第九届新希望杯数学竞赛

合集下载

第9届“希望杯”全国数学邀请赛(高一)第一试

第9届“希望杯”全国数学邀请赛(高一)第一试

第九届“希望杯”全国数学邀请赛(高一)第一试班级 姓名一、选择题1、如图是函数c bx ax x f ++=2)(的图象,那么--( )(A )0,0,0><<c b a (B )0,0,0<>>c b a (C )0,0,0>><c b a (D )0,0,0>>>c b a2、某种菌类生长很快,长度每天增长1倍,在20天中长成4米,那么长成41米要--------------------------------( )(A )411天 (B )5天 (C )16天 (D )12天3、函数)1,0(log )(≠>=a a x x f a ,若1)()(21=-x f x f ,则)()(21x f x f -的值等于----------------------------------------------------------------------------------------( )(A )2 (B )21(C )1 (D )2log a4、平面外一直线和这个平面所成的角为θ,则θ的范围是-------------------------( )(A )0︒<θ<180︒ (B )0︒<θ<90︒ (C )0︒<θ≤90︒ (D )0︒≤θ≤90︒5、P 、Q 、R 、S 分别表示长方体集合、直平行六面体集合、直四棱柱集合、正四棱柱集合,它们之间的关系为-----------------------------------------------------------( )(A )R ⊃Q ⊃P ⊃S (B )R ⊃Q ⊃S ⊃P (C )S ⊂P=Q ⊂R (D )S ⊂R,P ⊂Q,R ⊆Q,Q ⊆R6、︒=70log 21tg a ,︒=25sin log 21b ,︒=25cos )21(c ,则------------------------( )(A )c b a << (B )a c b << (C )b c a << (D )a b c <<7、)(x f 是定义域为R 的奇函数,方程0)(=x f 的解集为M ,且M 中有有限个元素,则----------------------------------------------------------------------------------------( )(A )M 可能是∅(B )M 中元素的个数是偶数 (C )M 中元素的个数是奇数(D )M 中元素的个数可以是偶数,也可以是奇数。

七年级-第九届希望杯全国数学邀请赛初一第2试

七年级-第九届希望杯全国数学邀请赛初一第2试

第九届“希望杯”全国数学邀请赛(初一)第2试一、选择题1.已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( )A b ab <B b ab >C 0>+b aD 0>-b a2.有理数a 等于它的倒数,有理数b 等于它的相反数,则19981998b a +=( ) A 0 B 1 C 1- D 2 3.下面的四个判断中,不正确的是( ) A 6334y x 与6334b a 不是同类项 B x 3和13+-x 不能互为相反数C ()()x x 275674-=-和()()742756-=-y y 不是同解方程D 3和311+a 不能互为倒数 4.已知关于x 的一次方程()0783=++x b a 无解,则ab 是( ) A 正数 B 非正数 C 负数 D 非负数5.如果b a b a +>-,那么( )A b a b a +>-B 0<abC b b 22>-D b a 22>-6.方程组⎩⎨⎧=-=+318573y x y x 的解()y x ,是( )A ()2,3-B ()1,2C ()5,4-D ()7,07.一条直线上距离相等地立有10根标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.6秒,则当他走到第10杆时所用时间是( ) A 11秒 B 13.2秒 B 11.8秒 D 9.9秒 8.有以下两个数串:1999,1997,1995,1993,1991,,7,5,3,1 和.1999,1996,1993,1990,,10,7,4,1同时出现在这两个数串中的数的个数共有( ) A 333 B 334 C 335 D 3369.如图所示,1=∆ABC S ,若ACE DEC BDE S S S ∆∆∆==,则ADE S ∆=( ) A 51 B 61 C 71 D 8110.若关于x 的方程032=+-m x 无解,043=+-n x 只有一个解,054=+-k x有两个解,则k n m ,,的大小关系是( )A k n m >>B m k n >>C n m k >>D n k m >> 二、填空题11.计算:2233222278782278+⨯-+=________. 12.若8919+=+=+c b a ,则()()()222a c cb b a -+-+-=________.13.图中三角形的个数是_______.14.甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是________秒。

第九届小学“希望杯”全国数学邀请赛获奖名单

第九届小学“希望杯”全国数学邀请赛获奖名单

第九届小学“希望杯”全国数学邀请赛获奖名单黑龙江省哈尔滨市来成文化学校一等奖(7名)四年级:哈尔滨市荣智小学李超然五年级:哈尔滨市香安小学宁昆鹏哈尔滨市继红小学单希政哈尔滨市复华小学郭涛鸣:哈尔滨市锅炉小学郎天宇:哈尔滨市花园小学尹泽霖:哈尔滨市铁岭小学李佳泽:二等奖(13名)四年级:哈尔滨市新阳路小学闫正邦哈尔滨市师范附小刘照一、葛佳琳赵万博哈尔滨市工农兵小学宁作宇哈尔滨市经纬小学刘锦徽哈尔滨市继红小学刘泽辉哈尔滨市复华小学宋晓斌哈尔滨市保国一校唐昊翔五年级哈尔滨市复华小学白雨萌哈尔滨市马家沟小学石昊天哈尔滨市雷锋小学祝明玥哈尔滨市新疆二校李文博三等奖(共370名)四年级:中英小学李容舟中英小学于海波中英小学齐颢然中英小学崔启元中英小学宋宣毅中英小学张瀚予中英小学霍鸣霄中英小学沈卓然正阳南小学陈可心兆麟小学郭凡漪兆麟小学李东泓兆麟小学赵健百兆麟小学丁瑞姝兆麟小学于盛麟兆麟小学高珊兆麟小学沈超凡育英小学张悦育民小学张雨菲育民小学王彬羽育红小学吴崎菲育才小学王佳旭应诺文化学校王胤博应诺文化学校陈智蕾逸夫小学王子嘉兴华小学李响兴华小学王鸿飞兴华小学衣凌克兴华小学姜永翔兴华小学杨宇航兴华小学张镇乾兴华小学马皓轩兴华小学宁民福新阳路小学杨澜新民小学赵文博新民小学阿文卓龙新疆二校周姿谕新成小学朱峰香坊小学杨天睿香坊小学孙嘉彤香坊小学刘津楚凡香坊小学张瀚文香坊小学王嘉旭香滨小学任忠麒香滨小学刘昕羽香滨小学李政润香滨小学张昊香安小学田爽文昌小学张振文王兆新村欧睿泽王兆新村庞博文王兆新村秦澜嘉王兆新村刘天泽通达小学毕皇辰通达小学张金岩铁岭小学于浩铁岭小学谷彧潇天天文化学校周建识泰山小学杨思宇泰山小学李杰豪泰山小学陈泳佐泰山小学刘世祺绥化尚志小学周博文苏宁小学杨笑迎苏宁小学王子恩苏宁小学刘湘禹实验小学曲晟师范附小侯冠廷师范附小陈曦师范附小刘思睿师范附小宫逸师范附小宋佳璐师范附小王圣与师范附小刘鼎坤师范附小孙可盈师范附小黄睿师范附小董浩廷师范附小周泽昱师范附小张芸鹏师范附小刘熠龙师范附小田宇迪师范附小韩谨谦师范附小许思远师范附小齐天宇师范附小费小溪师范附小马天翔师范附小吕鑫栋师范附小周翀尚志小学张雯雯清滨小学杨岱鑫汽轮小学韩志诚南市小学刘梓淇南马小学刘宇轩马家沟小学林晟宇龙江小学丁浩楠柳树小学王曦卓柳树小学刘渤雷锋小学李泽琛雷锋小学张天慧经纬小学吴尚哲经纬小学尹祎阳经纬小学莫奥博经纬小学甘岳林解放小学赵鹏建国小学孟祥鑫建国小学杜健洋继红小学王本宇继红小学方辛月继红小学王涵宇继红小学史涵帅继红小学于灿继红小学潘醍继红小学邵世龙继红小学刘明帆继红小学刘迪航继红小学焦阳继红小学侯冰俏继红小学王玥晴继红小学胡继元淮河小学聂君心桦树小学么恩泽花园小学刘昱彤花园小学黄之冠花园小学王军尧花园小学赵睿毅花园小学项品湜花园小学王心艺花园小学李昊霖花园小学于海昕花园小学王冠骐虹桥小学石晓熠虹桥小学卜祥滨虹桥小学刘志淮虹桥小学王宇鹏虹桥小学程蒋慧一虹桥小学郝俊雄虹桥小学付俊淳虹桥小学刘文俊虹桥小学张超虹桥小学张靖崧虹桥小学陈淞潇锅炉小学孟子佳公园小学彭涧明公园小学夏宇航公滨小学王津浩公滨小学王梓睿公滨小学林泽瀚公滨小学韩博公滨小学林子淇公滨小学王然公滨小学金树林公滨小学董天泽公滨小学郭剑锋公滨小学刘家汐高潮小学吕善鹏复华小学田雨泰复华小学赵澍淇风华小学马瑞成风华小学王禹诺风华小学季可儿风华小学王铭玥风华小学张嘉臣范清军奥数王祺动力小学张子华动力小学马赫东风小学孙明宇东风小学姜馨雨东风小学徐斐然东方红小学杨博涵电工小学孟月冰大同小学沙雨桐大同小学张智博长虹小学林南伟保国一校张淙彧奥林文化孟炜棋奥林文化张瀚一安静小学张邵亦安静小学王晶博安静小学于康萌安广小学叶润泽爱国小学赵文煊五年级:电工小学李震东风小学李伊冉香安小学李咏航大同小学孟祥泓中英小学赵宇轩花园小学毛星茏继红小学冯奕博复华小学孙源泽育红小学李昱林香安小学彭梓越新疆一校孙浩然南市小学王源继红小学李禹辰电工小学司恒宇范清军奥数刘心亿范清军奥数王应泽新阳路小学张奥凯新阳路小学郑博文长虹小学张鹤龙公滨小学韩一楠兴华小学纪霖琦复华小学吕泽明公滨小学温克寒友协三校孙浩然公滨小学孙白羽虹桥小学关博麟中英小学李阔然继红小学刘泽宇马家沟小学崔博睿育红小学吴尚思南马路小学宋嘉龙新阳路小学徐培文师范附小王仲博继红小学王晓瞳文化小学常云鹏南马路小学李晓生锅炉小学刘宏旭继红小学王俊博靖宇小学李季玉靖宇小学刘天祎奥林文化刘焱继红小学郭晋东复华小学孙嘉良复华小学陈思潼奥林文化苏冠荣继红小学刘世豪范清军奥数陈峻洋风华小学李潇锅炉小学王延明香滨小学沙湧瀚香安小学张可欣范清军奥数王嘉莹继红小学姜焯文继红小学王梓懿继红小学刘睿轩师大附小李应东师范附小王婧怡清滨小学羿天阳和兴小学刘畅电工小学王馨平友协二校张一宸电工小学唐诗范清军奥数刘函范清军奥数孙文龙红岩小学钱星瑞奋斗小学张子扬桥南小学杨宁虹桥小学刘涵智香坊小学姜君继红小学鲍海航百利小学赵杨师范附小宋冠禹雷锋小学单航电工小学姜宝洋中英小学刘昊贤苏宁小学李政萱师范附小刘泓辰民生路小学郑博文尚志小学孙泽铭继红小学张雨桐安静小学王松颢香滨小学栗延坤师范附小刘适涵兆麟小学潘浩泽闽江小学温胜伦继红小学姜博师范附小闫艺桐南马路小学赵文昊安阳小学杨少朕新疆二校喜泽昕花园小学王彩璇苏宁小学刘子雍泰山小学高唯珂复华小学东添建文小学袁宇宸香坊小学韩易达香坊小学姜宇昊桥南小学孙鹏宇花园小学佟文宇铁岭小学余泓霄雷锋小学吴桐师范附小王禹东风小学张岩松神龙文化学校李佳芯大同小学宋玥达保国二校杨万宝复华小学侯雨晴经纬小学陈雨辰继红小学刘天一师范附小王志乾兆麟小学程实继红小学薛添元新华小学林海杰香滨小学郭雨杨复华小学张佳钰电工小学丛佳文南直小学徐璐范清军奥数姜鹏飞继红小学邹雨辰马家沟小学王昕昊师范附小关昊育英小学徐华鹏大同小学梁炜悦新疆二校于涵花园小学王宇昂铁岭小学王志鹏奋斗小学丁家华泰山小学胡千禧团结小学王子皓经纬小学郝泽宇师范附小赵元硕新苗小学张银朵闽江小学黄婧育英小学徐子昂师范附小张馨予马家沟小学王鸣谦铁岭小学任金香滨小学杜宜聪闽江小学李仕隆育红小学张恩霆育英小学温金城香红小学庞博新疆二校黄禹瑞公滨小学刘泽宇实验小学刘永晟萧红小学吴雨奇复华小学姚烁香二小学张彤中英小学滕杨师大附小赵睿馨复华小学谢天丁兆麟小学吕正钦雷锋小学黄健马家沟校张康然虹桥小学苏章德隆兴华小学岳文涛长虹小学白东鑫兴华小学金宗贤公滨小学邓子睿苏宁小学徐宁泽经纬小学孙宇彤文昌小学任天翔闽江小学王法鹏闽江小学周子正建国小学徐昕钰康富小学孙琳昊南马路小学王睿东风小学张修琪东方红小学张健铭公滨小学王昕宇建国小学郭鑫泽新民小学杨雅涵师大附小张馨月通乡小学白英博香滨小学刘思源剑桥小学于志成团结小学王宇轩东风小学毕然风华小学张雨森公园小学柏金龙汽轮小学段世杰泰山小学柳思齐优秀辅导员:许波吕明蒋石春杨曦敏左春梅马洪峰杜良胤范清军薛晨亮蔡荣欣王丽孙莹英张蕊夏晓炜刘琦李英华张晶芦丽王丽英肖碧松林琳郭阳白晓双夏秀明高静娴张华高天苏嘉韩文静韩玉柱李强张圣龙刘亚男李天奇杨新月李昕烨胡玉福刘冬强李姝车美丽成诚杨慧娟张蕊姚宁宇简晓冬刘宁张代臣牟丹张静吕力赵淑珍边淑蓉陆甜甜陈丽娜黄龙刘天一张利王文玲王磊毕蕾王宏阎伟黄大勇陈维冲李芒陈立威王立枢尹龙艳朱春瑜王瑶吴丹王维华赵淞萍吕庭波邰慧尚颖韩忠生历海波沈丽刘卓顾惠敏丁宝田左春梅董荣张代臣陈悦张玉华王倩何华赵洁莹李婉嫔李冰路琳尹龙艳韩忠生张旭王丽焕姚文蕾赵洁莹张云凯郝庆多白晓双牟宏宇季威张丹丹刘松玲孙彦广孙爽英马静芝于志敏马丽赵丽娜赵桂荣郑露汤丽彦郑少妍王元静贝景南金晶晶崔昆王学丽蔡运生周凤英王雁黎孟晋温与寒王秀玲于志敏孙彦津王立枢丘立华历海波丁宝田王燕平王金波。

2021年第九届希望杯四年级数学培训题(2021年小学数学北师大版)

2021年第九届希望杯四年级数学培训题(2021年小学数学北师大版)

2021年第九届希望杯四年级培训题2011年2月1、计算:123+456+789+987+654+321=_____________2、计算:7+97+997+9997+99997=_____________3、若两个相同的自然数的和与积相等,求这个自然数。

4、计算:(1×2×3×…×11)÷(1+2+3+…+11)=_______________5、计算:125×70-5×28×2+4×5×9=_____________________6、有一个两位数,它除以3,得余数2,它乘以3,乘积的个位数字是4,百位数字是2,求这个两位数。

7、乘积是160的两个数的和比这两个数的差大4,求这两个数的和。

8、算式8888…8 × 9999…9的结果中有多少个1?2010个8 2010个99、图1中,以点A,B,C,D,E,F,G,H为端点的线段有多少条?图110、一个六位数,从左到右的第三个数字开始,每个数字恰好都是前两个数字的积,求符合此条件的六位数的个数。

11、甲、乙、丙三人拿出同样多的钱共买回一筐苹果。

甲和丙都比乙多拿了15千克苹果,并且分别给了乙30元,问:每千克苹果多少元?12、妈妈带儿子小虎到超市习了两件商品,小虎把一件商品标价中个位上的零忽略了,他付给收银员162元,但是收银员说应当付270元,求这两种商品的单价分别是多少?13、一人匀速地在公路上散步,从第1根电线杆走到第15根,用了15分钟,则这人如果按这速度走30分钟可从第1根电线杆走到第几根电线杆处?14、赵明步行去公园回来时坐车,途中用了一个半小时,如果他去公园时,来、回都坐车,则只需半小时,如果他来去都步行,需要多少小时?15、某影院一号播放厅有20排座位,第七排有42个座位,从第二排起后面一排总比前一排多2个座位,求这个播放厅的座位总数。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题第 1 页共277 页目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 044-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 051-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 058-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 065-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 072-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 079-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 089-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 95-10515.希望杯第八届(1997年)初中一年级第一试试题........................................... 103-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 110-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 119-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 128-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 135-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 148-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 155-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 159-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 163-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 169-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 173-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 180-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 184-200第 2 页共277 页29.希望杯第十五届(2004年)初中一年级第一试试题 (188)30.希望杯第十五届(2004年)初中一年级第二试试题 (189)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (189)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301第 3 页共277 页第 4 页 共 277 页希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.第 5 页 共 277 页 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第 6 页共277 页第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题第7 页共277 页提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-50005000)=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-=-2500.+1)=5x+26.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.第8 页共277 页8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即第9 页共277 页希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中第10 页共277 页的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.第11 页共277 页答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m ,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出第12 页共277 页∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.第13 页共277 页3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得第14 页共277 页即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.第15 页共277 页希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.第16 页共277 页第 17 页 共 277 页10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( )A.%2p q +;B.()%mp nq +;C.()%mp nq p q ++;D.()%mp nq m n++. 二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.第18 页共277 页答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

第九届小学“希望杯”全国数学邀请赛试卷(四年级第2试)

第九届小学“希望杯”全国数学邀请赛试卷(四年级第2试)

2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:(70÷4+90÷4)÷4=.2.(5分)计算:898+9898+99898+999898=.3.(5分)对运算⊙和㊣,规定:a⊙b=a×b+b,a㊣b=a×b﹣a,那么(2⊙3)⊙(2㊣4)=.4.(5分)若一个能被5整除的两位数既不能被3整除,又不能被4整除,它的97倍是偶数,十位数字不小于6,则这个两位数是.5.(5分)如图中每一横行右面的一个数减去它左面相邻的一个数所得的差都相等,每一数列下面的一个数除以它上面相邻的一个数所得的商都相等,则a+b×c=.6.(5分)如果一个两位数的3倍与4的差是10的倍数,它的4倍与15的差大于60且小于100,则这个两位数是.7.(5分)若四位数的各个数位上的数字都是偶数,并且百位上的数字是2,则这样的四位数有个.8.(5分)将长为12厘米,宽为8厘米的长方形纸片剪去4个同样大小的等腰直角三角形,剩余部分的面积至少是平方厘米.9.(5分)一个除法运算,被除数是10,除数比10小,则可能出现的所有不同的余数的和是.10.(5分)苹果和梨各有若干个,若每袋5个苹果和3个梨,则当梨恰好装完时,还多4个苹果;若每袋装7个苹果和3个梨,则当苹果恰好装完时,梨还多12个,那么苹果和梨共有个.11.(5分)如图,在△ABC中,AB=BC=CA,D、E、F分别是三边的中点,AD、BE、CF交于点O,则图中有个三角形;他们的面积有个不同的值.12.(5分)A、B、C、D四人带着一个手电筒,要通过一个黑暗的只容2人走的隧道,每次先让2人带着手电筒通过,再由一人送回手电筒,又由2人带着手电筒通过…,若A、B、C、D四人单独通过隧道分别需要3、4、5、6分钟,则他们4人都通过至少需要分钟.二、解答题(每小题15分,共60分)13.(15分)摩托车行驶120千米与汽车行驶180千米所用的时间相同,7小时内摩托车行驶的路程比6小时内汽车行驶的路程少80千米,若摩托车先出发2小时,然后汽车从同一出发点开始追赶,那么汽车出发后几小时内可以追上摩托车?14.(15分)将1,10,11,15,18,37,40这7个数分别填入图中的7个圆圈内(每个数都用到),能否使其中两条直线上的三个数的和相等,并且等于另一条直线上的三个数的和的3倍?若可以,请给出一种填法;若不能,请说明理由.15.(15分)100人参加速算测试,共10题.每题答对的人数如下表所示:题号 1 2 3 4 5 6 7 8 9 1093 90 86 91 80 83 72 75 78 59答对人数规定:答对6题或6题以上,为及格,根据上表计算至少有多少人及格.16.(15分)如图,甲乙两只小虫分别从每边长20厘米不透明的正五角星围墙的顶点A、B出发,沿外侧按逆时针方向爬行,甲每秒爬行5厘米,乙每秒爬行4厘米.问:在甲从出发到第一次爬到B的过程中,乙能看到甲的时间有多少秒?2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:(70÷4+90÷4)÷4=10 .【分析】可以先从括号里开始运算,而括号里两个除式,可以化成分数的形式,最后再算结果.【解答】解:根据分析,原式=(70÷4+90÷4)÷4=(70+90)÷4÷4=160÷4÷4=40÷4=10.故答案是:10.【点评】本题考查了四则运算的巧算,突破点是,将括号里的运算进行巧算,再求最后的结果.2.(5分)计算:898+9898+99898+999898=1110592 .【分析】此题一看便知,这式子里的数都接近整数,用凑整法把它变成:(898+2﹣2)+(9898+2﹣2)+(99898+2﹣2)+(999898+2﹣2)=(900﹣2)+(9900﹣2)+(99900﹣2)+(999900﹣2)=900+9900+99900+999900﹣8.再根据特点易想到把这些凑整的数化成乘积的形式,便发现了乘法的分配律的运用,计算就简便了.【解答】898+9898+99898+999898=(900﹣2)+(9900﹣2)+(99900﹣2)+(999900﹣2)=900+9900+99900+999900﹣8=9×100+99×100+999×100+9999×100﹣8=(9+99+999+9999)×100﹣8=(10+100+1000+10000﹣4)×100﹣8=(11110﹣4)×100﹣8=11110×100﹣4×100﹣8=1111000﹣400﹣8=1110600﹣8=1110592【点评】此题是反复运用凑整法和乘法的分配律.并且是在解题过程中不断发现所用的运算定律.3.(5分)对运算⊙和㊣,规定:a⊙b=a×b+b,a㊣b=a×b﹣a,那么(2⊙3)⊙(2㊣4)=60 .【分析】按题意,则2⊙3=2×3+3=9;2㊣4=2×4﹣2=6,则(2⊙3)⊙(2㊣4)=9⊙6=9×6+6=60.【解答】解:根据分析,则2⊙3=2×3+3=9,2㊣4=2×4﹣2=6,则(2⊙3)⊙(2㊣4)=9⊙6=9×6+6=60,故答案是:60.【点评】本题考查了定义新运算,突破点是:分别算出2⊙3和2㊣4,再算出结果.4.(5分)若一个能被5整除的两位数既不能被3整除,又不能被4整除,它的97倍是偶数,十位数字不小于6,则这个两位数是70 .【分析】显然,能被5整除,则个位只能是0或5,而它的97倍是偶数,说明此两位数是一个偶数,故可以断定此两位数个位数字为0,而十位不小于6,只能是6、7、8、9,因不能被4整除,则十位不能是6、8,故十位只能是7或9,又因为不能被3整除,故十位上只能是7.【解答】解:根据分析,能被5整除,则个位只能是0或5,而它的97倍是偶数,说明此两位数是一个偶数,故可以断定此两位数个位数字为0,而十位不小于6,只能是6、7、8、9,因不能被4整除,则十位不能是6、8,故十位只能是7或9,又因为不能被3整除,故十位上只能是7.综上,此两位数是70,故答案是:70.【点评】本题考查了数的整除特征,突破点是:从题中已知条件推测出个位数字和十位数字.5.(5分)如图中每一横行右面的一个数减去它左面相邻的一个数所得的差都相等,每一数列下面的一个数除以它上面相邻的一个数所得的商都相等,则a+b×c=540 .【分析】首先分析题意,横行为等差,竖列为等比数列,找到第一行公差和数列的公比即可.【解答】解:依题意可知:横行为等差,竖列为等比.根据横行为等差数列可知第一行的数字为2,4,6,8.竖行是等比数列,故18÷2=9.所以c是2 的3倍即是6.a是4的27倍.4×27=108.b是8的9倍72.a+b×c=108+72×6=540.故答案为:540【点评】本题考查对幻方的理解和运用,关键问题是找到公差和公比问题解决.6.(5分)如果一个两位数的3倍与4的差是10的倍数,它的4倍与15的差大于60且小于100,则这个两位数是28 .【分析】显然,两位数的3倍与4的差是10的倍数,可知此两位数的三倍得到的数的个位数是4,而乘以3得到个位为4的两位数个位数为8,由它的4倍与15的差大于60且小于100,可求得此两位数的范围,不难求得此两位数.【解答】解:根据分析,两位数的3倍与4的差是10的倍数,可知此两位数的三倍得到的数的个位数是4,而乘以3得到个位为4的两位数个位数为8;由它的4倍与15的差大于60且小于100,可求得此两位数的范围:大于:=,小于:=,综上,此两位数为:28.故答案是:28.【点评】本题考查了因数与倍数,突破点是:根据因数与倍数的性质,以及两位数的范围求得两位数.7.(5分)若四位数的各个数位上的数字都是偶数,并且百位上的数字是2,则这样的四位数有100 个.【分析】四位数的最高位是千位,最高位上不能为0,那么可以是2,4,6,8,而百位上只是2,固定好了,那么十位和个位上可以是0,2,4,6,8,根据排列的特点可知:共有4×5×5个不同的四位数.【解答】解:千位可取2,4,6,8,十位和各位都可以取0,2,4,6,8 所以4×5×5=100(个)故答案为:100.【点评】本题考查每个数位数字的特点,注意千位上不能取0.8.(5分)将长为12厘米,宽为8厘米的长方形纸片剪去4个同样大小的等腰直角三角形,剩余部分的面积至少是24 平方厘米.【分析】长为12厘米,宽为8厘米的长方形纸片,显然最多只能剪下4个直角边为6的等腰直角三角形,故剩下的面积不难求得.【解答】解:根据分析,如图,长为12厘米,宽为8厘米的长方形纸片,最多只能剪下4个直角边为6的等腰直角三角形,故剩下的部分的面积至少=12×(8﹣6)=24.故答案是:24【点评】本题考查剪切和拼接,突破点是:利用长方形的长和宽的值,剪切时取最大值,则剩下的部分面积最小.9.(5分)一个除法运算,被除数是10,除数比10小,则可能出现的所有不同的余数的和是10 .【分析】除数比10小,可以将10除以1~9,得出的余数中有2个是0即除以1、5时余数为0,不同的余数为1、2、3、4,再求和即可.【解答】解:根据分析,10÷6=1…4;10÷7=1…3;10÷8=1…2;10÷9=1…1;而10÷3和10÷9余数都是1,10÷4和10÷8余数都是2,故不同的余数只有:1、2、3、4,可能出现的所有不同的余数的和=1+2+3+4=10.故答案是:10【点评】本题考查带余除法,突破点是:将10除以1~9,得出的余数中有2个是0即除以1、5时余数为0,不同的余数为1、2、3、4,再求和.10.(5分)苹果和梨各有若干个,若每袋5个苹果和3个梨,则当梨恰好装完时,还多4个苹果;若每袋装7个苹果和3个梨,则当苹果恰好装完时,梨还多12个,那么苹果和梨共有132 个.【分析】首先分析根据梨的数量是多12个,证明袋子少了12÷3=4袋.再根据少的4袋苹果数量为20加上剩余的4个就是24个平均每袋多2个共12袋子,即可求解.【解答】解:依题意可知:根据梨的数量是多12个,证明袋子少了12÷3=4袋.苹果差是4×5+4=24个.24÷(7﹣5)=12袋,水果总数为10×12+12=132.故答案为:132.【点评】本题考查对分配盈亏问题的理解和运用,关键问题是找到梨的数量差找到袋子的数量差.问题解决.11.(5分)如图,在△ABC中,AB=BC=CA,D、E、F分别是三边的中点,AD、BE、CF交于点O,则图中有16 个三角形;他们的面积有 4 个不同的值.【分析】要求三角形的个数和不同的面积的取值,可以分情况讨论,从只含有一个小三角形的三角形开始算起,面积的不同取值也不难求得.【解答】解:根据分析,由题可知,AB=BC=CA,D、E、F分别是三边的中点,①只含有1个小三角形的三角形有:6个,且每个三角形的面积均相等,且均等于三角形ABC面积的;②含有2个小三角形的三角形有:3个,且每个三角形的面积均相等,且均等于三角形ABC面积的;③含有3个小三角形的三角形有:6个,且每个三角形的面积均相等,且均等于三角形ABC面积的;④含有6个小三角形的三角形有:1个,即三角形ABC,综上,则图中有16个三角形;他们的面积有4个不同的值.故答案是:16、4【点评】本题考查了三角形的面积,突破点是:根据图形的三角形的特点,分情况讨论,不难求得结果.12.(5分)A、B、C、D四人带着一个手电筒,要通过一个黑暗的只容2人走的隧道,每次先让2人带着手电筒通过,再由一人送回手电筒,又由2人带着手电筒通过…,若A、B、C、D四人单独通过隧道分别需要3、4、5、6分钟,则他们4人都通过至少需要21 分钟.【分析】四人要通过的时间要少,过隧道花费时间少的来回跑,即可得出结论.【解答】解:分两种情况讨论:第一种:A和B过,A回,4+3=7(分钟)C和D过,B回,6+4=10(分钟)A和B过,4(分钟)共用7+10+4=21(分钟);第二种:A和B过,A回,4+3=7(分钟)A和C过,A回,5+3=8(分钟)A和D过,6(分钟)共用7+8+6=21分钟.所以,至少需要21分钟;故答案为21.【点评】此题是最大与最小问题,解本题的关键是安排过隧道花费时间少的送手电.二、解答题(每小题15分,共60分)13.(15分)摩托车行驶120千米与汽车行驶180千米所用的时间相同,7小时内摩托车行驶的路程比6小时内汽车行驶的路程少80千米,若摩托车先出发2小时,然后汽车从同一出发点开始追赶,那么汽车出发后几小时内可以追上摩托车?【分析】首先分析两车的路程比即是速度比,根据路程差除以速度差即可求解.【解答】解:依题意可知:摩托车速度:汽车的速度=120:180=2:3.每一份的路程为:80÷(3×6﹣2×7)=20(千米).摩托车7小时的路程为:20×7×2=280(千米).摩托车的速度为:280÷7=40(千米/小时).汽车6小时的路程为:20×6×3=360(千米).汽车的速度是:360÷6=60(千米/小时).40×2÷(60﹣40)=4(小时)答:那么汽车出发后4小时内可以追上摩托车.【点评】本题考查对追及问题的理解和运用,关键问题是找到路程差与速度差问题解决.14.(15分)将1,10,11,15,18,37,40这7个数分别填入图中的7个圆圈内(每个数都用到),能否使其中两条直线上的三个数的和相等,并且等于另一条直线上的三个数的和的3倍?若可以,请给出一种填法;若不能,请说明理由.【分析】首先根据这7个数字求和为132.再根据这些数字除以7的余数和132除以7的余数组成7的倍数即可,【解答】解:依题意可知:设最小的和为1份,那么其他的为3份,最后加的数字和为7的倍数才行.1+10+11+15+18+37+40=132.这7个数字除以7的余数分别为1,3,4,1,4,2,5.132÷7=18…6.根据中间数字多加2次,那么数字和为7的倍数,那么余数是4的可以构成7的倍数.132+11+11=154.154÷7=21.故答案为:【点评】本题考查对凑数谜的理解和运用,关键是找到数字和是7的倍数,问题解决.15.(15分)100人参加速算测试,共10题.每题答对的人数如下表所示:题号 1 2 3 4 5 6 7 8 9 10答对 93 90 86 91 80 83 72 75 78 59人数规定:答对6题或6题以上,为及格,根据上表计算至少有多少人及格.【分析】先确定出答错的总人次,不及格的至少答错5道,即可得出得出结果.【解答】解:各题答错的总人次数为7+10+14+9+20+17+28+25+22+41=193,每有一个人不及格,则他至少答错5题,193÷5=38…3,所以至多有38人不及格,至少有62人及格.为说明是可以的,注意41正好比38多3,所以这38个人全都在第10题上答错,剩余的答错次数恰好平均分配到其他9题上.答:至少有62人及格.【点评】此题是最大与最小问题,主要考查了数的除法,确定出各题答错的总人次是解本题的关键.16.(15分)如图,甲乙两只小虫分别从每边长20厘米不透明的正五角星围墙的顶点A、B出发,沿外侧按逆时针方向爬行,甲每秒爬行5厘米,乙每秒爬行4厘米.问:在甲从出发到第一次爬到B的过程中,乙能看到甲的时间有多少秒?【分析】设五角星的五个顶点按逆时针方向标为B、B1、B2、B3、B4,形成顶点B﹣﹣顶点B1的区间一,顶点B1﹣﹣顶点B2的区间二,以此类推到区间五.根据题意,乙能看到甲的情况是他们必须在同一时间都行走在同一区间.在区间一看到的时间:20÷5=4(秒);区间二看到的时间:20×2÷4=10(秒),20×3﹣10×5=60﹣50=10(厘米),10÷5=2(秒);区间三的情况:甲到达B3的时间是(10+20+20)÷5=10(秒),乙移动距离10×4=40(厘米),此时乙到达B2,乙能看到甲的时间是0,据此可解答.【解答】解:区间一看到的时间:20÷5=4(秒);区间二看到的时间:20×2÷4=10(秒),20×3﹣10×5=60﹣50=10(厘米),10÷5=2(秒);区间三能看到的时间:0总共乙能看到甲的时间有2+4=6(秒)答:乙能看到甲的时间有6秒.【点评】此题一定要结合生活实际去想去思考(什么情况下乙能看到甲),然后确定解题思路,就能顺利解答,这真是生活中的数学.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:48:13;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

第九届“新希望杯”全国数学大赛八年级试题(含解答)

第九届“新希望杯”全国数学大赛八年级试题(含解答)

第九届“新希望杯”全国数学⼤赛⼋年级试题(含解答)第九届“新希望杯”全国数学⼤赛⼋年级试题(B 卷)(时间:2013年3⽉24⽇满分120分)⼀、选择题(每⼩题4分,共32分) 1. 下列⼏种说法中:(1)⽆理数都是⽆限⼩数;(2)带根号的数是⽆理数;(3)实数分为正实数和负实数;(4)⽆理数包括正⽆理数、零和负⽆理数.正确的有() A.(1) (2) (3) (4) B.(2) (3) C.(1) (4) D.只有(1)2. 2.已知⼀个等腰三⾓形的⼀条边长为8cm ,其中⼀个外⾓等于1200,则它的周长为()A.16cmB.18cmC.24cmD.条件不⾜,⽆法计算3. 把⼀个正⽅形如图对折三次后沿虚线剪下两个⾓,则展开余下部分所得的图形是()DCB A4. 已知a 、b 、c 分别是?ABC 的三边,则()2222224a b c a b +--为()A 正数B 负数C 零D ⽆法确定5. =()A -2B 2C -D 6. ⼀次函数y kx b =+与正⽐例函数y kbx =在同⼀坐标系中的图象可能为()镜⾯合同三⾓形B'B真正合同三⾓形C'B CDCBA7. 在四边形ABCD 中,AD//BC ,AE 、BE 分别平分∠BAD 、∠ABC ,点F 为AB 的中点,连结EF ,则下列结论中,⼀定成⽴的是()A EF=BEB BF=BEC BC=DED AD+BC=2EF (第7题图)8. 如图,已知?ABC 为等腰三⾓形,AB=AC ,F 为AC 上⼀点,点D 为BC 延长线上⼀点,点E 为AB 延长线上⼀点,EF 与BC 相交于点G ,如果∠ABC=2∠D ,∠CAD= ∠BAC ,BE=CF ,那么下列说法中,正确的个数有()A 1个B 2个C 3个D 4个⼆、填空题(每⼩题5分,共40分)9.()44310?= (结果⽤科学计数法表⽰)10. 已知533x y z ++=,2859x y z ++=,则x y z ++的平⽅根为 . 11. 全等三⾓形也叫做合同三⾓形,平⾯内的合同三⾓形分为真正合同三⾓形和镜⾯合同三⾓形.假如?ABC 和?'''A B C 是全等三⾓形,且点A 与点'A 对应,点B 与点'B 对应,点C 与点'C 对应.如下图,当沿周界A →B →C →A 及''''A B C A →→→环绕时,若运动⽅向相同,则称它们是真正合同三⾓形;若运动⽅向相反,则称它们是镜⾯合同三⾓形.下列各组合同三⾓形中,属于镜⾯合同三⾓形的有。

八年级数学第9届“希望杯”第2试试题

八年级数学第9届“希望杯”第2试试题

山东省滨州市无棣县埕口中学八年级数学第9届“希望杯”第2试试题一、选择题:(每题6分,共60分)1.若a +b +c =0,则a 3+a 2c -abc +b 2c +b 3的值为[ ] A .-1.B .0.C .1.D .22.适合关系式|3x -4|+|3x +2|=6的整数x 的值的个数是 [ ] A .0. B .1. C .2. D .大于2的自然数.3.已知x <0<z ,xy >0,|y |>|z |>|x |,那么 |x +z |+|y +z |-|x -y |的值 [ ] A .是正数. B .是负数. C .是零. D .不能肯定符号. 4.863863++-的值为[ ] A.32; B.23; C.52; D.25.5.△ABC 的一个内角的大小是40°,且∠A =∠B ,那么∠C 的外角的大小是 [ ] A .140°.B .80°或100°.C .100°或140°.D .80°或140°6.如图15,□ABCD 中,∠ABC =75°,AF ⊥BC 于F ,AF 交BD 于E ,若DE =2AB ,则∠AED 的大小是[ ] A .60°; B .65°; C .70°; D .75°.7.若对于±3之外的一切实数x,等式28339m n xx x x -=+--均成立,则mn 的值为[ ] A .8 B .-8. C .16 D .-168.已知N =2222……2(共k 个2),若N 是1998的倍数, 那么符合条件的最小的k 值是 [ ] A .15 B .18. C .24 D .279.在方程组33336x y z x y z ++=⎧⎨++=-⎩中,x,y,z 是互不相等的整数,则此方程组的解的组数为[ ] A .6 B .3 C .多于6 D .少于310.如图16,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,则CF 与GB 的大小关系是 [ ]A.CF>GB B.CF=GB. C.CF<GB D.无法肯定的二、填空题(每题6分,共60分)11.把代数式(x+y-2xy)(x+y-2)+(xy-1)2分解成因式的乘积,应当是________. 12.设实数x知足方程|x2-1|-x|x+1|=0,则x的值为________.13.设x=3352-,那么代数式(x+1)(x+2)(x+3)(x+4)的值为_________.14. 199819992000200114⨯⨯⨯+的值为_________.15.如图17,Rt△ACB中,∠ABC=90°,点D、E在AB上,AC=AD,BE=BC,则∠DCE的大小是________.16.如图18,△ABC中,∠ABC=45°,AD是∠BAC的平分线,EF垂直平分AD,交BC的延长线于F,则∠CAF的大小是________.17.如图19,Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交AC于D,作CE⊥BD交BD的延长线于E,过A作AH⊥BC交BD于M,交BC于H,则BM与CE的大小关系是________.18.如图20,四边形ABCD中有两点E、F,使A、B、C、D、E、F中任意三点都不在同一条直线上,连接它们的极点,得若干线段,把四边形分成若干个互不重叠的三角形,则所有这些三角形的内角和为______;一样,若四边形ABCD中有n个点,其中任意三点都不在同一条直线上,以A、B、C、D和这n个点为顶点作成若干个互不重叠的三角形,则所有这些三角形的内角和为_________.19.如图21,直线段AB的长为l,C为AB上的一个动点,别离以AC和BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCD′,那么DD′的长的最小值为________.20.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰着一辆公共汽车,那么在始发站公共汽车发车的距离时间x=________.三、解答题(每小题15分,共30分)解答本题时,请写出推算进程.21.已知n,k均为自然数,且知足不等式761311nn k<<+.若对于某一给定的自然数n,只有唯一的自然数k使不等式成立,求所有符合要求的自然数n中的最大数和最小数.22.甲、乙、丙三人分糖块,分法如下:先在三张纸片上各写三个正整数p、q、r,使p <q<r,分糖时,每人抽一张纸片,然后把纸片上的数减去p,就是他这一轮分得的糖块数,通过若干轮这种分法后,甲总共取得20块糖,乙取得10块糖,丙取得9块糖,又知最后一次乙拿到的纸片上写的数是r,而丙在各轮中拿到的纸片上写的数字的和是18,问:p、q、r别离是哪三个正整数?为何?答案·提示一、选择题题号答案1 B2 C3 C4 A5 D6 B7 D8 D9 A10 B提示:1.a3+a2c-abc+b2c+b3=(a3+b3)+(a2+b2)c-abc=(a+b)(a2-ab+b2)+(a2+b2)c-abc=(a+b)(a2+b2)-ab(a+b)+(a2+b2)c-abc∵a+b+c=0∴a+b=-c∴原式=-c(a2+b2)+abc+(a+b)c-abc=0∴选B.2.解(1)当3x-4≥0时,即3x≥4时,原式为3x-4+3x+2=6.当-2≤3x<4时.原式为4-3x+3x+2=6,即6=6(2)由已知|3x-4|+|3x+2|=6=|(3x-4)-(3x+2)|∴(3x-4)-(3x+2)≤0.∴-2≤3x≤4.∴x1=0,x2=1,∴选C.3.由已知条件,可在数轴上标出x、y、z三数,如图22.∴x+z>0,y+z<0,x-y>0.∴原式=x+z-y-z-x+y=0.∴选C.5.△ABC中,若∠A=40°,则∠B=40°,∠C=100°,∠C的外角为80°. 若∠C=40°,则∠C的外角为140°.∴选D.6.如图23,取DE的中点G,连接AG.在Rt△AED中,AG为斜边上的中线∴∠AGB=∠ABG.又∵AG=GD∴∠AGB=2∠ADG∵AD∥BC∴∠ADG=∠DBC∴∠ABG=∠AGB=2∠ADG=2∠DBC又∵∠ABC=75°∴∠ABG=50°,∠DBC=25°∴∠AED=∠BEF=90°-∠EBF=90°-25°=65°.∴选B.8.∵1998=2×9999.∵x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)=0.∴x3+y3+z3=3xyz∴3xyz=-36即xyz=-12∴x,y,z中必然是两正一负,且x+y+z=0∴x,y,z中负数的绝对值必然等于两个正数的绝对值的和.又∵12=1×1×12=1×2×6=1×3×4=2×2×3这四种组合中只有12=1×2×4符合条件共有6个解,选A.10.如图24,自F作FH⊥AB交AB于H.∵AF平分∠CAB∴FC=FH又∵△ABC中,∠ACB=90°CD⊥AB∴∠ACD=∠B∴∠1=∠CAE+∠ACD,∠2=∠FAB+∠B ∴∠1=∠2,FC=CE∴CE=FH又∵EG∥AB∴∠CGE=∠B在Rt△CEG和Rt△FHB中,∵CE=FH,∠CGE=∠B∴Rt△CEG≌Rt△FHB∴CG=FB.∴CF=GB,选B.二、填空题题号答案11 (x-1)2·(y-1)21213 4814 1998999.515 45°16 45°17 BM>CE18 1080°,(n+1)360°1920 8分钟提示:11.(x+y-2xy)(x+y-2)+(xy-1)2=(x+y)2-2xy(x+y)-2(x+y)+4xy+x2y2-2xy+1 =(x+y)2-2(x+y)(xy+1)+(xy+1)2=(x+y-xy-1)2=(x-1)2·(y-1)2.12.|x2-1|-x|x+1|=0.∴|x+1|(|x-1|-x)=0.当|x+1|=0时,得x=-1.当|x-1|-x=0时,得|x-1|=x,若x≥1,得x-1=x,矛盾,舍去. 14.设2000=k把k=2000代入,得原式=1998999.515.△ACD中,AC=AD.16.∵EF是AD的垂直平分线,∴FA=FD,∠FDA=FAD.∵∠FDA=∠B+∠BAD.∠FAD=∠CAF+∠DAC.∵AD是∠BAC的平分线,∠BAD=∠DAC∴∠CAF=∠B=45°.17.如图25延长CE交BA延长线于F.∵∠ABE=∠CBE. BE=BE.∴Rt△FBE≌Rt△CBE.又∵∠ACF=90°-∠F=∠ABD.AB=AC∴Rt△ABD≌Rt△ACF,∴BD=CF.在△ABM中,∠BAM=45°>∠ABM.∴BM>AM.在△AMD中,∠ADM>45°=∠DAM.∴AM>MD.∴BM>MD.18.四边形ABCD中两个点E、F把图形分成6个三角形,这些三角形的内角和为6×180°=1080°.若四边形内有n个点,则以这n个点所成n个周角再加上原来四边形的内角和360°,即得n·360°+360°=(n+1)·360°19.设AC=x,BC=l-x.∵△ACD、△BCD′均为等腰直角三角形.20.设公共汽车的速度为v1,甲的速度为v2,因为两辆车距离距离相等,汽车与甲是追及问题,即两车之间距离为s=10(v1-v2).汽车与乙是相遇问题,即两车之间距离为s=5(v1+3v2).∴10(v1-v2)=5(v1+3v2)∴v1=5v2.三、解答题综上得n的最大值为84,n的最小值为13.22.每一轮三人取得的糖块数之和为r+q+p-3p=r+q-2p设他们共分了n轮,则n(r+q-2p)=20+10+9=39.∵39=1×39=3×13.且n≠1,不然拿到纸片p的人得糖数为0,与已知矛盾n≠39,因为每次至少分出2块糖,不可能每轮只分1块糖.∴n=3或n=13.由于每一个人所得糖块数是他拿到的纸片上数的总和减去np,由丙的情况取得9=18-np∴np=9 p≥1.∴n≠13,只有n=3.∴p=3.把n=3,p=3代入①式得r+q=19.又乙得的糖块总数为10,最后一轮取得的糖块r-3块.∴r-3≤10,r≤13.若r≤12,则乙最后一轮拿到的纸片为r,所得糖数为r-p≤9.这样乙一定要在前两轮中再抽得一张q或r.这样乙得的总糖数必然大于等于(r+q)-2p=13,这与乙取得的糖数为10块矛盾.∴r>12 ∵12<r≤13.∴r=13. q=19-r=6.综上得p=3,q=6,r=13甲、乙、丙三人在三轮中抽得的纸片数如下::。

第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、解答题(共20小题,满分114分)1.(6分)计算:(7777+8888)÷5﹣(888﹣777)×3=.2.(6分)计算:1+11+21+…+1991+2001+2011=.3.(6分)在小于30的质数中,加3以后是4的倍数的是.4.(6分)小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的倍.5.既是6的倍数又是8的倍数的所有两位数的和是.6.(6分)四年级一班第2小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这个小组中既不会打乒乓球又不会下象棋的有人.7.(6分)按照左侧四个图中数的规律,在第五个图中填上适当的数:8.(6分)已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200,则这两个被改动的数以外的7个数的乘积是.9.(6分)如图,△ABC的面积为36,点D在AB上,BD=2AD,点E在DC 上,DE=2EC,则△BEC的面积是.10.(6分)今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大岁.11.(6分)某次考试,A、B、C、D、E五人的平均分是90分.若A、B、C 的平均分是86分,B、D、E的平均分是95分,则B的得分是分.12.(6分)如图,已知直线AB和CD交于点O,若∠AOC=20°,∠EOD=60°,则∠AOE=,∠BOC=.13.(6分)如图,四边形ABCD与CEFG是边长相等的正方形,且B、C、G 在一条直线上,则图中共有个正方形,个等腰直角三角形.14.(6分)一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水千克,桶重千克.15.(6分)某个两位数的个位数字和十位数字的和是12,个位数和十位数字交换后所得两位数比原数小36,则原数是.16.(6分)王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么,他来回都坐车,则需分钟.17.(6分)图中“C”形图形的周长是厘米.18.(6分)如图,从1,2,3,4,5,6中选出5个数填在图中空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有种不同的填法.19.(6分)三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是.20.(6分)甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D,第五名是E.”乙:“第二名是A,第四名是C.”丙:“第三名是D,第四名是A”,丁:“第一名是C,第三名是B.”戊:“第二名是C,第四名是B.”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是.2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、解答题(共20小题,满分114分)1.(6分)计算:(7777+8888)÷5﹣(888﹣777)×3=3000 .【分析】把7777+8888与888﹣777,拆成两个数的乘积,再根据乘法分配律进行计算即可.【解答】解:(1111×7+1111×8)÷5﹣(111×8﹣111×7)×3,=1111×(7+8)÷5﹣111×(8﹣7)×3,=1111×(15÷5)﹣111×1×3,=1111×3﹣111×3,=(1111﹣111)×3,=1000×3,=3000.故答案为:3000.【点评】本题主要考查乘法分配律的灵活运用,根据数字特点找出巧算的方法进行计算即可.2.(6分)计算:1+11+21+…+1991+2001+2011=203212 .【分析】通过观察,相邻两个数的差是10,这是一个等差数列,可以用高斯求和公式进行简算.这一数列共有(2011﹣1)÷10+1=202个数,然后运用公式计算即可.【解答】解:1+11+21+…+1991+2001+2011,=(1+2011)×[(2011﹣1)÷10+1]÷2,=2012×202÷2,=203212.故答案为:203212.【点评】此题的关键是先探索出这是一个等差数列,运用“项数=(末项﹣首项)÷公差+1”算出项数.3.(6分)在小于30的质数中,加3以后是4的倍数的是5,13,17,29 .【分析】根据质数的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数.30以内的质数有:2,3,5,7,11,13,17,19,23,29;4的倍数特征是个位上的数是偶数;由此解答.【解答】解:5+3=8;13+3=16;17+3=20;29+3=32;8,16,20,32都是4的倍数;故答案为:5,13,17,29.【点评】此题的解答主要明确质数的意义,掌握30以内的10个质数,和4的倍数的特征.4.(6分)小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的 2 倍.【分析】此题要找出小于100的最大自然数是99,大于300的最小自然数是301,不大于200(即小于或等于200)的最大自然数是200,由此本题可以看做是:“99和301的和是200的多少倍?”.【解答】解:(99+301)÷200,=400÷200,=2;答:是不大于200的最大的自然数的2倍.故答案为:2.【点评】解决此题的关键是,根据题干先得出“小于100的最大的自然数”是99、“大于300的最小的自然数”是301,“不大于200的最大的自然数”是200.5.既是6的倍数又是8的倍数的所有两位数的和是240 .【分析】既是6的倍数,又是8的倍数,先分解质因数,6分为2×3,8分为2×2×2,再找出最小公倍数,两位数的公倍数只有四个数:24,48,72,96,相加即得答案240.【解答】解:根据分析,先分解质因数6=2×3,8=2×2×2,则两者的最小公倍数即为24,符合条件的所有两位数公倍数为:24,48,72,96;所有这些两位数之和:24+48+72+96=240,故答案为:240.【点评】本题考查了公倍数和数的整除运算知识,本题突破点是:找出两者之间的最小公倍数.6.(6分)四年级一班第2小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这个小组中既不会打乒乓球又不会下象棋的有 2 人.【分析】只要从总人数12人中,把会打乒乓球和会下象棋的人数减掉,剩下的就是这个小组中既不会打乒乓球又不会下象棋的人数;此题可以画图分析:5+8=13人,这里重复加了一次既会打乒乓球有会下象棋的3人,所以会打乒乓球和会下象棋的人数为13﹣3=10人,则剩下的12=2人就是这个小组中既不会打乒乓球又不会下象棋的人数.【解答】解:12﹣(5+8﹣3)=2(人),答:这个小组中既不会打乒乓球又不会下象棋的有 2人.故答案为:2.【点评】此题考查了利用容斥原理解决实际问题的灵活应用.7.(6分)按照左侧四个图中数的规律,在第五个图中填上适当的数:【分析】(1)根据题干,图中1的位置变化规律是:按顺时针方向依次移动一个格;(2)数字排列规律是:分别按1、3、5、2、4、6的顺序排列的,而且第奇数幅是按顺时针排列,第偶数幅是按逆时针排列;第五幅图是第奇数幅,所以按顺时针排列.【解答】解:根据题干分析可得:(1)图中1的位置变化规律是:按顺时针方向依次移动一个格;所以先确定1的位置如下图所示;(2)第五幅图是第奇数幅,所以按顺时针排列,所以可以在图中添上正确的数字如下图所示:【点评】根据题干得出1的位置变化规律和图中数字1、3、5、2、4、6的排列特点是解决此题的关键.8.(6分)已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200,则这两个被改动的数以外的7个数的乘积是10 .【分析】只要求出被改动的两个数是多少,即能求出这两个被改动的数以外的7个数的乘积是多少.已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,积缩小了800÷200=4(倍),则这个被改动的数也被缩小了4倍,则被改动的这个数为:4×4=16;同理,1200÷200=6,积扩大了6倍,第二个被改动的数也被扩大了6倍,其原来应为:30÷6=5,所以则这两个被改动的数以外的7个数的乘积是:800÷(16×5)=10.【解答】解:第一个数原来为:(800÷200)×4=16;第二个数原来为:30÷(1200÷200)=5;则两个被改动的数以外的7个数的乘积是:800÷(16×5)=10.故答案为:10.【点评】在乘法算式,其中一个因数扩大(或缩小)多少倍,积也相应的扩大(或缩小)多少倍.9.(6分)如图,△ABC的面积为36,点D在AB上,BD=2AD,点E在DC 上,DE=2EC,则△BEC的面积是8 .【分析】(1)△ABC的面积是36,BD=2AD,根据高一定时,三角形的面积与底成正比的性质即可得出:△ABC的面积:△BDC的面积=3:2,所以:△BDC的面积是:36×2÷3=24;(2)△BDC的面积是36×2÷3=24,DE=2EC,根据高一定时,三角形的面积与底成正比的性质即可得出:△BEC的面积:△BDC的面积=1:3,所以△BEC的面积是24÷3=8.【解答】解:因为BD=2AD,根据高一定时,三角形的面积与底成正比的性质即可得出:△ABC的面积:△BDC的面积=3:2,故△BDC的面积是36×2÷3=24;因为DE=2EC,同理可得:△BEC的面积:△BDC的面积=1:3,故△BEC的面积是24÷3=8.答:△BEC的面积是8.故答案为:8.【点评】此题反复考查了高一定时,三角形的面积与底成正比的性质的灵活应用.10.(6分)今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大28 岁.【分析】4年后,李林和他爸爸的年龄之和是50+4×2=58岁,设李林4年后的年龄为x岁,则爸爸的年龄是3x﹣2岁,根据他们的年龄之和是58岁列出方程即可解决问题.【解答】解:设李林4年后的年龄为x岁,则爸爸的年龄是3x﹣2岁,根据题意可得方程:x+3x﹣2=50+4×2,4x=60,x=15,3×15﹣2=43(岁),43﹣15=28(岁),答:李林的爸爸比他大28岁.故答案为:28.【点评】此题也可以这样分析,4年后,李林和爸爸的年龄之和就是58岁,把李林的年龄看做1份,那么爸爸的年龄就是3份少2岁,由此可以求出1份即李林的年龄为:(58+2)÷4=15(岁),由此可得爸爸58﹣15=43岁,则爸爸比李林大28岁.11.(6分)某次考试,A、B、C、D、E五人的平均分是90分.若A、B、C 的平均分是86分,B、D、E的平均分是95分,则B的得分是93 分.【分析】根据“平均数×数量=总数”分别计算出A、B、C三个数的和与B、D、E三个数的和与这五个数的和,进而用“A、B、C三个数的和+B、D、E三个数的和﹣五个数的和”进行解答即可.【解答】解:(86×3+95×3)﹣(90×5),=543﹣450,=93(分);故答案为:93.【点评】解答此题的关键:根据平均数和数量、总量之间的关系进行分析解答.12.(6分)如图,已知直线AB和CD交于点O,若∠AOC=20°,∠EOD=60°,则∠AOE=100°,∠BOC=160°.【分析】由图可知,∠AOC=20°、∠EOD=60°与∠AOE相加等于180°,由此即可求得∠AOE的度数;∠BOC与∠AOC=20°互为补角,根据补角的定义即可解答.【解答】解:∠AOE=180°﹣∠AOC﹣∠EOD=180°﹣20°﹣60°=100°.∠BOC=180°﹣∠AOC=180°﹣20°=160°.故答案为:100°;160°.【点评】本题主要考查角的度量与补角的定义,根据几个角的和差关系进行计算是解题关键.13.(6分)如图,四边形ABCD与CEFG是边长相等的正方形,且B、C、G 在一条直线上,则图中共有 3 个正方形,22 个等腰直角三角形.【分析】根据图形可知,正方形有:ABCD、CEFG、BEGD三个;在正方形ABCD、CEFG和BEGD中,单一三角形是10个,有两个小三角形组成的是8个;由3个三角形组成的等腰直角三角形是4个;由此解答.【解答】解:图中共有正方形3个;等腰直角三角形有:10+8+4=22(个);故答案为:3;22【点评】此题主要考查通过分类、观察、思考探寻事物规律的能力.14.(6分)一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水 3 千克,桶重 4 千克.【分析】根据题意知道,桶的重量不变,(22﹣16)千克的水就是水原来的(6﹣4)倍,由此即可求出原来的水的千克数,那桶的重量即可求出.【解答】解:桶内原有水:(22﹣16)÷(6﹣4),=6÷2,=3(千克),桶重:16﹣4×3,=16﹣12,=4(千克);答:桶内原有水3千克,桶重4千克.故答案为:3,4.【点评】解答此题的关键是,根据题意,找出对应的数和对应的倍数,由此列式解答即可.15.(6分)某个两位数的个位数字和十位数字的和是12,个位数和十位数字交换后所得两位数比原数小36,则原数是84 .【分析】设个位数字是x,则十位数字是12﹣x,所以可得:原来两位数是10(12﹣x)+x,交换位置后的新两位数是10x+12﹣x;根据新数比原数小36,列出方程即可解决问题.【解答】解:设个位数字是x,则十位数字是12﹣x,那么原来两位数是10(12﹣x)+x,交换位置后的新两位数是10x+12﹣x;根据题意可得方程:10(12﹣x)+x﹣(10x+12﹣x)=36,18x=72,x=4;12﹣4=8,答:原数是84.故答案为:84.【点评】此题设出个位数字和十位数字,从而得出原两位数和新两位数是解决本题的关键.16.(6分)王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么,他来回都坐车,则需30 分钟.【分析】来回都步行,需要2个半小时说明王强步行单程用:2.5÷2=1.25(小时),又因为步行去公园,回来时坐车,往返用了一个半小时,则坐车单程用:1.5﹣1.25=0.25(小时),则来回都坐车用时:0.25×2=0.5(小时).【解答】解:(1.5﹣2.5÷2)×2,=0.25×2,=0.5(小时);0.5小时=30分钟.故答案为:30.【点评】完成本题的关健是:在求出步行单程所用时间的基础上,求出坐车单程所用时间.17.(6分)图中“C”形图形的周长是32 厘米.【分析】如图,将内部的2厘米边平移到外面红色线段处,这样这个图形的周长就是这个边长为6厘米的正方形的边长与内部横着的两条长为6﹣2=4厘米的线段的长度之和,由此利用正方形周长公式代入数据即可解决问题.【解答】解:根据题干分析可得:6×4+(6﹣2)×2,=24+8,=32(厘米),答:这个图形的周长是32厘米.故答案为:32.【点评】借助平移的性质将图形中的某些线段移动到规则图形的边上,使求这个不规则图形的周长转化成求规则图形的周长是解决此类题目的主要解题思路.18.(6分)如图,从1,2,3,4,5,6中选出5个数填在图中空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有30 种不同的填法.【分析】此题根据乘法原理进行解答,从6个数中选出5个进行填空,共有6×5种.【解答】解:从6个数中选出5个进行填空,共有:6×5=30(种);故答案为:30.【点评】此题运用了乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法.19.(6分)三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是1488 .【分析】据题意可知,这是三个相连的自然数,又7、8、9也是相连的自然数,因此先找到7、8、9的最小公倍数:7×8×9=504,则减9是9的倍数,减8是8的倍数,减7是7的倍数,得到495、496、497是符合要求的.【解答】解:7、8、9的最小公倍数为:7×8×9=504;504﹣7=497,504﹣8=496,504﹣9=495;495+496+497=1488.故填:1488.【点评】任何三个连续自然数(零除外)的最小公倍分别减(或加)这三个数得到的三个连续的自然数分别是这三数的倍数.20.(6分)甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D,第五名是E.”乙:“第二名是A,第四名是C.”丙:“第三名是D,第四名是A”,丁:“第一名是C,第三名是B.”戊:“第二名是C,第四名是B.”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是CADBE .【分析】本题可用假设法分两步进行推理:第一步:假设甲说的前半句是真的,那么D是第1名,那么此时丙说的前半句错,后半句对.则A是第4名.同理乙的后半句对,C是第4名.矛盾.由此可知甲的后半句对.第二步:已知E是第5名,D不是第1名.和第一名有关的话只剩下丁说的,设C是第1名.则戊:“第2名是c,第4名是B”.可知前错后对,B 是第4名.且有乙:“第二名是A,第四名是c”.可知,A是第2名.D是第3名.【解答】解:第一步:假设甲说的前半句是真的,那么D是第1名,那么此时丙说的前半句错,后半句对.则A是第4名.同理乙的后半句对,C是第4名.矛盾.由此可知甲的后半句对.即第五名是E;第二步:已知E是第5名,D不是第1名.和第一名有关的话只剩下丁说的,设C是第1名.则戊:“第2名是c,第4名是B”.可知前错后对,B是第4名.且有乙:“第二名是A,第四名是c”.可知,A是第2名.D是第3名.综上可知,第一、二、三、四、五名分别是CADBE.【点评】完成此类题目思路要清晰,根据所给条件中的逻辑关系细心推理,从而得出结论.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:49:14;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

希望杯数学八年级竞赛真题及答案(1-23届)

希望杯数学八年级竞赛真题及答案(1-23届)

1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。

2024年希望杯五年级竞赛数学试卷培训题含答案

2024年希望杯五年级竞赛数学试卷培训题含答案

2024年希望杯五年级竞赛数学试卷培训题1 .计算:.2 .计算:.3 ..4 ..5 .在横线上填上“”“”或“”.6 .已知:,则.7 .现定义一种新运算“”:,则.8 .表示的整数部分,如:,.计算:.9 .小强在计算除法时,把除数写成,结果得到的商是且余数是,正确的商是,余数是.10 .小虎在计算时,先算了减法,最后得到的结果是,正确的计算结果应该是.11 .在的两个里填入相同的数,使等式成立,里应填.12 .一个数的小数点向右移动一位后,比原来的数大,原来的数是.13 .循环小数小数点后第位数字是.14 .把化成小数,小数点后面第位上的数字是.15 .请你根据题图所示向日葵上的数字规律,在方框中填入正确的数字.16 .在一个四位数的前、后分别加上,组成两个五位数.若这两个五位数相差,则.17 .王冬有存款元,张华有存款元.王冬每月存元,张华每月存元,个月后张华的存款才能和王冬的一样多.18 .,要使商的中间有,里可以填.19 .题图算式中的,,分别代表不同的数字.式中的,和分别表示,和的倒置数字(如的倒置数字是,的倒置数字还是).那么是,是,是.20 .请把图中的除法竖式补充完整.21 .这个自然数的和是三位数,且这个三位数各个数位上的数字相同,则.22 .九位数能被中任何一个自然数整除,且数字、、互不相同,则三位数.23 .一个自然数的个位数字是,将这个移动到最左边,得到的新数恰好是原数的倍.原数最小是.24 .已知三个最简真分数的分母分别为,和,它们的乘积是.则这三个最简真分数中,最大的数是.25 .在等差数列1,8,15,22,29,36,43,…中,如果前个数乘积的末尾0的个数比前个数乘积的末尾0的个数少3个,那么最小是 .26 .是的倍数,则.27 .有一篮鸡蛋,每次取出个,最后剩下个,如果每次取出个或个,最后都剩下个,篮子里的鸡蛋至少有个.28 .自然数除以的余数是,则除以的余数是.29 .Given and are two non-zero digits and the digit numbers formed by these two digits have the following properties:.can be expressed by a product of and;.is a square number;Find the digit number.已知和为两个非零数位.且利用这两个数位组成的两位数有以下性质:.可以被写成和的积;.是个平方数;求两位数.30 .快速公交路线有四个站点,把这四个站点两两之间的距离从小到大排列,分别是:,,,,,,则“”.31 .有个因数且能被整除的最小自然数是.32 .从开始做乘法:,当乘到时,乘积的末尾有个连续的.33 .的计算结果末尾有个.34 .一个正整数与的积是一个完全平方数,则的最小值是.35 .,都是非零自然数.如果是的倍,那么和的最大公因数是;如果,那么和的最小公倍数是.36 .已知存在三个小于的自然数,它们的最大公因数是,且两两不互质,将这三个数相加,最大可能是.37 .定义,则有个因数.38 .选一选..A..B..C..D..E.39 .九张卡片上分别写有数,,,,,,,,(不能倒过来看).甲,乙,丙,丁四人分别抽取了其中两张:甲说:“我拿到的两个数互质,因为它们相邻.”乙说:“我拿到的两个数不互质,但也不是倍数关系.”丙说:“我拿到的两个数都是合数,但它们却互质.”丁说:“我拿到的两个数是倍数关系,它们不互质.”如果这四人说的都是真话,那么剩下的一张卡片上写的数是.40 .用、、、四个数字可以组成个双数,其中最大的是.(每个数字都要用且不重复)41 .将一个能被整除的三位数的首、末数字交换后,还是三位数,原数的倍也是三位数,原数的后两位数字的和是的约数,满足条件的最大的三位数是.42 .如图,大长方形被两条互相垂直的线段分成了四个小长方形.已知四个小长方形面积均为整数,其中两块面积分别为和.大长方形面积最大是.(注:图中各部分大小并不代表其面积大小关系)43 .如图,正方形的面积是,是中点,连接、交于点.是中点,连接并延长交于点.阴影部分的面积是.44 .如图,分别以一个正六边形的顶点和各边的中点为圆心,以正六边形的边长为直径画了个圆和个半圆.若阴影部分的面积和是,那么正六边形内部的阴影面积是.45 .正方形的面积是,,,,是正方形各边的中点,那么阴影部分的总面积是.46 .如图,在四边形中,,分别是,边的三等分点.已知四边形的面积是平方厘米,求四边形的面积是平方厘米.47 .如图所示,如果一块正方形土地的两边各增加米,面积将增加平方米.原来正方形的面积是平方米.48 .如图,两个正方形并排放在一起,、、在同一条直线上,大正方形边长为厘米,小正方形边长为厘米,那么阴影三角形的面积为平方厘米.49 .下图中,平行四边形的面积是,点是线段的中点.三角形的面积是.50 .如图,若大正方形的周长是,小正方形的周长是,则蓝色阴影部分的面积是.51 .正方形的边长为,,,是对角线的四等分点.图中阴影部分的总面积是.52 .学校校园里有一块宽为米的长方形空地,后勤部门准备从空地中划分出一块米宽的形区域作为绿植区,剩下的部分作为休闲区,而且休闲区和绿植区的面积刚好相等,如图所示(单位:米).那么这块空地的面积是平方米.53 .如图所示,梯形的面积为平方厘米,,厘米,厘米,又已知于点,那么阴影部分的总面积为平方厘米.54 .如图,长方形中有四个完全相同的直角三角形,这四个直角三角形的面积总和是.55 .鲁西西最近爱上了折纸,她发现如果把折纸按照图中的样子翻折一下,以直线为折痕将点翻折到,,.当阴影部分的面积与空白部分的面积相等时,如果知道折纸的面积就能算出折痕的长度.如果鲁西西的这张折纸(正方形)的面积是平方厘米,折痕厘米.56 .如图,长方形的广告牌长为,宽为,,,,分别在四条边上,并且比低,在的左边,四边形的面积是.57 .如图的一个骰子,其中对面的数字之和等于,首先将骰子如图放置,然后将骰子向右滚动次,再向前滚动次,此时面朝上.58 .,它一定是由个相同大小的正方体摆成的.59 .一个正方体木块,棱长是,从它的八个顶点处各截去棱长分别是、、、、、、、的小正方体.这个木块剩下部分的表面积最少是.60 .如图,在一个棱长为厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有一定量的水且水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有厘米露出水面.已知圆柱体的底面积是正方体底面积的,则实心圆柱体的体积为立方厘米.61 .琳琳、彤彤各带一些钱去书店,她们看上了一本元的书.如果这元由琳琳出,则琳琳剩下的钱是彤彤的倍;如果这元由彤彤出,琳琳的钱是彤彤剩下的钱的倍.那么开始时琳琳带了元,彤彤带了元.62 .一片牧场,每天草的生长速度相同,这片牧场可供头牛吃天,或者可供只羊吃天.如果只羊的吃草量相当于头牛的吃草量,那么头牛和只羊一起吃这片牧场上的草,可以吃天.63 .大黄蜂从赛博坦星球飞往潘多拉星球,原计划每小时行驶万千米,实际途中遇到电子风暴,只有一半的路程能按原计划的速度行驶,其余路程每小时行驶万千米,结果比原计划推迟了小时抵达潘多拉星球.赛博坦星球到潘多拉星球的路程是万千米.64 .张强晚上六点多外出锻炼身体,此时时针与分针的夹角;回家时还未到七点,此时时针与分针的夹角仍是,则张强外出锻炼身体用了分钟.65 .一条线段上最初有个点(包含端点),第一次在每相邻的两点之间增加一个点,第二次同样在每相邻的两点之间增加一个点.这时线段上共有个点.66 .冰墩墩练习滑雪一周,其中后四天平均每天滑雪的长度比前三天平均每天滑雪的长度多千米,后三天平均每天滑雪的长度比前四天平均每天滑雪的长度多千米.冰墩墩后三天滑雪的总长度比前三天滑雪的总长度多千米.67 .个数的平均数是,如果其中一个数变为,则这个数的平均数为.原来这个数是.68 .小林和叔叔的年龄和是岁.69 .若干年后,爷爷的年龄比小高年龄的倍多岁;再过几年,爷爷的年龄比小高年龄的倍多岁,已知今年小高岁,那么爷爷今年岁(今年爷爷年龄不到岁).70 .某汽车厂同时建成两条生产线.第一条生产线第一个月生产了辆汽车,以后每个月比前一个月多生产辆;第二条生产线第一个月也生产了辆汽车,以后每半个月比前半个月生产辆.那么,该厂生产辆汽车需要个月.71 .张三、李四两人一起加工一批零件,用时天完成了任务,李四中途有事请假天.已知张三每天比李四多做个零件,且最终李四加工的零件数恰好是张三的一半.这批零件的总数是个.72 .一项工程,甲单独做天完成,乙单独做天完成,若甲先做若干天后乙接着做,共用天完成.甲做了天.73 .游艇在静水中的速度是千米时,水速是千米时,喜羊羊驾驶游艇从下游的地到上游的地,然后立即返回下游地.游艇从到的时间是从到的倍,那么.74 .一位考古学家乘坐游艇从尼罗河上游码头出发,沿河行驶米到下游,然后原路返回.水流速度是千米时,游艇逆流而上比顺流而下多用小时,那么游艇在静水中的速度是每小时千米.75 .从地球到沙拉达行星有光年(注:光年是一个长度单位).贝吉塔和孙悟空从地球出发前往沙拉达行星.贝吉塔比孙悟空先出发天,如果贝吉塔和孙悟空沿直线飞行,他们每天都能飞行光年,那么孙悟空出发天后,贝吉塔正好在孙悟空和沙拉达行星的正中间.76 .有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过分钟后两人第一次相遇,分钟时小李第一次追上小王,那么当小王到达乙村时,小李追上小王的次数是.77 .甲乙两车分别从、两地同时出发,相向而行,在距离地米处的地相遇.相遇后乙的速度保持不变,甲的速度变为原来一半,甲继续行驶到地后立即掉头返回.当甲再次到达地时,乙刚好第一次到达地.、两地的距离是米.78 .甲乙两站相距,某天上午,车以的速度从甲站开往乙站,当天上午时,车以每小时的速度从乙站开往甲站,那么两车在点分时相遇.79 .如图所示,一个边长为米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发.已知甲每秒走米,乙每秒走米.至少经过秒甲才能看到乙.80 .边长为的正方形的顶点,各有一只小虫,它们同时出发沿正方形的边顺时针爬行,小虫甲每秒爬,小虫乙每秒爬,它们在顶点处转弯时都需要耗秒.经过秒其中一只小虫将首次追上另一只小虫.81 .在校运动会上,三班参加跳绳比赛的有人,参加踢毽比赛的有人,那么参加这两项比赛的最多有人,最少有人.82 .数一数,下图一共有个“☆”.83 .如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有种不同的样式.(不可旋转、翻转)84 .用三种颜色去涂如图所示的三块区域,要求一个区域中只能涂一种颜色,相邻区域涂不同颜色,那么共有种不同的涂法.86 .从以内的个质数中任取两个构成真分数,这样的真分数有个.87 .池塘中片莲叶如下图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳步,那么它有种不同的跳法.88 .数一数,下图中共有个梯形.89 .图中共有个平行四边形.90 .如图,在的网格中,每一个小正方形的面积为,点可以是每个小正方形的顶点,则满足的点的个数是.91 .把本书分给某班学生,不论怎么分总有一个学生至少分到本,那么这个班最多有人.92 .桌上有编号至的张卡片,小明每次取出张卡片,要求一张卡片的编号是另一张卡片的倍多,则小明最多取出张卡片.93 .果蔬王国正在举行国王竞选,全国人每人投票,从番茄勇士、香蕉超人、胡萝卜博士中选择人,票数最多的人当选.截至目前番茄勇土得票,香蕉超人得票,胡萝卜博士得票.那么,番茄勇士至少再得票就能够保证当选国王.94 .找规律填数.95 .一列慢车长米,一列快车长米,如果两车在并行的轨道上同向而行,从快车追上慢车到快车超过慢车要秒,如果两车相向而行,从两车相遇到完全错开要秒.慢车的速度是米秒.96 .小明手里有一盒棋子,最初盒子里全是白子.他先取出颗白子,然后放入颗黑子,再取出颗白子,再放入颗黑子.此时小明发现盒子里的白子恰好是黑子颗数的一半,那么最初盒子里有颗白子.97 .在六位数的某一位数字后面再插入一个同样的数字(例如,可以在的后面插入得到),这样得到的七位数最大是,最小是.98 .从、、、、、、、、这串奇数中至少取个数,才能保证其中一定有两个数之和是.99 .左图的表格中分别填入了,我们把对角相邻的两个数同时加上或同时减去一个相同的数叫做一次操作(如和同时加,变成和),经过若干次操作得到右图,那么和的乘积是.100 .将数字填入空白方格中,使得每一行、每一列、每个粗线围成的区域数字都只恰好出现一次,那么最下面的一行个数字组成的位数是.2 、【答案】3 、【答案】4 、【答案】5 、【答案】6 、【答案】7 、【答案】8 、【答案】9 、【答案】10 、【答案】11 、【答案】12 、【答案】略13 、【答案】14 、【答案】15 、【答案】.16 、【答案】17 、【答案】18 、【答案】,,,,19 、【答案】20 、【答案】.21 、【答案】22 、【答案】23 、【答案】24 、【答案】25 、【答案】 10826 、【答案】27 、【答案】28 、【答案】29 、【答案】.30 、【答案】31 、【答案】34 、【答案】35 、【答案】36 、【答案】37 、【答案】38 、【答案】 DECAB39 、【答案】40 、【答案】41 、【答案】42 、【答案】43 、【答案】44 、【答案】45 、【答案】46 、【答案】47 、【答案】48 、【答案】49 、【答案】50 、【答案】51 、【答案】52 、【答案】53 、【答案】54 、【答案】55 、【答案】56 、【答案】57 、【答案】58 、【答案】59 、【答案】60 、【答案】61 、【答案】62 、【答案】63 、【答案】66 、【答案】67 、【答案】68 、【答案】69 、【答案】70 、【答案】71 、【答案】72 、【答案】73 、【答案】74 、【答案】75 、【答案】76 、【答案】77 、【答案】78 、【答案】79 、【答案】80 、【答案】81 、【答案】82 、【答案】83 、【答案】84 、【答案】85 、【答案】86 、【答案】87 、【答案】88 、【答案】89 、【答案】90 、【答案】91 、【答案】92 、【答案】93 、【答案】94 、【答案】95 、【答案】97 、【答案】98 、【答案】99 、【答案】100 、【答案】。

第九届全国小学六年级希望杯试题解答

第九届全国小学六年级希望杯试题解答

奥数网首页|论坛|.旗下网站专业媒体育儿网幼教网奥数网中考网高考网留学网作文网英语网社区应用e度教育网e度论坛e度空间e度访谈字典词典成语订阅辅导报班学而思培优智康1对1 学而思网校摩比思维馆搜索|登录|注册e度通行证搜索|退出|消息(0)站内信(0)互动请求(0)关注粉丝(0)系统通知(0)|你好,我的首页我的日志个人主页我的相册个人设置我的关注我的投稿我的应用首页小升初重点中学杯赛竞赛学区房小升初真题奥数题库教学资源趣味乐园一年级二年级三年级四年级五年级六年级小升初论坛. 奥数石家庄站> 杯赛> 希望杯> 历年真题> 正文第九届希望杯数学邀请赛六年级一试真题讲解(1)来源:石家庄奥数网整理2011-11-21 14:07:02[标签:希望杯学习资料]奥数精华资讯免费订阅原题1:小明从家出发去奶奶家,骑自行车每小时行12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追。

结果小明到奶奶家后半小时爸爸就赶到了。

小明家离奶奶家多少千米。

解析:作为一道压轴的题,这道题的难度显然是不大的。

它与培训题的第89题相对应,都是行程问题中的“不同时出发、不同时到达”类题型。

具体到该题,很明显我们可以看出,走这段路,小明比爸爸多用了(2.5-0.5=2)小时。

又知道两人的速度比是36:12=3:1,所以很容易算出爸爸在路上所用时间是1时间,所以,到奶奶家的距离是36千米。

这道题70%以上的同学都做对了。

原题2:一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天,则这批饲料可供多少只鸭子吃21天。

解析:这道题可用代入法来解。

(10鸭子+15鸡)*6=(12鸭+6鸡)*7得:1鸭=2鸡则这批饲料有:(12鸭+6鸡)*7=(12鸭+3鸭)*7=105鸭,105鸭/21=5(鸭)答:可供5只鸭吃21天。

原题3:有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞;蚂蚁甲说:我单独搬运要10小时,他们两个共同搬运要8小时;蚂蚁乙说:你们两个共同搬运要6小时;蚂蚁丙说:我们三个共同搬运,甲会比我多搬运24粒。

【免费下载】第九届希望杯五年级试题解析

【免费下载】第九届希望杯五年级试题解析

2011年第九届希望杯五年级试题解析1.计算:1.2531.324=______。

⨯⨯答案:939解析:本题是一道小数的简便计算,利用1.25与8进行凑整即可。

9399.9310)33.31()825.1(383.3125.1243.3125.1=⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯2.把0.123,0.1,0.12,0.2按照从小到大的顺序排列:______ __________________∙∙32∙3∙1∙3〈〈〈答案:∙∙∙∙∙<<<312.0321.0321.0123.0解析:小数大小比较,从高位依次进行比较即可。

3.先将从1开始的自然数排成一列:123456789101112131415……然后按一定的规律分组:1,23,456,7891,01112,131415,……在分组后的数中,有一个十位数,这个十位数是______。

答案:2829303132解析:本数列是有规律的,找规律即可:方法一:照此规律依次写出来第七个:1617181,第八个92021222,第九个324252627,第十个2829303132。

方法二:(1)一位数1-9,9个数字;(2)两位数10-99,180个数字;(3)三位数100-999=1800位数字……(注意“数字”与“数”是不同的)。

要求10位数,我们考虑9位数是用了1+2+3+…+9=(1+9)×92=45位数字,即45-9=36,362=18,即到了9+18=27,则10位是从28÷÷开始的:28293031324.如图,从A 到B 有______条不同的路线。

(不能重复经过共同一个点)答案:25解析:如右图,A 到C 走弧线时,再到B 有5种走法,则由A 到中间线再到B 则有5×5=25种走法。

5.数一数,图中有______个正方形。

答案:46个解析:利用分类方法:(1)最小的正方形有3+4+3+4+3=17个(2)次小的正方形有3×4=12个(3)再大一点的正方形有8个中心,则有8个(4)再大一些的正方形有6个中心,则有6个(5)再大一些的正方形只有一个。

希望杯竞赛数学试题详解(91-100题)

希望杯竞赛数学试题详解(91-100题)

高中数学希望杯典型例题100道(91-100)题91 三棱锥P ABC -中,90APB BPC CPA D ∠=∠=∠=︒,为底面ABC 内的一点,45,60APD BPD ∠=︒∠=︒,则CPD ∠的余弦值为______.(第九届高一第二试第20题)解法1 设D 在PA PB PC 、、三边上的投影分别是E F G 、、,则由于45,APD ∠=︒60BPD ∠=︒,1cos 45,cos 60.2PE PD PD PF PD PD ∴=︒==︒= 2222,PE PF PG PD ++= 12PG PD ∴=,即60CPD ∠=︒,它的余弦值为12.解法2 如图1,以P A P B P C、、为棱,PD 的延长线为对角线长作长方体AFCP GEHB -,设,45,,.PA x APD PA AE AE PA x =∠=︒⊥∴== 又设,PB y = 60,,BPD PB BE ∠=︒⊥2,cos 45PAPE y ∴===︒222.x y PC GE ∴====∴在Rt PEC ∆中,1cos ,2PCCPE PE ∠==== 即CPD ∠的余弦值为12. 解法3 如图2,过D 作平面α垂直于PD ,分别交PA PB PC 、、于A B C '''、、,由已知有90,A PB B PC C PA C P '''''''∠=∠=∠=︒∴⊥平面,PA B A B ''''⊂平面PA B '',,C P A B '''∴⊥从而A B ''⊥平面PDC ',连结C D '并延长交A B ''于E ,连结PE ,显然有,.A B PE A B C E '''''⊥⊥连结A D'、B D'.不妨设1,PD =45A P D A P D '∠=∠=︒902.PD A A P ''∠=︒∴=又B PD BPD'∠=∠60,=︒90,PDB '∠=︒ 2.PB '∴=在Rt A B P ''∆中,A B ''==由,PE A B A P B P ''''⋅=⋅得图1ABD CP F G EH PABCDEA’C’B’图2A PB P PE A B ''⋅===''ED ∴===于是1tan tan 60,cos cos .2PD DPC PED DPC CPD DPC ED '''∠=∠==∠=︒∴∠=∠= 评析 由已知条件画出的图形,CPD ∠的余弦值可在CPD ∆中由余弦定理求得,然而,三边都不知道,这就是本题的难点之所在.如何突破?解法2根据已知90APB BPC CPA ∠=∠=∠=︒这一特点,将已知三棱锥补成长方体,这样就有45,60cos .CPAPD APE BPD BPE CPD CPE CPD PE∠=∠=︒∠=∠=︒∠=∠∠=,,问题归结为解直角三角形,这就容易多了.解法3则通过过D 作平面与PD 垂直,从而使得APD ∠(即A PD '∠)、BPD ∠(即B PD '∠)、及CPD ∠(即C PD '∠)都成为直角三角形的一个内角,同样起到了化难为易的作用.解法1中用到结论2222PE PF PG PD ++=,其依据是:PD 恰为以PE PF PG 、、为棱的长方体的对角线.拓展 因为222211cos cos 45,cos cos 60,24APD BPD ∠=︒=∠=︒=又知结论 1cos 2CPD ∠=,即21cos 4CPD ∠=,所以有222cos cos cos 1APD BPD CPD ∠+∠+∠=,将三个角一般化,我们可得定理 三棱锥P ABC -中,90,APB BPC CPA D ∠=∠=∠=︒为底面ABC 内的一点,PD 与PA AB PC 、、所成的角分别是αβγ、、,则222cos cos cos 1.αβγ++=简证 如图1,222222cos cos cos PA PB PC PD PD PD αβγ⎛⎫⎛⎫⎛⎫++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222PA PB PC PD ++= 221.PD PD==推广 P A P B P C 、、是两两垂直的三条射线,PD 与PA PB PC 、、所成的角分别是αβγ、、,则222cos cos cos 1.αβγ++= 题92 有一个侧棱都是l 的三棱锥,顶点处的三个面角中,有两个都是α,另一个是x .将该棱锥的体积V 表示成x 的函数并求出当x 取什么值时,V 达到最大或最小.(第二届高一第二试第21题)解 设所给的棱锥是α=∠=∠===-ASB ASC l SC SB SA ABC S ,,(定值),x BSC =∠(变量),以BSC ∆所在平面为底面,作⊥AO 底面于O ,作SB OD ⊥于D ,连结AD .(如图)由三垂线定理,SB AD ⊥,于是αc o s c o s ⋅=∠⋅=l A S D SA SD .⊥∠=∠AO BSA ASC , 面BSC ,O ∴在BSC ∠的平分线上.2,xOSD x BSC =∠∴=∠ . ,OD SB ⊥ cos cos cos 2SD l SO x OSD α⋅∴==∠,于是2cos cos 12cos cos 22222222x l x l l SO SA AO αα-⋅=⋅-=-=.又BSC ∆的面积∴=∠⋅⋅=,s in 21s in 212x l B S C SB SC P 三棱锥BS C A -的体积2sin cos 4sin 612cos cos 1sin 61312223223xx l x x l AO P V ⋅-=-⋅⋅=⋅⋅=αα. 设)0(2sin 2>=y y x,则根号内的这部分可以表示为αα222sin 44)(cos 4)1(4)(y y y y y y f +-=--=,当2sin )4(2sin 422αα=--=y 时,)(y f 最大,同时V 也最大.2sin ,2sin 22α=∴=y x y ,即2,2s i n 2s i n 22x x α=是锐角,2sin arcsin2,2sin arcsin 2,2sin 2sin),,0(αααπα===∴∈x x x . 答:当2sin arcsin2α=x 时,V 最大.评析 这是一道立几、函数综合题,涉及的知识面广,方法多.破解此题的关键,一是把A 看成顶点,把面SBC 看成底面;二是写出函数关系式)(x f V =;三是求V 的最值.把A 看成顶点后,x l S h S V SBC SBC sin 21,312=⋅=∆∆是显然的,关键是如何将高h 用x 表示.而要解决这个问题,必须知道由ASC ASB ∠=∠,可得到AS 在底面BSC 上的射影是BSC ∠的平分线这一重要结论(立几中常常用到这一结论).另外,作SB OD ⊥,由三垂线定理得SB AD ⊥,这就沟通了AO 与x l ,,α之间的关系,使得AO 用x l ,,α表示成为可能.求得的2sin cos 4sin 612223xx l V α-=是较复杂的,如何求其最值也是问题之一.分析出SABCDO只需求2s i nc o s 4s i n )(222xx x g α-=的最值是一个进步;将其变形为2sin cos 4)2sin 1(2sin 4)(2222x x x x g α--=又是一个进步.接着换元,令y x=2sin 2,得α22s in 44)()(y y y f x g +-==,这是一个二次函数在(0,1)上的最值问题,太熟悉了,于是大功告成.其答案也可表示成2sin 2arccos 22α-或αα2sin 2sin arctan 2-.该题重点考查了转化问题的能力,综合运用多种知识解决问题的能力.题93 设M 为正三棱锥S ABC -的底面ABC 内的任意一点,过M 引底面的垂线与这棱锥的三个侧面所在平面分别交于P,Q,R 三点,若正三棱锥的高为2.试求MP MQ MR ++的长.(第十二届高一培训题第81题)解 如图,过M 作MD BC ⊥于D ,作ME AC ⊥于E ,作M F A B⊥于F ,连结P D ,Q E ,R F .显然PDM ∠、QEM ∠、RFM ∠都等于这个正三棱锥的侧面与底面所成的二面角α,MP MQ MR MDtan ME tan ∴++=α+αMFtan (MD ME MF)tan +α=++α.易知M D M E ++为底面正三角形的高h ,因为正三棱锥高为h 2'=,所以有h t a n 1h 3'α=,h tan 3h α='=6,即MP MQ MR 6++=.评析 首先用特殊点指明解题方向:由于M 是正ABC ∆内的任意一点,故不妨使其为正ABC ∆的中心,则此时的P,Q,R 与正三棱锥的顶点S 重合,从而MP MQ MR ++为正在棱锥高的3倍,也就是6.若将此题改为选择题,则已可选出正确答案.然而,这是解答题,又该如何求呢?解决此题遇到的第一个难点就是正确地画出图形.图画出后的关键问题是如何利用正三棱锥这一条件,由于MP MQ MR ++都垂直于底面,且P,Q,R 分别在三个侧面内,故分别过P,Q,R 在三个侧面内作底边的垂线PD,QE,RF ,则MD,ME,MF 为三条射影.由正三棱锥,可知PDM QEM RFM ∠=∠=∠=α,则MP MQ MR (MD ME MF)tan ++=++α.运用正三角P QAESMF D BCR形内任一点到三边距离之和为其一边上的高,设MD ME MF h ++=,正三棱锥的高为h 2'=,则h tan 1h 3'α=,这就得到MP MQ MR 3h ++='=6.这里,发现h tan 1h 3'α=也是解决问题的关键之一,它将三棱锥的高h 2'=与MD ME MF ++,进而与MP MQ MR ++建立了联系,从而最终解决了问题.拓展 此题就是下面定理的特殊情形.定理 若M 是高为h 的正三棱锥S ABC -的底面内的任意一点,过M 引底面的垂线与该棱锥的三个侧面所在平面分别交于P,Q,R 三点,则MP MQ MR 3h ++=.证明留给读者.题94 There are two travel projects from Beijing to Santiago, Chile: (A)Flying westward(向西) to New York, then flying southward to Santiago; (B) Flying southward from Beijing to Friemander, Australia , then flying westward to Santiago. The geographic positions of these four cities may be approximately considered as: Beijing (1200 east longitude, 400 north latitude ), New York (700 west longitude , 400 north latitude ), Friemander (1200 east longitude, 300 south latitude) , Santiago(700 west longitude , 300 south latitude ).Suppose that the air lines go along the spherical distance , then the project of the shorter distance is ________(第十三届高二第一试第20题)译文:从北京前往智利的圣地亚哥,有两种旅行方案可供选择.方案(A):由北京向西飞抵纽约,再向南飞抵圣地亚哥; 方案(B):由北京向南飞抵澳大利亚的弗里曼特尔,再向西飞抵圣地亚哥.上述4个城市的地理位置可近似看作:北京(东经1200,北纬400),纽约(西经700,北纬400), 弗里曼特尔(东经1200,南纬300), 圣地亚哥(西经700,南纬300). 假设飞机航线都是球面距离,那么飞行距离较短的方案是_______.解 用BN d 表示北京与纽约的球面距离, NS d 表示纽约与圣地亚哥的球面距离, BF d 表示北京与弗里曼特尔的球面距离, FS d 表示弗里曼特尔与圣地亚哥的球面距离.则有:(A)方案的航程为BN d + NS d , (B)方案的航程为BF d + FS d ,而向南飞是沿着经度线(球大圆)飞行,所以NS d =BF d . 又由余弦定理计算直线距离得)170cos 1()40cos (2)]70120(360cos[)40cos (2)40cos (202000020202-=+--=R R R BN 022085sin )40cos (4⋅=R .因此0085sin 40cos 2⋅=R BN (R 为地球半径). 同理,0085sin 30cos 2⋅=R FS .于是BN<FS.又BN d 和FS d 都是小于地球赤道(长)的1/2 , 所以BN d <FS d . 故方案(A)的航程更短些 . 评析 地球表面两点间的最短距离是这两点的球面距离(过这两点及球心的平面截球面所得大圆上的劣弧的长).同一经线上两点间的弧长就是这两点间的球面距离,但同一纬线圈上两点间的劣弧长并不是这两点间的球面距离,因此,此题的关键是为何求得BN d 与FS d ,并比较其大小.当两点间的直线距离小于地球赤道长的一半时,两点间的直线距离小的,这两点间的球面距离也小.运用这一结论可简化运算.拓展 如果直接求北京与纽约间的球面距离BN d '及弗里曼特与圣地亚哥间的球面距离FS d ',又该如何求呢?我们可以运用下面的定理 设地球半径为R ,B A 、是纬度为⎪⎭⎫⎝⎛<≤20πϕϕ的同一纬线圈上两点,这两点的经度差为()πθθ≤<0,则B A 、间的球面距离⎪⎭⎫⎝⎛-=2sincos 21arccos 22θϕR d AB . 证明 设地球的球心为O ,B A 、所在纬度圈的圆心为'O ,则ϕ=∠=∠''OBO OAO,θ=∠B AO ',⊥'OO 平面AB O ',''AO OO ⊥∴,B O OO ''⊥,ϕcos ''R B O A O ==∴.在ABO '∆中,由余弦定理得θϕϕcos cos 2cos 222222R R AB -==()θϕcos 1cos 222-R =2sincos 4222θϕR .在OAB ∆中,222222224cos sin 2cos 12cos sin 22R R AOB R θϕθϕ-∠==-,⎪⎭⎫ ⎝⎛-=∠∴2sin cos 21arccos 22θϕAOB (弧度). ⎪⎭⎫ ⎝⎛-=∴2sin cos 21arccos 22θϕR d AB .证毕.将0170,40==θϕ代入上式,便得题中的BN d ',将0170,30==θϕ代入上式便得题中的FS d ',由于03040>,0222285sin 30cos 2185sin 40cos 21->-∴,又x arccos 是减函数,()()020220285sin 30cos21arccos 85sin 40cos 21arccos ->-∴,FS BN d d ''<∴.故方案(A)的航行路程更短些.AB O ’R O题95 如图1所示,矩形ABCD 中,P b AD a AB ,,==为CD 上的任一点,以AB 所在直线为轴,将PAB ∆旋转而成一个旋转体,求旋转体表面积的最大值,并指出当表面积最大时P 点位置.(第十一届高一培训题第79题)解法1 如图2,设P l PB l PA ,,21==到AB 的距离是b ,则旋转体表面积)(21l l b S +=π.为求21l l +的最大值,不妨设PC PD ≤.作B 关于直线CD 的对称点'B ,连结DB DB PB AB ,,,''',则P 在D AB '∆内部或边界上,延长AP 交'DB 于E ,则≤+'PB PA 'EB PE PA ++=++≤+=''EB DE AD EB AE 'DB AD +,所以DB AD DB AD PB PA +=+≤+'.所以)(,)(222max max 21b a b b S DB AD l l ++=+=+π.此时P 与D 或C 重合.解法2 由解法1,可知只须求PB PA +的最大值.设x PD =,则=+-=PB PA x a PC,2=,表示直角坐标系x o y 内x 轴上的动点))(,(a x o o x P ≤≤到两点),(),,(b a B b o A -的距离之和(如图3).由平几知识,显然当点P 位于AB 与x 轴的交点M 处时,PB PA +最小,当点P 由点M 处沿x 轴移向点O 时,PB PA +越来越大,当点P 达到点O 时,PB PA +达到最大,为22b a b ++;同样地,当点P 由点M 处沿x 轴移到点),(o a N 处时,PB PA +达到最大,为22ba b ++.故22max )(b a b PB PA ++=+.从而)(222max b a b b S ++=π.评析 此题的难点是求PB PA +的最大值.解法1在作出点B 关于DC 的对称点'B 后,反复利用三角形两边之和大于第三边突破了这一难点;解法2运用函数思想,将PB PA +表示成DP 的长x 的函数,而求这种无理函数的最大值无常规方法,故又将PB PA +看作动点B ’P图2ABCDE A ’图3 图1ABCDP))(,(a x o o x P ≤≤与两定点),(),,(b aB b o A -的距离之和,再利用平几知识求出了最大值.平几知识、转化思想的灵活运用是破解此题的关键.拓展 不难知道,当点P 为DC 的中点时,22m i n 4)(b a PB PA +=+,从而22m i n 4b a b S +=π,进而旋转体表面积的取值范围是2(b ππ⎡⎤+⎣⎦. 题96 ABCD 是一个正方形,M 为AB 上一点,N 为BC 上一点,且AM=BN.连DM 、DN分别交对角线AC 于点P 、Q ,剪掉△MNB.求证:①以DM 、DN 为折痕,将DA 与DC 重合,可以构成一个三棱锥的侧面.②以线段AP 、PQ 、QC 为边恰可构成一个内角为600的三角形.(第一届高一第二试第五题) 解 ①如图1,由于AM=BN ,则CN=BM.以DM 、DN DA 与DC 重合.下面证明AM ,MN ,CN AM=BN <MN ,CN=BM<MN ,所以MN 为AM ,MN ,CN MN<MB+BN=AM+CN ,所以AM ,MN ,CN 可构成一个三角形.故将DA 与DC 重合后,面DAM ,面DMN ,面DNC 锥的侧面.②如图2,在棱锥D-A(C)MN 中,AP 在面ADM 内,PQ 在面DMN QA 在面DAN 内.AP-PQ-QA(C)形成封闭折线构成△APQ ,所以AP ,QC 可构成△APQ 的三条边.现在只须证∠PAQ=600.由于棱锥底面△AMN ≌△BMN (三边对应相等),∴∠MAN=900,又∠DAM=900,∠DA(C)N=900,AP 为∠DAM 的平分线,AQ 为∠DAN 的平分线.作PP 1⊥DA 于P 1,过P 1作P 1S ∥AN 交AQ 于S ,则∠PP 1S=900,P 1A=P 1P=P 1S ,所以PA=SA=SP ,即△PSA 为正三角形,所以∠PAQ=600.评析 这是一个典型的折叠问题,解决此类问题的关键是要搞清楚折叠前的各种量在折叠后是否发生了变化,并画出正确的图形,再根据图形寻求解题的路子.第①小题的核心是证明线段AM 、MN 、CN 可以构成一个三角形.上述证法是证明了最长的线段MN 比两条较短的线段CN 与AM 的和小,故三条线段能构成一个三角形.其实,因为AM=BN ,所以CN=BM.而BN 、MN 、BM 显然构成△BMN ,故AM 、MN 、CN 当然也能构成三角形 .第②小题要证明线段AP 、PQ 、QC 为边可构成一个三角形是很容易的,难就难在要证明此三角形的一个内角是60 0,到底哪一个内角是600?这在直观图上是不易看出的 .瞎猜一通,将会浪费大量时间,且不易得到证明.怎么办呢?我们可以用图1中的三条线段AP 、PQ 、QC 为边画一个三角形,量出一个最接近600的角(若不明显,还可将图1中M 、N 的位置适当移动后再如此操作),然后再去证明,这是一个有效的方法.要证明∠PAQ=60O也并非易事.一般来说,是通过解△PAQ ,求得∠PAQ=600.这就需要知道△PAQ 的三边或一些边与角.我们可以设正方形的边长为1,AM=BN=x ,设∠ADP=θ,则∠APD=1800-450-θ=1350-θ,sin θ=21xx DM AM +=,在△APD 中,)135sin(sin 0θθ-=ADAP ,)135sin(sin 0θθ-=AP ,类似地可在△DCQ 中设∠CDQ=ϕ,则CQ 可用ϕ的三角函数表示出来,再得PQ=2-AP-CQ.然后再用余弦定理,应当说是可以得到∠PAQ=600的,但是太繁了!于是上面的解法抓住∠DAM=∠DAN=∠MAN=900,作PP 1⊥DA 于P 1,,作P 1S ∥AN 交AQ 于S ,又由AP 、AQ 分别是Rt ∠DAM ,Rt ∠DAN 的平分线,得到△P 1AP 、△P 1PS 、△P 1SA 为全等的等腰直角三角形,得AP=PS=SA ,故∠PAQ=600.这就有效地避免了繁琐的运算.这也启示我们,当常规思路(比如通过解三角形求角)难以奏效时,应当改变思考方向,寻求新的解法.题97 正ABC ∆的边长为a ,用任意直线l 截ABC ∆与两边交于F E 、,将ABC ∆沿l 折起作成二面角,由此可形成四棱锥ABEF C -,求此四棱锥的最大体积,并证明之.(第十二届高二培训题第77题)解 由棱锥的体积公式sh V 31=,可知 (1)当l 固定时,CEF ∆折起与平面ABEF 垂直时,所成四棱锥有最大体积,此时,CEF ∆的高CD 即为棱锥的高.(2)当高CD h =固定时,所有的直线l 皆以与C 为圆心,h 为半径的圆相切,由此可知棱锥的体积要最大,必须四边形 ABEF 的面积S 最大,CEF ∆有最小面积.因而只要考虑 与AB 平行的这些直线l .(3)设EF ∥CG AB CG AB ,,⊥交EF 于H ,记a CG x x CH 230,=<<=,则EF = x 32,四棱锥ABEF C -的体积为⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=2222439332434331x a x x a x V . (4)由⎪⎭⎫ ⎝⎛-⨯⨯=⎪⎭⎫ ⎝⎛-=222222224322127143271x a x x a x V 212714322⨯≤⎪⎭⎫ ⎝⎛-x a 63232222216271221271343432a a xa x a x ⨯=⎪⎪⎭⎫⎝⎛⨯⨯=⎪⎪⎪⎪⎭⎫⎝⎛-+-+,当且仅当=22x -243a 2x ,即⎪⎪⎭⎫ ⎝⎛<=a x a x 232时取等号.所以3max 363a V =.评析 此题解法中的4个步骤恰好解决了本题的4个关键问题:(1)当l 固定时,折成什么样的二面角体积最大?(2)当高CD h =固定时,l 处于什么样的位置时底面积最大?认识到底面ABEF 的面积最大时CEF ∆的面积最小也是至关重要的.DBCGF H Ell(3)在认识了l 必须与AB 平行,设x CH =后,如何将V 表示成x 的函数? (4)如何求(3)中函数)(x f V =的最小值?这种高与底面积都在变化,即影响体积V 的两个量都在变化时,先固定一个变量再加以分析的方法在解一些较为复杂的多元函数问题时常常用到,我们应细心体会,并能在实践中自如操作.拓展 将此题略加变动,我们便得下面的定理 若D 是边长为a 的正ABC ∆的BC 边上的动点,将ACD ∆沿AD 折起作成二面角,则由此形成的三棱锥ABD C -的体积的最大值是3483a . 证明 如图,设()a x x CD <<=0,则x a BD -=. ()︒∆-⋅=60sin 21x a a S ABD =()43x a a -.在ACD ∆中,由 余弦定理,求得22a ax x AD +-=.作AD CH ⊥于H ,则==⋅+-=⋅∆ACD S CH a ax x CH AD 222121 4360sin 21axax =︒,所以CH =显然,若ABD ∆固定,则当ACD ∆沿AD 折成直二面角时三棱锥ABD C -的体积最大,此时,CH 就是此三棱锥的高.故()()⋅=+--=+-⋅-⋅=⋅=∆-8823433131222222a aax x x a x a a ax x ax x a a CH S V ABD ABDC()⎪⎪⎭⎫⎝⎛+--+-=+-+--222222222228aax x aax x a aa ax x a ax x a .令=+-22a ax x ⎪⎪⎭⎫⎝⎛≥a t t 23,则易证⎪⎪⎭⎫ ⎝⎛-=-t t a a V ABD C 228在⎪⎪⎭⎫⎢⎣⎡∞+,23a 上单调递减,所以m ax )(ABD C V -= 32248323238a a a a a =⎪⎪⎪⎪⎭⎫⎝⎛-.题98 给定一个三角形纸片(如图1),你能否用它为原料剪拼成一个正三棱柱(正三棱柱的全面积等于原三角形的面积)?说明你的方法.这里“剪拼”的意思是:依直线剪裁,边对边拼接.(第十四届高二第二试第22题)ABCDHaaxx a -解 可以剪拼成一个正三棱柱,下面分两步证明:(1)设A ∠是最大角之一,取AC AB 、中点F E 、F E 、作BC 的垂线,垂足N M 、一定在BC 内.过A 作的平行线PQ ,分别交两垂线于点Q P 、.由BME ∆AQE ∆,CNF ∆≌APF ∆,可见矩形MNPQ 可由ABC ∆拼而成(如图2).(2)设矩形MNPQ 中,NP MN ≤,以MN 为边,向内作正MNT ∆,T 与MN 的距离等于NP MN <23,故T 在矩形MNPQ 内.过T 作MN 的平行线RS ,如图3剪拼,即成一个正三棱柱.证毕.评析 正三棱柱的三个侧面是全等的矩形,两底面是全等的正三角形,将正三角形平分后又能拼成矩形,三个全等的侧面矩形总有一边等于底面正三角形的边长.因此,意识到任何一个矩形都可按图3那样剪拼成一个正三棱柱是破解此题的关键之一.在此基础上,如何将任何一个正三角形剪拼成矩形又是一个关键问题,运用平几知识很容易解决这一问题.拓展 对此题作进一步研究,可得命题1 一个三角形可剪拼成任意形状的等积三角形.证明 设已知三角形为ABC ∆,各边长分别为c b a ,,,所求三角形为'''C B A ∆,各边长为'a ,'b ,'c .1、不妨设c b a ≥≥,'''c b a ≥≥.我们先将ABC ∆剪拼成一个边长为2a的矩形MNPQ (如图2). 2、将矩形MNPQ 剪拼成一组对边长为2'a 的平行四边形.若22'aa >,将矩形MNPQ 作如图4的处理,FE 、分别为PQ MN 、的中点,4''a EM =(倘若EQ a EM >=4'',我们就将矩形MNPQ 截成两个全等的矩形EFQM 与EFPN ,如图5,将E F Q M 接到EFPN ,重复这个操作,直至EQ a <4'),延长E M '交PN 于'N ,''P Q 过F 且平行于''N M ,易知可拼成平行四边形''''Q P N M 且2'''a N M =. 若22'a a <,仍作图5处理,直至MN a >2'(矩形在竖直方向的边长)为止,再进行上述操作.3、因为'''''''11'''22A B C M N P Q a c S S a h ∆>==,所以h c >'(h 为平行四边形的高).如图6,F E 、分别是''''P N Q M 、的中点,过E 的直线交''Q P 于'A ,交''N M 于'B ,且'''c B A =(由前所证,这样的''B A 存在)连接F A '并延长交''N M 于'C .如图7,若'A 在''P Q 的延长线上,可先将''N FC ∆剪拼到''P FA ∆,再将''A EQ ∆剪拼到''B EM ∆,'A 在''Q P 的延长线上,同理可得.因为在剪拼的过程中,面积始终不变,所以当''c a 、确定时'b 也唯一确定,故'''C B A ∆ 即为所求三角形.命题2 一个三角形可剪拼成任意形状的等积多边形.把要求的多边形看成有限个三角形的组合,设为n ∆∆∆∆,,3,2,1 ,则++=∆∆∆21S S S A B Cn S ∆+ .将ABC ∆底边分成n 份,长度比为n S S S S ∆∆∆∆::::321 ,再依端点将ABC ∆剪成n 个面积依次为n S S S ∆∆∆、、、 21的三角形.由命题1,依次将面积为n S S S ∆∆∆、、、 21的三角形剪拼成n ∆∆∆∆,,3,2,1 .最后将n ∆∆∆∆,,3,2,1 拼起来即得所求多边形.命题3 一个多边形可剪拼成任意形状的等积多边形. 将命题扩展到空间,又得命题4 一个多面体可切拼成任意形状的等积多面体.题99 设在空间给出了20个点.其中某些点涂黄色,其余点涂红色.已知在任何一个平面上的同种颜色的点不会超过三个.求证:存在一个四面体,它的四个顶点同色,并且至少有一个侧面内不含另一种颜色的点.(第一届高一第二试第四题)解 因为20=n ,这20个点涂红、黄两种颜色,所以至少有四个点是同色的.由于任一平面上同色点不会超过三个,所以上述四个同色点不共面,组成四个顶点同色的四面体.于是可知,四个顶点同色的四面体必定存在.由于点数有限(20个),其中四个顶点同色的四面体只能有有限个,所以可选取其中一个体积最小者.这个体积最小的四个顶点同色的四面体即合要求——其中至少有一个侧面内不含另一种颜色的点,如若不然,若它的四个面内都有涂另一种颜色的点,则这四个点必不共面,将形成一个体积更小的四个顶点同色的四面体,于是会产生矛盾.故命题得证.评析 这是最简单、形象、直观的染色——点的染色问题.将空间20个点染成黄色、红色(任何平面上不同色点不超过3个)后,要求证明具有某种性质的对象(四个顶点同色,且至少有一个侧面内不含另一种颜色的点的四面体)存在,这类问题的证明,通常要用到抽屉原理,重叠原理等组合学中的基本原理,或利用奇数偶性分析,有时还用到构造法、递归法、数学归纳法等数学方法.本题中利用抽屉原理,立即证得四个顶点同色的四面体的存在性.再在存在的有限个四顶点同色的四面体中取一个体积最小的,再用反证法证明这个体积最小的四面体就是四个顶点同色,并且至少有一个侧面内不含另一种颜色的点的四面体.题100 用四个边长分别为 a , b , c (a>b>c>0)的锐角三角形可以拼成一个四面体.把拼成的任何一个四面体的各棱用红、黄、蓝三色染色,每条棱染一色,每种色染两条棱,考虑一切经过这样染色的四面体,如果经过适当转动,两个染色四面体完全重合,并且重合的对应棱同色时,称这样的两个四面体是同一染色类.问:所有这样的染色四面体可分为几种染色类?(第四届高一第2试第22题)解:所构成的四面体对棱长度相等,图中AB=CD,AC=BD,BC=AD .从四面体外部看,任何一个表面三角形三条边都包含 a , b , c 三种长度,按它们的配置顺序看,可分为两类:一类是边长为 a , b , c 的三边按顺时针方向排布,另一类是按逆时针方向排布.如果有两个四面体分别属于这两类,那么无论如何转动,这两个四面体都不会重合.因此,只要把 a , b , c 三边顺时针方向排布的染色四面体的染色类数弄清楚了,就可以把这个数乘以2,得到全部染色类的数目.以下设 a , b , c 顺次按顺时针方向排布,按染色方法可分成三种不同方式:①三组对棱对应同色,即图中 AB 与 CD 、 AC 与 BD 、 BC 与 AD 同色.容易看出,只要一个顶点处的三条棱所占的三种颜色确定后,整个四面体的染色也就确定了.这种方式下,有⨯⨯321=6类.②恰有一组对棱同色,设长为 a 的对棱同色,另外两组对棱对应异色.当长为 a 的这组对棱的颜色确定后,不论另外四条棱怎样染色(但要使另外两组对棱对应异色),都可以经过适当旋转,使这样染色的两个四面体重合,且对应棱同色,也就是说:长为 a 的对棱同色时,可划分为3个染色类.同理,长为 b ,长为 c 的对棱同色也是这样,在这种染色方式下,共可划分为3⨯3=9类.③任何两条对棱都异色,这时有且仅有一个三角形,它的三边是三种不同颜色,设∆ABC 中, BC 染了红色, AC 染了黄色, AB 染了蓝色这时,只要 AD 染色确定后,整个四面体的染色就确定了. AD 可染黄色,也可染蓝色.这样形成的两个染色四面体不同类.因此,这种染色方式下,A B CD3212=12类.有⨯⨯⨯(6+12)2=54种.综上分析,考虑到a,b,c按逆时针方向排布的四面体,共有9+⨯评析显然不是所有染色四面体经过适当转动后两个四面体都能完全重合且重合的对应棱是同色的,于是必须对所有染色四面体进行分类.染色问题的本质就是分类.分类应注意既不能重复又不能遗漏.要做到这一点,分类标准必须一致.因此,如何分类?分哪几类?分类以后怎么办?就成了解决问题的关键.由于本题中的四面体的任何一个表面三角形三边都包含 a, b, c三种长度,故可按其配置顺序分为两类:一类是边长为 a, b, c的三边按顺时针方向排布,另一类是按逆时针方向排布.认识分属这两类的两个四面体都不会是同一染色类也是十分重要的,在此基础上,我们只须把 a, b, c顺时针方向排布的染色四面体的染色类数弄清楚了,而 a, b, c按逆时针方向排布的染色四面体的染色类数与其相同,故问题也就解决了.于是又对 a, b, c按顺时针方向排布时按染色方法分为三类,并逐一求出同一染色类数,便最终解决了问题.。

第九届“新希望杯”全国数学大赛七年级B卷试题(含答案)

第九届“新希望杯”全国数学大赛七年级B卷试题(含答案)

第九届“新希望杯”全国数学大赛七年级试题(B 卷)一、选择题(每小题4分,共32分)1.方程2612312-+=-x x 的解为( )A .21 B.27 C.21- D.29- 2,已知a 、b 、c 都是整数,则2b a +、2c b +和2ac +中( )A .必定都是整数 B.必定有两个是整数C.必定有一个是整数 D.可能都不是整数 3.已知有理数a 、b 满足如下关系:)0(≠-=ab ab ab ,b a b a -=+.用数轴上的点来表示a 和b ,下列表示正确的是( )xDCBA4.关于x 的方程|2x|=mx-3没有负根,则m 的取值范围是( )A .m > -2 B.m > 2 C.m 2-≥ D.m ≥25.如图所示,OB 、OC 是∠AOD 内的任意两条射线,OM 平分∠AOB ,ON 平分∠COD.若∠MON=α,∠BOC=β,则∠AOD=( )A .βα-2 B.βα- C.βα+ D.以上都不正确 6.已知1a 、2a 、3a 、…、2013a 都是正有理数,M=(+⋯+++321a a a ))(20134322012a a a a a +⋯+++,N=(+⋯+++321a a a )(2013a )2012432a a a a +⋯+++,则M 、N 的大小关系为( )A .M>N B.M<N C.M=N D.无法确定人数与参加语文交流会的人数之比为4:3,还剩下一个小组未参加,这个小组是( ) A .第3组 B.第6组 C. 第9组 D.第12组8.某商场为招揽顾客,贴出优惠告示:一次性购物不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.苏老师二月份到该商场购物三次,第一次购物付款153元,第二次购物付款220元,三次共优惠了107元.则苏老师二月份三次到该商场购物实际付款共( )A.400元B. 713元C. 760元D.820元 二、填空题(每小题5分,共40分)9.计算:[]45434312124.02178122---⎪⎭⎫⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-=.10.若)23(1-=-m m A ,)12(3-=-m m B ,)1(5+=+m m C ,且n C B B A =-=-,则=n .11.观察一列按规律排列的数:2,1,32,21,52,31,…,则第8个数为 .12.有三个互不相等的有理数,它们既可表示为1,x ,y x +的形式,又可表示为0,xy,y 的形式,则=+20132012y x .A CDM图1图2(第14题图)13.如图,用图1所示的包装纸剪出图2所示的小图案,最多能剪 个.14.如图,A 、B 、C 三地两两之间由若干条曲线连接,每条曲线表示两地之间的一种走法,那么从A 地到C 地可供选择的走法共有 种.02=-++b a ab 的所有整数对15.满(a ,b )足有 对. 16.已知∠A 与∠B 互补,且∠A>∠B ,代数式○1B ∠-︒90,○2A ∠-︒90,○3︒-∠90A ,○42BA ∠-∠中,可以表示∠B 的余角的是 (填序号). 17.已知关于 x 的多项式()b x x x a b+---243是二次三项式, (1)求a 和b 的值;(2)设=y ()b x x x a b +---243,当x 3-=时,求()xy x xy xy x 214218222-⎥⎦⎤⎢⎣⎡-+-的值.18.点C 是线段AB 延长线上一点,且BC 53=AB ,反向延长AB 到点D ,使AD 43=AC ,已知CD=56cm ,(1)求AB 的长度;(2)点P 是直线AB 上一点(与A 、C 不重合),AP 、CP 的中点分别为点M 、N ,求MN 的长度.19.有甲、乙两家眼镜厂,甲厂配套生产镜片和镜架,乙厂不配套生产镜片和镜架,该眼镜润是甲厂的两倍,问:这个季度内,乙厂销售我镜片和镜架各多少副?20.如图1,将数字1,2,3,4,5,6,7,8分别填写在八边形ABCDEFGH 的8个顶点上,并且以S1,S2,S3,……,S8分别表示(A ,B ,C ),(B ,C ,D ),……,(H,A ,B)8组相邻3个顶点上的数字之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档