12.2二次根式的乘除法(2)
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
编号27 二次根式的乘除(2)
常州市中天实验学校八年级数学学案 NO .2712.2二次根式的乘除(2)一.学习目标 班级: 姓名:(1)使学生能进一步理解二次根式的乘法法则,能熟练地进行二次根式的乘法运算;(2)使学生能熟练地进行二次根式的化简及变形.二.自学指导1.二次根式的乘法运算:=a b ab ⋅(0,0)a b ≥≥由以上公式逆向运用可得:ab a b =⋅(0,0)a b ≥≥2.计算:(1)21×32= ; (2)123⨯=________; 3. 化简:(1)200 (2)3518x y (0,0)x y ≥≥;三.自学检测1. 化简:(1)22()(0,0)a b c a b c +≥+≥ (2)32x x y +(0,0)x x y ≥+≥(3)42(0)x x x +≥ (4))0,0(2223≥≥++y x xy y x x2.计算:(1)615⨯ (2)3318a ab ⋅(0,0)a b ≥≥ (3)32210⨯(4)1242⨯ (5)32(0,0)x y x y x y ⋅≥≥拓展: 1. 计算:(1)324×1323×56 (2)22a b +其中23,32a b ==2.利用2a a =这一性质,可将根号内开的尽方的因数(或因式)开出来,反之,还可将非负数平方后移到根号内. 如:233=,233=.(1)仿照上面的方法化简下列各式: ①155= ②182-=(2)比较大小:① 52 43 ② 172- 2543-编号27 二次根式的乘除(2)当堂训练 2016.10.18班级: 姓名:1. 化简:(1)12= ;(2)18= ; (3)27= ;(4)75= ;(5)72= ; (6)48= ;2.计算或化简: ①8123⨯ ②1435⨯ ③6256⨯ ④232510(0)a a a ⋅≥⑤224y x x +)0,0(≥≥y x ⑥152724312⨯⨯⑦ 22b a -其中320,18a b ==-3.已知矩形ABCD 的长AB =40cm ,宽BC =20cm ,求这个矩形的对角线AC 的长.挑战题: 4.比较大小:32 23 5.若5311k k <-<+(k 为正整数),则k = .DCB A。
二次根式的乘除法PPT课件
二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。
表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。
乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。
非负性$sqrt{a} geq 0$($a geq 0$)。
除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。
二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。
根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。
计算$frac{sqrt{20}}{sqrt{5}}$。
根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。
化简$sqrt{18}$。
首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。
典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。
如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。
不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。
二次根式的乘除法PPT课件
3.已知a2 b2 4a 2b 5 0,求 a b 的值. 2 b ab
9
; https:// 配资平台 ;
离太近の修行者/没有来得及闪躲/被扯进咯这些虚空の裂缝中/强如宗王境の强者/都被绞成咯肉渣/血雨纷飞散落十分恐怖袅说// 这壹幕更确定令诸强心悸/圣者之威果然抪可撄锋/上古圣人呀/开创圣地の强大存到呀/ 反观马开/却令人有些抪透咯/它抹咯抹嘴角の鲜血/神情没有壹丝壹毫の变化/ 到上万 强者の注视之下/马开只确定轻轻の扬咯壹下手臂/随即将拳头轻描淡写の送咯出去/虚空中留下咯壹道十几米大の拳影/ "哼/抪自量力/" 圣者人影轻哼壹声/之前到海底の时候/它为马开の这壹招心惊过/这明显确定这袅子の本命招术/抪过到它来也抪过如此/ 自己这壹招圣斧涛天/比刚刚到海底の那壹掌/ 多咯四分力/它竟然还以之前の招式相对/定要将它打死/夺取它の肉身/ "试试就知道咯///" 马开缓缓の出拳/速度极为缓慢/让人觉得马开好似壹佫将死の老人/走到咯生命の尽头/根本没有任何の威摄力/ 没有人会相信/它能到圣人の绝招下生还/抪会有这样の奇迹发生/ 巨斧很恐怖/迅猛至极/瞬间就来到 咯马开の肩头/和马开の缓慢形成咯明显の对比/而这时马开の拳头都还没有来得及收回来/ "可惜咯要死咯///没有机会咯///圣人抪可敌///" 这壹幕/令抪少人心悸/它们自问根本挡抪住这样の圣威/太快咯/连天地法则都被搅碎咯/空间都被打成咯碎渣/何况确定人の躯体/更新最快最稳定) "嗤嗤///" 可确定 下壹秒/令人震惊の画面发生咯/无数人睁大咯眼睛/抪敢相信眼前发生の壹切/ 圣斧到马开の面前壹寸处停咯下来/就这样凭空爆裂咯/根本就没有伤到马开壹分壹毫/这壹幕实到确定太诡异咯/完全与众人の预想相悖/ "竟然/竟然挡下咯/ "我没眼花吧/这袅子刚用咯什么手段///那可确定圣者壹击/就连千丈 山丘也要被夷平///抪会吧/ 众人都傻眼咯/没想到马开还真确定壹拳挡住咯圣威/最令它们费解の确定/没有人清马开怎么出手の/没有人会相信就那样软绵无力の壹拳/竟然可以挡住强大の圣斧/ "这///" 很多人无法相信/连圣者人影都瞪圆咯眼睛/因为即使确定它/都没清楚马开の符篆确定怎么爆发の/ 仅 仅确定壹息の功夫/它の圣斧就那样被抹灭咯/甚至连壹佫泡泡都没有掀起来/实到确定太诡异咯/ "砰///" 壹声轻脆の闷响/突然打破咯星空下の宁静/原本还到那里屑笑の马开突然就裂开咯/整佫人炸开咯/消失抪见咯/ "怎么回事/ "难道这袅子确定装の/ "装毛呀/就这样死咯/装の跟什么壹样///嘘///" 上万 修行者壹阵唏嘘/没想到刚刚还觉得这佫少年咯抪起/能挡住圣人攻击/可确定下壹秒就被打成咯飞灰/实到确定丢人现眼呀/ 这袅子の玩笑实到确定开得大咯/简直就确定到打自己の脸/抪少人到这壹幕都有些纠结/怎么会确定这佫结果/ "果然如此/圣人无敌呀///那袅子玩大咯///装笔被劈咯吧/敢去挑圣人 の胡须/抪知死活///" 抪少人议论纷纷/圣者人影此时却确定心里到滴血/感觉被人狠狠の抽咯几佫巴掌到脸上/只有它知道确定怎么回事/ 面前被打散の/根本就抪确定马开の真身/那袅子趁刚刚到海底の时候就逃掉咯/刚刚抪过确定壹佫凝成实质の虚影/ 自己根本就没伤着这袅子/硬生生の让这袅子给逃咯 /到自己这佫圣人の眼皮子底下逃掉咯/ "该死/真确定大意咯/" "壹定要找到这袅子/手段太抪简单咯/若确定能得到它の躯体/我壹定会恢复到巅峰/甚至还有突破の可能/" 圣者人影心中自语/枯掌轻轻壹挥/身旁三十里外の两佫宗王境强者/顿时化作咯两团血雾/被它信手抓咯过去/ "逃///太可怕咯///" 这壹 幕吓到咯到场の上万修行者/没想到这佫圣人竟然对弱者出手/三十里外就灭掉咯两佫毫无准备の宗王境强者/实到确定太恐怖咯/令人头皮发麻/ 圣者人影吸收咯这两佫宗王境强者の血元/立即稍稍の恢复咯壹些/它现到很虚弱/刚刚苏醒而且没有自己の躯体/距离巅峰相差甚远/这也确定马开为何有机会逃 走/ 若确定以它全盛时期/马开确定抪可能还有生还の机会の/ "该死/伤得太深咯/那恐怖の大阵///" 圣者人影喃喃自语/扫咯扫四周/只见上万修行者跑佫咯光/连佫鸟影都没到咯/ 壹双枯眼扫视四周海域/并没有发现马开の身影/根本抪知道它藏到哪里去咯/ "袅子/别想逃/待本圣恢复之后/你无处可躲/" "老 狗/走着瞧/" 此时马开正到海沟中行走/身上鲜血淋漓/被那圣者人影伤の抪轻/激发咯它熊熊の战意/ 为咯(正文第壹四四二部分壹拳) 第壹四四三部分天元丹 第壹千四百四十三部分 圣者人影给马开带来咯极大の伤害/五脏六腑都被震碎/青莲器物也险些玉碎/确定马开经历の最为惨烈の战斗之壹/抪确 定所有袅说站都确定第壹言情首发/搜索;書你就知道/ 马开壹路向北/逃出咯上万里/找到咯壹处宁静の海沟/前面有壹佫宽敞の古洞/便到这里打坐恢复/ 山洞之中/流溢着大量の五彩符文/如壹道道彩带/缠到马开の身上/壹佫佫荒古时期の怪异文字/也缓缓の渗进它の血肉之中/ 若确定有识货之人见到这壹 幕/壹定会十分震惊/因为马开身上の这些文字/正确定消失咯许久の巫族古字/巫体决/堪称荒古巫族最强大の体术之壹/对于恢复肉身有着极强の效果/最适合治愈马开身上の外伤/ 众多の符文/渗进马开の体内/到它の每壹寸肌体中流转/开始慢慢の修复着它の肉身/ 圣者人影对它造成咯极大の伤害/却也 给它带来咯宝贝の机会/这可确定与圣者对战の机会/有几佫人能有这样の机遇/ 普天之下/目前没有出现几尊圣人/能有机会与这样の抪世强者对敌/对马开有着极大の提升/ 圣者人影虽然被煞火包围/而且明显实力大打/折扣/抪过圣威却确定真实の/马开以少年至尊之势/对战圣者之威/令它の至尊之势更 加强悍坚固/ "以圣人之威/炼我无敌之意/" 马开抪会错过这样の机会/体表还有壹丝微弱の圣威/青莲器物中之前还没来得及炼化の那缕煞火/也被它扯进咯肉身之中/ "嗤嗤///" 煞火温度极高/绝世炽烈/瞬间便令马开の表皮起皱咯/ 马开眉头紧锁/紧咬牙关/开始缓缓の炼化这缕强大の煞火/ /// 与此同时/ 天空之城/高约万丈の南城玉楼上/却站着壹佫身材曼妙の囡人和壹佫壹身黑衣の高帅男子/ "嫁给我/保你壹世荣华富贵/这壹域无人可欺你/" 男子声音浑沉/向囡子の眼神/带着壹丝炽热/ 这确定壹佫绝世美艳の囡人/囡人十分熟媚/面容娇美/壹头乌黑の披肩长发/俏脸如春/鼻梁秀直/红唇娇艳/腰肢纤细/薄 薄裙布遮挡抪咯修长の美腿/ 天北头壹回遇到这样の囡子/即使到咯它这佫层次の人物/到这佫囡子还确定抪免怦然心动/想收为自己帐下/ "这囡人确定谁/好美///天北都动心咯/实到确定绝世尤物呀///好有气质の囡人/快答应少城主呀/**飞上枝头///" 南城玉楼下/还有大量の修行者围观/见到这佫囡子/抪 少男修行者也到吞口水/囡修行者也心生嫉妒之心/ 天北/天空之城の少主/如果能嫁给它/绝对确定壹世无悠咯/ 天空之城/可确定九大仙城之壹呀/背后实力实到确定庞大/传说族中还有仙药/而这天北又确定天空之城最**爱同时天赋最惊艳の少年至尊级别の人物/跟着它以后还愁什么呀/ "你保我这壹域无 敌/囡子声音甜美中带着壹丝漠然/却给她平添咯几抹冷咧/更令天北血液沸腾/ 天北自信の笑道/当然/我天北到这壹域还确定说话算数の///我少主将来必成至尊/你当咯我们少夫人/就确定至尊之伴侣/必然名震九天///"天北身后/壹尊强大の宗王老者发出壹声自豪の笑声/ "确定吗/囡子抿咯抿嘴/嘴角露出 壹抹怪笑/ "跟我回去吧///"天北眼中闪着炽热の光芒/面对面前��
二次根式的乘除运算
1二次根式的乘除运算 姓 名一 基本概念:1.二次根式的乘法:二次根式相乘,把被开方数相乘,根指数 . 强调:乘法交换律在二次根式中同样适用。
公式:(1)(0,0)a b ab a b ∙=≥≥ (2)()a 0,b 0a b c abc ∙∙=≥≥ 例题1:如果()11x y x y ∙-=-,那么x ,y 例题2:计算23∙=__ 255∙= 3225∙=2.二次根式乘法公式的逆用:例题1: 计算2002100=⨯= (210,102⨯) ,45=⨯=3.二次根式的除法:二次根式相除,把被开方数相除,根指数 . 公式:(1)(0,0)a a a b bb=≥>, (2)公式的逆用:ab=a b(0,0)a b ≥>(3)形式改变:m n ÷=m n ÷(m 0,n 0)例题1.如果33-=-x x x x,则x 的取值范围为 .例题2. 计算7212= ,34= ,21132÷= 。
二.二次根式的化简1.化去分母中的根号:将分子分母同乘这个根式,利用乘法化去分母中的根号。
例题1.化去分母中的根号: 11333⨯==⨯63 322b aa==2.最简二次根式的判定:(1)被开方数不含____(2)被开方数的因数或因式的次数小于____. 例题1.下列式子哪些是最简二次根式:6x22a b + 32ab3a 0.5ab6424x2.利用二次根式乘除法公式化成最简二次根式:要点:分别开方。
三.二次根式乘除混合运算 例题1.化简:122720350.5a b 224836-·二次根式乘除法的混合运算,先定符号,再乘除绝对值。
系数乘除系数,根号乘除根号。
例题321332()322b ab a b a ⨯÷÷⨯-。
专题12.2二次根式的乘除(知识解读)
专题12.2 二次根式的乘除(知识解读)【学习目标】1.并能逆用法则进行化简2.逆用法则进行化简。
3.理解最简二次根式的概念,会进行二次根式的乘除法混合运算,并能将二次函数化为最简形式。
【知识点梳理】知识点1:二次根式的乘法法则1.(二次根式相乘,把被开方数相乘,根指数不变)2.二次根式的乘法法则的推广(1(2项式乘单项式的法则进行计算,即将系数之积作为系数,被开方数之积作为被开方数。
知识点2:二次根式的乘法法则的逆用1.二次根式的乘法法则的逆用质)2.二次根式的乘法法则的逆用的推广知识点3:二次根式的除法法则1.二次根式的除法法则2.二次根式的除法法则的推广注意:知识点4:最简二次根式1.最简二次根式的概念(1)被开方数不含分母(2)被开方数中不含能开方开得尽得因数或因式2.化简二次根式的一般方法母化成能转化为平方的形式,再进行开方运算(a >0,b >0,c >0) 被开方数时多项式的要先因式分解y x y x y +==+++)(x222xy 2(x ≥0,y ≥0)3.分母有理化(1)分母有理化:当分母含有根式时,依据分式的基本性质化去分母中的根号。
方法:根据分式的基本性质,将分子和分母都乘上分母的“有理化因式”,化去分母中的根号。
【典例分析】【考点1:二次根式乘法法则】【典例1】计算: (1)×; (2)4×; (3)6×(﹣3); (4)3×2. 【答案】(1)4 (2)4. (3)72 (4)30.【解答】解:(1)原式===4.(2)原式=4=4.(3)原式=6×(﹣3)×=﹣18×4=﹣72. (4)原式=3×2×=30. 【变式11】(2022秋•嘉定区期中)化简:= .【答案】6 【解答】解:原式===6.故答案为:6.【变式12】(2022春•湘桥区期末)计算:= .【答案】【解答】解:=.故答案为:.【变式13】(春•容县校级月考)计算:(1)×;(2)4×;(3)6×(﹣3);(4)3×2.【解答】解:(1)原式===4.(2)原式=4=4.(3)原式=6×(﹣3)×=﹣18×4=﹣72.(4)原式=3×2×=30.【考点2:二次根式乘法法则的逆用】【典例2】计算:(1).(2).(3).【答案】(1)66 (2)20 (3)【解答】解(1)=×=11×6=66.(2)原式==4×5=20.(3)原式=×=×=.【变式2】(秋•古塔区校级月考).【解答】解:原式==4×5=20.【考点3:二次根式除法运算】【典例3】计算:(1);(2)4÷2.(3)(4).【答案】(1)5 (2)(3)(4)6a.【解答】(1)===5;(2)4÷2==2=.(3)原式==(4)原式=2××2==6a.【变式31】(2022春•红河县期末)计算:=.【答案】3【解答】解:原式===3.故答案为:3.【变式32】(2022春•新兴县期末)计算:=.【答案】【解答】解:原式===,故答案为:.【变式33】计算:(1)÷(2)÷(3)(4).【答案】(1)(2)(3)(4)【解答】(1)原式=×==;(2)÷=2×=;(3)=;(4)==.【典例4】(2022秋•平阴县期中)下列二次根式中是最简二次根式的是()A.1B.C.D.【答案】B【解答】解:A、1不是二次根式,故A不符合题意;B、是最简二次根式,故B符合题意;C、=2,故C不符合题意;D、=,故D不符合题意;故选:B.【变式41】(2020秋•静安区期末)下列式子中,属于最简二次根式的是()A.B.C.D.【答案】C【解答】解:A、=2,被开方数含能开得尽方的因数,故A不符合题意;B、=|x|,被开方数含能开得尽方的因式,故B不符合题意;C、,被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、==|a﹣b|,被开方数含能开得尽方的因数或因式,故D不符合题意;故选:C.【变式42】(2020春•怀宁县期末)把化为最简二次根式,结果是.【答案】【解答】解:,故答案为:【典例5】(2021秋•永丰县期末)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简:+++…+.【解答】解:(1)①==﹣;②===﹣;(2)原式=+++…+==.故答案为:(1)①﹣;②﹣【变式51】(2022秋•长宁区校级期中)分母有理化:=.【答案】﹣3﹣【解答】解:原式==﹣3﹣,故答案为:﹣3﹣.【变式52】(2021春•饶平县校级期末)已知a=,b=,(1)求ab,a+b的值;(2)求的值.【解答】解:(1)∵a===+,b===﹣,∴ab=(+)×(﹣)=1,a+b=++﹣=2;(2)=+=(﹣)2+(+)2=5﹣2+5+2=10.。
12.2 二次根式乘除(3)
再次
优化
随堂
练习
课堂
小结
达标
检测
化简:(1) =;(2) =;
(3) =;(4) (y>0)=.
活动三
二次根式的除法运算法则的意义.
等式 成立的条件是.
练习 等式 成立的条件是.
拓展提高:
1.计算 ÷ ;
2.已知一个长方形的面积为 ,其中一边长为 ,求长方形的对角线的长.
布置
作业
3.在解问题的过程中培养学生探究意识、合作意识.
教学重难点
教具
与课件
板
书
设
计
12.2二次根式的乘除(3)教学源自环节学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化
导
入
合
作
探
究
情境创设:
(1) , =;
(2) , =;
(3) , =;
(4) , =.
课堂作业课本P160第5、6题.课后作业
下节课预习内容
教后感
尊重主体面向全体先学后教当堂训练科研兴教力求高效
教材第12课(章)第2节(单元)第3课时,总4课时年月日
课题
12.2二次根式的乘除(3)
教学模式
讨论交流
教学
目标(认知技能
情感)
1.能运用除法法则 = (a≥0,b>0),进行二次根式的除法运算;
2.能逆用二次根式的除法运算法则,对简单的二次根式进行化简;
比较上述各式,你猜想到什么结论?
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
二次根式的乘除(2)
课题:3.2二次根式的乘除(2)学习案学习目标:(1)使学生能进一步理解二次根式的乘法法则,能熟练地进行二次根式的乘法运算;.(2)使学生能熟练地进行二次根式的化简及变形。
学习重点:熟练地进行二次根式的化简、乘法运算 学习难点:熟练地进行二次根式的化简、乘法运算 学习方法:讨论法 学习过程: 一、情境创设复习旧知:上节课主要学习了二次根式的乘法法则及其积的算术平方根的性质,谁能说说它们的内容各是什么? 引导学生回顾:ab与二、探索活动。
1.学生尝试练习。
化简:(1)200(2)yx 3(x ≥0,y ≥0)(3)yx x23+(x ≥0,x+y ≥0)(0,0)a b ≥≤2.学生分小组讨论后全班交流。
三、例题教学例1.计算:(1) (2) (3)练一练:计算:例2.把下列各式中根号外的正因式移进根号内(1)(2)-(3)(4)156⨯2421⨯)0,0(3≥≥⨯b a ab a (-mn ab n b m a =⋅四、练习:练一练:1.将下列各式中根号外的非负因式移进根号内: (1)(2)(3)(4)2.比较下列两数的大小:(1)(2)(3)五、思维拓展1.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.六、小结从本节课的学习中,你有什么收获?七、作业教后感:。
(a-xx1------课题:3.2二次根式的乘除(2)班级______ 姓名________________ 等第____________ [基础巩固]1.判断.(对的打“√”,错的打“×” )(1=( )(2135=- ( )(3=( )(4a= ( )2.把( )3.化简(1(2(0,0)x y ≥≥4.化简:(1(2(3(0);≥x (4(0);≥a(5(0,0).x y ≥≥5.计算:(1 (2(3)23ba a ⨯(4)242aa⨯(5)20156⨯⨯ (6)(--(7)(-(8)zxy xy 3542112785⨯⨯-[拓展延伸]6.已知6969--=--x x x x,且x 为偶数,求x 的值是多少?。
二次根式的乘除(2)
2 3
=
2
2 3
2 × = 22 3
=
2 = 3
22 2 = 3
23 (23 2) 2 3 3
23 2 2 2(22 1) 2 2 2 22 1 2 1 22 1 2 1
3 8
=
2 2 3
(2)3
验证:3
=
3 8
3 8
3
=
× 32
初中数学九年级上册 (苏科版)
3.2.2 二次根式的乘除(2)
二次根式的乘法运算公式
a b ab (a 0, b 0)
积的算术平方根的性质 反过来得:
ab a b (a 0, b 0)
尝试化简:
(1) 200;
(2) x y
3
( x 0, y 0)
( x 0, x y 0)
2
(3) x 3 x 2 y
3 2
(4) 2a 4a b 2ab
(a 0, b 0)
注意结果:被开方数中不含能开得尽方 的因数 或因式
例1.计算:
(1) 6 15;
1 (2) 24; 2
(3) a ab
3
a 0, b 0 .
2.计算: (1) 8 13 26; (2)3 5 2 10
(3)6 27 (2 6)
a m b n ab mn
a a(a 0)
2
反过来就是
a a (a 0)
2
例2:
(1)
把下列各式中根号外的正因式移进根号内
3 2
(2)
4 a
1 (3) x x
苏科版数学八年级下册《12.2二次根式的乘除》说课稿5
苏科版数学八年级下册《12.2 二次根式的乘除》说课稿5一. 教材分析苏科版数学八年级下册《12.2 二次根式的乘除》这一节,是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教学的。
本节课的主要内容是二次根式的乘除法运算,这是初中数学中的一个重要内容,也是学生学习过程中比较难以理解的内容。
教材通过例题和练习题的形式,引导学生掌握二次根式的乘除法运算规则,培养学生的运算能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二次根式的基本性质,对二次根式的加减法运算有一定的了解。
但是,由于二次根式的乘除法运算涉及到分数的乘除法运算,以及根号内的乘除法运算,这些内容对学生来说是比较陌生的,因此,学生在学习本节课的时候可能会感到困惑。
同时,由于二次根式的乘除法运算的规则不是直观易懂的,需要学生通过大量的练习才能够理解和掌握。
三. 说教学目标1.知识与技能目标:使学生掌握二次根式的乘除法运算规则,能够熟练地进行二次根式的乘除法运算。
2.过程与方法目标:通过学生的自主学习、合作交流和教师的引导,培养学生的运算能力、解决问题的能力和合作交流的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和毅力,使学生体验到成功的喜悦。
四. 说教学重难点1.教学重点:使学生掌握二次根式的乘除法运算规则,能够熟练地进行二次根式的乘除法运算。
2.教学难点:理解二次根式的乘除法运算的规则,能够灵活运用规则进行二次根式的乘除法运算。
五. 说教学方法与手段在本节课的教学中,我将采用自主学习、合作交流和教师的引导相结合的教学方法。
在教学过程中,我将充分利用多媒体教学手段,通过动画、图像和文字的结合,使抽象的二次根式的乘除法运算变得形象直观,帮助学生理解和掌握二次根式的乘除法运算规则。
六. 说教学过程1.导入:通过复习二次根式的加减法运算,引导学生进入二次根式的乘除法运算的学习。
2.自主学习:学生自主探究二次根式的乘除法运算的规则,教师给予适当的引导和帮助。
12.2 二次根式乘除(2)
学生自学共研的内容方法
再次 优化
合 作 探 究
3. = (x≥0,y≥0). 问题 1 如何对二次根式进行化简? 问题 2 本组题中化简结果有何要求?
4 x3 y
-1-
教 学 环 节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内 容)
教师施教提要 (启发、 精讲、 活动等)
再次 优化
合
(3) a b+a c ( a ≥0,b≥0) . 问题 1 对于(3)如何解决?遇到不熟悉 的问题我们怎么办? 问题 2 尝试解决(3)题,并说说这样做的 理由. 问题 3 用刚才的方法尝试解决以下问题. 化简:0,x-y≥0) ; (x≥0,y≥0) .
探
(2)
探索活动: 活动一 刚才的问题说明同学上节课的知识掌握的 很好,复杂一点的化简你能解决吗? 例 1 化简. (1)
a 2 (b+c ) 2
( a ≥0,b≥0) ;
问题 1 本题与上题有何区别? 问题 2 解决本题的方法是什么?方法有变 化吗? (2)
a 2 (b+c )
2 2
( a ≥0,b≥0) ;
教学重 难 点 教 具 与课件
12.2 板 书 设 计 教 学 环 节 导 入
二次根式的乘除(2)
教师施教提要 (按环节设计自学、讨论、训练、探索、创新等内容) (启发、精讲、活动等) 情景创设: 同学们,上节课我们学习了二次根式的乘法, 你能用式子表示出乘法运算的法则吗? 运用这个法则可以进行乘法运算,还可以对结 果进行化简,请同学们完成知识回顾中的三小 题. 1. 3 · 27 = 2. 200 = ; ;
a × b × c abc ( a ≥0, b≥0,c
12.2 二次根式的乘除法(1)
9 3 9 3 3 3 3 3
a2 a a2 a a a
2 a b b (2ab ) b 2ab b
2 2 2 2
初中数学资源网
例2. 化简: ( 1)
4a b
2
2
3
4 2 2 x x y ( 2)
解 : (1) 4a b
2
初中数学资源网
如何化简二次根式 关键:将被开方数因式分解或 因数分解,使出现“完全平方数” 或“偶次方因式”,最后结果的被 开方数中不含能开得尽方的因数 或因式
练习3 化简
(1)、18
(2)、8a (a 0)
3 3 2
(3) 12a b (a 0, b 0) (4) 45 (5) 24 (6) 32
3.2二次根式的乘除 (一)
学习目标: • 1、理解二次根式的乘法公式和 性质。 • 2、能进行二次根式的乘法运算。 • 3、能对有关运算结果进行化简, 并 了解基本的化简原则与方法。
课前检测:
1、 x为何值时,下列各式在实数范围内有意义。
(1) 5x 1
(3) 1 3x
2、计算:
(1)、 ( 3)
4、计算:
(1) 144 5 (3) 64 36
2 2
(2) 0.0001 11
初中数学资源网
思考:
( 4) ( 9) 4 9对吗?
怎样化简 ( 4) ( 9) 呢?你有哪些方法?
初中数学资源网
计算
(1) 2 6 (3) 1000 0.1 3 2 (4) 2 3
(2)化简:4a bc
4
4
初中数学资源网
练习:
1
二次根式的乘除第二课时教案
二次根式的乘除第二课时教案一、教学目标:1. 理解二次根式乘除运算法则。
2. 能够熟练地进行二次根式的乘除运算。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学重点:1. 二次根式乘除运算法则。
2. 二次根式乘除运算的技巧。
三、教学难点:1. 二次根式乘除运算中的符号处理。
2. 二次根式乘除运算中的化简。
四、教学准备:1. 教师准备相关例题和练习题。
2. 学生准备笔记本和文具。
五、教学过程:1. 复习导入:回顾上一课时所学的二次根式的加减运算,引导学生进入本课时学习二次根式的乘除运算。
2. 知识讲解:讲解二次根式乘除运算法则,并通过示例进行演示。
引导学生理解并掌握二次根式乘除运算的步骤和技巧。
3. 练习巩固:给出一些二次根式乘除运算的题目,让学生独立完成,并及时给予指导和解答。
4. 拓展提高:引导学生思考二次根式乘除运算在实际问题中的应用,给出一些相关的例题,让学生尝试解决。
六、课后作业:1. 完成教材后的相关练习题。
2. 收集一些有关二次根式乘除运算的实际问题,尝试解决。
3. 准备下一课时的学习内容。
七、教学评价:1. 课后收集学生的练习作业,对学生的学习情况进行评价。
2. 在下一课时的教学中,关注学生的学习进度和理解情况,及时进行调整和指导。
3. 鼓励学生积极参与课堂讨论,对学生的表现给予肯定和鼓励。
八、教学反思:九、教学拓展:1. 引导学生思考二次根式乘除运算在实际问题中的应用。
2. 介绍一些有关二次根式的有趣问题和数学故事。
3. 推荐一些有关的数学读物和学习资源。
十、教学计划:第二课时:二次根式的乘除运算六、教学内容:1. 掌握二次根式乘除运算的法则。
2. 学会如何将复杂的二次根式进行化简。
3. 能够运用二次根式乘除运算解决实际问题。
七、教学方法:1. 采用讲解法,引导学生理解二次根式乘除运算的法则。
2. 使用示例法,让学生通过具体的例子掌握二次根式乘除运算的步骤。
3. 运用练习法,巩固学生对二次根式乘除运算的掌握。
二次根式的乘除(第二课时)
二次根式也可以在实际生活中应用,如计算建筑物
我们解决几何问题。
的材料用量、电线的长度等。
总结与回顾
学了二次根式的定义、性质以及乘
记住简化和合并、乘法规则和除法规则的技巧,
法和除法规则。现在我们要进行总结和回顾,
这将帮助你在解决问题时更加灵活和高效。
确保我们掌握了这些重要概念。
长。
2
平方根符号 √
平方根符号 √ 可以读作 "根号" 或 "平方根",用于表示一个数的二次根式。
二次根式的性质
简化和合并 ✂️
乘法规则 ✖️
除法规则 ➗
我们可以对二次根式进行简化
乘法规则可以帮助我们计算二
除法规则可以帮助我们计算二
和合并,通过找到相同的根号
次根式的乘积,包括相同根号
次根式的商,包括相同根号和
和进行运算,使得根式更简洁。
和不同根号的情况。
不同根号的情况。
二次根式的练习题举例
1
练习题 1️⃣
计算 √4 + √9 的值。
练习题 2️⃣
2
简化 √12 的根式表达。
3
练习题 3️⃣
计算 (2√3) × √5 的值。
二次根式的应用
几何应用
实际问题应用
二次根式可用于计算图形的边长、对角线等,帮助
二次根式的乘除(第二课
时)
欢迎来到二次根式的乘除课程!在这节课中,我们将探索二次根式的定义、
性质以及乘法和除法规则。我们还将解决一些练习题并应用二次根式在几何
和实际问题中。让我们开始吧!
二次根式的定义
1
基本概念
二次根式是形如 √a 的表达式,其中 a 是非负实数。它可以表示数轴上的长度或图形的边
二次根式的乘除法学习要点
二次根式的乘除法学习要点二次根式的乘法和除法学习二次根式加减的基础.那么如何才能熟练掌握二次根式乘除法的运算呢?笔者以为应注意掌握以下几个问题:一、正确理解二次根式乘法的意义=4,所以,a ≥0,b ≥0).观察这一式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积仍是二次根式.由此二次根式的乘法就是把被开方数的积作为积的被开方数.利用二次根式乘法的这个法则应注意:(1)要注意a ≥0、b ≥0的条件,因为只有a 、b 都是非负数公式才能成立.(2)从运算顺序看,等号左边是先分别求a 、b 的两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a 、b 先做乘法求积,再开方求积的算术平方根.(3a ≥0,b ≥0)可以推广到三个二次根式、四个二次根式等相乘的情况.(4)根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.例1 计算:(12;(3;(4.分析 利用二次根式的乘法法则,对于第(3)小题,应视x +2y 为一个整体.解 (1=(2;(3=(x +2y(4=6x 2y 2.说明 在进行二次根式乘法的过程中,应注意不能随便丢掉负号,其结果一定要化简.例2 计算:(12)×32分析 第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题 的根号外都含有数字因数,可以仿照单项式的乘法.解 (10.4×3=1.2.(2)×325×32152152说明 对于二次根式的被开方数或式中,若满足两个相同因数或因式即移到根号外面来,从而达到化简的目的.a ≥0,b ≥0)的反向运用a ≥0,b ≥0)a ≥0,b ≥0).利用这个公式,同样可以达到化简二次根式的目的.例3 化简:(1(2(3(4.分析 我们可以直接化简,对于2000可以通过分解因数,对于第(4)小题可以利用平方差公式使之转化成乘积的形式,再运用公式.解(135;(24×9=36;(3(4=9×5=45. 说明 通过求解可以看出,如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以逆向运用二次根式乘法的法则,将这些因式(或因数)开出来,从而将二次根式化简.三、熟练掌握二次根式除法的意义4÷2=22=a≥0,b>0). 观察这一式子的左边和右边,从运算顺序看,等号左边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,等号右边是将非负数a除以正数b求商,再开方求商的算术平方根.利用二次根式这一除法法则可以进行简单的二次根式的化简与运算.值得注意的是二次根式除法的法则中a≥0,b>0,这是因为当b=0时,分母为0,没有意义.和二次根式乘法的法则一样,二次根式除法的法则也可以反过来运用,即(a≥0,b>0),同样可以利用这一公式化简二次根式.例4计算:(12分析=.解(1(2 3.说明注意本例中第(2)小题的书写格式,以便降低求解的难度.例5 化简:(12;(3分析利用公式.解(1=87;(2=253xy;(3=0.3110.610⨯⨯=1120.说明如果被开方数是带分数,在运算时,一般先化成假分数.,在进行第(3)小题的运算时,也可以先对被开方数的分子与分母同时扩大100倍,从而化小数为整数.通过上述两道例题的化简与运算,我们知道二次根式的除法,有两种基本方法:①把除法先写成分式的形式;②直接套用公式a≥0,b>0).四、正确理解最简二次根式的意义有关二次根式的化简与运算的结果一般化成最简单的式子,即结果要化成最简二次根式.最简二次根式必须满足:一是被开方数不含有分母;二是被开方数不含有开得尽方的因数或因式,二者缺一不可.例6计算:(12分析第(1)小题先做括号里的,第(2)小题先做乘法,再做除法.解(1;(2说明通过本题的运算,我们能从中体会到如何化去分母中含有根号的因数或因式.。
二次根式的乘除和最简二次根式知识点
1。乘法法则: ( ≥0, ≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.
2.积的算术平方根
( ≥0, ≥0),即积的算术平方根等于积中各因式的算术平方根的积.
要点诠释:
(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足 ≥0, ≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;
(1)被开方数不含有分母;
(2)被开方数中不含能开得尽方的因数或因式.
满足这两个条件的二次根式叫最简二次根式.
要点诠释:二次根式化成最简二次根式主要有以下两种情况:
(1) 被开方数是分数或分式;
(2)含有能开方的因数或因式.
(2)二次根式的化简关键是将被开方数分解因数,把含有 形式的a移到根号外面.
知识点二、二次根式的除法及商的算术平方根
1.除法法则: ( ≥0, >0),即两个二次根式相除,根指数不变,把被开方数相除..,对于公式中被开方数a、b的取值范围应特别注意, ≥0, >0,因为b在分母上,故b不能为0.
(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.
2.商的算术平方根的性质
( ≥0, >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
要点诠释:
运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.
知识点三、最简二次根式
专题12.2《二次根式混合运算(易)》专项训练45题(每日打卡天天练)(苏科版)
专题12.2《二次根式混合运算(易)》专项训练45题(每日打卡·天天练系列)(苏科版)(解析版)参考答案与试题解析一.选择题(共7小题)1.下列运算中,正确的是( )A =B .C D =【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】+A 错误,B 正确,负数没有算术平方根,故选项C 错误,=,故选项D 错误,故选:B .2.下列运算中错误的是( )A B2= C .= D 4=【分析】根据二次根式的乘法法则对A 进行判断;根据分母有理化对B 进行判断;根据二次根式的加减法对C 进行判断;根据二次根式的性质对D 进行判断.【解答】解:A 、原式=A 选项的计算正确;B 、原式==B 选项的计算正确;C 、C 选项的计算错误;D 、原式|4|4=-=,所以D 选项的计算正确.故选:C .3.规定a ※a b b a b -=+的值是( )A .5-B .3-C . Da 相当于b ,根据规定列出算式,再分母有理化,利用乘法公式计算.===-.【解答】解:根据规定,原式25故选:A.4.下列计算正确的是()A.2=B53=-C=D【分析】根据二次根式的加减运算法则以及乘除运算法则即可求出答案.【解答】解:A、2不是同二次根式,故不能合并,故A不符合题意.B、原式4=,故B不符合题意.C、原式=C符合题意.D D不符合题意.故选:C.5.下列计算正确的是()A.2=B.3C=D.26=【分析】直接利用二次根式的加减运算法则以及二次根式的乘除运算法则计算,进而得出答案.【解答】解:A.B.3C=,故此选项不合题意;D.212故选:B.6.下列计算正确的是()A.3=B C3=D2=-【分析】根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、3A选项不符合题意;B、原式B选项不符合题意;=,所以C选项符合题意;C、原式3=,所以D选项不符合题意.D、原式2故选:C.7.下列各数中与2+的积是有理数的是()A.2B.2C D.2【分析】利用平方差公式可知与2的积是有理数的为2【解答】解:(2431=-=;故选:D.二.填空题(共12小题)8.计算:=4.【分析】用平方差公式和2(0)=计算即可.a a【解答】解:原式22=-=-117=.4故答案为:4.9.计算【分析】先利用二次根式的乘法法则运算,然后合并即可.【解答】解:原式==+=10.计算的结果是【分析】直接利用二次根式的乘法运算法则化简,再合并得出答案.【解答】解:原式11==-=.故答案为:11=. 【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,再合并得出答案.【解答】解:原式==.12.计算【分析】直接化简二次根式,进而利用二次根式的乘法运算法则计算得出答案.【解答】解:原式===故答案为:13【分析】直接利用二次根式的混合运算法则化简,进而得出答案.【解答】解:原式===.14.计算:202220233)3)的结果是3 .【分析】根据平方差公式以及积的乘方即可求出答案.【解答】解:原式20223)]3)=2022(109)3)=-3=,3.15的结果是-【分析】直接利用二次根式的性质化简,再利用二次根式的混合运算法则计算得出答案.【解答】解:原式=(==-故答案为:-16的结果是-【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:原式=-==-故答案为:-17的结果是2.【分析】利用二次根式的乘除法则运算.【解答】解:原式33==4233=+2=.故答案是:2.18的结果是13.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式13 ===.故答案为:13.19【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+=,故答案为:三.解答题(共41小题)20.计算:(1;(2【分析】(1)先利用二次根式的性质化简,再利用二次根式的加减混合运算法则计算.(2)直接利用二次根式的乘法和除法运算法则计算.【解答】解:(1==(262=-4=.21.计算:(1)(2)2(1【分析】解:(1相乘,再进行合相乘;(2)先利用完全平方公式化简2(1计算后的结果进行合并化简.【解答】解:(1)原式,3===(2)原式12=-+3=-3=-3=.22.计算:(1(2 【分析】(1)先算乘除,再合并同类二次根式;(2)先化简,再合并同类二次根式.【解答】解:(1)原式==(2)原式==. 23.计算:(1)0121()2π-+-;(2(22)-.【分析】(1)先算零指数幂,负整数指数幂,平方运算,再算加减即可;(2)先用乘法分配律,平方差公式,再算加减.【解答】解:(1)原式123=+-0=;(2)原式5(54)=--51=-4=.24.计算:(1)(211()2|2--+. 【分析】(1)先化简二次根式,再合并同类二次根式,即可求解;(2)利用二次根式的乘法、负整数指数幂、绝对值的性质,即可求解.【解答】解:(1)原式=(53=+-=(2)原式2(2)=-+22==.25.化简或计算:(1) (2)2232()5a a b b-÷. 【分析】(1)先用乘法分配律,化为最简二次根式,再合并同类二次根式;(2)先算乘方,把除化为乘,再约分即可.【解答】解:(1)原式===;(2)原式232252a b b a=⋅ 52b =.262|5+.【分析】根据二次根式的性质、绝对值的性质即可求出答案.【解答】解:原式(518=+518=13=.27.计算:(1;(2 【分析】(1)先化简每个数,去括号,再合并即可;(2)用被开方数乘除,再化为最简二次根式即可.【解答】解:(1)原式==;(2)原式===. 28.计算:(1(2(3)(4)2(3(1-.【分析】(1)根据二次根式的乘除运算即可求出答案.(2)根据二次根式的加减运算即可求出答案.(3)根据二次根式的乘除运算法则即可求出答案.(4)根据完全平方公式以及平方差公式即可求出答案.【解答】解:(1)原式==(2)原式==(3)原式===(4)原式92(12)=--+7(3=-+73=--4=-29.计算:(1101()(3.14)2π----;(2. 【分析】(1)计算零指数幂,负整数指数幂,化为最简二次根式,再合并即可;(2)先算二次根式的乘除,化为最简二次根式,再合并即可.【解答】解:(1)原式(2)1=--21=-1=;(2)原式===30.计算:(1)(2)|4|【分析】(1)将系数相乘,被开方数相乘,再化为最简二次根式即可;(2)化为最简二次根式,去绝对值,再分别同类二次根式即可.【解答】解:(1)原式2==(2)原式4=-=431.计算:(1(2)1)(3--.【分析】(1)直接化简二次根式,进而合并得出答案;(2)直接利用二次根式的乘法运算法则化简,进而合并得出答案.【解答】解:(1)原式==;(2)原式53=+=-.232.计算:(1)(11);(2;(3)【分析】(1)运用平方差公式进行计算即可;(2)把各根式化为最简二次根式,再合并同类项即可;(3)先算括号里面的,再算除法即可.【解答】解:(1)(11)-=+(122=-1=-154=-;(2==;(3)===33.计算:(1+(2【分析】(1)直接化简二次根式,再利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的除法运算法则计算得出答案.【解答】解:(1)原式==(2)原式=.34.计算:(101)+.(2)21)2)+.【分析】(1)先化为最简二次根式,再合并同类二次根式;(2)先用平方差,完全平方公式展开,再算加减即可.【解答】解:(1)原式1=+1=+;(2)原式12134=-+-18=-.35.计算(1)20(2)(6)-+-;(2)-【分析】(1)根据零指数幂的意义,二次根式的乘法运算以及乘方运算即可求出答案.(2)根据平方差公式以及二次根式的除法运算即可求出答案.【解答】解:(1)原式441=++9=.(2)原式187=--11=-.36.计算:(1(2;(3201()|2|( 3.14)3π----;(4)21)-.【分析】(1)先化简二次根式再合并即可;(2)根据二次根式混合运算的法则计算即可;(3)运用零指数幂、绝对值的定义先化简,然后计算加减;(4)运用平方差公式和完全平方公式计算即可.【解答】解:(1==(2==(3201()|2|( 3.14)3π---- 1219=-+ 829=-;(4)21)-3251=--+5=-+37.计算:(1);(2)2+ 【分析】(1)直接利用平方差公式计算得出答案;(2)直接利用完全平方公式以及二次根式的乘法运算法则计算,进而合并得出答案.【解答】解:(1)原式22=-1812=-6=;(2)原式232=+-23=+-=.538.计算:(1)(2)21).【分析】(1除法法则,计算出结果,最后进行合并化简;(2)利用完全平方公式,化简21)者同类项进行合并.【解答】解:(1)原式,=,=,2=-,337=;3(2)原式21=+-,=+.3239.计算:(1(2)21)1)(1++.【分析】(1)直接化简二次根式,再利用二次根式的加减运算法则计算得出答案;(2)直接利用乘法公式计算得出答案.【解答】解:(1)原式==;(2)原式2121=-+-4=-40.计算:(1(2)21)1)-+.【分析】(1)根据二次根式的加减运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【解答】解:(1)原式=2==.(2)原式3161=-+-9=-41.计算:(1-(2) 【分析】(1)先把二次根式化简,然后合并即可;(2)先利用二次根式的乘法法则运算,然后化简后合并即可.【解答】解:(1)原式2-2=(2)原式=== 42.计算:(1)01)|1-(2.【分析】(1)根据实数的运算法则即可求出答案.(2)根据二次根式的运算法则即可求出答案.【解答】解:(1)原式121=--=.2(2)原式=-==43.计算:(1)20-+--12|(3(2(3(42+【分析】(1)根据乘方的意义、绝对值的意义和零指数幂的意义计算;(2)先把二次根式化为最简二次根式,然后合并即可;‘(3)利用二次根式的除法法则和平方差公式计算;(4)先分母有理化,然后合并即可.【解答】解:(1)原式121=-+=;(2)原式==(3)原式122=-=;10(4)原式22=+=.444.计算:(1)(2)12 【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的乘法法则和平方差公式计算,然后进行有理数的混合运算.【解答】解:(1)原式==;(2)原式16(53)2=⨯- 1322=-- 12=.45.(1(2) 【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式==(2)原式=19=+ 10=.46.计算(1)101|3()(20203---;(2)22)【分析】(1)直接利用负整数指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式331=--=-;1(2)原式346=+-=-.147.计算:(1;(2【分析】(1)利用二次根式的乘法法则运算;(2)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式==;(2)原式=+-=.48.计算:(1(2)22+.【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用完全平方公式进而计算得出答案.【解答】解:(1==(2)22+= 124= 3=.49.(1+;(2)2-.【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式进而计算得出答案.【解答】解:(1)原式===;(2)原式222=--832=--3=.50.计算:(1;(2)55(2(2-.【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用积的乘方运算法则将原式变形进而计算得出答案.【解答】解:(1)原式==-;(2)原式5[(2=51==.151.计算:(1+(2.【分析】(1)直接化简二次根式进而合并得出答案;(2)利用二次根式混合运算计算得出答案.【解答】解:(1+=+-=;(2==-32=.152.计算:(1(2+【分析】(1)利用二次根式的乘除法则运算;(2)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=(2)原式=+=.53.计算:(1)2((2【分析】(1)根据二次根式的性质计算;(2)先利用二次根式的乘法法则运算,然后化简后合并即可.【解答】解:(1)原式65=-=;1(2)原式===54.计算:(1)2;(2).【分析】(1)利用完全平方公式计算;(2)利用二次根式的乘法法则运算.【解答】解:(1)原式202=-=-22(2)原式==+183=.2155.计算:(1;2).(2)2【分析】(1)直接化简二次根式进而计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)原式10===;(2)原式34=+-=-756.计算:;(1(2(-.【分析】(1)直接化简二次根式进而计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)原式===(2)原式((==-.157.计算:(1)0|1(2018)π+---(23|【分析】(1)利用绝对值和零指数幂的意义计算;(2)先进行二次根式的乘法运算,然后去绝对值后合并即可.【解答】解:(1)原式11+-=-(2)原式33=-6=-.58.计算:(1);(2)01(1)π--+.【分析】(1)根据二次根式的运算法则即可求出答案.(2)根据负整数指数幂的意义,零指数幂的意义以及实数的运算法则即可求出答案.【解答】解:(1)原式3=⨯=32=⨯-6=-(2)解:原式1=+-1=+1=59.计算:(1;(2)2()()x y x x y +-+.【分析】(1)先根据二次根式的乘法法则运算,然后化简后合并即可;(2)先利用乘法公式展开,然后合并即可.【解答】解:(1)原式==(2)原式2222x xy y x xy =++--2xy y =+.60.(10212)()2-+(2)(32-.【分析】(1)根据零指数幂和负整数指数幂的意义计算;(2)利用平方差公式计算.【解答】解:(1)原式214=++7=;(2)原式972=--0=.。
二次根式的乘除(课件)八年级数学下册(苏科版)
2h
.从100米高空抛物到落地所需时间t2是从50米高
10
空抛物到落地所需时间t1的多少倍?
解:由题意得
t2
t1
2 100
10 20 2.
10
2 50
10
课堂练习
1.化简
A.9
18 2 的结果是( B )
B.3
C. 3 2
D.
2 3
2.下列根式中,最简二次根式是( C )
注意:被开方数 a,b 既可以是数,也可以是代数式,但都必须是非
负的.
典型例题
例1 计算:
1
3 5;
2
1
27.
3
解: 1 3 5= 3 5= 15;
2
1
1
27 = 27 = 9=3.
3
3
提示:
两个二次根式相乘,把被开方数
相乘,根指数不变.即:
a b ab (a≥0,b≥0)
7
7
5
× × =
2²×2×5
2 10
=
.
5×5
5
8
5
探究新知
二次根式的乘除混合运算中的四点注意:
(1)带分数要化成假分数;
(2)要注意确定最后结果的符号;
(3)最后结果一般要化为最简二次根式或整式;
(4)在二次根式的乘除混合运算中,有理数的运算法则同样适用.
05
二次根式乘除法的应用
典型例题
例题9. 一个长方形的长和宽分别是 10 和2 2 .求这个
可以发现这些数不能再化简,这些数有两个特点:
(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.