人教版高中数学必修三(教案) 算法与程序框图(3课时)
1.1.2程序框图与算法的基本逻辑结构第3课时 循环结构 课件(人教A版必修3)
双 基
计
达
课 利息,若一个月后付第一个月的分期付款,月利率为 1%,那 标
前
自 么购冰箱钱全部付清后,实际共付出款额多少元?画出程序 课
主
时
导 学
框图.
作 业
课 堂 互 动 探 究
教 师 备 课 资 源
菜单
新课标 ·数学 必修3
教
学
易
教
错
法
易
分 析
利用循环结构解决累加(乘)问题
误 辨
析
教
学 方
设计一个算法,求 13+23+…+993+1003 的值,
当 堂
案
双
设
计 并画出程序框图.
基 达
标
课
前
【思路探究】 确定计数变量、累计变量和循环体后利
自
课
主 导
用循环结构画出框图.
时 作
学
业
课 堂 互 动 探 究
教 师 备 课 资 源
易
教
错
法
易
分
误
析
辨
利用循环结构寻数
析
教
学
当
方
堂
案
双
设 计
写出一个求满足 1×3×5×7×…×n>50 000 的
基 达
标
课 前
最小正整数 n 的算法,并画出相应的程序框图.
自
课
主
时
导
作
学
业
课 堂 互 动 探 究
教 师 备 课 资 源
菜单
新课标 ·数学 必修3
教
学
易
教
错
法 分
【思路探究】
利用循环结构,重复操作,可求出最小
人教版高中数学必修三 第一章 算法初步算法与程序框图教案(高一数学)
算法与程序框图教案第一章 算法初步§1.1 算法与程序框图【入门向导】“孙子问题”最早出现在我国《算经十书》之一的《孙子算经》中.其原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?答曰:二十三”.意思是说:今有一些事物,不知道它的数目,三个三个地数它们剩余二个,五个五个地数它们剩余三个,七个七个地数它们剩余二个,问这些事物的数目是多少?“孙子问题”相当于求关于x ,y ,z 的不定方程组⎩⎪⎨⎪⎧ m =3x +2m =5y +3m =7z +2的正整数解.《孙子算经》中给出了具体的解法,其步骤是:选定5×7的一个倍数,被3除余1,即70;选定3×7的一个倍数,被5除余1,即21;选定3×5的一个倍数,被7除余1,即15.然后按下式计算:m =70×2+21×3+15×2-105P .式中105为3,5,7的最小公倍数,P 为适当的整数,使得0<m ≤105,这里取P =2.你能想出一种算法,利用计算机来解决上述问题吗?1.对算法含义的理解(1)算法是机械的算法的设计要“面面俱到”不能省略任何一个小小的步骤,有时可能要进行大量重复计算,但只要按步骤一步一步地执行,总能得到结果.算法的这种机械化的特点,在设计出算法后,便于把具体过程交给计算机去完成.(2)算法是普遍存在的实际上处理任何问题都需要算法,如国际象棋的棋谱、走法、胜负的评判标准,邮寄物品的相关手续,求一个二元一次方程组的解等等.(3)求解某个具体问题的算法一般是不唯一的算法实际上是解决问题的步骤和方法,求解问题的出发点不同,就会得到不同的算法.如求二元一次方程组的解有代入消元法和加减消元法,但不同的算法可能会有“优劣”之分.例1 早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤.从下列选项中选出最好的一种流程( )A .1.洗脸刷牙、2.刷水壶、3.烧水、4.泡面、5.吃饭、6.听广播B .1.刷水壶、2.烧水同时洗脸刷牙、3.泡面、4.吃饭、5.听广播C .1.刷水壶、2.烧水同时洗脸刷牙、3.泡面、4.吃饭同时听广播D .1.吃饭同时听广播、2.泡面、3.烧水同时洗脸刷牙、4.刷水壶分析 处理问题的算法要求能够一步一步地执行,好的算法还要花费时间少.解析 A 中洗脸刷牙可以在烧水的过程中进行,听广播可以和吃饭同时进行;D 中吃饭要在刷水壶、烧水、泡面之后.答案 C2.算法与数学问题解法的区别与联系(1)联系算法与解法是一般与特殊的关系,也是抽象与具体的关系.如教材中由具体的二元一次方程组的求解过程(解法)出发,归纳出了二元一次方程组求解的步骤;同时指出,这样的求解步骤也适合有限制条件的二元一次方程组,这些步骤就构成了二元一次方程组的算法.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可利用这类问题的一般算法解决.(2)区别算法是解决某一类问题所需要的程序和步骤的统称,也可理解为数学中的“通法通解”;而解法是解决某一个具体问题的过程和步骤,是具体的解题过程.例2 给出求解方程组⎩⎪⎨⎪⎧2x +y =7. ①4x +5y =11 ②的一个算法. 解 方法一 (消元法)S1 ②-①×2,得3y =-3,③S2 解③得y =-1;④S3 将④代入①,得x =4;S4 输出x =4,y =-1.方法二 (公式法)S1 计算D =2×5-4×1=6;S2 因为D =6,所以x =5×7-11×16=4,y =11×2-7×46=-1; S3 输出x =4,y =-1.点评 本题中的方法二,直接利用高斯消去法的算法步骤,显得更为简捷.3.程序框图(1)与自然语言相比用程序框图表示算法的优越性用自然语言表示算法的步骤有明确的顺序性,但在处理条件结构或循环结构这样的问题时比较困难,不够直观、准确.程序框图是表示算法的另一种形式,它的结构清晰,步骤准确,有时能解决自然语言不易表达的问题.(2)画程序框图的规则画程序框图的规则应是大家共同遵守的一些规则,目的是为了使大家彼此之间能读懂各自画的框图.①使用标准的框图符号;②框图一般按从上到下,从左到右的方向来画;③除判断框外,大多数框图符号只有一个进入点和一个退出点,判断框是唯一具有超过一个退出点的符号;④在图形符号内描述语言要简练、清楚.例3已知圆的半径,设计一个算法求圆的周长和面积的近似值,并用程序框图表示.分析解答本题可由圆的周长公式和面积公式直接求解,其中圆的半径可由算法输入.解算法设计:S1输入圆的半径R.S2计算L=2πR.S3计算S=πR2.S4输出L和S.程序框图:1.算法的确定性理解不到位例1求2+4+6+8+…+100的算法.错解算法:S1计算2+4+6+8+ (100)S2输出第一步中的结果.错解辨析对于连加连乘的问题,不能直接得到答案,应当逐步进行.正解算法:S1计算2+4得到6;S2将第一步的结果与6相加得到12;S3将第二步的结果与8相加得到20;S4如此继续下去,一直加到100;S5输出运算结果.2.程序框图中循环结构功能、条件出错例2 如图所示是某一算法的程序框图,根据该框图指出这一算法的功能.错解 求S =12+14+16+18+110的值. 正解 在该程序框图中,S 与n 为两个累加变量,k 为计数变量,所以该算法的功能是求12+14+16+…+120的值.1.按部就班法此法是基本方法,要求按问题的解题步骤“按部就班”地做,每一步都有唯一的结果,且在有限步之后得出结果. 例1 写出作∠ABC 的平分线的一个算法.分析 解决这个问题,只需按作图方法“按部就班”地设计算法.解 S1 以B 为圆心,以任意长为半径画弧,与边BA 交于M 点,与边BC 交于N 点.S2 以M 为圆心,以大于12MN 的长d 为半径画弧.S3 以N 为圆心,以大于12MN 的长d 为半径画弧.S4 取第二、三两步所得的弧的交点P .S5 过B ,P 作射线BP ,射线BP 即为∠ABC 的平分线.2.公式法利用现有公式解决问题是设计算法的重要思路.例2 计算上底为2,下底为4,高为5的梯形的面积.分析 根据梯形的面积公式S =12(a +b )h .其中a 是上底,b 是下底,h 是高,只需令a=2,b=4,h=5,代入公式即可.解算法如下:S1a=2,b=4,h=5;S2S=12(a+b)h;S3输出S.3.循环法有些问题需要重复计算,而这正是计算机的强项,因此我们可以利用循环来实现.例3设计出一个求23+43+63+…+603的算法.解S1p=0,i=2.S2p=p+i3.S3i=i+2.S4如果i>60,算法结束,否则,返回第二步.S5输出p.1.抓特征组成任何一个程序框图的三要素是“四框”、“一线”加“文字说明”.“四框”即起、止框、输入(出)框、处理框、判断框.“一线”即流程线,任意两个程序框之间都存在流程线.“文字说明”即在框图内加以说明的文字、算式等,这是每个框图不可缺少的内容.2.明规则程序框图的画法规则是:①用标准,即使用标准的图形符号;②按顺序,即框图一般按照从上到下、从左到右的顺序画;③看出入,即大多数程序框只有一个入口和一个出口,判断框是唯一具有两个出口的图框,条件分支结构中要在出口处标明“是”或“否”;④明循环,即循环结构要注意变量的初始值及循环终止条件;⑤辨流向,即流程线的箭头表示执行的方向,不可缺少;⑥简说明,即在程序框内的描述语言要简练清晰.3.依步骤画程序框图的总体步骤是:第一步,先设计算法,因为算法的设计是画程序框图的基础,所以在画程序框图前,首先应在稿纸上写出相应的算法步骤,并分析算法需要哪些基本逻辑结构;第二步,再把算法步骤转化为对应的程序框图,在这种转化过程中往往需要考虑很多细节,是一个将算法“细化”的过程.例4某商场进行优惠促销:若购物金额x在500元以上(不包括500元),则全部货款打8折;若购物金额x在300元以上(不包括300元)500元以下(包括500元),则全部货款打9折;否则,不打折.画出程序框图,要求输入购物金额x元,能输出实际交款额.分析由题意,实际交款额y与购物金额x之间的函数关系是y=⎩⎪⎨⎪⎧ x , 0≤x ≤300,0.9x ,300<x ≤500,0.8x ,x >500.因为它需对x 进行三次判断,所以算法含有两个条件结构,写出算法步骤如下.解 算法如下:S1 输入购物金额x .S2 判断x ≤300是否成立.若是,则y =x ,执行第四步;否则,进入第三步.S3 判断x ≤500是否成立.若是,则y =0.9x ;否则,y =0.8x .S4 输出y ,算法结束.画法步骤 ①画顺序结构图,即起、止框及输入框,并且流程线连接(如图中①);②画条件结构图,即画判断框,里面填写“x ≤300”(如图中②).对于“是”画处理框并填入“y =x ”,对于“否”流向下一个判断框;③再画条件结构图,即画判断框,里面填写“x ≤500”对于“是”画处理框并填入“y =0.9x ”,对于“否”画处理框并填入“y =0.8x ”(如图中③);④画一个总的输出框并输出y ,以及起、止框表示算法结束(如图中④).最后,合成整个算法程序框图.1.(天津)阅读下边的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .6解析 i =1时,a =2;i =2时,a =5;i =3时,a =16;当i =4时,a =65>50.即条件a >50成立,所以输出的i 的值为4.答案 B2.(湖南)若执行如图所示的程序框图,输入x 1=1,x 2=2,x 3=3,x =2,则输出的数等于______.解析 由框图的算法功能可知,输出的数为:S =(1-2)2+(2-2)2+(3-2)23=23.答案 233.(日照模拟)执行下边的程序框图,输出的T =________.解析 按照程序框图依次执行为S =5,n =2,T =2;S =10,n =4,T =2+4=6;S =15,n =6,T =6+6=12;S =20,n =8,T =12+8=20;S =25,n =10,T =20+10=30>S ,输出T =30.答案 304.(威海调研)某算法的程序框图如图所示,则输出量y 与输入量x 满足的关系式是__________.解析 由题意知,该程序框图表达的是一个分段函数y =⎩⎪⎨⎪⎧2x , x ≤1,x -2,x >1. 答案 y =⎩⎪⎨⎪⎧2x , x ≤1,x -2,x >1 5.(抚顺模拟)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:下图是统计该则图中判断框应填________,输出的s =________.解析该程序框图是统计6名队员在最近三场比赛中投进的三分球总数,因此图中判断框应填i≤6,输出的s=a1+a2+…+a6.答案i≤6a1+a2+a3+a4+a5+a6。
新人教版高中数学必修三教案(全册)
新人教版高中数学必修三教案(全册)第一章算法初步1.1算法与程序框图1.1 算法与程序框图(共3课时)1.1.1算法的概念(第1课时)【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义.【教学目标】1.理解算法的概念与特点;2.学会用自然语言描述算法,体会算法思想;3.培养学生逻辑思维能力与表达能力.【教学重点】算法概念以及用自然语言描述算法【教学难点】用自然语言描述算法【教学过程】一、序言算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、实例分析例1:写出你在家里烧开水过程的一个算法.解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.(以上算法是解决某一问题的程序或步骤)例2:给出求1+2+3+4+5的一个算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; 第四步:将第三步中的运算结果10与5相加,得到15.算法2 可以运用公式1+2+3+…+错误!未找到引用源。
=错误!未找到引用源。
直接计算 第一步:取错误!未找到引用源。
=5;第二步:计算错误!未找到引用源。
; 第三步:输出运算结果.(说明算法不唯一)例3:(课本第2页,解二元一次方程组的步骤)(可推广到解一般的二元一次方程组,说明算法的普遍性) 例4:用“待定系数法”求圆的方程的大致步骤是: 第一步:根据题意,选择标准方程或一般方程;第二步:根据条件列出关于错误!未找到引用源。
人教A版高中数学必修3第一章.2算法与程序框图优秀课件
流程线 连接 程序框
连接点 连接程序框图的两部分
新课 1、程序框图基本概念: (1)程序框图的概念:
程序框图又称流程图,是一种用规定 的图形、指向线及文字说明来准确、 直观地表示算法的图形。 (2)程序框图的组成: 一个程序框图包括以下几部分: 表示相应操作的程序框; 带箭头的流程线; 程序框内必要文字说明。
(3)基本程序框的符号及其功能
程序框
名称
功能
终端框(起止 表示一个算法的起始和结束 框)
输入、输出框 表示算法的输入和输出的信 息
处理框(执行 框) 判断框
流程线
赋值、计算
判断一个条件是否成立,用 “是”、“否”或“Y”、 “N”标明 表示从某一框到另一框的流
一、对程序框图的认识和理解 例 2. (1)下列关于程序框图的说法正确的是( ) A.程序框图是描述算法的语言 B.程序框图中可以没有输出框,但必须要有输入框给 变量赋值 C.在程序框图中,一个判断框可能同时产生两种结果 D.程序框图与流程图不是同一个概念 【解】由于算法设计时要求返回执行的结果,故必须要有输 出框,对于变量的赋值可通过处理框完成,故算法设计时不 一定要有输入框,因此 B 错;一个判断框产生的结果是唯一 的,故 C 错;程序框图就是流程图,所以 D 错.故选 A. 【答案】 A
1.1.2算法的基本结构和 程序框图(1)
复习回顾
1.算法的概念:算法实际上是解决问题的一种程序
性方法,它通常解决某一个或一类问题,在用算法解决
问题时,显然体现了特殊与一般的数学思想. 2.算法的性质有:①有限性,②确定性,③有序性,
④不唯一性,⑤可行性.解答有关算法的概念判断题应
根据算法的这五大特点.
2、简单程序框图的画法:
人教版数学高一A版必修3 1.1算法与程序框图(第3课时)
课堂探究对条件结构的理解剖析:可以从以下几个方面来理解:(1)条件结构有一个入口和两个出口.(2)每执行一次条件结构,只能执行两个出口中的一个,不能同时执行两个出口.(3)根据是否满足条件来确定执行哪个出口,满足条件执行其中的一个出口,不满足条件执行另一个出口.(4)对于算法中含有分类讨论的步骤,在设计程序框图时,通常用条件结构来解决. 例如,给出如图所示的程序框图,若输入m =-2,则m >0不成立,此时执行ω=-2-1=-3,则输出-3.若输入m =3,则m >0成立,此时执行ω=3+1=4,则输出4.题型一 设计含有条件结构的程序框图【例题1】已知函数y =⎩⎪⎨⎪⎧1+x , x >0,-x -3,x ≤0,设计一个算法,输入自变量x 的值,输出对应的函数值.请写出算法步骤,并画出程序框图.分析:该函数是分段函数,当x 取不同范围内的值时,函数的表达式不同,因此当给出一个自变量x 的值时,必须先判断x 的范围,然后确定利用哪一段的解析式来求函数值.解:算法如下:第一步,输入自变量x 的值.第二步,判断x >0是否成立,若成立,计算y =1+x ;否则,执行下一步.第三步,计算y =-x -3.第四步,输出y .程序框图如图所示.反思 如果算法步骤中含有判断条件,那么设计程序框图时,通常用条件结构来实现.如本题中的函数是分段函数,当自变量取不同范围内的值时,函数的表达式不同,因此当给定一个自变量的值求分段函数的函数值时需要设计条件结构.题型二 易错辨析【例题2】设计一个算法,求过点A (x 1,y 1),B (x 2,y 2)的直线的斜率,写出算法,并画出程序框图.错解:算法如下:第一步,输入点A (x 1,y 1),B (x 2,y 2)的坐标.第二步,计算k =y 2-y 1x 2-x 1. 第三步,输出k .程序框图如图所示.错因分析:k =y 2-y 1x 2-x 1是分式,分母不能为0,因此需判断x 1与x 2是否相等,用条件结构才能解决.正解:算法分析: 第一步,输入点A (x 1,y 1),B (x 2,y 2)的坐标.第二步,若x 1≠x 2,计算并输出k =y 2-y 1x 2-x 1;否则,输出斜率不存在. 程序框图如图所示.。
山东省高中数学《1.1.2程序框图与算法的基本逻辑结构》第3课时教案 新人教A版必修3
第3课时循环结构导入新课思路1(情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.推进新课新知探究提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A 框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.算法分析:通常,我们按照下列过程计算1+2+……+100的值.第1步,0+1=1.第2步,1+2=3.第3步,3+3=6.第4步,6+4=10.……第100步,4 950+100=5 050.显然,这个过程中包含重复操作的步骤,可以用循环结构表示.分析上述计算过程,可以发现每一步都可以表示为第(i-1)步的结果+i=第i步的结果.为了方便、有效地表示上述过程,我们用一个累加变量S来表示第一步的计算结果,即把S+i的结果仍记为S,从而把第i步表示为S=S+i,其中S的初始值为0,i依次取1,2,…,100,由于i同时记录了循环的次数,所以也称为计数变量.解决这一问题的算法是:第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.程序框图如右:上述程序框图用的是当型循环结构,如果用直到型循环结构表示,则程序框图如下:点评:这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在程序框图中的作用,学会画程序框图.变式训练已知有一列数1,,43,32,21+n n ,设计框图实现求该列数前20项的和. 分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4,…,n ,因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器S ,用S=1++i iS ,可实现累加,注意i 只能加到20.解:程序框图如下:方法一: 方法二:点评:在数学计算中,i=i+1不成立,S=S+i 只有在i=0时才能成立.在计算机程序中,它们被赋予了其他的功能,不再是数学中的“相等”关系,而是赋值关系.变量i 用来作计数器,i=i+1的含义是:将变量i 的值加1,然后把计算结果再存贮到变量i 中,即计数器i 在原值的基础上又增加了1.变量S 作为累加器,来计算所求数据之和.如累加器的初值为0,当第一个数据送到变量i中时,累加的动作为S=S+i,即把S的值与变量i的值相加,结果再送到累加器S中,如此循环,则可实现数的累加求和.例2 某厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%,设计一个程序框图,输出预计年生产总值超过300万元的最早年份.算法分析:先写出解决本例的算法步骤:第一步,输入2005年的年生产总值.第二步,计算下一年的年生产总值.第三步,判断所得的结果是否大于300,若是,则输出该年的年份,算法结束;否则,返回第二步.由于“第二步”是重复操作的步骤,所以本例可以用循环结构来实现.我们按照“确定循环体”“初始化变量”“设定循环控制条件”的顺序来构造循环结构.(1)确定循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则循环体为t=0.05a,a=a+t,n=n+1.(2)初始化变量:若将2005年的年生产总值看成计算的起始点,则n的初始值为2005,a 的初始值为200.(3)设定循环控制条件:当“年生产总值超过300万元”时终止循环,所以可通过判断“a>300”是否成立来控制循环.程序框图如下:思路2例1 设计框图实现1+3+5+7+…+131的算法.分析:由于需加的数较多,所以要引入循环结构来实现累加.观察所加的数是一组有规律的数(每相临两数相差2),那么可考虑在循环过程中,设一个变量i,用i=i+2来实现这些有规律的数,设一个累加器sum,用来实现数的累加,在执行时,每循环一次,就产生一个需加的数,然后加到累加器sum中.解:算法如下:第一步,赋初值i=1,sum=0.第二步,sum=sum+i,i=i+2.第三步,如果i≤131,则反复执第二步;否则,执行下一步.第四步,输出sum.第五步,结束.程序框图如右图.点评:(1)设计流程图要分步进行,把一个大的流程图分割成几个小的部分,按照三个基本结构即顺序、条件、循环结构来局部安排,然后把流程图进行整合.(2)框图画完后,要进行验证,按设计的流程分析是否能实现所求的数的累加,分析条件是否加到131就结束循环,所以我们要注意初始值的设置、循环条件的确定以及循环体内语句的先后顺序,三者要有机地结合起来.最关键的是循环条件,它决定循环次数,可以想一想,为什么条件不是“i<131”或“i=131”,如果是“i<131”,那么会少执行一次循环,131就加不上了.例2 高中某班一共有40名学生,设计算法流程图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.分析:用循环结构实现40个成绩的输入,每循环一次就输入一个成绩s,然后对s的值进行判断.设两个计数器m,n,如果s>90,则m=m+1,如果80<s≤90,则n=n+1.设计数器i,用来控制40个成绩的输入,注意循环条件的确定.解:程序框图如下图:知能训练由相应的程序框图如右图,补充完整一个计算1+2+3+…+100的值的算法.(用循环结构)第一步,设i的值为_____________.第二步,设sum的值为_____________.第三步,如果i≤100执行第_____________步,否则,转去执行第_____________步.第四步,计算sum+i并将结果代替_____________.第五步,计算_____________并将结果代替i.第六步,转去执行第三步.第七步,输出sum的值并结束算法.分析:流程图各图框的内容(语言和符号)要与算法步骤相对应,在流程图中算法执行的顺序应按箭头方向进行.解:第一步,设i的值为1.第二步,设sum的值为0.第三步,如果i≤100,执行第四步,否则,转去执行第七步.第四步,计算sum+i并将结果代替sum.第五步,计算i+1并将结果代替i.第六步,转去执行第三步.第七步,输出sum的值并结束算法.拓展提升设计一个算法,求1+2+4+…+249的值,并画出程序框图.解:算法步骤:第一步,sum=0.第二步,i=0.第三步,sum=sum+2i.第四步,i=i+1.第五步,判断i是否大于49,若成立,则输出sum,结束.否则,返回第三步重新执行.程序框图如右图:点评:(1)如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用于循环结构.在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要求条件的表述要恰当、精确.(2)累加变量的初始值一般取0,而累乘变量的初始值一般取1.课堂小结(1)熟练掌握两种循环结构的特点及功能.(2)能用两种循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义.作业习题1.1A组2.设计感想本节的引入抓住了本节的特点,利用计算机进行循环往复运算,解决累加、累乘等问题.循环结构是逻辑结构中的难点,它一定包含一个条件结构,它能解决很多有趣的问题.本节选用了大量精彩的例题,对我们系统掌握程序框图有很大的帮助.。
必修三算法与程序框图优秀教案
算法与程序框图教学目的:明确算法的含义,熟识算法的三种根本构造。
教学重点:算法的根本学问与算法对应的程序框图的设计.教学难点:与算法对应的程序框图的设计及算法程序的编写.教学过程:1.算法的定义:广义的算法是指完成某项工作的方法和步骤,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必需是明确和有效的,而且可以在有限步之内完成.2.流程图的概念:流程图是用一些规定的图形、指向线及简洁的文字说明来表示算法几程序构造的一种图形程序.它直观、清晰,便于检查和修改.其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,带箭头的流程线(指向线)表示操作的先后次序.构成流程图的图形符号及其作用3.标准流程图的表示:①运用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要标准;③除推断框外,大多数框图符号只有一个进入点和一个退出点.④在图形符号内描绘的语言要特别简练、清晰.4、算法的三种根本逻辑构造:课本中例题的讲解得出三种根本逻辑构造:依次构造、条件构造、循环构造(1)依次构造:依次构造描绘的是是最简洁的算法构造,语句与语句之间,框与框之间是按从上到下的依次进展的。
例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
算法分析:这是一个简洁的问题,只需先算出p的值,再将它代入公式,最终输出结果,只用依次构造就可以表达出算法。
解:程序框图:点评:依次构造是由若干个依次执行的步骤组成的,是任何一个算法都离不开的根本构造。
(2)条件构造:依据条件选择执行不同指令的限制构造。
例2:随意给定3个正实数,设计一个算法,推断分别以这3个数为三边边长的三角形是否存在,画出这个算法的程序框图。
算法分析:推断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中随意两个数的和是否大于第3个数,这就需要用到条件构造。
高中数学必修3第一章第一节《算法与程序框图》全套教案
1.1.1算法基本逻辑结构——循环结构
【教学目标】
1.通过对具体实例的分析和解决,使学生体验算法的思想在生活中的应用,并
由此实例出发,使学生理解循环结构的概念,
2.通过分析两种循环结构的结构差异,准确区分两种循环结构,并能运用两种
循环结构框图解决具体数学问题,从中体会循环结构的三要素,即循环变量初始值,循环体和循环控制条件对循环结构起到的决定性作用
3.情感态度与价值观:通过本节的探究性学习,培养严谨的学习态度以及勇于
探索的学习精神。
【教学重点难点】
教学重点:理解循环结构的概念,并能准确区分两种循环结构,明确循环结构三要素.
教学难点:循环结构三要素的变化对循环过程及结果产生的影响.
【学前准备】:多媒体,预习例题
算法的概念
【教学目标】
(1)了解算法的含义,体会算法的思想;
(2)能够用自然语言叙述算法;
(3)掌握正确的算法应满足的要求;
(4)会写出解线性方程(组)的算法;
(5)会写出一个求有限整数序列中的最大值的算法;
(6)会应用Scilab求解方程组。
【教学重难点】
重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
【学前准备】:多媒体,预习例题电脑,计算器,图形计算器。
人教新课标版数学高一必修三教案 程序框图与算法的基本逻辑结构
1.1.2 程序框图与算法的基本逻辑结构(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8)总结如下表.图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分(9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例 1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:点评:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法. 变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯ 的值. 例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式)算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法. 算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S. 程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构. 变式训练下图所示的是一个算法的流程图,已知a 1=3,输出的b=7,求a 2的值.解:根据题意221a a +=7, ∵a 1=3,∴a 2=11.即a 2的值为11.例3 写出通过尺轨作图确定线段AB 的一个5等分点的程序框图.解:利用我们学过的顺序结构得程序框图如下:点评:这个算法步骤具有一般性,对于任意自然数n,都可以按照这个算法的思想,设计出确定线段的n等分点的步骤,解决问题,通过本题学习可以巩固顺序结构的应用.知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.解:用P表示钢琴的价格,不难看出如下算法步骤:2005年P=10 000×(1+3%)=10 300;2006年P=10 300×(1+3%)=10 609;2007年P=10 609×(1+3%)=10 927.27;2008年P=10 927.27×(1+3%)=11 255.09;因此,价格的变化情况表为:年份2004 2005 2006 2007 2008钢琴的10 000 10 300 10 609 10 927.27 11 255.09价格程序框图如下:点评:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如下给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10. 课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法. 作业习题1.1A 1.第2课时条件结构导入新课(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.推进新课新知探究提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想. (2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:点评:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.例2 设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图例3 设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图.解:算法步骤如下:第一步,输入3个系数:a,b,c.第二步,计算Δ=b2-4ac.第三步,判断Δ≥0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根”.结束算法.相应的程序框图如右:点评:根据一元二次方程的意义,需要计算判别式Δ=b2-4ac的值.再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构.例4 (1)设计算法,求ax+b=0的解,并画出流程图.解:对于方程ax+b=0来讲,应该分情况讨论方程的解.我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下:(1)当a≠0时,方程有唯一的实数解是ab -; (2)当a=0,b=0时,全体实数都是方程的解;(3)当a=0,b≠0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤:第一步,判断a≠0是否成立.若成立,输出结果“解为ab -”. 第二步,判断a=0,b=0是否同时成立.若成立,输出结果“解集为R ”. 第三步,判断a=0,b≠0是否同时成立.若成立,输出结果“方程无解”,结束算法.程序框图如下:点评:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作.知能训练设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图.解:算法步骤:第一步,输入a ,b ,c 的值.第二步,判断a>b 是否成立,若成立,则执行第三步;否则执行第四步. 第三步,判断a>c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束.第四步,判断b>c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束.程序框图如下:点评:条件结构嵌套与条件结构叠加的区别:(1)条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作.(2)条件结构的嵌套中,“条件2”是“条件1”的一个分支,“条件3”是“条件2”的一个分支……依此类推,这些条件中很多在算法执行过程中根据所处的分支位置不同可能不被执行.(3)条件结构嵌套所涉及的“条件2”“条件3”……是在前面的所有条件依次一个一个的满足“分支条件成立”的情况下才能执行的此操作,是多个条件同时成立的叠加和复合.例 5 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:f=⎩⎨⎧>⨯-+⨯≤).50(,85.0)50(53.050),50(,53.0ωωωω其中f(单位:元)为托运费,ω为托运物品的重量(单位:千克).试画出计算费用f的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f的计算公式随物品重量ω的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图:拓展提升有一城市,市区为半径为15 km的圆形区域,近郊区为距中心15—25 km的范围内的环形地带,距中心25 km以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x,y),求其与市中心的距离r=22yx+,确定是市区、近郊区,还是远郊区,进而确定地价p.由题意知,p=⎪⎩⎪⎨⎧>≤<≤<.25,20,2515,60,150,100rrr解:程序框图如下:课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题.作业习题1.1A组3.第3课时循环结构导入新课(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.推进新课新知探究提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.上述程序框图用的是当型循环结构,如果用直到型循环结构表示,则程序框图如下:点评:这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在程序框图中的作用,学会画程序框图.变式训练已知有一列数1,,43,32,21+n n ,设计框图实现求该列数前20项的和.分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4,…,n ,因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器S ,用S=1++i i S ,可实现累加,注意i 只能加到20.解:程序框图如下:方法一:方法二:点评:在数学计算中,i=i+1不成立,S=S+i只有在i=0时才能成立.在计算机程序中,它们被赋予了其他的功能,不再是数学中的“相等”关系,而是赋值关系.变量i用来作计数器,i=i+1的含义是:将变量i的值加1,然后把计算结果再存贮到变量i中,即计数器i在原值的基础上又增加了1.变量S作为累加器,来计算所求数据之和.如累加器的初值为0,当第一个数据送到变量i中时,累加的动作为S=S+i,即把S的值与变量i 的值相加,结果再送到累加器S中,如此循环,则可实现数的累加求和.例2 某厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%,设计一个程序框图,输出预计年生产总值超过300万元的最早年份.算法分析:先写出解决本例的算法步骤:第一步,输入2005年的年生产总值.第二步,计算下一年的年生产总值.第三步,判断所得的结果是否大于300,若是,则输出该年的年份,算法结束;否则,返回第二步.由于“第二步”是重复操作的步骤,所以本例可以用循环结构来实现.我们按照“确定循环体”“初始化变量”“设定循环控制条件”的顺序来构造循环结构.(1)确定循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则循环体为t=0.05a,a=a+t,n=n+1.(2)初始化变量:若将2005年的年生产总值看成计算的起始点,则n 的初始值为2005,a的初始值为200.(3)设定循环控制条件:当“年生产总值超过300万元”时终止循环,所以可通过判断“a>300”是否成立来控制循环.程序框图如下:知能训练由相应的程序框图如右图,补充完整一个计算1+2+3+…+100的值的算法.(用循环结构)第一步,设i的值为_____________.第二步,设sum的值为_____________.点评:(1)如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用于循环结构.在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要求条件的表述要恰当、精确.(2)累加变量的初始值一般取0,而累乘变量的初始值一般取1.课堂小结(1)熟练掌握两种循环结构的特点及功能.(2)能用两种循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义.作业习题1.1A组2.第4课时程序框图的画法导入新课(直接导入)前面我们学习了顺序结构、条件结构、循环结构,今天我们系统学习程序框图的画法.推进新课新知探究提出问题(1)请大家回忆顺序结构,并用程序框图表示.(2)请大家回忆条件结构,并用程序框图表示.(2)算法步骤中的“第四步”可以用条件结构来表示(如下图).在这个条件结构中,“否”分支用“a=m”表示含零点的区间为[m,b],并把这个区间仍记成[a,b];“是”分支用“b=m ”表示含零点的区间为[a,m],同样把这个区间仍记成[a,b].(3)算法步骤中的“第五步”包含一个条件结构,这个条件结构与“第三步”“第四步”构成一个循环结构,循环体由“第三步”和“第四步”组成,终止循环的条件是“|a-b|<d或f(m)=0”.在“第五步”中,还包含由循环结构与“输出m”组成的顺序结构(如下图).(4)将各步骤的程序框图连接起来,并画出“开始”与“结束”两个终端框,就得到了表示整个算法的程序框图(如下图).点评:在用自然语言表述一个算法后,可以画出程序框图,用顺序结构、条件结构和循环结构来表示这个算法,这样表示的算法清楚、简练,便于阅读和交流.例 2 相传古代的印度国王要奖赏国际象棋的发明者,问他需要什么.发明者说:陛下,在国际象棋的第一个格子里面放1粒麦子,在第二个格子里面放2粒麦子,第三个格子放4粒麦子,以后每个格子中的麦粒数都是它前一个格子中麦粒数的二倍,依此类推(国际象棋棋盘共有64个格子),请将这些麦子赏给我,我将感激不尽.国王想这还不容易,就让人扛了一袋小麦,但不到一会儿就没了,最后一算结果,全印度一年生产的粮食也不够.国王很奇怪,小小的“棋盘”,不足100个格子,如此计算怎么能放这么多麦子?试用程序框图表示此算法过程.解:将实际问题转化为数学模型,该问题就是要求1+2+4+……+263的和. 程序框图如下:点评:对于开放式探究问题,我们可以建立数学模型(上面的题目可以与等比数列的定义、性质和公式联系起来)和过程模型来分析算法,通过设计算法以及语言的描述选择一些成熟的办法进行处理.例3 乘坐火车时,可以托运货物.从甲地到乙地,规定每张火车客票托运费计算方法是:行李质量不超过50 kg 时按0.25元/kg ;超过50 kg而不超过100 kg 时,其超过部分按0.35元/kg ;超过100 kg 时,其超过部分按0.45元/kg .编写程序,输入行李质量,计算出托运的费用.分析:本题主要考查条件语句及其应用.先解决数学问题,列出托运的费用关于行李质量的函数关系式.设行李质量为x kg ,应付运费为y 元,则运费公式为:y=⎪⎩⎪⎨⎧>-+⨯+⨯≤<-+⨯≤<,100),100(45.05035.05025.0,10050),50(35.05025.0,500,25.0x x x x x x整理得y=⎪⎩⎪⎨⎧>-≤<-≤<.100,1545.0,10050,535.0,500,25.0x x x x x x要计算托运的费用必须对行李质量分类讨论,因此要用条件语句来实现.解:算法分析:第一步,输入行李质量x.第二步,当x≤50时,计算y=0.25x ,否则,执行下一步.第三步,当x≤100,计算y=0.35x -5,否则,计算y=0.45x -15.第四步,输出y .程序框图如下:知能训练5的算法,画出算法的程序设计一个用有理数数幂逼近无理指数幂2框图.解:算法步骤:第一步,给定精确度d,令i=1.第二步,取出2的到小数点后第i位的不足近似值,记为a;取出2的到小数点后第i位的过剩近似值,记为b.第三步,计算m=5b-5a.5的近似值为5a;否则,将i的值增加1,返回第四步,若m<d,则得到2第二步.5的近似值为5a.第五步,得到2程序框图如下:拓展提升求)410(4141414个共++++,画出程序框图.分析:如果采用逐步计算的方法,利用顺序结构来实现,则非常麻烦,由于前后的运算需重复多次相同的运算,所以应采用循环结构,可用循环结构来实现其中的规律.观察原式中的变化的部分及不变项,找出总体的规律是4+x1,要实现这个规律,需设初值x=4.解:程序框图如下:。
最新人教版高中数学必修三电子课本名师优秀教案
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。
人教A版高中数学必修三教案程序框图和算法的基本逻辑结构新课标
教学重点:三种基本逻辑结构在程序框图中的灵活选择。
教学难点:三种基本逻辑结构的区别与联系。
教学用具:投影仪
教学方法:启发式教学
教学过程:
一、复习回顾:
1.程序框图的概念;各基本图形的名称及用法是什么?
2.算法的三种基本逻辑结构是什么?
3.顺序结构的特点是什么?
二、讲授新课:
1.条件结构:
条件结构是指在算法中通过对条件的判断,根据条件是否成立而选择不同流向的算法结构。
它可以用程序框图表示为两种形式如图所示:
否否
是是
注意:
在以上结构中包含一个判断框,根据给定的条件是否成立而选择执行A框或B框。无论条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。
2.要注意的问题:流程线上要有标志执行顺序的前头;判断框后边的流程线应根据情况标注“是”或“否”;在循环结构中,要注意根据条件设计合理的计数变量、累加变量等.
例1.任意给定3个正实数,设计一个算法,判断以这3个正实数为三条边边长的三角形是否存在,并画出这个算法的程序框图。
例2.设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图表示。
2.பைடு நூலகம்环结构:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:
(学生分析算法→写出程序框图→给出两种循环结构的框图→对比两种循环结构)
高中数学人教A版必修三1.1.2《程序框图与算法基本逻辑结构-程序框图、顺序结构》教案设计
《程序框图、次序构造》教课方案一、课标剖析:按课标要求,经过模拟、操作、研究,经历经过设计程序框图表达解决问题的过程.在详细问题的解决过程中,理解程序框图的三种基本逻辑构造:次序结构、条件构造、循环构造.二、教材剖析:《程序框图、次序构造》是人教版高中数学必修 3 第一章《算法初步》第一节《算法与程序框图》的内容,本节设计为 4 课时,今日所授内容为第一课时.本节内容是在学生学习了算法的观点的基础长进行的,算法往常能够编成计算机程序,让计算机履行并解决问题.这对高中学习算法提出了要求,也决定了高中算法学习的范围 ,即不单掌握算法的观点,认识算法基本逻辑构造,还一定学习计算机能履行的算法程序,能用程序表达算法.三、学情剖析:从知识构造上来说,学生在本章第一节已经认识了一些算法的基本思想,这是本节课的重要知识基础;从能力上来说,这个阶段的学生已经拥有必定的剖析问题、解决问题的能力,逻辑思想能力也初步形成,思想比较活跃但缺少谨慎性.所以,在设计教课中不单要充足调换学生的学习踊跃性,更要注意培育学生谨慎的数学思想.四、教课目的:1.知识与技术目标:(1)认识程序框图的观点,掌握各样图形符号的功能.(2)认识次序构造的观点,能用程序框图表示次序构造.2.过程与方法目标:(1)经过学习程序框图的各个符号的功能,培育学生对图形符号语言和数学文字语言的转变能力.(2)学生经过设计程序框图表达解决问题的过程,在解决详细问题的过程中理解程序框图的构造.3.感情、态度与价值观目标:学生经过着手,用程序框图表示算法,进一步领会算法的基本思想,领会程序框图表达算法的正确与简短,培育学生的数学表达能力和逻辑思想能力.五、教课要点和难点 :要点:各样图形符号的功能以及用程序框图表示次序构造.难点:对次序构造的观点的理解,用程序框图表示次序构造.六、教课方法:合作研究、螺旋推动、激趣实验、多媒体课件教课.七、教课流程:教课环节情境导入学习目标显现研究自学教课程序设计设计企图1.多媒体显现临夏州永靖黄河三峡风光,引以自己周边导学生联系旅行时看到的景点线路图,经过景点线实实在在的景点路图能直观、快速、正确的知道景区有哪些景点,线路图引入,很好并依据景点线路图规划自己满意的旅行路线.本节地激发学生的学研究的内容跟景点线路图有异曲同工之效,即程序习兴趣,为本节课框图.供给了一个优秀2.教师板书课题.地初步.1.掌握程序框图的观点.经过认识学2.熟习各图形符号的功能、作用.(要点)习目标,让学生有3.能用程序框图表示次序构造的算法.(难点)的放矢,提升讲堂学习效率.活动: 1.自学课本 P5,思虑回答以下问题:学生自主学(1)为何要用图形的方法表示算法?习程序框图的概(2)什么是“程序框图”?念、图形符号,有(3)说出各图形符号的名称和功能?利于培育学生主图形符号名称功能动参加意识,并强化学生对基本概念、基础知识的掌握.在学生自学的基础上,师生共同概括总结.2.学生集体朗诵画程序框图的规则.例 1.一个完好的程序框图起码包含()A.终端框和输入、输出框B.终端框和办理框C.终端框和判断框D.终端框、办理框和输入、输出框分析:一个完好的程序框图起码需包含终端框和输入、输出框.关于办理框,因为输出框含有计习例解说算功能,所以可不用有.练习 1.以下说法正确的选项是 _______.( 填序号 )① 序框图中的图形符号能够由个人来确立;②也能够用来履行计算语句;③ 入框只好紧接在开端框以后;④ 序框图一般按从上到下、从左到右的方向画;⑤判断框是拥有高出一个退出点的独一符号.思虑:回首在 1.1.1 节中“判断整数 n (n>2) 是不是质数”的算法.算法步骤:第一步,给定大于 2 的整数 n;第二步,令 i =2;第三步,用 i 除 n 获得余数 r;第四步,判断“ r=0”能否建立.假如,则n 不是质数,算法结束;不然,将i 的值增添 1,仍用研究思虑i 表示;第五步,判断“ i>(n-1) ”能否建立.假如,则n 是质数,算法结束;不然,返回第三步.教师利用用幻灯片显现“判断整数 n (n>2)是不是质数” 的程序框图,并将同一个框图再次用分页的形式进行显现.使学生加深对程序框图观点的理解,并掌握画程序框图的规则.经过练习加深对所学知识的理解和应用.教师显现程序框图,让学生加深认识框图中的每个图形符号的名称和功能,并让学生领会用程序框图表示算法比用语言描绘算法要直观、正确、简短.经过对同一个程序框图的分页显现,增补了教材中没有连结点应用的事例,取消了学生的疑虑.用程序框图表示算法时,算法的逻辑构造显现得特别清楚,即顺序构造、条件构造和循环构造.并引出本节课的第三个内容:次序结构.次序构造是由若干个挨次履行的步骤构成的;这是任何一个算法都离不开的一种基本算法结构.例 2.已知一个三角形的三边长分别为 a, b, c , 学生在学习利用海伦 -秦九韶公式设计一个计算三角形面积的 了次序构造的基 算法,并画出程序框图表示.础,教师经过此例 分析:算法步骤:题演示将用自然 第一步,输入三角形三边长 a ,b ,c ;语言描绘的算法习例解说a b c第二步,计算p2;改写成程序框图第三步,计算 s p(p-a)(p-b)(p-c);的过程,让学生感 第四步,输出 S . 受简单程序框图 程序框图:画法,并经过练习进行模拟.练习 2.随意给定一个正实数,设计一个算法求以这个数为半径的圆面积,并画出程序框图表示.兴趣实验:有一杯饮料 A 和一杯清水 B,如实验的引入,何快速互换两杯中的液体呢?详细的操作步骤是为例 3 的解说作铺激趣研究如何的?垫;同时,也指引教师提早隐蔽了空杯 X ,教师让学生先行回学生用发散的思答,可能学生的回答不着边沿或许学生手足无措,维对待问题.而后教师取出空杯开始实验演示.例 3.已知两个变量 A 和 B 的值,试设计一经过兴趣实个互换这两个变量的值的算法,并画出程序框图.验,学生将抽象的学生活动 : 数学思想变得直让学生联合实验结论,四人为一小组,议论例观形象,使本节课3,先议论出来的小组派代表上黑板显现小构成就,达到热潮;也使学即详细的算法步骤和程序框图,教师进行评论.生在研究问题的算法步骤:过程中,亲自经历合作议论第一步,输入 A 、B;解决问题的全过第二步,令 X=A ;程,提升学生独立第三步,令 A=B ;剖析问题、解决问第四步,令 B=X ;题的能力.第五步,输出 A 、B.程序框图:练习 3.写出以下算法的功能:(1)图( 1)中算法的功能 (a>0,b>0)______;练习3的选用(2)图( 2)中算法的功能是 ____________.是为了培育学生的识图能力.让学生谈收获做总结 ,最后由教师做增补完美.一、程序框图及基本图形符号;二、三种逻辑构造及次序构造;归纳总结三、程序框图的画法.经过总结加深学生对程序框图温次序构造的理解,提升学生沟通议论,总结的能力.1.书面作业:(1)已知摄氏温度 C 与华氏温度 F 之间的关系为 F=1.8C+32.设计一个由摄氏温度求华氏温度的算法,并画出相应的程序框图.部署作业(2)已知变量 A、B、 C 的值,试设计一个算法程序框图,使得 A 为 B 的值, B 为 C的值, C为A的值.(3)课本 P20, B 组 1 题.作业题目的选用与讲堂例题联系密切,且分层作业使得不一样层次的学生获得不一样程度的提升和发展.2.配套练习:《40 分钟课时作业》 P91-92 页.八、板书设计:1.1.2 程序框图、次序构造一、程序框图及基本图形符号;例 2 例 3四框一线一点二、三种逻辑构造中的次序构造;练习 2 练习 3 三、程序框图的画法 .九、教课预料:本节课采纳的是情形导入式教课,从生活实质出发,展开对新知识的研究.这样的教课模式对学生的参加度要求较高,所以在教课方案中我要修业生在学习了程序框图观点、各样图形符号的名称和功能及三种逻辑构造后,联合上一节课用语言文字表示算法的基础上,自己着手画简单的次序构造的程序框图,激发了学生学习的踊跃性.经过兴趣实验,学生将抽象的数学思想变得直观形象,使本节课达到热潮.本节课学生在研究问题的过程中,亲自经历解决问题的全过程,提升学生独立剖析问题、解决问题的能力.设计整节课松手给学生,让他们沟通议论讲话,很好地调换了学生学习的主动性,激发了学习的踊跃性,这也充足表现了新课标“以学生为主体”的思想.。
高中数学 程序框图、顺序结构教案 新人教版必修3
高中数学程序框图、顺序结构教案新人教版必修3(教师用书独具)●三维目标1.知识与技能(1)了解程序框图的概念,掌握各种框图符号的功能.(2)了解顺序结构的概念,能用程序框图表示顺序结构.2.过程与方法(1)通过学习程序框图的各个符号的功能,培养学生对图形符号语言和数学文字语言的转化能力.(2)学生通过设计程序框图表达解决问题的过程,在具体问题的解决过程中理解流程图的结构.3.情感、态度与价值观学生通过动手用程序框图表示算法,进一步体会算法的基本思想,体会数学表达的准确与简洁,培养学生的数学表达能力和逻辑思维能力.●重点难点重点:各种程序框图功能,以及用程序框图表示顺序结构.难点:对顺序结构的概念的理解和用程序框图表示顺序结构.(教师用书独具)●教学建议学生首次接触程序框图,根据教学内容、教学目标和学生的认知水平,本节课主要采取问题导入式教学,即“创设情境,提出问题——讨论问题,提出方案——交流方案,解决问题——模拟练习,运用问题——归纳总结,完善认识”,通过对问题的探究过程让学生掌握新知识,同时在解决问题的过程中掌握新知识的应用和解题过程,提高学生独立解题的能力.在老师的引导下,充分发挥学生的主观能动性,从问题入手,通过分析问题、交流方案、解决问题、运用问题的探索过程,让学生全程参与到问题的探索中,一方面注重培养学生严谨的逻辑思维能力和语言组织能力,另一方面,通过交流方案提高学生的合作意识,共同来完成教学目标.●教学流程创设情境,提出问题,以问题为切入点开展教学,引发学生思考,调动学生学习的积极性⇒引导学生分析用自然语言描述的算法的优缺点.引入流程图的概念及特征⇒学生阅读教材中的基本框图及功能,结合算法思想主动设计一个简单的框图⇒通过例1的教学让学生进一步认识和理解基本框图的特征及作用 ⇒错误!⇒错误!⇒错误!⇒错误!(见学生用书第4页)课标解读 1.程序框图的作用及其含义.(重点) 2.用程序框图表示算法.(难点)程序框图【问题导思】程序框图的别称是什么?【提示】 程序框图又称为流程图.程序框图是一种用程序框、流程线及文字说明来表示算法的图形.常见的程序框、流程线及各自表示的功能图形符号 名称 功能终端框(起止框) 表示一个算法的起始和结束 输入、输出框 表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框 判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框 ○连接点连接程序框图的两部分顺序结构【问题导思】 已知球的半径为R .1.设计一个算法,求球的表面积和体积. 【提示】 第一步,输入球半径R .第二步,计算S =4πR 2.第三步,计算V =43πR 3.第四步,输出S ,V . 2.上述算法有何特点?【提示】 按照顺序从上到下进行. 3.画出该算法的程序框图. 【提示】1.定义:顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.2.程序框图表示为:(见学生用书第4页)程序框图的认识和理解下列关于程序框图的说法正确的是( )A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念【思路探究】根据程序框图概念,逐一验证每个选项是否正确.【自主解答】由于算法设计时要求返回执行的结果,故必须要有输出框,对于变量的赋值则可以通过处理框完成,故算法设计时不一定要用输入框,所以B项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象,容易理解,在步骤上表达简单了许多,所以C选项是错误的;程序框图就是流程图,所以D选项也是错误的.故而本题答案选A.【答案】 A1.程序框图主要由程序框和流程线组成,基本的程序框有终端框、输入、输出框、处理框、判断框,其中起止框是任何程序框图不可缺少的,而输入、输出框可以用在算法中任何需要输入、输出的位置.2.大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一程序框.下列关于程序框图中图形符号的理解正确的有( ) ①任何一个程序框图必须有起止框.②输入框只能在开始框后,输出框只能放在结束框前. ③长方形框是执行框,可用来对变量赋值,也可用来计算. ④对于一个程序框图来说,判断框内的条件是唯一的. A .1个 B .2个 C .3个 D .4个【解析】 任何一个算法必须有开始和结束,从而必须有起止框,故①正确,输入、输出框可以用在算法中任何需要输入、输出的位置,故②错误.③正确.④判断框内的条件不唯一,④错误.【答案】 B利用顺序结构表示算法 已知直线l :Ax +By +C =0(A 2+B 2≠0),点P (x 0,y 0),设计一个算法计算点P到直线l 的距离,并画出程序框图.【思路探究】 可以利用点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2,给公式中的字母赋值,再代入计算.【自主解答】 用自然语言描述算法如下: 第一步,输入点P 的横、纵坐标x 0、y 0, 输入直线方程的系数,即常数A 、B 、C . 第二步,计算z 1=Ax 0+By 0+C .第三步,计算z 2=A 2+B 2.第四步,计算d =|z 1|z 2.第五步,输出d . 程序框图:画程序框图的规则:1.使用标准的程序框图的图形符号.2.程序框图一般按照从上到下,从左到右的顺序画. 3.描述语言写在程序框内,语言清晰、简练. 4.各程序框之间用流程线连接.把直线l 改为圆C :(x -a )2+(y -b )2=r 2,写出求点P 0(x 0,y 0)到圆上的点的距离最大值的算法及程序框图.【解】 第一步,输入点P 0的横、纵坐标x 0、y 0,输入圆心C 的横、纵坐标a 、b ,圆的半径r;第二步,计算z1=x0-a2+y0-b2;第三步,计算d=z1+r;第四步,输出d.程序框图:顺序结构在实际中的应用一城市在法定工作时间内,每小时的工资为8元,加班工资为每小时10元,一人一周内工作60小时,其中加班20小时,税率是10%,写出这人一周内净得的工资的算法,并画出算法的程序框图.【思路探究】根据题意,分别写出法定工作时间内的工资、加班工资,然后计算一周内的工资总数,最后计算净得工资.【自主解答】算法步骤如下:第一步,计算法定工作时间内工资a(a=8×(60-20)=320(元)).第二步,计算加班工资b(b=10×20=200(元)).第三步,计算一周内工资总数c(c=a+b=320+200=520(元)).第四步,计算这个人净得的工资数d(d=c×(1-10%)=520×90%=468(元)).第五步,输出d.程序框图如图所示.应用顺序结构表示算法的步骤:1.仔细审题,理清题意,找到解决问题的方法;2.梳理解题步骤;3.用数学语言描述算法,明确输入量、计算过程、输出量;4.用程序框图表示算法过程.银行的三年期定期存款年利率4.25(每100元存款到期平均每年获利4.25元).请你设计一个程序,输入存款数,输出利息与本利和.【解】设存款为a元,据题意三年到期利息b为:a100×4.25×3=0.127 5a元到期本利和p为:a+0.127 5a=1.127 5元.程序框图为:(见学生用书第6页)混淆构成流程图的图形符号及作用已知x=4,y=2,画出计算w=3x+4y的值的流程图.【错解】流程图如图(1)所示:(1) (2)【错因分析】输出框为平行四边形,此题中错用矩形框了.【防范措施】 1.明确各种程序框的作用与功能.2.认真审题独立思考,加强识图能力的培养.【正解】如上图(2).本节主要内容为程序框图及顺序结构1.正确理解程序框图的图形符号及其作用:(1)起止框用“”表示,是任何流程不可少的,表明程序的开始和结束.(2)输入、输出框图用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内.(3)处理框图用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内,另外,对变量进行赋值时,也用到处理框.(4)当算法要求对两个不同的结果进行判断时,需要将实现判断的条件写在判断框内,判断框用“”表示.(5)一个算法步骤到另一个算法步骤用流程线连接,如果一个程序框图需要分开来画,要在断开处画上连接点,并标出连接的号码(如图所示).2.为了能够读懂画出的程序框图,在画程序框图时,常用规则如下:(1)使用标准的程序框图的图形符号.(2)程序框图一般按照从上到下、从左到右的顺序画.(3)一个完整的程序框图必须有终端框,用于表示一个算法的开始和结束.(4)大多程序框图的图形符号只有一个进入点和一个退出点,判断框是唯一具有超过一个退出点的框图符号.(5)一种判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另外一种是多分支判断,可能有几种不同的结果.(6)在程序框图的图形符号内,用于描述的语言要简练、清楚.(见学生用书第7页)1.算法的三种基本结构是( )A.顺序结构、流程结构、循环结构B.顺序结构、条件结构、循环结构C.顺序结构、条件结构、嵌套结构D.顺序结构、嵌套结构、流程结构【解析】由算法的特征及结构知B正确.【答案】 B2.程序框图中,具有赋值、计算功能的是( )A.处理框B.输入、输出框C.终端框 D.判断框【解析】在算法框图中处理框具有赋值和计算功能.【答案】 A3.(原创题)阅读程序框图如图1-1-1所示,若输入x=3,则输出y的值为________.图1-1-1【解析】 输入x =3,则a =2×32-1=17,b =a -15=17-15=2,y =a ×b =17×2=34,则输出y 的值为34.【答案】 344.利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积,设计出该问题的算法及程序框图.【解】 算法如下:第一步,输入a =2,b =4,h =5.第二步,计算S =12(a +b )h .第三步,输出S .该算法的程序框图如图所示:(见学生用书第81页)一、选择题1.下列算法中,只用顺序结构画不出程序框图的是( ) A .求两个数的积 B .求点到直线的距离 C .解一元二次方程D .已知梯形两底和高求面积【解析】 解一元二次方程需要对判别式作出判断,故不能用顺序结构画出,故选C.【答案】 C2.(2013·临沂高一检测)阅读下面的流程图,若输入的a ,b ,c 分别是35,52,63,则输出的a ,b ,c 分别是( )图1-1-2A .63,35,52B .35,52,63C .63,52,35D .35,63,52【解析】 x =35,a =63,c =52,b =35,选A. 【答案】 A3.画程序框图时,如果一个框图需要分开来画,要在断开处画上( ) A .流程线 B .注释框 C .判断框 D .连接点【解析】 框图要分开画时,要在断开处画上连接点,并在圈中标出连接的号码. 【答案】 D图1-1-34.(2013·日照高一期中)如图1-1-3所示的是一个算法的程序框图,已知a 1=3,输出的b =7,则a 2等于( )A .9B .10C .11D .12【解析】 由题意知该算法是计算a 1+a 22的值,∴3+a 22=7,得a 2=11.故选C.【答案】 C图1-1-45.阅读如图1-1-4的程序框图,若输出的结果为6,则①处执行框应填的是( )A .x =1B .x =2C .b =1D .b =2【解析】 若b =6,则a =7,∴x 3-1=7,∴x =2.【答案】 B二、填空题6.(2013·潍坊高一检测)执行如图1-1-5程序框图后的结果为________.图1-1-5【解析】 S =42+24=2.5. 【答案】 2.57.给出如下算法:第一步,若a >b ,则a 与b 的值互换.第二步,若a >c ,则a 与c 的值互换.第三步,若b >c ,则b 与c 的值互换.第四步,输出a ,b ,c .运行此算法的功能为________.【解析】 由算法的意义知该算法的结果为将a ,b ,c 按从小到大输出.【答案】 将a ,b ,c 从小到大输出8.如图1-1-6是求长方体的体积和表面积的一个程序框图,图中的程序框中应填________.图1-1-6【解析】 根据题意需计算长方体的表面积S =2(ab +bc +ac ).【答案】 S =2(ab +bc +ac )三、解答题9.写出求y =-x 2-2x +3的最大值的算法,画出程序框图.【解】 算法如下:第一步,输入a ,b ,c 的值-1,-2,3.第二步,计算max =4ac -b 24a. 第三步,输出max.程序框图:10.画出求函数y =2x +3图象上任一点到原点的距离的程序框图,写出算法.【解】 算法步骤如下: 第一步,输入横坐标的值x .第二步,计算y =2x +3.第三步,计算d =x 2+y 2.第四步,输出d .程序框图:11.已知一个直角三角形的两条直角边长为a ,b ,求该直角三角形内切圆的面积,试设计求解该问题的算法,并画出程序框图.【解】 算法步骤如下:第一步,输入a ,b .第二步,计算c =a 2+b 2.第三步,计算r =12(a +b -c ). 第四步,计算S =πr 2.第五步,输出面积S .程序框图为:(教师用书独具)已知点P (x ,y ),画出求点P 到直线x +y +2=0的距离的程序框图.【思路探究】 题中直线方程已知,求某点P 到它的距离.设计算法时应先输入点的坐标,再利用点到直线的距离公式求距离,要先写出自然语言的算法,再画程序框图.【自主解答】 用自然语言描述算法:第一步,输入点P 的横坐标x 和纵坐标y .第二步,计算S =|x +y +2|的值.第三步,计算d =S 2的值.第四步,输出d .程序框图:如图所示,该电路由一内阻为r 的电源E 、电阻R 、开关K 及导线组成,其中E =15 V ,r =1欧,R =4欧.当K 闭合时,求流过R 的电流I ,设计算法及流程图. 【解】 算法步骤如下:第一步,E =15,r =1,R =4;第二步,计算R =R +r ;第三步,计算I =E R;第四步,输出I .流程图如图所示.。
人教A版高中数学必修三算法与程序框图教案新
高一数学框图的复习人教实验版(A)一. 教学内容:框图的复习二. 学习目标通过具体实例,进一步认识框图;能绘制简单实际问题的流程图和结构图,体会框图在解决实际问题中的作用;三. 考点分析1、流程图:流程图常常用来表示一个动态过程,通常会有一个“起点”,一个或多个“终点”。
程序框图是流程图的一种。
流程图可以直观、明确地表示动态过程从开始到结束的全部步骤。
它是由图形符号和文字说明构成的图示。
流程图用于描述一个过程性的活动,活动的每一个明确的步骤构成流程图和一个基本单元,基本单元之间用流程线产生联系。
基本单元中的内容要根据需要而确定。
可以在基本单元中具体说明,也可以为基本单元设置若干子单元。
2、绘制流程图的一般过程首先,用自然语言描述流程步骤;其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达;再次,分析各步骤之间的关系;最后,画出流程图表示整个流程。
3、结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图。
4、绘制结构图步骤:(1)确定组成系统的基本要素,及它们之间的关系。
(2)将系统的主体要素及其之间的关系表示出来。
(3)确定主体要素的下位要素(从属主体的要素)“下位”要素比“上位”要素更为具体,“上位”要素比“下位”要素更为抽象。
(4)逐步细化各层要素,直到将整个系统表示出来为止。
5、结构图与流程图的区别流程图和结构图不同。
流程图是表示一系列活动相互作用、相互制约的顺序的框图。
结构图是表示一个系统中各部分之间的组成结构的框图。
流程图描述动态过程,结构图刻画系统结构。
流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由有向线连接;结构图则更多地表现为“树”状结构,其基本要素之间一般为逻辑关系。
【典型例题】例1、画出解关于x 的不等式,0<+b ax (R b a ∈,)的流程图。
解:例2、按照下面的流程图操作,将得到怎样的数集?开始写下1加3写下结果你已写下10个数了吗?结束对这个刚写下的数加上一个比前面加过的那个数大2的数NY 16+(7+2)=16+9=25,25+(9+2)=25+11=36 ,36+(11+2)=36+13=49,49+(13+2)=49+15=64,64+(15+2)=64+17=81,81+(17+2)=81+19=100.这样,可以得到数集{1,4,9,16,25,36,49,64,81,100}.例3、某保险公司业务流程如下:(1)保户投保:填单交费、公司承保、出具保单;(2)保户提赔:公司勘查;同意,则赔偿,不同意,则拒赔.试画出该公司业务流程图.解:例4、根据如图所示的程序框图写出所打印数列的前5项,并建立数列的递推公式,这个数列是等差数列吗?解:设打印出来的数列的项依次记为54321,,,,a a a a a则11=a431312=+=+=a a 734323=+=+=a a 1037334=+=+=a a 13310345=+=+=a a于是可得递推公式2,3,111≥∈+==-n N n a a a n n 且.因为31=--n n a a ,所以这个数列是等差数列.例5、某地行政服务中心办公分布结构如下.(1)服务中心管理委员会全面管理该中心工作,下设办公室、综合业务处、督察投诉中心,这三部门在一楼,其余局、委办理窗口分布在其他楼层;(2)二楼:公安局、民政局、财政局;(3)三楼:工商局、地税局、国税局、技监局、交通局; (4)四楼:城建局、人防办、计生办、规划局; (5)五楼:其余部门办理窗口. 试绘制该中心结构图. 解:【模拟试题】一、选择题(本大题共6小题,每小题5分,共30分)1. 下列流程图的基本符号中,表示判断的是()2. 下列的流程图示中表示选择结构的是()3. 下列对程序框图的描述,正确的是()A. 只有一个起点,一个终点B. 只有一个起点,一个或多个终点C. 多个起点,一个或多个终点D. 多个起点,只有一个终点4、下图是《集合》的知识结构图,如果要加入“子集”,则应该放在()A. “集合的概念”的下位B. “集合的表示”的下位C. “基本关系”的下位D. “基本运算”的下位5. 下面的程序框图的作用是按大小顺序输出两数,则括号处的处理可以是()输入A、B A<B?(________) 输出A、B 结束开始YNA. A←B:B←AB. T←B:B←A :A←TC. T←B:A←T :B←AD. A←B:T←A :B←T6. 某成品的组装工序图如右,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是()A. 11小时B. 13小时C. 15小时D. 17小时二、填空题(本题共4小题,每小题5分,共20分)7、一般来说,一个复杂的流程图都可以分解成_________、_________、__________三种结构;8、一般地,对于树状结构图,下位比上位________,上位比下位___________; 9、读下面的流程图,若输入的值为-5时,输出的结果是__________. 输入AA<0?A ←A+2A ←2×A输出A结束开始Y N10、如图是数学中的一算法流程图:YN开始 结束S ←2 i ←2 S ←S ·i i ←i+2 i<101输出S则其表示的数学算式为___________________________________.三、解答题(本大题共4题,共50分)11、试画出一个判断函数f (x )单调性的流程图。
人教版高中数学必修三(教案)1.1 算法与程序框图(3课时)
第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <g ,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序.算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解 →写出算法.③ 练习:举例更多的算法例子; → 对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③基本的程序框和它们各自表示的功能:程序框名称功能终端框表示一个算法的起始和结束(起止框)输入、输出框表示一个算法输入和输出的信息处理(执行)框赋值、计算判断框判断一个条件是否成立流程线连接程序框④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图.(学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题. 第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1. 说出下列程序框的名称和所实现功能.2. 算法有哪三种逻辑结构?并写出相应框图顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A 组1题.。
人教版高中数学必修3教案第一章算法初步1.1.2 程序框图(第二、三课时)
1.1.2 程序框图(第二、三课时)一、教学目标:1、知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。
2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3、情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
二、重点与难点:重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构,难点是能综合运用这些知识正确地画出程序框图。
三、学法与教学用具:1、通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题就得十分清晰和具体。
有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端。
2、我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。
例如“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面。
另外,在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。
3、教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
人教A版高中数学必修3第一章.2算法与程序框图课件_3
2.循环结构的框图表示
直
到
型
循环体
循
环 结
满足 否
条件?
是
构
直到型循环执行了一次循环体之后,对控 制循环条件进行判断,当条件不满足时执行循 环体,直到满足则终止循环.
人教A版高中数学必修3第一章.2算法 与程序 框图课 件_3
2.循环结构的框图表示
1.1.2程序框图与算法的基本逻辑结构
循环结构
温故知新
算法的基本逻辑结构
①顺序结构
是由若干个 依次执行的处理 步骤组成的. 这是任何一个算法都离不
开的基本结构.
示意图
步骤 n
步骤n+1
温故知新
②条件结构
条件结构就是算法中, 根据条件是否成立有不同的 流向的结构.
名称
形式一
形式二
结构形 式
特征
两个步骤A,B根据条 件,选择 一个 执 行
课堂实例例1 设计一算法,求和:1+2+3+…+100
第1步,0+1=1. 第2步,1+2=3. 第3步,3+3=6. 第4步,6+4=10.
…… 第100步,4950+100=5050.
我们发现这个算法中存在一些反复执行的步骤,于 是我们尝试用循环结构表示。如何用循环结构表示 出来呢?
人教A版高中数学必修3第一章.2算法 与程序 框图课 件_3
否 输出S
人教A版高中数学必修3第一章.2算法 与程序 框图课 件_3
结束
i=i+1
S=S+i 是
当型循环 结构
人教A版高中数学必修3第一章.2算法 与程序 框图课 件_3
高中数学人教版必修3算法与程序框图教学设计
第十章 统计、统计案例及算法初步
2.三种基本逻辑结构及相应语句
名称
示意图
顺序结构
相应语句 ①输入语句:INPUT “提示内容”;变量 ②输出语句:PRINT “提示内容”;表达
式③赋值语句: 变量=表达式 _________________
名称 条件结构
第十章 统计、统计案例及算法初步
示意图
相应语句
第十章 统计、统计案例及算法初步
考点一 顺序结构与条件结构 (2013·高考课标全国卷Ⅰ)执行如图所示的程序框图,如
果输入的 t∈[-1,3],则输出的 s 属于( A )
A.[-3,4] C.[-4,3]
B.[-5,2] D.[-2,5]
第十章 统计、统计案例及算法初步
[解析] 由程序框图得分段函数 s=34tt,-tt<2,1,t≥1.所以当- 1≤t<1 时,s=3t∈[-3,3);当 1≤t≤3 时,s=4t-t2=-(t -2)2+4,所以此时 3≤s≤4.综上函数的值域为[-3,4],即 输出的 s 属于[-3,4].
第十章 统计、统计案例及算法初步
(2)x=9 时,y=93+2=5,|y-x|=|5-9|=4<1 不成立;x=5,
y=53+2=131,|y-x|=131-5=43<1 不成立;x=131,y=191+ 2=299,|y-x|=299-131=49<1 成立,输出 y=299.
第十章 统计、统计案例及算法初步
(3)由 x2-4x+3≤0,解得 1≤x≤3. 当 x=1 时,满足 1≤x≤3,所以 x=1+1=2,n=0+1=1; 当 x=2 时,满足 1≤x≤3,所以 x=2+1=3,n=1+1=2; 当 x=3 时,满足 1≤x≤3,所以 x=3+1=4,n=2+1=3; 当 x=4 时,不满足 1≤x≤3,所以输出 n=3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 1.1.1 算法的概念
教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.
教学重点:解二元一次方程组等几个典型的的算法设计.
教学难点:算法的含义、把自然语言转化为算法语言.
教学过程:
一、复习准备:
1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)
2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:
A .确定区间[,]a b ,验证()()0f a f b <g ,给定精度ε;B. 求区间(,)a b 的中点1x ;
C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈);
D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.
二、讲授新课:
1. 教学算法的含义:
① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩
的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法
第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.
② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性.
举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.
③ 练习:写出解方程组()1111221222(1)
0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.
2. 教学几个典型的算法:
① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.
提问:什么叫质数?如何判断一个数是否质数? → 写出算法.
分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.
② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.
提问:二分法的思想及步骤?如何求方程近似解 →写出算法.
③ 练习:举例更多的算法例子; → 对比一般解决问题的过程,讨论算法的主
要特征.
3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.
三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值
2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.
3. 根据教材P6 的框图表示,使用程序框表示以上算法.
4. 作业:教材P4 1、2题.
第二课时 1.1.2 程序框图(一)
教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.
教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.
教学难点:综合运用框图知识正确地画出程序框图
教学过程:
一、复习准备:
1. 写出算法:给定一个正整数n,判定n是否偶数.
2. 用二分法设计一个求方程320
x-=的近似根的算法.
二、讲授新课:
1. 教学程序框图的认识:
①讨论:如何形象直观的表示算法?→图形方法.
教师给出一个流程图(上面1题),学生说说理解的算法步骤.
②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.
③
④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.
2. 教学算法的基本逻辑结构:
①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构
特征?
→教师指出:顺序结构、条件结构、循环结构.
②试用一般的框图表示三种逻辑结构. (见下图)
③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)
④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)
⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)
3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.
三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组
1、2题.
第三课时 1.1.2 程序框图(二)
教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.
教学重点:灵活、正确地画程序框图.
教学难点:运用程序框图解决实际问题.
教学过程:
一、复习准备:
1. 说出下列程序框的名称和所实现功能.
2.
顺序结构条件结构循环结构
程序
框图
结构说明按照语句的先后顺序,
从上而下依次执行这
些语句. 不具备控制
流程的作用. 是任何
一个算法都离不开的
基本结构
根据某种条件是否满
足来选择程序的走向.
当条件满足时,运行
“是”的分支,不满
足时,运行“否”的
分支.
从某处开始,按照
一定的条件,反复
执行某一处理步
骤的情况. 用来
处理一些反复进
行操作的问题
二、讲授新课:
1. 教学程序框图
①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.
(学生试写→共同订正→对比教材P7 例3、4 →试
验结果)
②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.
(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)
③循环语句的两种类型:当型和直到型.
当型循环语句先对条件判断,根据结果决定是否执行循环体;
直到型循环语句先执行一次循环体,再对一些条件进行判断,
决定是否继续执行循环体. 两种循环语句的语句结构及框图如
右.
“循环体”是由语句组成的程序段,能够完成一项工作. 注
说明:
意两种循环语句的区别及循环内部改变循环的条件.
④练习:用两种循环结构,写出求100所有正约数的算法程序框图.
2. 教学“鸡兔同笼”趣题:
①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?
②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)
③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).
④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.。