=∑∑.● 边缘概率分布:{},1,2,X i i ij jp P X x p i ====∑ {},1,2,Y j j ij ip P Y y p j ====∑(3)连续型随机向量的概率密度函数 ● 二维连续型随机向量(,)(,)x yF x y f s t dsdt -∞-∞=⎰⎰,(,)f x y 为(),X Y 的概率密度函数或X 与Y 的联合密度函数. (,)f x y 具有性质:①(,)0f x y ≥; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;③若D 是平面上的一个区域,则(){,}(,)DP X Y D f x y dxdy ∈=⎰⎰● 边缘密度函数:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰● 均匀分布的密度函数:1,(,)()(,)0,x y G S G f x y ⎧∈⎪=⎨⎪⎩其他,若(),X Y 服从G 上的均匀分布,则对任何平面区域D ,有()1(){,}(,)=()()DD GS D G P X Y D f x y dxdy dxdy S G S G ⋂⋂∈==⎰⎰⎰⎰. (4)二元正态分布 ● 密度函数:()2211222221212()()()()122(1),x x y y x y μμμμρσσρσσϕ⎡⎤------+⎢⎥-⎢⎥⎣⎦=,记作()221212,~(,;,;)X Y N μμσσρ.● 边缘密度函数分布:()2121()2()=,x X x x y dy μσϕϕ--+∞-∞⎰,()2222()2()=,y Y y x y dx μσϕϕ--+∞-∞⎰.注意:比较联合密度函数(),x y ϕ和边缘密度函数()X x ϕ,()Y y ϕ,当且仅当0ρ=时,对一切(),x y ,有(),()()X Y x y x y ϕϕϕ=.2.条件分布与随机变量的独立性(1)条件分布与独立性的一般概念● 随机变量X 和Y 相互独立:(,)()()X Y F x y F x F y =● 定理1:随机变量X 和Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立,即对任意实数集A 和B ,有{,}{}{}P X A Y B P X A P Y B ∈∈=∈∈.定理2:如果随机变量X 和Y 相互独立,则对任意函数12(),()g x g y ,均有1()g X 与2()g Y 相互独立. ● 相互独立:12,,,n X X X 相互独立,()121122,,,()()()n n n F x x x F x F x F x =.(2)离散型随机变量的条件概率分布与独立性 ● 概率分布:{,},,1,2,i j ij P X x Y y p i j ====●i j p (当{}0i P Y y =>时):{,}{}{}iji i i j Y i jP P X x Y y P X x Y y P Y y P =======性质:①0i j p ≥;②1i jip=∑.● 已知j Y y =的条件下X 的条件概率分布:{},1,2,i i i j P X x Y y p i ====; 已知i X x =的条件下Y 的条件概率分布:{},1,2,i i j i P Y y X x p j ====.●X Y ij i j j i i j p p p p p =⋅=⋅● 定理:设,X Y 是离散型随机变量,其联合概率分布为{,}(,1,2,)i j ij P X x Y y p i j ====,边缘概率分布分别为X i p 和Yj p (,1,2,)i j =,则X 与Y 相互独立的充要条件是,,1,2,X Y ij i j p p p i j ==.(3)连续型随机变量的条件密度函数与独立性● 在Y y =的条件下X 的条件分布:0(,){,}{}lim {}()xy Y f u y du P X x y y Y y P X x Y y P y y Y y f y -∞∆→≤-∆<≤≤===-∆<≤⎰● 条件分布和条件密度函数● (,)()()()()X Y Y X X Y f x y f x f y x f y f x y ==● 定理:设连续型随机向量(),X Y 的密度函数为(,)f x y ,边缘密度函数分别为()X f x 和()Y f y ,则X 与Y 相互独立的充要条件是(,)()()X Y f x y f x f y =.3.随机向量的函数的分布与数学期望(1)离散型随机向量的函数分布 ●(,){}{(,)}{,},1,2,i j kk k i j g x y z P Z z P g X Y z P X x Y y k ========∑● 设,X Y 是两个相互独立的随机变量,分别服从参数为1λ和2λ的泊松分布,则X Y ξ=+的分布为()()1212e ,0,1,2,!kk k λλλλ-++=,可见X Y ξ=+服从参数为()12λλ+的泊松分布.结论:泊松分布具有独立可加性.2,(2)连续型随机向量的函数分布● 分布函数:(){}{(,)}{(,)}(,)zZ z D F z P Z z P g X Y z P X Y D f x y dxdy =≤=≤=∈=⎰⎰,其中z D ={(,)(,)}x y g x y z ≤. ● 密度函数:'()=()Z Z f z F z .● 随机变量的和:设(,)X Y 的联合密度函数为(,)f x y ,则X Y +的密度函数为()=(,)Z f z f z y y dy +∞-∞-⎰或 ()=(,)Z f z f x z x dx +∞-∞-⎰特别地,如果X 和Y 是相互独立的随机变量,则有(卷积公式)()=()()Z X Y f z f x f z x dx +∞-∞-⎰或 ()=()()Z X Y f z f z y f y dy +∞-∞-⎰即,()=*()*()Z X Y Y X f z f f z f f z =.● 独立正态随机变量之和:设随机变量221122~(,),~(,)X N Y N μσμσ,且X 与Y 独立,则221212~(,)X Y N μμσσ+++,即2122212()2()()z X Y f z μμσσ⎡⎤---⎢⎥+⎢⎥⎣⎦+=,结论:独立正态分布的和服从正态分布.推论:X 与Y 相互独立且分别服从正态分布211(,)N μσ和222(,)N μσ,则其任意非零线性组合仍服从正态分布,且22221212~(,)aX bY N a b a b μμσσ+++.进一步地,12,,n X X X 相互独立,2~(,)i i iX N μσ,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.● 随机变量的商:设二维随机向量(,)X Y 的密度函数为(,)f x y ,则XZ Y=的密度函数为'()=()(,)Z Z f z F z y f zy y dy +∞-∞=⎰.● 最大值与最小值:设,X Y 的分布函数分别为(),()F x G x ,密度函数分别为(),()f x g x ,且X与Y 相互独立,令max{,},min{,}M X Y N X Y ==,则有(3)随机向量函数的数学期望● 二维离散型随机向量的数学期望:,(,)(,)ijiji jEZ Eg X Y g x y p==∑.● 二维连续型随机向量的数学期望:(,)(,)(,)EZ Eg X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.●(,)g X Y XY =型:()(),,,(,),,i j ij i jx y p X Y EXY xyf x y dxdy X Y +∞+∞-∞-∞⎧⎪=⎨⎪⎩∑⎰⎰若为离散型若为连续型 (4)数学期望的进一步性质● (1)对任意两个随机变量,X Y ,如果其数学期望均存在,则()E X Y +存在,且()=E X Y EX EY ++(2)设,X Y 为任意两个相互独立的随机变量,数学期望均存在,则EXY 存在,且=EXY EXEY推广: (1)12,,,n X X X 是任意n 个随机变量,数学期望均存在,则()12n E X X X +++存在,且()1212n n E X X X EX EX EX +++=+++(2)设12,,,n X X X 是个相互独立的随机变量,且数学期望均存在,则()12n E X X X 存在,且()1212n n E X X X EX EX EX =.4.随机变量的数字特征(1)协方差● 协方差:()()()cov ,X Y E X EX Y EY =--⎡⎤⎣⎦1,2,)●()cov ,X Y EXY EXEY =-● 定理:(1)()cov ,X X DX = (2)()()cov ,cov ,X Y Y X =(3)()()cov ,cov ,,,aX bY ab X Y a b =为任意常数 (4)()cov ,0,C X C =为任意常数(5)()()()1212cov ,cov ,cov ,X X Y X Y X Y +=+ (6)如果X 与Y 相互独立,则()cov ,0X Y =推论:设,X Y 为任意两个随机变量,如果其方差均存在,则X Y +的方差也存在,且()()2cov ,D X Y DX DY X Y +=++.()()2cov ,D X Y DX DY X Y -=+-特别地,如果X 与Y 相互独立,则()D X Y DX DY +=+.● 定理:设()12,,,n X X X 是n 维随机向量,如果()1,2,,i X i n =的方差均存在,则对任意实向量()12,,,n λλλ,1ni i i X λ=∑的方差必存在,且()21112cov ,n n i i i i i j i j i i i j n D X DX X X λλλλ==≤<≤⎛⎫=+ ⎪⎝⎭∑∑∑.特别地,如果12,,,n X X X 两两独立,则211n n i i i i i i D X DX λλ==⎛⎫= ⎪⎝⎭∑∑. (2)协方差矩阵 ● 记()T 12,,,n X X X =X ,其协差阵通常记作D X .对任意实向量()T12,,,n λλλ=λ,有()T T D D =λX λX λ.对任意实向量()T12,,,n λλλ=λ,()T T 0D D =≥λX λλX .(3)相关系数 ●,cov ,X Y X Y ρ,,1X Y ρ≤● 定理:设(),X Y 是一个二维随机向量,,DX DY 均存在且为正,则,1X Y ρ=的充要条件是X 与Y 具有线性关系,即存在常数0a ≠及常数b ,使得{}1P Y ax b =+=.而且,当0a >时,,1X Y ρ=;当0a <时,,1X Y ρ=-.● 如果,DX DY 均存在且为正,那么X 与Y 不相关等价以下条件:①()cov ,0X Y =; ②EXY EXEY =;③()D X Y DX DY +=+; ④,0X Y ρ=.5.大数定律与中心极限定理(1)依概率收敛 ● 定义:设12,,,,,n X X X X 是一列随机变量,如果对任意0ε>,恒有{}lim 0n n P X X ε→∞->=,则称{}n X 依概率收敛到X ,记作Pn X X −−→或lim n n P X X →∞-=.(2)大数定律 ● 定理:①伯努利大数定律:设n μ是n 重伯努利试验中事件A 发生的次数,已知在每次试验中A 发生的概率为()01p p <<,则对任意0ε>,有lim 0n n P p n με→∞⎧⎫->=⎨⎬⎩⎭, 即Pnp nμ−−→或limnn P p nμ→∞-=.②切比雪夫大数定律:设12,,,n ξξξ是一列两两不相关的随机变量,它们的数学期望iE ξ和方差i D ξ均存在,且方差有界,即存在常数C ,使得()1,2,i D C i ξ≤=,则对任意0ε>,有1111lim 1n ni i n i i P E n n ξξε→∞==⎧⎫-<=⎨⎬⎩⎭∑∑. 推论:设12,,,nξξξ是一列独立同分布的随机变量,其数学期望和方差均存在,记=i E ξμ,则对任意0ε>,有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. 即11n Pi i n ξμ=−−→∑.③辛钦大数定律:设12,,,nξξξ是一列相互独立同分布的随机变量,且数学期望存在,记=i E ξμ,则有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. (3)中心极限定理● 定理:林德伯格-列维 设12,,,n ξξξ是一列相互独立同分布的随机变量,且=i E ξμ,2=0,1,2,,i D i ξσ>=则有22lim en t i xn n P x dt ξμ--∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑.● 定理:设()~,,01,n X b n p p <<则22lim et xn P x dt --∞→∞⎧⎫⎪≤=⎬⎪⎭.四、数理统计的基础知识1.总体与样本样本与样本分布● 总体X 的分布函数为()F x ,则样本()12,,,n X X X 的分布函数为:()()121,,,nn n i i F x x x F x ==∏,称之为样本分布.特别地,若总体X 为连续型随机变量,其密度函数为()f x ,则样本的密度函数为()()121,,,nn n i i f x x x f x ==∏.若总体X 为离散型随机变量,概率分布为(){}p x P X x ==,x 取遍X 所有可能取值,则样本的概率分布为()()()1211221,,,,,,nn n n n i i p x x x P X x X x X x p x ======∏.),n i x =∏为伯努利总体,如果它服从以}{,p P X =)12,,,n X X X 的概率分布为,n n X i =取1或0,而n i +,它恰等于样本中取值为服从参数为λ的泊松分布,)12,,,n X X 为其样本,则样本的概率分布为)21,,ee !!!!kinn n n k k k n i X i X i i i i i λλλλ--======∏,其中取非负整数,而n i ++.2.统计量常用的统计量)n X +2)X -1(ni i X X =-∑3.常用的统计分布(1)分位数● 上侧分位数:设随机变量X 的分布函数为()F x ,对给定的实数(01)αα<<,如果实数F α满足{}P X F αα>=,即()1F F αα-=或()1F F αα=-,则称F α为随机变量X 的分布的水平α上的上侧分位数. ● 有关等式:{}1P X F αα-≤= 1221P F X F ααα-⎧⎫<≤=-⎨⎬⎩⎭推论:()()122,,P X F m n X F m n ααα-⎛⎫⎧⎫⎧⎫<⋃>= ⎪⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭或()()122,,1P F m n X F m n ααα-⎧⎫<<-⎨⎬⎩⎭. ● 双侧分位数:设X 是对称分布的连续型随机变量,其分布函数为()F x ,对给定的实数(01)αα<<,如果正实数T α满足{}P X T αα>=,即()()1F T F T ααα--=-.则称T α为随机变量X 的分布的水平α的双侧分位数. 注意:由于对称性,上式可改写为:()12F T αα=-或{}()12P X T F T ααα>=-=.对于具有对称密度函数的分布函数的上侧分位数,恒有1F F αα-=-. (2)2χ分布 ● 命题:设()12,,,n X X X 是n 个相互独立的随机变量,且()~0,1,1,2,,i X N i n =,则22212n X X X X=+++的密度函数为()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭.● Γ函数:()()10e 0a x a x dx a +∞--Γ=>⎰.●2χ分布:一个随机变量X 称为服从以n 为自由度的2χ分布,如果其密度函数由()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭给出,记作()2~X n χ.● 命题:①若()()22~,~X m Y n χχ,且X 与Y 相互独立,则()2~X Y m n χ++. ②若()2~X n χ,则,2EX n DX n ==.(3)F 分布 ● 命题:设Z 由/=/X m n X Z Y n m Y=(设()()22~,~X m Y n χχ,且X 与Y 相互独立.)所定义,则Z 的密度函数为()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭.● B 函数:()()()1110,=10,0q p p q x x dx p q --B ->>⎰.●F 分布:如果一个随机变量X 的密度函数由()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭给出,则称其服从第一自由度为m ,第二自由度为n 的F 分布,记作()~,X F m n . ● 若()~,X F m n ,则()1~,XF n m -.● 当α接近1时,可利用()()11,=,F m n F n m αα-求出所需上侧分位数.(3)t 分布● 定义式:设()()2~0,1,~X N Y n χ,且X 与Y相互独立,记T =,则()2~1,/X T F n Y n=.● 命题:T 的密度函数为()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭.●t 分布:如果一个随机变量X 的密度函数由()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭给出,则称其为服从自由度为n 的t 分布,记作()~X t n .注意:当自由度n 很大时,t 分布接近于标准正态分布,因为2+11222lim 1=en x n x n --→∞⎛⎫+ ⎪⎝⎭.●当α接近1时,()()1t n t n αα-=-.4.抽样分布(1)正态总体的抽样分布● 定理:设总体()()212~,,,,,n X N X X X μσ是其容量为n 的一个样本,X 与2S 分别为此样本的样本均值与样本方差,则有①2~,X N n σμ⎛⎫⎪⎝⎭;②()2221~1n S n χσ--;③X 与2S 相互独立. ● 单正态总体的抽样分布定理:设()12,,,n X X X 为正态总体()2~,X N μσ的样本,X 与2S 分别为该样本的样本均值与样本方差,则有①()~0,1X U N =;②()2221~1n S n χσ--;③()~1X T t n =-.● 双正态总体的抽样分布定理:设()211~,X N μσ与()222~,Y N μσ是两个相互独立的正态总体.又设()112,,n X X X是总体X 的容量为1n 的样本,X 与21S 分别为该样本的样本均值与样本方差.再设()212,,n Y Y Y 是总体Y 的容量为2n 的样本,Y 与22S 分别为此样本的样本均值与样本方差.记2S 是21S 与22S 的加权平均:222121212121122n n S S S n n n n --=++-+-,则有 ①()()~0,1X Y U N μμ---=;②()222112212~1,1S F F n n S σσ⎛⎫=-- ⎪⎝⎭;③当22212==σσσ时,()12~2X Y T t n n μμ---=+-.(2)一般总体抽样分布的极限分布 ● 定理:设()12,,,n X X X 为总体X 的样本,并设总体X 的数学期望与方差均存在,分别记为2,EX DXμσ==.再记n n X X U T ==X 与S 分别表示上述样本的样本均值与样本方差,则有①()()0n dU F x x −−→Φ; ②()()0n dT F x x =−−→Φ.以上()n U F x ,n T F 与()0x Φ分别表示n U ,n T 及标准正态分布的分布函数.五、参数估计与假设检验1.点估计概述评价估计量的标准 ),n X 为参数的有偏估计量.若),n X 为未知参数}-<=θε),n X 为取自总体①样本均值X 是μ的无偏估计量;②样本方差2S 是σ③未修正的样本方差,即样本二阶中心矩),n X 是取自总体,n .则1n 的相合估计量,,n .(~,X N μ),n X 为其样本,则样本方差2S 是2σ的相合估计2.参数的最大似然估计与矩估计(1)最大似然估计 ● ),n x ,存在),n x ,使()*1,,n x x θ为θ的最大似然估计值,称相应的统),n X 为的最大似然估计量.它们统称为θ的最大似然估计,可MLE . 如果未知参数为12,,,r θθθ,那么似然函数是多元函数(,,)r L θθ.若对任意),n x 存在),,,1,2,=n x i r ,使1*1(,,),,)max (,,)∈Θ=r r r L θθθθθ,则称*i θ为i θ的,1,2,,=MLE i r .当似然函数关于未知参数可微时,一般可通过求导数得到MLE ,其主要步骤①写出似然函数1(,,)r L θθ;0∂=∂L θ或ln 0,1,,∂==∂L i r θ,从中求得驻点注意,函数L 与ln L有相同的最值点,而使用后者往往更方便;③判断驻点为最大值点; MLE .● 最大似然估计的不变性:如果ˆθ为θ的最大似然估计,()=u g θ是θ的函数且存在单值反函数()=h u θ.那么()ˆg θ是()g θ的最大似然估计. (2)矩估计 ● 1,2,,ˆ2,3,=k B β.这种求点估计的方用矩法确定的估计量称为矩估计量,相应的估计值为矩估计值,矩估计量. 表示为总体矩的函数,即)2,;,l s αββ; k B 分别替换g 中的k α,)()1212ˆˆˆˆ,,;,,;,,=l s l sg A A B B ααββ即为θ的3.置信区间(1)寻求置信区间的方法● ①选取θ的一个较优的点估计ˆθ; ②围绕ˆθ寻找一个依赖于样本与θ的函数()1,,;=n u u X X θ.u 的分布为已知分布.像u 这样的函数,称为枢轴量;③对给定的置信水平1-α,确定1λ与2λ,使{}121<<=-P u λλα,一般可选取满足{}{}122≤=≥=P u P u αλλ的1λ与2λ;④利用不等式变形导出套住θ的置信区间(),θθ. (2)正态总体参数的置信区间4.假设检验概述假设检验的一般步骤 ①建立零假设0H ;②构造一个含待检验参数θ(不含其他未知参数)且分布已知的枢轴量()12,,,;n u X X X θ,并确定其分布;③对给定的显著性水平α,由上述枢轴量及其分布,结合零假设0H ,确定拒绝域C ,使得(){}120,,,∈≤n P X X X C H α;④根据样本值()12,,,n x x x 是否落在C 中做出是否拒绝0H 的统计决断:如果()12,,,∈n x x x C ,则拒绝0H ,如果()12,,,∉n x x x C ,则不能拒绝0H .5.单正态总体的参数假设检验编辑:李雪伟 2013年5月25日。
(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
概率论与数理统计第六章数理统计的基本概念

第六章数理统计的基本概念前面五章我们讲述了概率论的基本内容,随后的五章将讲述数理统计.数理统计是以概率论为理论基础的一个数学分支.它是从实际观测的数据出发研究随机现象的规律性.在科学研究中,数理统计占据一个十分重要的位置,是多种试验数据处理的理论基础.数理统计的内容很丰富,本书只介绍参数估计、假设检验、方差分析及回归分析的部分内容.本章中首先讨论总体、随机样本及统计量等基本概念,然后着重介绍几个常用的统计量及抽样分布.第一节随机样本假如我们要研究某厂所生产的一批电视机显像管的平均寿命.由于测试显像管寿命具有破坏性,所以我们只能从这批产品中抽取一部分进行寿命测试,并且根据这部分产品的寿命数据对整批产品的平均寿命作一统计推断.在数理统计中,我们将研究对象的某项数量指标值的全体称为总体(Population),总体中的每个元素称为个体(Individual).例如上述的一批显像管寿命值的全体就组成一个总体,其中每一只显像管的寿命就是一个个体.要将一个总体的性质了解得十分清楚,初看起来,最理想的办法是对每个个体逐个进行观察,但实际上这样做往往是不现实的.例如,要研究显像管的寿命,由于寿命试验是破坏性的,一旦我们获得实验的所有结果,实用文档这批显像管也全烧毁了,我们只能从整批显像管中抽取一部份显像管做寿命试验,并记录其结果,然后根据这部份数据来推断整批显像管的寿命情况.由于显像管的寿命在随机抽样中是随机变量,为了便于数学上处理,我们将总体定义为随机变量.随机变量的分布称为总体分布.一般地,我们都是从总体中抽取一部分个体进行观察,然后根据所得的数据来推断总体的性质.被抽出的部分个体,叫做总体的一个样本.所谓从总体抽取一个个体,就是对总体X进行一次观察(即进行一次试验),并记录其结果.我们在相同的条件下对总体X进行n次重复的、独立的观察,将n次观察结果按试验的次序记为X1,X2,…,X n.由于X1,X2,…,X n是对随机变量X观察的结果,且各次观察是在相同的条件下独立进行的,于是我们引出以下的样本定义.定义6.1设总体X是具有分布函数F的随机变量,若X1,X2,…,X n是与X具有同一分布F(x),且相互独立的随机变量,则称X1,X2,…,X n为从总体X得到的容量为n的简单随机样本(Random sample),简称为样本.当n次观察一经完成,我们就得到一组实数x1,x2,…,x n.它们依次是随机变量X1,X2,…,X n的观察值,称为样本值.对于有限总体,采用放回抽样就能得到简单样本,当总体中个体的总数N比要得N≥10时),在实际中可将不放回抽样近似地当作到的样本的容量n大得多时(一般当n放回抽样来处理.实用文档实用文档若X 1,X 2,…,X n 为总体X 的一个样本,X 的分布函数为F (x ),则X 1,X 2,…,X n 的联合分布函数为F *(x 1,x 2,…,x n )=∏=ni i x F 1)(.又若X 具有概率密度f ,则X 1,X 2,…,X n 的联合概率密度为f *(x 1,x 2,…,x n )=∏=ni i x f 1)(.我们在搜集资料时,如果未经组织和整理,通常是没有什么价值的,为了把这些有差异的资料组织成有用的形式,我们应该编制频数表(即频数分布表).例6.1 某工厂的劳资部门为了研究该厂工人的收入情况,首先收集了工人的工资资料,表6-1记录了该厂30名工人未经整理的工资数值:表6-1以下,我们以例6.1为例介绍频数分布表的制作方法.表6-1是30个工人月工资的原始资料,这些数据可以记为x1,x2,…,x30,对于这些观测数据,第一步确定最大值x max和最小值x min,根据表6-1,有x max=640,x min=420.第二步分组,即确定每一收入组的界限和组数,在实际工作中,第一组下限一般取一个小于x min的数,例如,我们取400,最后一组上限取一个大于x max的数,例如取650,然后从400元到650元分成相等的若干段,比如分成5段,每一段就对应于一个收入组.表6-1资料的频数分布表如表6-2所示.表6-2实用文档600~650230图6-1为了研究频数分布,我们可用图示法表示.直方图直方图是垂直条形图,条与条之间无间隔,用横轴上的点表示组限,纵轴上的单位数表示频数.与一个组对应的频数,用以组距为底的矩形(长条)的高度表示,表6-2资料的直方图如图6-1所示.上述方法我们对抽取数据加以整理,编制频数分布表,作直方图,画出频率分布曲线,这就可以直观地看到数据分布的情况,在什么范围,较大较小的各有多少,在哪些地方分布得比较集中,以及分布图形是否对称等等,所以,样本的频率分布是总体概率分布的近似.样本是总体的反映,但是样本所含的信息不能直接用于解决我们所要研究的问题,而需要把样本所含的信息进行数学上的加工使其浓缩起来,从而解决我们的问题.针对不同的问题构造样本的适当函数,利用这些样本的函数进行统计推断.定义6.2设X1,X2,…,X n是来自总体X的一个样本,g(X1,X2,…,X n)是X1,X2…,X n的函数,若g中不含任何未知参数,则称g(X1,X2,…,X n)是一个统计量(Statistic).实用文档实用文档设x 1,x 2,…,x n 是相应于样本X 1,X 2,…,X n 的样本值,则称g (x 1,x 2,…,x n )是g (X 1,X 2,…,X n )的观察值.下面我们定义一些常用的统计量.设X 1,X 2,…,X n 是来自总体X 的一个样本,x 1,x 2,…,x n 是这一样本的观察值.定义样本平均值∑==ni i X n X 11;样本方差S 2=2221111()11n ni i i i X X X nX n n ==⎡⎤-=-⎢⎥--⎣⎦∑∑; 样本标准差S =∑=--=n i iX X n S 122)(11; 样本k 阶(原点)矩A k =∑=n i ki X n 11,k =1,2,…;样本k 阶中心矩B k =∑=-ni k i X X n 1)(1,k =1,2,….它们的观察值分别为∑==ni i x n x 11;实用文档s 2=2221111()11n n i i i i x x x nx n n ==⎡⎤-=-⎢⎥--⎣⎦∑∑ s =∑=--ni i x x n 12)(11; a k =∑=n i ki x n 11, k =1,2,…;b k =11()nk i i x x n =-∑, k =1,2,….这些观察值仍分别称为样本均值、样本方差、样本标准差、样本k 阶矩、样本k 阶中心矩.第二节 抽样分布统计量是样本的函数,它是一个随机变量.统计量的分布称为抽样分布.在使用统计量进行统计推断时常需知道它的分布.当总体的分布函数已知时,抽样分布是确定的,然而要求出统计量的精确分布,一般来说是困难的.本节介绍来自正态总体的几个常用的统计量的分布.1.χ2分布设X 1,X 2,…,X n 是来自总体N (0,1)的样本,则统计量2χ=X 12+X 22+…+X n 2所服从的分布称为自由度为n 的2χ分布(2χdistribution ),记为2χ~)(2n χ.实用文档)(2n χ分布的概率密度函数为f (y )=⎪⎩⎪⎨⎧>--.,0,0,)2(212122其他y y n y n n e Γf (y )的图形如图62所示.图622χ分布具有以下性质:(1) 如果21χ~)(12n χ,22χ~)(22n χ,且它们相互独立,则有)(~2122221n n ++χχχ.这一性质称为2χ分布的可加性. (2) 如果2χ~)(2n χ,则有E (2χ)=n ,D (2χ)=2n .证 只证(2)因为X i ~N (0,1)故E (X i 2)=D (X i )=1,D (X i 2)=E (X i 4)E (X i 2)]2=31=2,i =1,2,…,n .于是,)()()(12122n X E X E E ni i ni i ===∑∑==χ图63.2)()()(12122n X D X D D ni i n i i ===∑∑==χ对于给定的正数α,0<α<1,称满足条件实用文档{}⎰∞==>)(222)()(n y y f n P αχααχχd的点)(2n αχ为)(2n χ分布的上α分位点(Percentile of α),如图63所示,对于不同的α,n ,上α分位点的值已制成表格,可以查用(见附表),例如对于α=0.05,n =16,查附表得)16(205.0χ=26.296.但该表只详列到n =45为止.当n >45时,近似地有)(2n αχ≈2)12(21-+n z α,其中z α是标准正态分布的上α分位点.例如)50(205.0χ≈12(1.645+99)2=67.221.2.t 分布设X ~N (0,1),Y ~2()n χ,并且X ,Y 独立,则称随机变量t =nYX服从自由度为n 的t 分布(t distribution ),记为t ~t (n ).t (n )分布的概率密度函数为h (t )=[]2/)1(21)2/(2/)1(+-⎪⎪⎭⎫⎝⎛++n n t n n n ΓΓπ, ∞<t <∞.(证略). 图64中画出了当n =1,10时h (t )的图形.h (t )的图形关于t =0对称,当n充分大时其图形类似于标准正态变量概率密度的图形.但对于较小的n ,t 分布与N (0,1)分布相差很大(见附表).实用文档图6 4 图65对于给定的α,0<α<1,称满足条件P (t >t α(n ))=⎰∞)()(n t t t h αd =α的点t α(n )为t (n )分布的上α分位点(见图65).由t 分布的上α分位点的定义及h (t )图形的对称性知t 1α(n )=t α(n ).t 分布的上α分位点可从附表查得.在n >45时,就用正态分布近似:t α(n )≈z α.3.F 分布设U ~)(12n χ,V ~)(22n χ,且U ,V 独立,则称随机变量F =21//n V n U 服从自由度为(n 1,n 2)的F 分布(F distribution ),记F ~F (n 1,n 2).F (n 1,n 2)分布的概率密度为[][]⎪⎩⎪⎨⎧>++=+-.,0,0,)/(1)2/()2/()/(2/)()(2/)(21211)2/(2/21212111其他y n y n n n y n n n n y n n n n ΓΓΓψ (证略).实用文档)(y ψ的图形如图66所示.图6 6 图67F 分布经常被用来对两个样本方差进行比较.它是方差分析的一个基本分布,也被用于回归分析中的显著性检验.对于给定的α,0<α<1,称满足条件P {F >F α(n 1,n 2)}=⎰∞),(21)(n n F y y αψd =α的点F α(n 1,n 2)为F (n 1,n 2)分布的上α分位点(图67).F 分布的上α分位点有表格可查(见附表).F 分布的上α分位点有如下的性质:F 1α(n 1,n 2)=),(112n n F α.这个性质常用来求F 分布表中没有包括的数值.例如由附表查得F 0.05(9,12)=2.80,则可利用上述性质求得F 0.95(12,9)=1/F 0.05(9,12)=12.80=0.357. 4.正态总体的样本均值与样本方差的分布设正态总体的均值为μ,方差为σ2,X 1,X 2,…,X n 是来自正态总体X 的一个简单实用文档样本,则总有E (X )=μ, D (X )=σ2/n ,X ~N (μ,σ2/n ).对于正态总体N (μ,σ2)的样本方差S 2, 我们有以下的性质.定理6.1 设X 1,X 2,…,X n 是总体N (μ,σ2)的样本,X ,S 2分别是样本均值和样本方差,则有(1))1(~)1(222--n S n χσ;(2)X 与S 2独立. (证略).定理6.2 设X 1,X 2,…,X n 是总体N (μ,σ2)的样本,X ,S 2分别是样本均值和样本方差,则有)1(~/--n t nS X μ.证 因为)1,0(~/N nX σμ-,)1(~)1(222--n S n χσ且两者独立,由t 分布的定义知实用文档)1(~)1()1(//22----n t n S n nX σσμ. 化简上式左边,即得)1(~/--n t nS X μ.定理6.3 设X 1,X 2,…,1n X 与Y 1,Y 2,…,2n X 分别是来自具有相同方差的两正态总体N (μ1,σ2),N (μ2,σ2)的样本,且这两个样本相互独立.设∑==1111n i i X n X ,∑==2121n i i Y n Y 分别是这两个样本的均值.S 12=∑=--1121)(11n i i X X n ,S 22=∑=--2122)(11n i i Y Y n 分别是这两个样本的样本方差,则有:)2(~/1/1)()(212121-++---n n t n n S Y X W μμ,其中 S W 2=)2()1()1(21222211-+-+-n n S n S n .(证略).本节所介绍的三个分布以及三个定理,在下面各章中都起着重要的作用.应注意,它们都是在总体为正态总体这一基本假定下得到的.例6.2 设总体X 服从正态分布N (62,100),为使样本均值大于60的概率不小于0.95,问样本容量n 至少应取多大?解 设需要样本容量为n ,则)1,0(~/N n X nX ⋅-=-σμσμ,实用文档P (X >60)=⎭⎬⎫⎩⎨⎧⋅->⋅-n n X P 1062601062.查标准正态分布表,得Φ(1.64)≈0.95.所以0.2n ≥1.64,n ≥67.24.故样本容量至少应取68.小 结在数理统计中往往研究有关对象的某一项数量指标,对这一数量指标进行试验和观察,将试验的全部可能的观察值称为总体,每个观察值称为个体.总体中的每一个个体是某一随机变量X 的值,因此一个总体对应于一个随机变量X ,我们笼统称为总体X .随机变量X 服从什么分布就称总体服从什么分布.若X 1,X 2,…,X n 是相同条件下,对总体X 进行n 次重复独立的观察所得到的n 个结果,称随机变量X 1,X 2,…,X n 为来自总体X 的简单随机样本,它具有两条性质.1.X 1,X 2,…,X n 都与总体具有相同的分布;2.X 1,X 2,…,X n 相互独立.我们就是利用来自样本的信息推断总体,得到有关总体分布的种种结论.完全由样本X 1,X 2,…,X n 所确定的函数g =g (X 1,X 2,…,X n )称为统计量,统计量是一个随机变量.它是统计推断的一个重要工具.在数理统计中的地位相当重要,相当于随机变量在概率论中的地位.实用文档样本均值 ∑==ni i X n X 11和样本方差 S 2=∑=--n k k X X n 12)(11是两个最重要的统计量,统计量的分布称为抽样分布,读者需要掌握统计学中三大抽样分布:2χ分布,t 分布,F 分布.读者学习后续内容还需要掌握以下重要结果:1.设总体X 的一个样本为X 1,X 2,…,X n .且X 的均值和方差存在. 记μ=EX ,σ2=DX .则E (X )=μ, D (X )=σ2/n , ES 2=σ2.2.设总体X~N (μ,σ2),X1,X2,…,Xn 是X 的一个样本,则 (1) X ~N (μ,σ2/n ); (2))1(~)1(222--n S n χσ;(3) X 和S 2相互独立; (4))1(~/--n t nS X μ.3.定理6.3的结果. 重要术语及主题总体 样本 统计量实用文档2χ分布、t 分布、F 分布的定义及它们的密度函数图形上的α分位点.习 题 六1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率.2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大?3.设某厂生产的灯泡的使用寿命X ~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S 2=1002,试求P (X >1062).4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本,S 2为其样本方差,且P (S 2>a )=0.1,求a 之值.6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量Y =∑∑==-ni ii i XX n 62512)15(,n >5实用文档服从何种分布?7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于0.3的概率.8.设总体X ~N (0,σ2),X 1,…,X 10,…,X 15为总体的一个样本.则Y =()21521221121022212X X X X X X ++++++ 服从 分布,参数为 . (2001研考)9.设总体X ~N (μ1,σ2),总体Y ~N (μ2,σ2),X 1,X 2,…,1n X 和Y 1,Y 2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = . (2004研考) 10.设总体X ~N (μ,σ2),X 1,X 2,…,X 2n (n ≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y =∑=+-+ni i n iX X X12)2(,求EY . (2001研考)11. 设总体X 的概率密度为f (x )=x-e21 (-∞<x <+∞),X 1,X 2,…,X n 为总体X 的简单随机样本,其样本方差为S 2,求ES 2. (2006研考)。
北京理工大学《概率论与数理统计2》课件-第七章 总复习

S
S2
1 n1
n i 1
(Xi
X
)2
它反映了总体 标准差的信息
37
它反映了总体k
阶矩的信息
3(1) 样本k阶原点矩
an,k
1 n
n
X
k i
,
Байду номын сангаас
k
1,
2,
i1
(2)样本k阶中心矩
它反映了总体k 阶
中心矩的信息
mn,k
1 n
n i1
(Xi
X )k ,k
2, 3,
特别
an,1 X
mn,2
1 n
有时也根据总体分布的类型来称呼总体 的名称,如正态总体、二项分布总体、0-1分 布总体等等.
11
1.2.2. 样本空间和样本的两重性 1 样本空间
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验, 以获得有关总体的信息,这一抽取过程称 为 “抽样”
所抽取的部分个体称为样本(或子样). 样本中所包含的个体数目称为样本容量.
设样本X1, X 2 , , X ni.i.d., X1 ~ N (, 2 ), 其中和 2未知.
设样本X1, X 2 , , X ni.i.d., X1 ~ Exp(), 其中未知.
这些未知的量只有通过样本去估计. 统计学上把出现在样本分布中的未知的 常数称为参数.
25
在一些问题中,参数虽然未知,但根据 参数的性质可以给出参数取值范围.
33
注1:统计量只与样本有关,不能依赖 任何未知参数
注2:统计量既然是依赖于样本的,而
后者又是随机变量,即统计量是随机变量
的函数,故统计量是随机变量,具有概率
概率论与数理统计完整版课件全套ppt教学教程-最全电子讲义(最新)

四、事件的关系与运算
在一个样本空间中显然可以定义不止一个事件。概率论的重要研究课 题之一是希望从简单事件的概率推算出复杂事件的概率。为此,需要研究 事件间的关系与运算。
事件是一个集合,因此事件间的关系和运算自然按照集合之间的关系 和运算来处理。
1 事件的包含与相等
若 A B ,则称事件 B 包含事件 A ,这里指的是事件 A 发生必然导致事件 B 发生, 即属于 A 的样本点都属于 B ,如图1-2所示。显然,对任何事件A,必有 A 。
若 A B 且 B A ,则称事件 A 与 B 相等,记为 A B。
图1-2 A B
事件 A B {x | x A或x B},称为事件A与事件B的和事件,即当且仅当事件 A 或 事件 B 至少有一个发生时,和事件 A B 发生。它由属于 A 或 B 的所有公共样本点构 成,如图 1-4 所示。
图 1-4 A B
4 事件的差
事件 A B {x | x A且x B}称为事件 A 与事件 B 的差事件,即当且仅当事件 A 发 生但事件 B 不发生时,积事件A B发生。它是由属于 A 但不属于 B 的样本点构成的集 合,如图1-5所示。差事件 A B 也可写作 AB 。
定义1 在相同的条件下重复进行了 n 次试验,如果事件 A 在这 n 次试验中出现
了 nA
次,则称比值
nA n
为事件 A
发生的频率,记为fn ( 源自) ,即fn( A)
nA n
显然,频率 fn ( A) 的大小表示了在 n 次试验中事件 A 发生的频繁程度。频率 大,事件 A 发生就频繁,在一次试验中 A 发生的可能性就大,也就是事件 A 发
北理工《概率论与数理统计》题库复习资料

北理工《概率论与数理统计》FAQ (一)一、【古典概型】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算: (1)无空盒的概率; (2)恰有一个空盒的概率.解:4个球任意投入4个不同的盒子内有44种等可能的结果. (1)其中无空盒的结果有A 44种,所求概率P =4444A =323. 答:无空盒的概率是323. (2)先求恰有一空盒的结果数:选定一个空盒有C 14种,选两个球放入一盒有C 24A 13种,其余两球放入两盒有A 22种.故恰有一个空盒的结果数为C 14C 24A 13A 22,所求概率P (A )=4221324144A A C C =169. 答:恰有一个空盒的概率是169. 二、【条件概型】盒中有3个红球,2个白球,每次从袋中任取一只,观察其颜色后放回,并再放入一只与所取之球颜色相同的球,若从合中连续取球4次,试求第1、2次取得白球、第3、4次取得红球的概率。
解 设Ai 为第 i 次取球时取到白球,则 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =52)(1=A P 73)|(213=A A A P 63)|(12=A A P 84)|(3214=A A A A P求得:3 / 70三、【条件概型+全概型】市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为 2%、1%、3%,试求市场上该品牌产品的次品率。
解 设B 买到一件次品,A1为买到甲厂一件产品 A2为买到乙厂一件产品 A3为买到丙厂一件产品 可得:)()|()()|()()|(332211A P A B P A P A B P A P A B P ++= = ≈⨯+⨯+⨯2103.04101.04102.00.00225 四、【贝叶斯公式】商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1,0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?解 设A :从一箱中任取4只检查,结果都是好的. B 0, B 1, B 2分别表示事件每箱含0,1,2只次品已知:P (B 0)=0.8, P (B 1)=0.1, P (B 2)=0.11)|(0=B A P 54)|(4204191==C C B A P 1912)|(4204182==C C B A P由Bayes 公式:∑==2111)|()()|()()|(i iiB A P B P B A P B P A B P 0848.019121.0541.018.0541.0≈⨯+⨯+⨯⨯=五、 【伯努利概型】在体育比赛中,若甲选手对乙选手的胜率是0.6,那么甲在五局三胜与三局两胜这两种赛制中,选择哪个对自己更有利 解:在五局三胜赛制中,甲获胜的概率为P 5(3)+P 5(4)+P 5(5) =0.6826在三局两胜赛制中,甲获胜的概率为 P 3(2)+P 3(3) =0.648 甲应选择五局三胜制。
概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。
对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。
关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。
在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。
2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。
典型的概率分布包括正态分布、泊松分布和二项分布。
此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。
3.参数估计参数估计是根据样本数据估计总体参数的统计方法。
它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。
4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。
其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。
5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。
卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。
6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。
它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。
结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。
了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。
概率论和数理统计方面的知识点在实际应用中有着重要作用。
概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北理工《概率论与数理统计》拓展资源(六)
研究中实际观测或调查的一部分个体称为样本,研究对象的全部称为总体。
如作水质检验时从井水或河水中采的水样,临床化验中从病人身上采的血液或其它活体组织标本,是样本;而整个一口井或一条河的某一段所有的水,某病人全身所有的血液或某个组织器官,则是总体。
这类总体是具体存在的,但另有些总体却是假想的,只是理论上存在的一个范围。
例如试验某一治疗流感新药的疗效,最初接受治疗的一批流感患者,不论数量多少,都只是一个样本。
若该药疗效得到肯定,从而加以推广,那么此后凡在相同条件下接受该药治疗的所有流感患者,都属于这个总体。
可是当初试用时,这个总体还并不存在,是假想的。
总体包含的观察单位通常是大量的甚至是无限的,在实际工作中,一般不可能或不必要对每个观察单位逐一进行研究。
我们只能从中抽取一部分观察单位加以实际观察或调查研究,根据对这一部分观察单位的观察研究结果,再去推论和估计总体情况。
如上述某新药治疗流感例子,试验治疗的只是少数有限的病人,而结论却要推广到全体,得出一个该药对所有流感患者之疗效的规律性的认识。
所以说,观察样本的目的在于推论总体,这就是样本与总体的辩证关系。
为了使样本能够正确反映总体情况,对总体要有明确的规定;总体内所有观察单位必须是同质的;在抽取样本的过程中,必须遵守随机化原则;样本的观察单位还要有足够的数量。
又称“子样”。
按照一定的抽样规则从总体中取出的一部分个体。
样本中个体的数目称为“样本容量”。
外界客观事物在脑中是以样本的形式表示的,样本是事物在脑中的符号,广泛分布在大脑、下丘脑、杏仁核、纹状体、小脑及其他神经结构中。
样本与人脑功能密切相关,人脑的主要功能就是存储样本和进行样本分析,样本是人脑分析的工具。
大脑样本的形成、分布、分析都遵循中心扩散规律,以大脑的信息传入区(如视区、听区、躯体感觉区)为中心,样本从笼统到精细向外扩散,离中心越远样本越精细;向外扩散的方向不同,样本的内容也就不同,方向差异越大内容差异越大。
分析也是从中心开始向外扩散,由笼统趋于精细。
中心扩散规律是主要适用后天建立的样本,如大脑样本,初生婴儿在与客观事物接触的过程中,只能形成模糊认识,建立笼统样本,进行简单分析,然后通过学习一步一步趋向精确,建立以信息传入区为中心向外精细的样本,大脑各区域的分析功能也是以信息传入区为中心向外逐步精确。
当眼、耳等感觉器官接收的信息传到大脑感觉区,大脑使用已有样本一步一步进行分析,整理一个相符的样本并激活的这个样本,点亮丘觉产生意识。
对客观事物的意识,样本、联结都是后天建立的,出生婴儿既不能认识客观事物,也不能进行行为活动,需要通过学习建立代表客观事物的样本,样本的建立是在与环境的不断接触中逐步形成的,初生婴儿接触什么样的客观事物,就会建立什么样的样本,样本的建立遵循中心扩散规律,从无到有、从简单到复杂逐步形成。
大脑顶枕颞叶中建立的是表示客观事物本身意义的样本;纹状体、小脑中建立的是控制运动的样本,这个样本实质上就是运动控制程序、指令;但不是所有的样本都是后天建立的,像情绪、欲望、动机这类的样本就是先天就有的,是下丘脑、杏仁核的样本;还有一些样本是非常简单的,也可以直接点亮丘觉。
如一些感觉器官接受的外界信息。
样本是人脑分析的工具,建立样本的目的就是用于分析事物。
大脑、下丘脑、杏仁核、纹
状体、小脑等结构即是样本的存储结构,又是样本的分析结构,大脑、下丘脑、纹状体是主要的分析结构,称为分析中心。
当我们看到或听到外界事物时,分析中心使用已经建立的样本分析事物,获得一个与事物相符的样本并激活这个样本,激活的样本点亮丘觉产生意识。
分析过程遵循中心扩散规律,由简单走向复杂,对事物的意识也是由简单过渡到复杂。
样本:对于产品样本来说,样本就是产品的宣传资料。
包括产品的外形尺寸、选型资料、基本概况等等。
例如:电气产品样本,机械产品样本。