【真题】甘肃省兰州市2020年中考数学试卷含答案(Word版)
2020年甘肃兰州市中考数学试卷(word版及答案)
初中毕业生学业考试数学试卷注意事项:1.全卷共150分,考试时间120分钟.2.考生必须将姓名、准考证号、考场、座号等个人信息填(涂)写在答题卡的相应位置.3.考生务必将答案直接填(涂)写在答题卡的相应位置.一、选择题(本题15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程中是关于x 的一元二次方程的是 A. 2210x x+= B. 20ax bx c ++= C. (1)(2)1x x -+= D. 223250x xy y --=2.如图,某反比例函数的图像过(-2,1),则此反比例函数表达式为A. 2y x =B. 2y x =-C. 12y x =D. 12y x=- 3.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于A. 20°B. 30°C. 40°D. 50°4.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC B ''则tan B '的值为A. 12B. 13C. 14D. 4 5.抛物线221y x x =-+的顶点坐标是A. (1,0)B. (-1,0)C. (-2,1)D. (2,-1)6.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是7.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是A. m=3,n=5B. m=n=4C. m+n=4D. m+n=88.点M (-sin60°,con60°)关于x 轴对称的点的坐标是A. 12)B. (-12-)C. (-12)D. (12-, 9.如图所示的二次函数2y ax bx c =++的图像中,刘星同学观察得出了下面四条信息:(1)24b ac ->0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有A. 2个B. 3个C. 4个D. 1个10.用配方法解方程250x x --=时,原方程应变形为A. 2(1)6x +=B. 2(2)9x +=C. 2(1)6x -= D. 2(2)9x -= 11.某校中考学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为A. (1)2070x x -=B. (1)2070x x +=C. 2(1)2070x x +=D. (1)20702x x -= 12.如图,⊙O 过点B 、C ,圆心O 在等腰R t △ABC 的内部,∠BAC=90°,OA=1,BC=6.则⊙O 的半径为A. 6B. 13C.D.13.现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形.其中真命题的个数是A. 1B. 2C. 3D. 414.如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是15.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行与坐标轴,点C 在反比例函数221k k y x++=的图像上.若点A 的坐标为(-2,-2),则k 的值为 A. 1 B. -3 C. 4 D. 1或-3二、填空题(本题5小题,每小题4分,共20分)16.如图,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度.17.某水库大坝的横截面是梯形,坝内斜坡的坡度i=1i=1:1,则两个坡角的和为 .18.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是 m.(结果用π表示)19.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,a ≠0).则方程2(2)0a x m b +++=的解是 .20.如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n 个矩形的面积为 .三、解答题(本题8小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤.)21. (2011甘肃兰州,21,7分)已知a 是锐角,且sin (a+15°)=2.-4cos α-0( 3.14)π-+tan α+11()3-的值. 22.(本小题满分7分)如图,有A 、B 两个转盘,其中转盘A 被分成4等份,转盘B 被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A 转盘指针指向的数字记为x ,B 转盘指针指向的数字记为y ,从而确定点P 的坐标为P (x ,y ).记s=x+y.(1)请用列表或画树状图的方法写出所有可能得到的点P 的坐标;(2)李刚为甲、乙两人设计了一个游戏:当s <6时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?23.(本小题满分7分)今年起,兰州市将体育考试正式纳入中考考查科目之一,其等级作为考生录取的重要依据之一.某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;(3)2011年兰州市区初二学生约为2.4万人,按此调查,可以估计2011年兰州市区初二学生中每天锻炼未超过1小时的学生约有多少万人?(4)请根据以上结论谈谈你的看法.24.(本小题满分7分)如图,一次函数3y kx =+的图像与反比例函数m y x=(x >0)的图像交与点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B.一次函数的图像分别交x 轴、y 轴于点C 、点D ,且DBP S ∆=27,OC CA =12. (1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图像写出当x 取何值时,一次函数的值小于反比例函数的值?25. (本小题满分9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A 、B 、C.(1)请完成如下操作:①以点O 为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D 的位置(不用写作法,保留作图痕迹),并连结AD 、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ;②⊙D 的半径= (结果保留根号);③若扇形ADC 是一个圆锥的侧面展开图,则该圆锥的地面面积为 (结果保留π); ④若E (7,0),试判断直线EC 与⊙D 的位置关系并说明你的理由.26. (本小题满分9分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad ),如图①,在△ABC 中,AB=AC ,顶角A 的正对记作sadA ,这时sadA=底边/腰=BC AB.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°= .(2)对于0°<A <180°,∠A 的正对值sadA 的取值范围是 .(3)如图②,已知sinA=35,其中∠A 为锐角,试求sadA 的值.27. (本小题满分12分)已知:如图所示的一张矩形纸片ABCD(AD >AB),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,分别连结AF 和CE.(1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为242cm ,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得22AE AC AP =⋅若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.28. (本小题满分12分)如图所示,在平面直角坐标系X0Y 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线2y ax bx c =++经过点A 、B 和D (4,23-). (1)求抛物线的表达式.(2)如果点P 由点A 出发沿AB 边以2cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动,设S=2PQ (2cm ).①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;②当S 取54时,在抛物线上是否存在点R ,使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标.一、选择题(本题15小题,每小题4分,共60分)二、填空题(本题5小题,每小题4分,共20分)16.63 17.75° 18. 19. x1= -4,x2= -1 20.三、解答题(本题8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.)21.(本题满分7分)解:∵sin60°=∴α+15°=60°∴α=45° (2)分∴-4cosα—(-3.14)0+tanα+=2—4×—1+1+3=3………7分每算对一个给1分,最后结果得1分22.(本题满分7分)解:(1)列表:…… 4分(2)∵P (甲获胜)= ……………………………………………………5分P (乙获胜)= ……………………………………………6分 ∴这个游戏不公平,对乙有利。
甘肃省兰州市2020年中考数学试题(Word版,含答案与解析)
甘肃省兰州市2020年中考数学试卷一、选择题(共12题;共24分)1.-2020的绝对值是()A. -2020B. 2020C. −12020D. 12020【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:根据绝对值的概念可知:|−2020|=2020,故答案为:B.【分析】根据绝对值的定义直接解答.2.如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( ).A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故答案为:A.【分析】根据从正面看得到的视图是主视图,可得答案.3.据中国电子商务研究中心()发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A. 1159.56×108元B. 11.5956×1010元C. 1.15956×1011元D. 1.15956×108元【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故答案为:C【分析】根据科学记数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1。
注意:1亿=108。
4.下列二次根式中,是最简二次根式的是()A. √18B. √13C. √27D. √12【答案】B【考点】最简二次根式【解析】【解答】解:A、√18=3√2不是最简二次根式,不符合题意;B、√13是最简二次根式,符合题意;C、√27=3√3不是最简二次根式,不符合题意;D、√12=2√3不是最简二次根式,不符合题意,故答案为:B【分析】满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式。
2024年甘肃省兰州市安宁区西北师大二附中中考数学四模试卷+答案解析
2024年甘肃省兰州市安宁区西北师大二附中中考数学四模试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的相反数是()A.2B.C.D.2.把多项式分解因式得()A.B.C.D.3.用配方法解方程时,配方后正确的是()A.B.C.D.4.如图,直线,,,则的度数是()A. B. C. D.5.如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形与矩形OABC 关于点O 位似,且矩形的面积等于矩形OABC 面积的,那么点的坐标是()A. B.C.或D.或6.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF ,若对角线AD 的长约为8mm ,则正六边形ABCDEF 的边长为()A.2mmB.C.D.4mm7.如图,一条公路公路的宽度忽略不计的转弯处是一段圆弧,点O是这段弧所在圆的圆心,半径,圆心角,则这段弯路的长度为()A.B.C.D.8.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.9.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A. B. C. D.10.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB与地面CD所成夹角时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF与地面的夹角()A. B. C. D.11.如图,在中,,,,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为()A.B.3C.D.12.如图,等边、等边的边长分别为3和开始时点A与点D重合,DE在AB上,DF在AC上,沿AB向右平移,当点D到达点B时停止.在此过程中,设、重合部分的面积为y,移动的距离为x,则y与x的函数图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题3分,共12分。
2020年甘肃省兰州市中考数学试卷及答案
2020年甘肃省兰州市中考数学试卷及答案一、选择题(本大题共12小题,每小题4分,共48分,在每小原给出的四个选项中,只有一项是符合题目要求的)1.(4分)的绝对值是()A.B.C.2D.﹣22.(4分)如图,该几何体是由5个形状大小相同的正方体组成,它的俯视图是()A.B.C.D.3.(4分)智能手机已遍及生活中的各个角落,移动产业链条正处于由4G到5G的转折阶段.据中国移动2020年3月公布的数据显示,中国移动5G用户数量约31720000户.将31720000用科学记数法表示为()A.0.3172×108B.3.172×108C.3.172×107D.3.172×109 4.(4分)如图,AB∥CD,AE∥CF,∠A=50°,则∠C=()A.40°B.50°C.60°D.70°5.(4分)化简:a(a﹣2)+4a=()A.a2+2a B.a2+6a C.a2﹣6a D.a2+4a﹣26.(4分)如图,AB是⊙O的直径,若∠BAC=20°,则∠ADC=()A.40°B.60°C.70°D.80°7.(4分)一元二次方程x(x﹣2)=x﹣2的解是()A.x1=x2=0B.x1=x2=1C.x1=0,x2=2D.x1=1,x2=2 8.(4分)若点A(﹣4,m﹣3),B(2n,1)关于x轴对称,则()A.m=2,n=0B.m=2,n=﹣2C.m=4,n=2D.m=4,n=﹣2 9.(4分)中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为()A.B.C.D.10.(4分)如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC =100°,则∠D=()A.40°B.50°C.60°D.80°11.(4分)已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上,若y1<y2<0,则下列结论正确的是()A.x1<x2<0B.x2<x1<0C.0<x1<x2D.0<x2<x1 12.(4分)如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点B,D为圆心,以大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,若AB=3,AC=4,则CD=()A.B.C.D.二、填空题(本大题共4小题,每小题4分,共16分)13.(4分)因式分解:m3﹣6m2+9m=.14.(4分)点A(﹣4,3),B(0,k)在二次函数y=﹣(x+2)2+h的图象上,则k=.15.(4分)如图,四边形ABCD与四边形A′B′C′D′位似,位似中心为点O,OC=6,CC′=4,AB=3,则A′B′=.16.(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,AB=2,点E在AB 的延长线上,且AE=AC,EF⊥AC于点F,连接BF并延长交CD于点G,则DG=.三、解答题(本大题共12小题,共86分解答时应写出必要的文字说明、证明过程或演算步骤)17.(5分)计算:×﹣(+1)2.18.(5分)解不等式组:.19.(5分)先化简,再求值:(﹣)÷,其中a=﹣.20.(6分)如图,在△ABC中,AB=AC,点D,E分别是AC和AB的中点.求证:BD=CE.21.(6分)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.22.(7分)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0,x>0)的图象相交于A(1,5),B(m,1)两点,与x轴,y轴分别交于点C,D,连接OA,OB.(1)求反比例函数y=(k≠0,x>0)和一次函数y=ax+b(a≠0)的表达式;(2)求△AOB的面积.23.(7分)如图,在Rt△AOB中,∠AOB=90°,OA=OB,点C是AB的中点,以OC 为半径作⊙O.(1)求证:AB是⊙O的切线;的长.(2)若OC=2,求OA24.(7分)为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;信息二:近一周家务劳动时间分布表时间/小时t≤11<t≤22<t≤33<t≤4t>4人数/人581273信息四:劳动能力量化成绩与近一周家务劳动总时间统计表678910成绩/分人数时间/小时t≤1410001<t≤2061102<t≤3009303<t≤401132t>400012根据以上信息,解决下列问题:(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为分;(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t≤3的时间段:.(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?25.(7分)为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.名称红外线体温检测仪安装示意图技术参数探测最大角:∠OBC=73.14°探测最小角:∠OAC=30.97°安装要求本设备需安装在垂直于水平地面AC的支架CP上根据以上内容,解决问题:学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.(结果精确到0.1m,参考数据:sin73.14°≈0.957,cos73.14°≈0.290,tan73.14°≈3.300,sin30.97°≈0.515,cos30.97°≈0.857,tan30.97°≈0.600)26.(9分)如图1,在△ABC中,AB=6cm,AC=5cm,∠CAB=60°,点D为AB的中点,线段AC上有一动点E,连接DE,作DA关于直线DE的对称图形,得到DF,过点F作FC⊥AB于点G.设A、E两点间的距离为xcm,F,G两点间的距离为ycm.小军根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.下面是小军的探究过程,请补充完整.(1)列表:如表的已知数据是根据A,E两点间的距离x进行取点、画图、测量,分别得到了x与y的几组对应值:x/cm00.51 1.03 1.41 1.50 1.75 2.20 2.68 3.00 3.61 4.10 4.74 5.00 y/cm00.94 1.91 2.49 2.84 3.00 2.84 2.60 2.00 1.500.900.68请你通过计算补全表格;(2)描点、连线:在平面直角坐标系xOy中(如图2),描出表中各组数值所对应的点(x,y),并画出y关于x的图象;(3)探究性质:随着x值的不断增大,y的值是怎样变化的?;(4)解决问题:当AE+FG=2时,FG的长度大约是cm(保留两位小数).27.(10分)如图,在▱ABCD中,DE⊥AC于点O,交BC于点E,EG=EC,GF∥AD交DE于点F,连接FC,点H为线段AO上一点,连接HD,HF.(1)判断四边形GECF的形状,并说明理由;(2)当∠DHF=∠HAD时,求证:AH•CH=EC•AD.28.(12分)如图,二次函数y=x2+bx+c的图象过点A(4,﹣4),B(﹣2,m),交y轴于点C(0,﹣4).直线BO与抛物线相交于另一点D,连接AB,AD,点E是线段AB 上的一动点,过点E作EF∥BD交AD于点F.(1)求二次函数y=x2+bx+c的表达式;(2)判断△ABD的形状,并说明理由;(3)在点E的运动过程中,直线BD上存在一点G,使得四边形AFGE为矩形,请判断此时AG与BD的数量关系,并求出点E的坐标;(4)点H是抛物物的顶点,在(3)的条件下,点P是平面内使得∠EPF=90°的点,在抛物线的对称轴上,是否存在点Q,使得△HPQ是以∠PQH为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.数学试题参考答案1-10ADCBA CDBAB11-12CD13.m(m﹣3)2。
(word完整版)九年级数学总复习试卷及参考答案
九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。
兰州市2020年部编人教版中考数学(A)试题及答案精析(word版)
兰州市2020 年中考试题数学(A)注意事项:1.本试卷满分150 分,考试用时120 分钟。
2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)在答题卡上。
3.考生务必将答案直接填(涂)写在答题卡的相应位置上。
一、选择题:本大题共15 小题,每小题4 分,共60 分,在每小题给出的四个选项中仅有一项是符合题意的。
1.如图是由5 个大小相同的正方体组成的几何体,则该几何体的主视图是()。
(A)(B)(C)(D)【答案】A【解析】主视图是从正面看到的图形。
从正面看有两行,上面一行最左边有一个正方形,下面一行有三个正方形,所以答案选A。
【考点】简单组合体的三视图2.反比例函数的图像在()。
(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限【答案】B【解析】反比例函数的图象受到k的影响,当k 大于0 时,图象位于第一、三象限,当k 小于0 时,图象位于第二、四象限,本题中k =2 大于0,图象位于第一、三象限,所以答案选B。
【考点】反比例函数的系数k 与图象的关系3.已知△ABC ∽△DEF,若△ABC与△DEF的相似比为3/4,则△ABC与△DEF对应中线的比为()。
(A)3/4(B)4/3(C)9/16(D)16/9【答案】A【解析】根据相似三角形的性质,相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比,本题中相似三角形的相似比为3/4,即对应中线的比为3/4,所以答案选A。
【考点】相似三角形的性质4.在Rt △ABC中,∠C=90°,sinA=3/5,BC=6,则AB=()。
(A)4 (B)6 (C)8 (D)10【答案】D【解析】在Rt △ABC中,sinA=BC/AB=6/AB=3/5,解得AB=10,所以答案选D。
【考点】三角函数的运用5.一元二次方程的根的情况()。
(A)有一个实数根(B)有两个相等的实数根(C)有两个不相等的实数根(D)没有实数根【答案】B【解析】根据题目,∆==0, 判断得方程有两个相等的实数根,所以答案选B。
2020年甘肃省兰州市中考数学试卷附详细答案解析
2020年甘肃省兰州市中考数学试卷一、选择题(共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一项是符合要求的。
)1.(4分)已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=2.(4分)如图所示,该几何体的左视图是()A.B.C.D.3.(4分)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于()A.B.C.D.4.(4分)如图,在⊙O中,=,点D在⊙O上,∠CDB=25°,则∠AOB=()A.45°B.50°C.55°D.60°5.(4分)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y 的对应值:x 1 1.1 1.2 1.3 1.4y ﹣1 ﹣0.49 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.36.(4分)如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=7.(4分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.308.(4分)如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5 B.4 C.3.5 D.39.(4分)抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2C.y=3(x+3)2﹣3 D.y=3x2﹣6 10.(4分)王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方形工具箱,根据题意列方程为()A.(80﹣x)(70﹣x)=3000 B.80×70﹣4x2=3000C.(80﹣2x)(70﹣2x)=3000 D.80×70﹣4x2﹣(70+80)x=3000 11.(4分)如图,反比例函数y=(x<0)与一次函数y=x+4的图象交于A、B两点的横坐标分别为﹣3,﹣1.则关于x的不等式<x+4(x<0)的解集为()A.x<﹣3 B.﹣3<x<﹣1 C.﹣1<x<0 D.x<﹣3或﹣1<x <012.(4分)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1 B.π+2 C.π﹣1 D.π﹣213.(4分)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.5米,A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=15米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=3米,小明身高1.6米,则凉亭的高度AB约为()A.8.5米B.9米C.9.5米D.10米14.(4分)如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A.B.C.D.15.(4分)如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F 点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.B.5 C.6 D.二、填空题(共5小题,每小题4分,满分20分)16.(4分)若反比例函数的图象经过点(﹣1,2),则k的值是.17.(4分)如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则= .18.(4分)如图,若抛物线y=ax2+bx+c上的 P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为.19.(4分)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.20.(4分)如图,在平面直角坐标系xOy中,▱ABCO的顶点A,B 的坐标分别是A(3,0),B(0,2).动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与▱ABCO的边相切时,P点的坐标为.三、解答题(共8小题,满分70分.解答时,写出必要的文字说明、证明过程或演算步骤。
2020年中考数学试卷(word版,含答案)
2020年初中学业水平考试数学答题注意事项1、本试卷共6页,满分150分,考试试卷150分钟。
2、答案全部写在答题卡上,写在本试卷上无效。
3、答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其它答案,答非选择题必须用0.5毫米黑色墨水签字笔,在答题卡上对应题号的答题区域书写答案,注意不要答错位置,也不要超界。
4、作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2019的相反数是11A. B.-2019 C.- D.-2019201920192.下列运算正确的是A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b63.一组数据:2、4、4、3、7、7,则这组数据的中位数是A.3B. 3.5C.4D.74.一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等A.105°B.100°C.75°D.60°5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是A.20πB.15πC.12πD.9π6.不等式x一1≤2的非负整数解有A.1个B.2个C.3个D.4个7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是A.63—πB.63-2πC.63+πD.3+2π( 计算:( )-1 -(π-1)0 + 1 - 3 )÷8. 如图在平面直角坐标系 xoy 中,菱形 ABCD 的顶点 A 与原点 o 重合,顶点 B 落在 x 轴的k正半轴上,对角线 AC 、BD 交于点 M ,点 D 、M 恰好都在反比例函数 y= (x>0)的图像上xAC,则 的值为BDA.2B. 3C. 2D. 5二、填空题, 本大题共 10 小题,每小题 3 分,共 30 分,不需写出解答过程,请把答案直 接填写在答题卡相应位置上)9. 实数 4 的算术平方根为▲ 10. 分解因式 a 2-2a=▲ 11. 宿迁近年来经济快速发展,2018 年 GDP 约达到 275 000 000 000 元。
2024年甘肃省兰州市七里河区学府致远学校中考数学三模试卷+答案解析
2024年甘肃省兰州市七里河区学府致远学校中考数学三模试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.我们生活在一个充满对称的世界中,生活中的轴对称图形随处可见.下面几幅图片是校园中运动场上代表体育项目的图标,其中可以看作是轴对称图形的是()A.乒乓球B.跳远C.举重D.武术2.北斗卫星导航系统是中国自行研制的全球卫星导航系统,未来全球定位精度将优于10米,测速精度将优于米/秒,授时精度将优于秒,将数字用科学记数法表示为()A. B. C. D.3.如图,将直尺与角的三角尺叠放在一起,若,则的大小是()A.B.C.D.4.因式分解的结果是()A. B. C. D.5.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定6.有理数a,b,c,d在数轴上对应的点的位置如图所示,则正确的结论()A. B. C. D.7.如图,是以边长为2的等边三角形,则点A 关于x 轴的对称点的坐标为() A. B.C.D.8.弹簧挂上物体后会伸长,测得一弹簧的长度与所挂重物的质量有下面的关系,那么弹簧总长与所挂重物之间的关系式为()012345612131415A. B. C. D.9.某校七年级有840名学生参加了一次数学学习质量测试,现从中随机抽取了40名学生的成绩得到如下统计图,则估计该校七年级840名学生在这次测试中得分不低于80分的人数为()A.210B.168C.84D.1010.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三:人出七,不足四.问人数,物价各几何?意思是:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?设共有x 人,物品的价格为y 元,可列方程组为()A. B.C. D.11.在中,,,把绕点A 顺时针旋转后,得到,如图所示,则点B所走过的路径长为()A.B.C.D.12.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以的速度分别沿和的路径向点B、C运动,设运动时间为单位:,四边形PBCQ的面积为单位:,则y与之间的函数关系可用图象表示为()A.B.C.D.二、填空题:本题共4小题,每小题3分,共12分。
2020年甘肃省白银市中考数学试卷及答案
2020年甘肃省白银市中考数学试卷及答案一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√112.(3分)(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20°3.(3分)(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .44.(3分)(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .5.(3分)(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 26.(3分)(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(3分)(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m的值为( )A .﹣1或2B .﹣1C .2D .08.(3分)(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB 的度数是()A.90°B.100°C.120°D.150°9.(3分)(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙Ô,则DC的长为()上且平分BCA.2√2B.√5C.2√5D.√1010.(3分)(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作元.12.(3分)(2020•金昌)分解因式:a 2+a = .13.(3分)(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价: 元暑假八折优惠,现价:160元14.(3分)(2020•金昌)要使分式x+2x−1有意义,x 需满足的条件是 .15.(3分)(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 个.16.(3分)(2020•金昌)如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为 .17.(3分)(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为 cm (结果保留π).18.(3分)(2020•金昌)已知y =√(x −4)2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 .三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.21.(6分)(2020•金昌)如图,在△ABC 中,D 是BC 边上一点,且BD =BA .(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了天;(2)这七年的全年空气质量优良天数的中位数是天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.2020年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√11【解答】解:√9=3,则由无理数的定义可知,实数是无理数的是√11.故选:D .2.(3分)(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20°【解答】解:α的补角是:180°﹣∠A =180°﹣70°=110°.故选:B .3.(3分)(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .4【解答】解:∵正方形的面积是12,∴它的边长是√12=2√3.故选:A .4.(3分)(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A 不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B 不符合题意;正方体的主视图、俯视图都是正方形,因此选项C 符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D 不符合题意;故选:C .5.(3分)(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 2【解答】解:x 2与x 4不是同类项,不能合并计算,它是一个多项式,因此A 选项不符合题意;同理选项B 不符合题意;x 2•x 4=x 2+4=x 6,因此选项C 符合题意;x 12÷x 2=x 12﹣2=x 10,因此选项D 不符合题意; 故选:C .6.(3分)(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米【解答】解:∵雕像的腰部以下a 与全身b 的高度比值接近0.618,∴a b ≈0.618, ∵b 为2米,∴a 约为1.24米.故选:A .7.(3分)(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m的值为( )A .﹣1或2B .﹣1C .2D .0【解答】解:把x =1代入(m ﹣2)x 2+4x ﹣m 2=0得:m ﹣2+4﹣m 2=0,﹣m 2+m +2=0,解得:m 1=2,m 2=﹣1,∵(m ﹣2)x 2+4x ﹣m 2=0是一元二次方程,∴m﹣2≠0,∴m≠2,∴m=﹣1,故选:B.8.(3分)(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB 的度数是()A.90°B.100°C.120°D.150°【解答】解:连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACB是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.9.(3分)(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙Ô,则DC的长为()上且平分BCA.2√2B.√5C.2√5D.√10̂,【解答】解:∵点D在⊙O上且平分BĈ=CD̂,∴BD∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC=√22+42=2√5,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=√10,故选:D.10.(3分)(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2【解答】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作﹣50元.【解答】解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.(3分)(2020•金昌)分解因式:a2+a=a(a+1).【解答】解:a2+a=a(a+1).故答案为:a(a+1).13.(3分)(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元【解答】解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.14.(3分)(2020•金昌)要使分式x+2x−1有意义,x 需满足的条件是 x ≠1 .【解答】解:当x ﹣1≠0时,分式有意义, ∴x ≠1, 故答案为x ≠1.15.(3分)(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 17 个.【解答】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球, ∵假设有x 个红球, ∴x x+3=0.85,解得:x =17,经检验x =17是分式方程的解, ∴口袋中红球约有17个. 故答案为:17.16.(3分)(2020•金昌)如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为 (7,0) .【解答】解:∵A (3,√3),D (6,√3), ∴点A 向右平移3个单位得到D , ∵B (4,0),∴点B 向右平移3个单位得到E (7,0), 故答案为(7,0).17.(3分)(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为π3cm (结果保留π).【解答】解:设扇形的半径为R ,弧长为l , 根据扇形面积公式得;60π⋅R 2360=π6,解得:R =1,∵扇形的面积=12lR =π6, 解得:l =13π. 故答案为:π3.18.(3分)(2020•金昌)已知y =2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 2032 . 【解答】解:当x <4时, 原式=4﹣x ﹣x +5=﹣2x +9, 当x =1时,原式=7; 当x =2时,原式=5; 当x =3时,原式=3;当x ≥4时,原式=x ﹣4﹣x +5=1,∴当x 分别取1,2,3,…,2020时,所对应y 值的总和是: 7+5+3+1+1+…+1 =15+1×2017 =2032. 故答案为:2032.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0. 【解答】解:原式=4﹣3+√3−1 =√3.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.【解答】解:解不等式3x﹣5<x+1,得:x<3,解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<3,将不等式组的解集表示在数轴上如下:21.(6分)(2020•金昌)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.【解答】解:(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=12AC,位置关系为:EF∥AC.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【解答】解:如图,设BG=x米,在Rt△BFG中,FG=BGtanβ=xtan42°,在Rt△BDG中,DG=BGtanα=xtan31°,由DG﹣FG=DF得,x tan31°−xtan42°=5,解得,x=9,∴AB=AG+BG=1.5+9=10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩. (1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率). 【解答】解:(1)共有5种可能选择的结果,因此张帆一家选择“E :张掖七彩丹霞景区”的概率是15;(2)从A ,B ,C ,D 四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A 、D 两个景区的有2种, ∴P (选择A 、D )=212=16. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了26天;(2)这七年的全年空气质量优良天数的中位数是254天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.【解答】解:(1)∵296﹣270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵x=17(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则兰州市空气质量优良天数至少需要293天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=3时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:函数y随x的增大而减小.【解答】解:(1)当x=3时,y=1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.【解答】解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°﹣∠OAB﹣∠ABO=120°,∴∠ACB=12∠AOB=60°;(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.【解答】(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.【解答】解:(1)抛物线y =ax 2+bx ﹣2,则c =﹣2,故OC =2, 而OA =2OC =8OB ,则OA =4,OB =12,故点A 、B 、C 的坐标分别为(﹣4,0)、(12,0)、(0,﹣2); 则y =a (x +4)(x −12)=a (x 2+72x ﹣2)=ax 2+bx ﹣2,故a =1, 故抛物线的表达式为:y =x 2+72x ﹣2;(2)抛物线的对称轴为x =−74,当PC ∥AB 时,点P 、C 的纵坐标相同,根据函数的对称性得点P (−72,﹣2);(3)过点P 作PH ∥y 轴交AC 于点H ,由点A 、C 的坐标得,直线AC 的表达式为:y =−12x ﹣2,则△P AC 的面积S =S △PHA +S △PHC =12PH ×OA =12×4×(−12x ﹣2﹣x 2−72x +2)=﹣2(x +2)2+8,∵﹣2<0,∴S 有最大值,当x =﹣2时,S 的最大值为8,此时点P (﹣2,﹣5).。
2020年中考数学试卷(word版,含答案) (11)
(第9题图) 2020学年初中毕业生学业考试数 学 试 题学校:________考生姓名:________ 准考证号:注意事项: 1.本试题卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分) 1. -2019的绝对值是( )A. 2019B.-2019C.12019D.12019-2. 下列运算正确的是( )A. a 3·a 2 = a 6B. a 7÷a 3 = a 4C. (-3a )2 = -6a 2D. (a -1)2= a 2-13. 据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( )A. 0.1031×106B. 1.031×107C. 1.031×108D. 10.31×1094. 如图是由7个小正方体组合成的几何体,则其左视图为( )5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35o,则∠1的度数为( )A. 45oB. 55oC. 65oD. 75o6. 已知一组数据为7,2,5,x ,8,它们的平均数是5,则这组数据的方差为( ) A. 3 B. 4.5 C. 5.2 D. 67. 关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1、x 2,且x 1+3x 2=5,则m 的值为( ) A.74B.75C.76D. 08. 在同一平面直角坐标系中,函数y x k =-+与ky x=(k 为常数,且k ≠ 0)的图象大致是( )A. B. C. D.9. 二次函数2y ax bx c =++的图象如图所示,对称轴是直线x =1.下列结论:①abc ﹤0 ②3a +c ﹥0 ③(a +c )2-b 2﹤0 ④a +b ≤m (am +b )(m 为实数).其中结论正确的个数为( )A. 1个B. 2个C. 3个D. 4个(第5题图) (第4题图)10. 如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线 y上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3 … △A nB n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( ) A. B. C. D.二.填空题(每小题3分,共18分)11. 因式分解:4ax 2-4ax +a =_______.12. 若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩ 的解满足x +y ≤0,则m 的取值范围是_________. 13. 一个圆锥的底面半径r =5,高h =10,则这个圆锥的侧面积是________. 14. 在平面直角坐标系中,点P (x 0,y 0)到直线 Ax +By +C =0的距离公式为: d =,则点P (3,-3)到直线2533y x =-+的距离为_____.15. 如图,已知线段AB =4,O 是AB 的中点,直线l 经过点O ,∠1=60°,P 点是直线l 上一点,当△APB 为直角三角形时,则BP =____________.16. 如图,在平面直角坐标系中,已知C (3,4),以点C 为圆心的圆与y 轴相切.点A 、B 在x 轴上,且OA =OB .点P 为⊙C 上的动点,∠APB =90°,则AB 长度的最大值为 _______.三.解答题(17~21题每题8分,22、23题每题10分,24题12分,共72分)17. (本题满分8分)先化简,再从-1、2、3、4中选一个合适的数作为x 的值代入求值.222244()4424x x x x x x x ---÷-+--18. (本题满分8分)如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB 、CD 边于点E 、F .(1)求证:四边形DEBF 是平行四边形; (2)当DE =DF 时,求EF 的长.(第10题图) (第15题图) (第16题图) (第18题图)(第22题图)19. (本题满分8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统请你根据以上信息,回答下列问题:(1)统计表中m 的值为____,统计图中n 的值为____,A类对应扇形的圆心角为____度; (2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生. 从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.20. (本题满分8分)已知关于x 的方程x 2-2x +2k -1=0有实数根.(1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且211212x xx x x x +=⋅,试求k 的值.21. (本题满分8分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB ,他站在距离教学楼底部E 处6米远的地面C 处,测得宣传牌的底部B 的仰角为60°,同时测得教学楼窗户D 处的仰角为30°(A 、B 、D 、E 在同一直线上).然后,小明沿坡度i =1:1.5的斜坡从C 走到F 处,此时DF 正好与地面CE 平行. (1)求点F 到直线CE 的距离(结果保留根号);(2)若小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果精确到0.1米, ≈1.41, ≈1.73).22.(本题满分10分)如图,PA 是⊙O 的切线,切点为A , AC 是⊙O 的直径,连接OP 交⊙O 于E .过A 点作AB ⊥PO 于点D ,交⊙O 于B ,连接BC ,PB . (1)求证:PB 是⊙O 的切线; (2)求证:E 为△PAB 的内心;(3)若cos ∠PAB , BC =1,求PO 的长.(第21题图) (第19题图)23. (本题满分10分)“互联网+”时代,网上购物备受消费者青睐. 某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施. 据市场调查反映:销售单价每降1元,则每月可多销售5条. 设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生. 为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24. (本题满分12分)如图,已知抛物线y =-x 2+b x +c 与x 轴交于A 、B 两点,AB =4,交y 轴于点C ,对称轴是直线x =1.(1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线x =1的对称点F 正好落在BC 上,求点F 的坐标;(3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t(t>0)秒. ①若△AOC 与△BMN 相似,请直接写出t 的值;②△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.初中毕业生学业考试(第24题图) (第24题备用图1)(第24题备用图2)数学试题参考答案及评分标准一、选择题(每小题3分,共30分)1~5 A B B A B 6~10 C A C C D二、填空题(每小题3分,共18分)11. a(2x-1)2. 12. m≤-2. 13. π.14. 15.或或(说明:3解中每对一个得1分,若有错误答案得0分)16.16三、解答题17.(8分)解:原式=x+2 ………… 4′∵ x-2≠0,x-4≠0 ∴ x≠2且x≠4 ………… 7′∴当x=-1时,原式=-1+2=1 ………… 8′①(或当x=3时,原式=3+2=5 ………… 8′)②注:①或②任做对一个都可以18.(1)证明:∵四边形ABCD是矩形∴ AB∥CD∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB∴△DOF ≌△BOE ∴DF=BE又因为DF∥BE,∴四边形BEDF是平行四边形. ………… 4′(2)解:∵DE=DF,四边形BEDF是平行四边形∴是菱形∴ DE=BE,EF⊥BD,OE=OF设AE=x,则DE=BE=8-x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴ x2+62= (8-x)2解之得:x =∴ DE=8 - = ………… 6′在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=∴ OD = BD = 5,在Rt△DOE中,根据勾股定理,有DE2 - OD2=OE2,∴ OE =∴ EF = 2OE=………… 8′(此题有多种解法,方法正确即可分)19. (1)25 25 39.6 ………… 3′(2)1500× = 300(人)答:该校最喜爱体育节目的人数约有300人. ………… 5′(3)P=(说明:直接写出答案的只给1分,画树状图或列表的按步骤给分)………… 8′20. (1)解:∵原方程有实数根,∴b2-4ac≥0 ∴(-2)2-4(2k-1) ≥0∴k≤1 ………… 3′(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1 + x2 = 2,x1 ·x2 =2k-1又∵∴∴(x1 + x2)2-2x1 x2 = (x1 ·x2)2 ………… 5′∴ 22-2(2k-1)= (2k-1)2解之,得:=经检验,都符合原分式方程的根 (6)∵ k≤1 ………… 7′∴………… 8′21.解:(1)过点F作FG⊥EC于G,依题意知FG∥DE,DF∥GE,∠FGE=90o∴四边形DEFG是矩形∴FG=DE在Rt△CDE中,DE=CE·tan∠DCE= 6×tan30 o =2(米)∴点F到地面的距离为2米. …………3′(2) ∵斜坡CF i=1:1.5∴Rt△CFG中,CG=1.5FG=2×1.5=3∴FD=EG=3+6 ………… 5′在Rt△BCE中,BE=CE·tan∠BCE = 6×tan60 o =6………… 6′∴AB=AD+DE-BE=3+6+2-6=6-≈4.3 (米)答:宣传牌的高度约为4.3米. ………… 8′22.(1)证明:连结OB∵AC为⊙O的直径∴∠ABC=90o又∵AB⊥PO∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC而OB=OC ∴∠OBC=∠C ∴∠AOP=∠POB在△AOP和△BOP中=∠=∠=∴△AOP≌△BOP ∴∠OBP=∠OAP∵PA为⊙O的切线∴∠OAP=90o ∴∠OBP=90o∴PB是⊙O的切线…………3′(2)证明:连结AE∵PA为⊙O的切线∴∠PAE+∠OAE=90o∵AD⊥ED ∴∠EAD+∠AED=90o∵OE=OA ∴∠OAE=∠AED∴∠PAE=∠DAE 即EA平分∠PAD∵PA、PD为⊙O的切线∴PD平分∠APB∴E为△PAB的内心…………6′(3)∵∠PAB+∠BAC=90o∠C+∠BAC=90o∴∠PAB=∠C ∴cos∠C = cos∠PAB=在Rt△ABC中,cos∠C===∴AC=,AO=…………8′由△PAO∽△ABC ∴=∴PO===5 …………10′(此题有多种解法,解法正确即可)23.解:(1)y=100+5(80-x)或y=-5x+500 …………2′(2)由题意,得:W=(x-40)( -5x+500)=-5x2+700x-20000=-5(x-70)2+4500 …………4′∵a=-5<0 ∴w有最大值即当x=70时,w最大值=4500∴应降价80-70=10(元)答:当降价10元时,每月获得最大利润为4500元…………6′(3)由题意,得:-5(x-70)2+4500=4220+200解之,得:x1=66 x2 =74 …………8′∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠. …………10′24.解:(1))∵点A、B关于直线x=1对称,AB=4∴A(-1,0),B(3,0)…………1′代入y=-x2+bx+c中,得:解得∴抛物线的解析式为y=-x2+2x+3 …………2′∴C点坐标为(0,3)…………3′(2)设直线BC的解析式为y=mx+n,则有:解得∴直线BC的解析式为y=-x+3 …………4′∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴ EF=2∴F点的横坐标为2,将x=2代入y=-x+3中,得:y=-2+3=1∴F(2,1)…………6′(3)○1t=1 (若有t =,则扣1分) …………9′○2∵M(2t,0),MN⊥x轴∴Q(2t,3-2t)∵△BOQ为等腰三角形,∴分三种情况讨论第一种,当OQ=BQ时,∵QM⊥OB∴OM=MB∴2t=3-2t∴t= …………10′第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ =45O∴ BQ=∴BO=即3=∴t=…………11′第三种,当OQ=OB时,则点Q、C重合,此时t=0而t>0,故不符合题意综上述,当t=秒或秒时,△BOQ为等腰三角形. …………12′(解法正确即可)。
真题解析:2022年甘肃省兰州市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)
2022年甘肃省兰州市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,点 F 是 ABC 的角平分线 AG 的中点, 点 ,D E 分别在 ,AB AC 边上,线段 DE 过点 F , 且 ADE C ∠=∠,下列结论中, 错误的是( )A .12DF GC =B .12DE BC = C .12AE AB =D .12AD BD = 2、现有四张卡片依次写有“郑”“外”“加”“油”四个字(四张卡片除字不同外其他均相同),把四张卡片背面向上洗匀后,从中随机抽取两张,则抽到的汉字给好是“郑”和“外”的概率是( )A .13B .14C .16D .56 3、如图,BOC ∠在AOD ∠的内部,且20BOC ∠=︒,若AOD ∠的度数是一个正整数,则图中所有角...的度数之和可能是( ) ·线○封○密○外A .340°B .350°C .360°D .370°4、已知50A ∠=,则∠A 的补角等于( )A .40B .50C .130D .1405、在 Rt ABC 中,90C =∠,如果,1A AC ∠α==,那么AB 等于( )A .sin αB .cos αC .1sin αD .1cos α6、下列命题,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角的角平分线互相垂直C .相等的角是对顶角D .若a b ⊥,b c ⊥,则a c ⊥7、如图,已知菱形OABC 的顶点O (0,0),B (2,2),菱形的对角线的交于点D ;若将菱形OABC 绕点O 逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D 的坐标为( )A .(1,1)B .(﹣1,﹣1)C .(-1,1)D .(1,﹣1) 8、下列方程中,解为5x =的方程是( )A .22x x -=B .23x -=C .35x x =+D .23x9、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( ) A .548510⨯ B .648.510⨯ C .74.8510⨯ D .0.48510⨯10、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( ) A .B .C .D . 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) ·线○封○密○外1、如图,在△AAA 中,AB =AC =6,BC =4,点D 在边AC 上,BD =BC ,那么AD 的长是______2、如图,已知AA ∥AA ∥AA 它们分别交直线A 1,A 2于点A ,A ,A 和点A ,A ,A ,如果AA AA =23,AA =20,那么线段AA 的长是_________3、已知三点(a ,m )、(b ,n )和(c ,t )在反比例函数y =A A (k >0)的图像上,若a <0<b <c ,则m 、n 和t 的大小关系是 ___.(用“<”连接)4、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.5、二次函数y =ax 2+bx +4的图象如图所示,则关于x 的方程a (x +1)2+b (x +1)=﹣4的根为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD 中,对角线BD 平分∠ABC ,∠A =120°,∠C =60°,AB =17,AD =12. (1)求证:AD =DC ;(2)求四边形ABCD 的周长.2、已知点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且320a b ++-=,A 、B 之间的距离记为AB a b =-或b a -,请回答问题: (1)直接写出a ,b ,AB 的值,a =______,b =______,AB =______. (2)设点P 在数轴上对应的数为x ,若35x -=,则x =______. (3)如图,点M ,N ,P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-1,动点P 表示的数为x . ①若点P 在点M 、N 之间,则14x x ++-=______;·线○封○密○外②若1410x x ++-=,则x =______;③若点P 表示的数是-5,现在有一蚂蚁从点P 出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M 、点N 的距离之和是8?3、如图,AB 为⊙O 的直径,C 、D 为圆上两点,连接AC 、CD ,且AC =CD ,延长DC 与BA 的延长线相交于E 点.(1)求证:△EAC ∽△ECO ;(2)若3tan 4EOC ∠=,求EC EO的值. 4、如图,数轴上A 和B .(1)点A 表示 ,点B 表示 .(2)点C 表示最小的正整数,点D 表示38的倒数,点E 表示235,在数轴上描出点C 、D 、E .(3)将该数轴上点A 、B 、C 、D 、E 表示的数用“<”连起来: .5、计算:()()224223mn mn mn mn ---+.-参考答案-一、单选题1、D【分析】根据AG 平分∠BAC ,可得∠BAG =∠CAG ,再由点 F 是 AG 的中点,可得12AF FG AG == ,然后根据ADE C ∠=∠,可得到△DAE ∽△CAB ,进而得到△EAF ∽△BAG ,△ADF ∽△ACG ,即可求解. 【详解】 解:∵AG 平分∠BAC , ∴∠BAG =∠CAG , ∵点 F 是 AG 的中点, ∴12AF FG AG ==, ∵ADE C ∠=∠,∠DAE =∠BAC , ∴△DAE ∽△CAB , ∴DE AD AE BC AC AB== , ∴∠AED =∠B ,∴△EAF ∽△BAG , ∴12AE AF AB AG == ,故C 正确,不符合题意; ∵ADE C ∠=∠,∠BAG =∠CAG , ∴△ADF ∽△ACG , ∴12AD AF DF AC AG GC === ,故A 正确,不符合题意;D 错误,符合题意; ∴12DE AD BC AC ==,故B 正确,不符合题意; 故选:D 【点睛】 ·线○封○密○外本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.2、C【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:列表如下:由表可知,共有12种等可能结果,其中抽到的汉字恰好是“郑”和“外”的有2种结果, 所以抽到的汉字恰好是“郑”和“外”的概率为21=126. 故选:C .【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.3、B【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB +∠BO C +∠COD +∠AOC +∠BOD +∠AOD ,然后根据20BOC ∠=︒,AOD ∠的度数是一个正整数,可以解答本题.【详解】解:由题意可得,图中所有角的度数之和是∠AOB +∠BOC +∠COD +∠AOC +∠BOD +∠AOD=3∠AOD+∠BOC∵20BOC ∠=︒,AOD ∠的度数是一个正整数,∴A、当3∠AOD+∠BOC =340°时,则AOD ∠=3203︒ ,不符合题意; B 、当3∠AOD+∠BOC =3×110°+20°=350°时,则AOD ∠=110°,符合题意; C 、当3∠AOD+∠BOC =360°时,则AOD ∠=3403︒,不符合题意; D 、当3∠AOD+∠BOC =370°时,则AOD ∠=3503︒,不符合题意. 故选:B .【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.4、C【分析】若两个角的和为180,︒ 则这两个角互为补角,根据互补的含义直接计算即可. 【详解】 解: 50A ∠=, ∴ ∠A 的补角为:18050130, 故选C 【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键. 5、D·线○封○·密○外【分析】直接利用锐角三角函数关系进而表示出AB的长.【详解】解:如图所示:∠A=α,AC=1,cosα=1 ACAB AB=,故AB=1cosα.故选:D【点睛】此题主要考查了锐角三角函数关系,正确得出边角关系是解题关键.6、B【分析】利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.【详解】解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;B、邻补角的角平分线互相垂直,正确,是真命题,符合题意;C、相等的角不一定是对顶角,故错误,是假命题,不符合题意;D 、平面内,若a b ⊥,b c ⊥,则//a c ,故原命题错误,是假命题,不符合题意,故选:B .【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大. 7、B 【分析】 分别过点D 和点B 作DE x ⊥轴于点E ,作BF x ⊥轴于点F ,根据菱形的性质以及中位线的性质求得点D 的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D 坐标 【详解】 如图,分别过点D 和点B 作DE x ⊥轴于点E ,作BF x ⊥轴于点F , ∴DE BF ∥,∵四边形OABC 为菱形,∴点D 为OB 的中点,∴点E 为OF 的中点, ∴12DE BF =,12OE OF =, ·线○封○密·○外∵(2,2)B ,∴(1,1)D ;由题意知菱形OABC 绕点O 逆时针旋转度数为:45602700︒⨯=︒,∴菱形OABC 绕点O 逆时针旋转27003607.5︒÷︒=周,∴点D 绕点O 逆时针旋转7.5周,∵(1,1)D ,∴旋转60秒时点D 的坐标为()1,1--.故选B【点睛】根据菱形的性质及中点的坐标公式可得点D 坐标,再根据旋转的性质可得旋转后点D 的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.8、B【分析】把x =5代入各个方程,看看是否相等即可【详解】解:A . 把x =5代入22x x -=得:左边=8,右边=5,左边≠右边,所以,5x =不是方程22x x -=的解,故本选项不符合题意;B . 把x =5代入23x -=得:左边=3,右边=3,左边=右边,所以,5x =是方程23x -=的解,故本选项符合题意;C . 把x =5代入35x x =+得:左边=15,右边=10,左边≠右边,所以,5x =不是方程35x x =+的解,故本选项不符合题意;D . 把x =5代入23x +=得:左边=7,右边=3,左边≠右边,所以,5x =不是方程23x +=的解,故本选项不符合题意;故选:B【点睛】本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键 9、C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数. 【详解】 解:48500000科学记数法表示为:48500000=74.8510⨯. 故答案为:74.8510⨯. 【点睛】 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 10、A 【分析】 看哪个几何体的三视图中有长方形,圆,及三角形即可. 【详解】 解:A 、三视图分别为正方形,三角形,圆,故A 选项符合题意; B 、三视图分别为三角形,三角形,圆及圆心,故B 选项不符合题意; C 、三视图分别为正方形,正方形,正方形,故C 选项不符合题意; D 、三视图分别为三角形,三角形,矩形及对角线,故D 选项不符合题意; 故选:A . 【点睛】·线○封○密·○外本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.二、填空题1、103【分析】根据等腰三角形的等边对等角可得∠ABC =∠C =∠BDC ,根据相似三角形的判定证明△ABC ∽△BDC ,根据相似三角形的性质求解即可.【详解】解:∵AB =AC ,BD =BC ,∴∠ABC =∠C ,∠C =∠BDC ,∴△ABC ∽△BDC ,∴AA AA =AA AA ,∵AB =AC =6,BC =4,BD =BC ,∴64=4AA ,∴AA =83,∴AD =AC -CD =6-83=103,故答案为:103.【点睛】本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键.2、8【分析】根据平行线分线段成比例定理即可得.【详解】解:∵AA ∥AA ∥AA ,∴AA AA =AA AA =23,∴AA =32AA , ∵AA +AA =AA =20, ∴32AA +AA =20, 解得AA =8,故答案为:8.【点睛】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题关键.3、A <A <A【分析】先画出反比例函数y =A A (k >0)的图象,在函数图象上描出点(a ,m )、(b ,n )和(c ,t ),再利用函数图象可得答案. 【详解】 解:如图,反比例函数y =A A (k >0)的图像在第一,三象限, ·线○封○密○外而点(a,m)、(b,n)和(c,t)在反比例函数y=AA(k>0)的图像上,a<0<b<c,∴A<0<A<A,即A<A<A.故答案为:A<A<A【点睛】本题考查的是反比例函数的图象与性质,掌握“利用数形结合比较反比例函数值的大小”是解本题的关键.4、30【分析】根据科学计算器的使用计算.【详解】解:依题意得:[3×(﹣2)3-1]÷(-56)=30,故答案为30.【点睛】利用科学计算器的使用规则把有理数混合运算,再计算.5、x【分析】根据图象求出方程ax 2+bx +4=0的解,再根据方程的特点得到x +1=-4或x +1=1,求出x 的值即可.【详解】解:由图可知:二次函数y =ax 2+bx +4与x 轴交于(-4,0)和(1,0),∴ax 2+bx +4=0的解为:x =-4或x =1,则在关于x 的方程a (x +1)2+b (x +1)=-4中, x +1=-4或x +1=1, 解得:x =-5或x =0, 即关于x 的方程a (x +1)2+b (x +1)=-4的解为x =-5或x =0, 故答案为:x =-5或x =0. 【点睛】 本题考查的是抛物线与x 轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键. 三、解答题 1、 (1)证明见解析; (2)70. 【分析】 (1)在BC 上取一点E ,使BE =AB ,连接DE ,证得△ABD ≌△EBD ,进一步得出∠BED =∠A ,利用等腰三角形的判定与性质与等量代换解决问题; (2)首先判定△DEC 为等边三角形,求得BC ,进一步结合(1)的结论解决问题. (1) 证明:在BC 上取一点E ,使BE =AB ,连结DE . ·线○封○密·○外∵BD 平分∠ABC ,∴∠ABD =∠CBD .在△ABD 和△EBD 中,AB BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBD (SAS );∴DE =AD =12,∠BED =∠A ,AB =BE =17.∵∠A =120°,∴∠DEC =60°.∵∠C =60°,∴∠DEC =∠C ,∴DE =DC ,∴AD =DC .(2)∵∠C =60°,DE =DC ,∴△DEC 为等边三角形,∴EC =CD =AD .∵AD =12,∴EC =CD =12,∴四边形ABCD 的周长=17+17+12+12+12=70.【点睛】此题考查全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质,结合图形,灵活解答. 2、(1)-3,2,5(2)8或-2(3)①5;②-3.5或6.5;③2.5秒或10.5秒【分析】 (1)根据绝对值的非负性,确定a ,b 的值,利用距离公式,计算即可; (2)根据|x |=a ,则x =a 或x =-a ,化简计算即可; (3)①根据数轴上的两点间的距离公式,可得绝对值等于右端数减去左端的数,确定好点位置,表示的数,写出结果即可; ②根据10>5,判定P 不在M ,N 之间,故分点P 在M 的右边和点P 在点N 的左侧,两种情形求解即可; ③设经过t 秒,则点P 表示的数为-5+t ,则PN =|-5+t +1|=|-4+t |,PM =|-5+t -4|=|-9+t |, 故分点P 在M 的右边和点P 在点M 、点N 之间,两种情形求解即可. (1) ∵320a b +++=,∴a +3=0,b -2=0, ∴a =-3,b =2,325AB =--=, 故答案为:-3,2,5.·线○封○密○外(2) ∵35x -=,∴35x -=±,∴x =8或-2;故答案为:8或-2.(3)①点P 在点M 、N 之间,且M 表示4,N 表示-1,动点P 表示的数为x , ∴点P 在定N 的右侧,在点M 的左侧,∴PN =|x +1|=x +1,PM =|x -4|=4-x , ∴14145x x x x ++-=++-=.故答案为:5;②根据10>5,判定P 不在M ,N 之间,当点P 在M 的右边时,∴PN =|x +1|=x +1,PM =|x -4|=x -4, ∵1410x x ++-=,∴x +1+x -4=10,解得x =6.5;当点P 在点N 的左侧时,∴PN =|x +1|=-1-x ,PM =|x -4|=4-x , ∵1410x x ++-=,∴-1-x +4-x =10,解得x =-3.5;故答案为:6.5或-3.5;③设经过t 秒,则点P 表示的数为-5+t ,则PN =|-5+t +1|=|-4+t |,PM =|-5+t -4|=|-9+t |, 当点P 在M 的右边时,∴PN =|-5+t +1|=-4+t ,PM =|-5+t -4|=-9+t ,∵PM +PN =8,∴-4+t -9+t =8,解得t =10.5;当点P 在点N 、点M 之间时,∴PN =|-5+t +1|=-4+t ,PM =|-5+t -4|=9-t , ∵PM +PN =8, ∴-4+t +9-t =8, 不成立; 当点P 在N 的左边时, ∴PN =|-5+t +1|=-1-(t -5)=4-t ,PM =|-5+t -4|=4-(t -5)=9-t , ∵PM +PN =8, ∴4-t +9-t =8,解得t =2.5;综上所述,经过2.5秒或10.5秒时,蚂蚁所在的点到点M 、点N 的距离之和是8.【点睛】本题考查了绝对值的非负性,数轴上两点间的距离,分类思想,绝对值的化简,正确掌握绝对值化简,灵活运用分类思想是解题的关键.3、(1)见解析·线○封○密○外(2【分析】(1)由题意可证得△AOC ≌△DOC ,从而可得对应边、对应角都相等,再由△ECO 、△EDO 的内角和定理,可证得∠=∠ECA EOC ,从而可得△EAC ∽△ECO ;(2)过点C 作CF ⊥EO ,由3tan 4EOC ∠=,可设CF =3x ,则可得OF =4x ,OC =5x =OA ,故可得AF =x ,可求AC,,从而可得=AC OC ,即为EC EO 的值. (1)证明:∵AB 为⊙O 的直径,C 、D 为圆上两点,连接AC 、CD ,且AC =CD ,∴在△CAO 与△CDO 中:OD OA OC OC CD CA =⎧⎪=⎨⎪=⎩∴△CAO ≌△CDO ,∴,∠=∠∠=∠=∠=∠AOC DOC ODC OAC OCA OCD ,在△ECO 与△EDO 中,180∠+∠+∠+∠=︒E ECA OCA EOC ,180∠+∠+∠+∠=︒E EOC ODC DOC ,∴∠=∠=∠ECA DOC AOC ,在△EAC 与△ECO 中,∠=∠ECA EOC ,E E ∠=∠,∴△EAC ∽△ECO .(2)解:过点C 作CF ⊥EO , ∵3tan 4EOC ∠=, ∴34=CF OF , 设CF =3x ,则OF =4x ,∴OC5x =OA ,∴AF =5x -4x = x ,∴AC,∴=AC OC 由(1)得△EAC ∽△ECO , ∴=EC AC EO OC, ∴=EC EO 【点睛】 本题考查了三角形相似的判定及性质,三角函数的应用,解题的关键是作出辅助线,利用好数形结合的思想. 4、 ·线○封○密·○外(1)114,112(2)见解析(3)1<114<112<223<235【分析】(1)根据数轴直接写出A、B所表示的数即可;(2)根据最小的正整数是1,38的倒数是223,然后据此在数轴上找到C、D、E即可;(3)将A、B、C、D、E表示的数从小到大排列,再用“<”连接即可.(1)解:由数轴可知A、B表示的数分别是:114,112.故答案为:114,112.(2)解:∵最小的正整数是1,38的倒数是223∴C表示的数是1,D表示的数是223,∴如图:数轴上的点C、D、E即为所求.(3)解:根据(2)的数轴可知,将点A、B、C、D、E表示的数用“<”连接如下:1<114<112<223<235.【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.5、2146mn mn ﹣【分析】去括号合并同类项即可.【详解】解:原式228-462mn mn mn mn =+﹣ 2146mn mn =﹣. 【点睛】 本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项. ·线○封○密·○外。
2020年中考数学试题(及答案)
2020年中考数学试题(及答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣ B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 2.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19B .16C .13D .235.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙C .丙D .一样9.下列计算错误的是( )A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.510.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 11.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy ++=在同一坐标系内的图象大致为( )A .B .C .D .12.an30°的值为( ) A .B .C .D .二、填空题13.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 . 14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.16.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .18.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .19.3x +在实数范围内有意义,则x 的取值范围是_____. 32x-2三、解答题21.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)22.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.23.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:(1)请将上面两个表格补充完整:a =____,b =_____,c =_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】460 000 000=4.6×108. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.5.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】6.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.8.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.考点:列代数式.9.D解析:D 【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a 2÷a 0•a 2=a 4, ∴选项A 不符合题意; ∵a 2÷(a 0•a 2)=1, ∴选项B 不符合题意; ∵(-1.5)8÷(-1.5)7=-1.5, ∴选项C 不符合题意; ∵-1.58÷(-1.5)7=1.5, ∴选项D 符合题意. 故选D .点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.10.D解析:D 【解析】 【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确. 故选D .11.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.12.D解析:D 【解析】 【分析】直接利用特殊角的三角函数值求解即可. 【详解】 tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.二、填空题13.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠- 【解析】 分析:解方程3x n22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6 【解析】设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得:()OABC 122122kS x x=⨯-⨯=菱形,解得 6.k =-15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解; 【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5 【解析】 【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案. 【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M , ∴M 是AC 、A 1C 1的中点,AC=A 1C 1, ∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°, ∴∠CMC 1=60°, ∴△CMC 1为等边三角形,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.18.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围.【详解】.在实数范围内有意义,则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.20.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.三、解答题21.123米.【解析】【分析】在Rt △ABC 中,利用tan BC CAB AB∠=即可求解. 【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.22.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.23.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键. 24.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
甘肃省兰州市中考数学试题(解析)
兰州市中考数学试题一、单项选择题(每小题4分,共60分)1.sin60°的相反数是【】A.-12B.-33C.-32D.-222.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为【】A.y=400x B.y=14x C.y=100x D.y=1400x3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是【】A.相交B.外切C.外离D.内含4.抛物线y=-2x2+1的对称轴是【】A.直线x=12B.直线x=-12C.y轴D.直线x=25.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为【】A.6 B.8 C.12 D.246.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为【】A.πB.1 C.2 D. 2 37.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是【】A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位8.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是【】A.0.2 B.0.3 C.0.4 D.0.59.在反比例函数y=kx(k<0)的图象上有两点(-1,y1),(-14,y2),则y1-y2的值是【】A.负数B.非正数C.正数D.不能确定10.某学校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m,设花圃的宽为x m,则可列方程为【】A.x(x-10)=200 B.2x+2(x-10)=200C.x(x+10)=200 D.2x+2(x+10)=20011.已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a、b的大小关系为【】A.a>b B.a<b C.a=b D.不能确定12.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF 是直角三角形时,t(s)的值为【】A.74B.1 C.74或1 D.74或1或9413.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130°B.120°C.110°D.100°14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是【】A.k<-3 B.k>-3 C.k<3 D.k>315.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是【】A.B.C.D.二、填空题(每小题4分,共20分)16.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.17.如图,点A在双曲线y=1x上,点B在双曲线y=3x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.19.如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是.20.如图,M为双曲线y=3x上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.三、解答题(本大题8小题,共70分)21.已知x是一元二次方程x2-2x+1=0的根,求代数式x-33x2-6x÷⎝⎛⎭⎫x+2-5x-2的值.22.在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角θ1减至θ2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4m,∠θ1=40°,∠θ2=36°,求楼梯占用地板增加的长度(计算结果精确到0.01m,参考数据:tan40°=0.839,tan36°=0.727).23.如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法);(2)折叠后重合部分是什么图形?说明理由.24.5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4∶17∶15.结合统计图回答下列问题:(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?25.如图,定义:若双曲线y=kx(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=kx(k>0)的对径.(1)求双曲线y=1x的对径;(2)若双曲线y=kx(k>0)的对径是102,求k的值;(3)仿照上述定义,定义双曲线y=kx(k<0)的对径.26.如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,E 是BC 的中点,连接DE 、OE .(1)判断DE 与⊙O 的位置关系并说明理由;(2)若tan C =52,DE =2,求AD 的长.27.若x 1、x 2是关于一元二次方程ax 2+bx +c (a ≠0)的两个根,则方程的两个根x 1、x 2和系数a 、b 、c 有如下关系:x 1+x 2=- b a ,x 1•x 2= ca.把它称为一元二次方程根与系数关系定理.如果设二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的两个交点为A (x 1,0),B (x 2,0).利用根与系数关系定理可以得到A 、B 连个交点间的距离为:AB =|x 1-x 2|=212214)(x x x x -+=a c a b 42-⎪⎭⎫ ⎝⎛-=224a ac b -=||42a ac b -. 参考以上定理和结论,解答下列问题:设二次函数y =ax 2+bx +c (a >0)的图象与x 轴的两个交点A (x 1,0)、B (x 2,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求b 2-4ac 的值; (2)当△ABC 为等边三角形时,求b 2-4ac 的值.28.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(-3,0)、(0,4),抛物线y = 23x 2+bx +c 经过点B ,且顶点在直线x=52上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t 的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.甘肃省兰州市中考数学试卷参考答案与试题解析一、单项选择题(每小题4分,共60分).1.sin60°的相反数是( )A.B.C.D.考点:特殊角的三角函数值。
甘肃省兰州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)
甘肃省兰州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.平方差公式(共1小题)1.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).二.分式的混合运算(共1小题)2.(2022•兰州)计算:(1+)÷.三.分式的化简求值(共2小题)3.(2021•兰州)先化简,再求值:,其中m=2.4.(2021•兰州)先化简,再求值:÷﹣,其中m=4.四.二次根式的混合运算(共3小题)5.(2023•兰州)计算:.6.(2021•兰州)计算:.7.(2021•兰州)计算:(+)×.五.解一元二次方程-配方法(共1小题)8.(2021•兰州)解方程:x2+4x﹣1=0.六.解一元一次不等式(共1小题)9.(2022•兰州)解不等式:2(x﹣3)<8.七.一次函数的应用(共1小题)10.(2021•兰州)小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发 分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.八.反比例函数与一次函数的交点问题(共1小题)11.(2022•兰州)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴,垂足为B (3,0),过C(5,0)作CD⊥x轴,交过B点的一次函数y=x+b的图象于D点,交反比例函数的图象于E点,S△AOB=3.(1)求反比例函数y=(x>0)和一次函数y=x+b的表达式;(2)求DE的长.九.二次函数的应用(共1小题)12.(2023•兰州)一名运动员在10m高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB的高度y(m)与离起跳点A的水平距离x(m)之间的函数关系如图所示,运动员离起跳点A的水平距离为1m时达到最高点,当运动员离起跳点A的水平距离为3m时离水面的距离为7m.(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离OB的长.一十.全等三角形的判定与性质(共2小题)13.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.14.(2021•兰州)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC =DF.一十一.矩形的性质(共1小题)15.(2023•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE 是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.一十二.解直角三角形的应用(共1小题)16.(2021•兰州)避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼BC顶部避雷针CD的长度(B,C,D三点共线),在水平地面A点测得∠CAB=53°,∠DAB=58°,A点与大楼底部B点的距离AB=20m,求避雷针CD的长度.(结果精确到0.1m.参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)一十三.条形统计图(共1小题)17.(2021•兰州)2021年2月25日,习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告中国脱贫攻坚取得了全面胜利,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,根据2021年4月7日《人民日报》刊登的“人类减贫的中国实践”的相关数据进行收集和整理,信息如下:信息一:脱贫攻坚以来中国农村年度贫困人口数量信息二:脱贫攻坚以来财政专项扶贫资金投入信息三:脱贫攻坚以来贫困地区农村居民和全国农村居民年人均可支配收入及增长率年份、统计量名称20132014201520162017201820192020平均数贫困地区农村居民年人均可支配收入/元607968527653845293771037111567125889117贫困地区农村居民年人均可支配收入增长率/%16.512.711.710.410.910.611.58.811.6全国农村居民年人均可支配收入增长率/%12.411.28.98.28.68.89.6 6.99.3请根据以上信息,解决下列问题:(1)2019年底中国农村贫困人口数量为 万人.(2)2013年底至2020年底,贫困地区农村居民年人均可支配收入的极差为 元.(3)下列结论正确的是 (只填序号).①脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫;②脱贫攻坚以来我国贫困地区农村居民人均可支配收入年平均增长率为11.6%,增长持续快于全国农村;③2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.一十四.折线统计图(共1小题)18.(2022•兰州)人口问题是“国之大者”,以习近平同志为核心的党中央高度重视人口问题,准确把握人口发展形势,有利于推动社会持续健康发展,为开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军创造良好的条件.某综合与实践研究小组根据我国第七次人口普查数据进行整理、描述和分析,给出部分数据信息:信息一:普查登记的全国大陆31个省、自治区、直辖市人口数的频数分布直方图如下:(数据分成6组:0≤x<20,20≤x<40,40≤x<60,60≤x<80,80≤x<100,100≤x≤120)信息二:普查登记的全国大陆31个省、自治区、直辖市人口数(百万人)在40≤x<60这一组的数据是:58,47,45,40,43,42,50;信息三:2010﹣2021年全国大陆人口数及自然增长率;请根据以上信息,解答下列问题:(1)普查登记的全国大陆31个省、自治区、直辖市人口数的中位数为 百万人.(2)下列结论正确的是 .(只填序号)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢;③2010﹣2021年全国大陆人口自然增长率持续降低.(3)请写出2016﹣2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,结合变化趋势谈谈自己的看法.一十五.中位数(共1小题)19.(2023•兰州)某校八年级共有男生300人,为了解该年级男生排球垫球成绩和掷实心球成绩的情况,从中随机抽取40名男生进行测试,对数据进行整理、描述和分析,下面是给出的部分信息.信息一:排球垫球成绩如图所示(成绩用x表示,分成六组:A、x<10;B、10≤x<15;C、15≤x<20;D、20≤x<25;E、25≤x<30;F、30≤x).信息二:排球垫球成绩在D、20≤x<25这一组的是:20,20,21,21,21,22,22,23,24,24;信息三:掷实心球成绩(成绩用y表示,单位:米)的人数(频数)分布表如表:分组y<6.0 6.0≤y<6.8 6.8≤y<7.67.6≤y<8.48.4≤y<9.29.2≤y 人数2m10962信息四:这次抽样测试中6名男生的两项成绩的部分数据如表:学生学生1学生2学生3学生4学生5学生6排球垫球262523222215掷实心球▲7.87.8▲8.89.2根据以上信息,回答下列问题:(1)填空:m= ;(2)下列结论正确的是 ;(填序号)①排球垫球成绩超过10个的人数占抽取人数的百分比低于60%;②掷实心球成绩的中位数记为n,则6.8≤n<7.6;③若排球垫球成绩达到22个及以上时,成绩记为优秀,如果信息四中6名男生的两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀;(3)若排球垫球成绩达到22个及以上时,成绩记为优秀,请估计全年级男生排球垫球成绩达到优秀的人数.甘肃省兰州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.平方差公式(共1小题)1.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).【答案】x2﹣3y.【解答】解:原式=x2﹣4y2﹣(3y﹣4y2)=x2﹣4y2﹣3y+4y2=x2﹣3y.二.分式的混合运算(共1小题)2.(2022•兰州)计算:(1+)÷.【答案】.【解答】解:原式===.三.分式的化简求值(共2小题)3.(2021•兰州)先化简,再求值:,其中m=2.【答案】见试题解答内容【解答】解:=+==,当m=2时,原式==2.4.(2021•兰州)先化简,再求值:÷﹣,其中m =4.【答案】,.【解答】解:原式=•﹣=﹣=,当m =4时,原式=.四.二次根式的混合运算(共3小题)5.(2023•兰州)计算:.【答案】.【解答】解:原式=3﹣2=.6.(2021•兰州)计算:.【答案】4.【解答】解:=+=+==3=4.7.(2021•兰州)计算:(+)×.【答案】5.【解答】解:原式=+=2+3=5.五.解一元二次方程-配方法(共1小题)8.(2021•兰州)解方程:x2+4x﹣1=0.【答案】见试题解答内容【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.六.解一元一次不等式(共1小题)9.(2022•兰州)解不等式:2(x﹣3)<8.【答案】x<7.【解答】解:去括号,得:2x﹣6<8,移项,得:2x<8+6,合并同类项,得:2x<14,两边同乘以,得:x<7.故原不等式的解集是x<7.七.一次函数的应用(共1小题)10.(2021•兰州)小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发 6 分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.【答案】(1)6;(2)y=300x﹣4500(15≤x≤25);(3)8分钟,理由见解答.【解答】解:(1)由图象可知,观光车出发:21﹣15=6(分钟),追上小军;故答案为:6;(2)设l2所在直线对应的函数表达式为y=kx+b,则,解得,15+3000÷300=25(min),∴l2所在直线对应的函数表达式为y=300x﹣4500(15≤x≤25);(3)33﹣25=8(min),故观光车比小军早8分钟到达观景点.八.反比例函数与一次函数的交点问题(共1小题)11.(2022•兰州)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴,垂足为B (3,0),过C(5,0)作CD⊥x轴,交过B点的一次函数y=x+b的图象于D点,交反比例函数的图象于E点,S△AOB=3.(1)求反比例函数y=(x>0)和一次函数y=x+b的表达式;(2)求DE的长.【答案】(1)反比例函数的表达式为y=,一次函数的表达式为y=x﹣;(2)DE=.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AB⊥x轴,∴S△AOB=|k|=3,∴k=6,∴反比例函数为y=,∵一次函数y=x+b的图象过点B(3,0),∴×3+b=0,解得b=﹣,∴一次函数为y=x﹣;(2)∵过C(5,0)作CD⊥x轴,交过B点的一次函数y=x+b的图象于D点,∴当x=5时y==;y=x﹣=3,∴E(5,),D(5,3),∴DE=3﹣=.九.二次函数的应用(共1小题)12.(2023•兰州)一名运动员在10m高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB的高度y(m)与离起跳点A的水平距离x(m)之间的函数关系如图所示,运动员离起跳点A的水平距离为1m时达到最高点,当运动员离起跳点A的水平距离为3m时离水面的距离为7m.(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离OB的长.【答案】(1)y=﹣x2+2x+10;(2)运动员从起跳点到入水点的水平距离OB的长为(+1)米.【解答】解:(1)根据题意可得,抛物线过(0,10)和(3,7),对称轴为直线x=1,设y关于x的函数表达式为y=ax2+bx+c,∴,解得:,∴y关于x的函数表达式为y=﹣x2+2x+10;(2)在y=﹣x2+2x+10中,令y=0得0=﹣x2+2x+10,解得x=+1或x=﹣+1(舍去),∴运动员从起跳点到入水点的水平距离OB的长为(+1)米.一十.全等三角形的判定与性质(共2小题)13.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【答案】∠D=50°.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.14.(2021•兰州)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC =DF.【答案】见解析.【解答】证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF.一十一.矩形的性质(共1小题)15.(2023•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE 是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.【答案】(1)答案见解答过程;(2).【解答】解:(1)四边形OCDE是菱形,理由如下:∵CD∥OE,∴∠FDC=∠FOE,∵CE是线段OD的垂直平分线,∴FD=FO,ED=OE,CD=CO,在△FDC和△FOE中,,∴△FDC≌△FOE(ASA),∴CD=OE,又ED=OE,CD=CO,∴ED=OE=CD=CO,∴四边形OCDE是菱形.(2)∵四边形ABCD为矩形,∴∠BCD=∠CDA=90°,DO=CO,∵CE是线段OD的垂直平分线,∴CD=CO,∴CD=CO=DO,∴△ODC为等边三角形,∴DO=CD=4,∠ODC=60°,∴,在Rt△CDF中,CD=4,DF=2,由勾股定理得:,由(1)可知:四边形OCDE是菱形,∴,∵∠GDF=∠CDA﹣∠ODC=30°,∴,∴,∴.一十二.解直角三角形的应用(共1小题)16.(2021•兰州)避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼BC顶部避雷针CD的长度(B,C,D三点共线),在水平地面A点测得∠CAB=53°,∠DAB=58°,A点与大楼底部B点的距离AB=20m,求避雷针CD的长度.(结果精确到0.1m.参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】约为5.4米.【解答】解:在Rt△ABD中,∵tan∠BAD=,∴1.60≈,∴BD≈32(米),在Rt△CAB中,∵tan∠CAB=,∴1.33≈,∴BC≈26.6(米),∴CD=BD﹣BC≈5.4(米).答:避雷针DC的长度约为5.4米.一十三.条形统计图(共1小题)17.(2021•兰州)2021年2月25日,习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告中国脱贫攻坚取得了全面胜利,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,根据2021年4月7日《人民日报》刊登的“人类减贫的中国实践”的相关数据进行收集和整理,信息如下:信息一:脱贫攻坚以来中国农村年度贫困人口数量信息二:脱贫攻坚以来财政专项扶贫资金投入信息三:脱贫攻坚以来贫困地区农村居民和全国农村居民年人均可支配收入及增长率20132014201520162017201820192020平均数年份、统计量名称607968527653845293771037111567125889117贫困地区农村居民年人均可支配收入/元16.512.711.710.410.910.611.58.811.6贫困地区农村居民年人均可支配收入增长率/%12.411.28.98.28.68.89.6 6.99.3全国农村居民年人均可支配收入增长率/%请根据以上信息,解决下列问题:(1)2019年底中国农村贫困人口数量为 551 万人.(2)2013年底至2020年底,贫困地区农村居民年人均可支配收入的极差为 6509 元.(3)下列结论正确的是 ①②③ (只填序号).①脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫;②脱贫攻坚以来我国贫困地区农村居民人均可支配收入年平均增长率为11.6%,增长持续快于全国农村;③2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.【答案】(1)551;(2)6509;(3)①②③.【解答】解:(1)根据信息一:脱贫攻坚以来中国农村年度贫困人口数量的条形统计图即可知:2019年底中国农村贫困人口数量为551万人;故答案为:551;(2)12588﹣6079=6509,故答案为:6509;(3)根据信息一,可得,脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫,故①正确;②∵(16.5+12.7+11.7+10.4+10.9+10.6+11.5+8.8+11.6)÷9≈11.6,且每一年的我国贫困地区农村居民人均可支配收入年增长率持续快于全国农村;故②正确;③2016年:1700﹣665=1035>1000,2017年:2220﹣865=1355>1000,2018年:2780﹣1065=1715>1000,2019年:3160﹣1265=1895>1000,2020年:3520﹣1465=2055>1000,2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.故③正确,故答案为:①②③.一十四.折线统计图(共1小题)18.(2022•兰州)人口问题是“国之大者”,以习近平同志为核心的党中央高度重视人口问题,准确把握人口发展形势,有利于推动社会持续健康发展,为开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军创造良好的条件.某综合与实践研究小组根据我国第七次人口普查数据进行整理、描述和分析,给出部分数据信息:信息一:普查登记的全国大陆31个省、自治区、直辖市人口数的频数分布直方图如下:(数据分成6组:0≤x<20,20≤x<40,40≤x<60,60≤x<80,80≤x<100,100≤x≤120)信息二:普查登记的全国大陆31个省、自治区、直辖市人口数(百万人)在40≤x<60这一组的数据是:58,47,45,40,43,42,50;信息三:2010﹣2021年全国大陆人口数及自然增长率;请根据以上信息,解答下列问题:(1)普查登记的全国大陆31个省、自治区、直辖市人口数的中位数为 40 百万人.(2)下列结论正确的是 ①② .(只填序号)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢;③2010﹣2021年全国大陆人口自然增长率持续降低.(3)请写出2016﹣2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,结合变化趋势谈谈自己的看法.【答案】(1)40;(2)①②;(3)2016﹣2021年全国大陆人口数增长缓慢,全国大陆人口自然增长率持续降低.看法:放开计划生育,鼓励多生优生,以免人口自然增长率为负(答案不唯一).【解答】解:(1)将这31个省、自治区、直辖市人口数从小到大排列处在中间位置的数是40百万人,因此中位数是40百万人,故答案为:40;(2)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区,故原结论正确,符合题意;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢,故原结论正确,符合题意;③2010﹣2021年全国大陆人口自然增长率的情况是:2010﹣2012,2013﹣2014,2015﹣2016年增长率持续上升;2012﹣2013,2014﹣2015,2016﹣2021年增长率持续降低,故原结论错误,不符合题意.所以结论正确的是①②.故答案为:①②;(3)2016﹣2021年全国大陆人口数增长缓慢,全国大陆人口自然增长率持续降低.看法:放开计划生育,鼓励多生优生,以免人口自然增长率为负(答案不唯一).一十五.中位数(共1小题)19.(2023•兰州)某校八年级共有男生300人,为了解该年级男生排球垫球成绩和掷实心球成绩的情况,从中随机抽取40名男生进行测试,对数据进行整理、描述和分析,下面是给出的部分信息.信息一:排球垫球成绩如图所示(成绩用x表示,分成六组:A、x<10;B、10≤x<15;C、15≤x<20;D、20≤x<25;E、25≤x<30;F、30≤x).信息二:排球垫球成绩在D、20≤x<25这一组的是:20,20,21,21,21,22,22,23,24,24;信息三:掷实心球成绩(成绩用y表示,单位:米)的人数(频数)分布表如表:分组y<6.0 6.0≤y<6.8 6.8≤y<7.67.6≤y<8.48.4≤y<9.29.2≤y人数2m10962信息四:这次抽样测试中6名男生的两项成绩的部分数据如表:学生学生1学生2学生3学生4学生5学生6排球垫球262523222215掷实心球▲7.87.8▲8.89.2根据以上信息,回答下列问题:(1)填空:m= 11 ;(2)下列结论正确的是 ②③ ;(填序号)①排球垫球成绩超过10个的人数占抽取人数的百分比低于60%;②掷实心球成绩的中位数记为n,则6.8≤n<7.6;③若排球垫球成绩达到22个及以上时,成绩记为优秀,如果信息四中6名男生的两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀;(3)若排球垫球成绩达到22个及以上时,成绩记为优秀,请估计全年级男生排球垫球成绩达到优秀的人数.【答案】(1)11;(2)②③;(3)75人.【解答】解:(1)m=40﹣2﹣10﹣9﹣6﹣2=11,故答案为:11;(2)由条形统计图可得,排球垫球成绩超过10个的人数占抽取人数的百分比:≥65%,①错误.掷实心球成绩的中位数记为n,则6.8≤n<7.6,②正确.若排球垫球成绩达到22个及以上时,成绩记为优秀,如果信息四中6名男生的两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀.理由:如果学生3的掷实心球的成绩未到达优秀,那么只有学生1、4、5、6有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,③正确.故答案为:②③;(2)∵排球垫球成绩达到22个及以上的人数:10人,∴全年级男生排球垫球成绩达到优秀的人数是:300×=75,答:估计全年级男生排球垫球成绩达到优秀的人数是有75人.。
2023年甘肃省兰州市中考数学真题(精品解析)【可编辑可打印】
∴ D = b2 - 4c = 0
∴
2
b
-
2
(1+
2c)
=
2
b
-
4c
-
2
=
0
-
2
=
-2
,
故选: A.
【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.
8
9. 2022 年我国新能源汽车销量持续增长,全年销量约为 572.6 万辆,同比增长 91.7%,连续 8 年位居 全球第一.下面的统计图反映了 2021 年、 2022 年新能源汽车月度销量及同比增长速度的情 况.(2022 年同比增长速度= 2022年当月销量 - 2021年 当月销量 100% )根据统计图提供的信息,下列推断不
D. 2p cm
【分析】根据弧长公式求解即可.
【详解】解:弧的半径OA = 20cm ,圆心角 AOB = 90 ,
∴ B=
ቤተ መጻሕፍቲ ባይዱ
= 10p ,
故选: B.
【点睛】题目主要考查弧长公式,熟练掌握运用弧长公式是解题关键.
6
7. 已知二次函数y = -3(x - 2)2 - 3 ,下列说法正确的是( )
A. 对称轴为x = -2 B. 顶点坐标为(2,3)
【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解题的关键.
5
6. 如图 1 是一段弯管,弯管的部分外轮廓线如图 2 所示是一条圆弧A»B ,圆弧的半径OA = 20cm ,圆心
角 AOB = 90 ,则 B = (
)
A. 20p cm 【答案】B
【解析】
B. 10p cm
C. 5p cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省兰州市2020年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题4分,共48分) 1.-2020的绝对值是( C ).2.如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( A ).A .B .C .D .3.据中国电子商务研究中心(100EC .CN )发布《2020年度中国共享经济发展报告》显示,截止2020年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( C ) A.1159.56×108元 B.11.5956×1010元 C.1.15956×1011元 D.1.15956×108元4.下列二次根式中,是最简二次根式的是( B ).A.18B.13C.27D.12 5如图,AB//CD,AD =CD ,∠1=65°则∠2的度数是( A ) A .50° B .60° C .65° D .70°6.下列计算正确的是( D )A.ab a a 532=⋅B.1243a a a =⋅C.24226)3-b a b a =( D.22352a a a a =+÷ 7.如图,边长为4的等边△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 的面积是( A )A.3B.23 C.433 D.328.如图,矩形ABCD 中,AB =3,BC =4,BE//DF 且BE 与DF 之间的距离为3,则AE 的长度是( C ) A. 7 B .83 C .87 D .859.如图,将口ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F .若∠ABD =(第7题)C AE D BABCDEF48°,∠CFD =40°,则∠E 为( B )112° C .122°D .92°10.关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为( D ) A. a >1 B .a <1 C .a <1且a ≠-2 D .a >1且a ≠2D.解析:化简得x =a -1<0(x ≠-1)即a>1且a ≠2.11.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,有下列5个结论: ①0>abc ;②b -a >c ;③)1)((b a ;a 3024的实数>⑤>;④>≠++-++m b am m c c b a .其中正确的结论有( B )A.①②③B.②③⑤C.②③④D.③④⑤B.解析:开口向下,a<0,与y 轴交点在上方,c>0,021>ab x x -=+,即b>0,故0<abc ;x =-1时,y =a -b +c<0,故b -a>c ;x =2时,y =4a +2b +c<0;a cx x =21是2到3之间的数x -1到0之间的数>-3,故3a<-c ;⑤式化解得,0)(2<+-+b a bm am ,0)1()1(2<b m a m -+-,无论m 大于1还是≤1,该式总成立,故⑤成立,即答案为B .12.如图,抛物线2457212+-=x x y 与x 轴的交于点A 、B ,把抛物线在x 轴即其下方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴的交于点B 、D .若直线m x y +=21与C 1、A.25-m 845<<-B.21-m 829<<-C.25-m 829<<-D.21-m 845<<- C.解析:在y =2457212+-x x 中,令y =0,解得x 1=9,x 2=5,∴点A ,B 的坐标分别为(9,0),(5,0).∵C 2是由C 1向左平移得到的,∴点D 的坐标为(1,0),C 2对应的函数解析式为y =23212--)(x =253212+-x x (1≤x≤5).当直线y =m x +21与C 2相切时,可知关于x 的一元二次方程253212+-x x =m x +21有两个相等的实数根,即方程x 2-7x +5-2m =0有两个相等的实数根,∴Δ=(-7)2-4×1×(5-2m )=0,解得m =829-.当直线y =m x +21过点B 时,可得0=m +⨯521,解得m =25-.如图,故当829-<m<25-,直线y =m x +21与C 1,C 2共有3个不同的交点.二、填空题:本大题共4小题,每小题3分,共24分. 13.因式分解:32y y x -= .y(x +y)(x -y)14.不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 .-1<x<3.O 的半径为3,∠C =55°,则劣弧AB 的长是 .π211.13. 如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM =BN ,连接AB 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是 .OA CB三、解答题(本大题共11小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(5分)计算:()︒+++⎪⎭⎫ ⎝⎛--45tan 2-13-2102π.解:2-71)12(14=+--+=原式.18.解方程:02232=--x x . 解:移项,得3x 2-2x =2,配方,得3(x -31)2=37, 解得x 1=371+,x 2=371- .19.先化简,再求值:12)143(--÷---x x x x x ,其中21=x .解:原式=211442--⋅-+-x x x x x =2+x ,代入21=x 得原式=25.20. (6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:∠A 的角平分线作法.作图略. 21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛帮助,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.B学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题: (1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中的“3次”所对应的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,统计该校学生在一周内借阅图书“4次及以上”的人数.解:(1)17,20%.310137%2613----÷=a =17,b =()%261310÷÷=20%;(2)10,10.由中位数和众数的定义即可得;(3)72°.360°⨯20%=72°; (4)120人.1205032000=⨯(人) 22.(7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样就确定了点M 的坐标(x ,y ). (1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y =x +1的图像上的概率.(2)4.解:一共12个点坐标,有三个点坐标在上面.23. (7分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B30°,60°.求CD 的高度.(结果保留根号)解:过B 点作CD 的垂线,垂足为F,设CD =x 米,则DF =(x -3)(米),BF =AC ,BF =)x(330tan 米=︒DE,AC =AE +CE=x CD 331830tan 18+=︒⋅+,即x x 33183+=, 解得,39=x ,即CD 长为93米.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商家管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该商品单价每降1元,每天的销售量增加2件,设第x 天(1≤x≤30,且x 为整数)的销量为y 件.(1)直接写出y 与x 的函数关系式; (2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?解:(1)y =38+2x ;解析:y =40+2(x -1)=2x +38;(2)()()[]1580145382----+=x x w =()20412122+--x故x =21时,w 值最大,为2041元,即第21天时,利润最大,最大利润为2041元.25.(8分)如图,在平面直角坐标系中,一次函数y 1=ax +b 的图像与反比例函数xk y =2的图像交于点A (1,2)和B (-2,m ). (1)求一次函数和反比例函数的表达式; (2)请直接写出21y >y 时,x 的取值范围;(3)过点B 做BE//x 轴,BE AD ⊥于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标.解:(1)xy x y 2;121=+=(3)()),1(0,2+∞- (3)C 点的坐标为()()1-3-11,31,和-+;解析:易知D (1,-1),设C 点坐标为(x ,-1),故AC =223)1(+-x ,BC =1-x ,由AC =2BC 可知,224BC AC =,即()()2221431-=+-x x ,解得313121-=+=x x ,,故C 点的坐标为()()1-3-11,31,和-+.26.(8分)如图,在∆ABC 中,过点C 作CD//AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G .连接AD 、CF . (1)求证:四边形AFCD 是平行四边形; (2)若GB =3,BC =6,BF =23,求AB 的长. 证明(1).//)(//是平行四边形四边形又△△又∵的中点是∵AFCD CDAF CD AF ASA CED AEF CEAE CED AEF DCE FAE CD AF CE AE AC E ∴=∴≅∴=∠=∠∠=∠∴=∴(2)6,29,29//=+=∴====∴BF AF AB CD AF CD CD BF GC GB GCD GBF CDBF 又代入数值,可得∽△易得△∵即AB 的长为6. 27.(9分)如图,AB 为圆O 的直径,C 为圆O 上的一点,D 为BA 延长线上的一点,B ACD ∠=∠.(1)求证:DC 为圆O 的切线;(2)线段DF 分别交AC ,BC 于点E ,F ,且CEF ∠=45°,圆O 的半径为5,53sin =B ,求CF(1)连接OC ,DD.909090的切线是圆的直径是圆∵∵O CD CD OC OCA DAC OCB OCA ACB O AB OCB OBC OCOB ∴⊥∴︒=∠+∠∴︒=∠+∠∴︒=∠∴∠=∠∴= (2)解析:由∠CEF =45°,∠ACB =90°,可知,∠CFE =∠CEF =45°,即CF =CE . 由53sin =B ,可得AC =6,由勾股定理得,BC =8,设CF =CE =x ,由∠CDE =∠BDF ,∠ECD =∠FBD ,可知,△CED 相似于△BFD ,即①x xCD FD CE BF -==8,由∠CFD =∠AED ,∠EDA =∠FDC ,可知△CFD 相似于△AED ,即②x x ED FD AE CF -==6,联立①②得,724=x ,即CF 的长为724.28.(12分)如图,抛物线42-+=bx ax y 经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC . (1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.解:(1)将A ,B 两点的坐标分别代入, 得⎩⎨⎧-=-+=--,44525,0439b a b a解得⎪⎪⎩⎪⎪⎨⎧-==,65,61b a故抛物线的表达式为y =465612--=x x y .(2)证明:设直线AB 的表达式为y =kx +b’,第28题图则⎩⎨⎧-=+=+-,4'5,0'3b k b k解得⎪⎪⎩⎪⎪⎨⎧-=-=,23',21b k故直线AB 的表达式为y =2321--x . 设直线AB 与y 轴的交点为点D ,则点D 的坐标为(0,23-). 易得点C 的坐标为(0,-4),则由勾股定理,可得AC =5)04(]30[22=--+--)(. 设点B 到直线AC 的距离为h , 则52132121⨯⨯+⨯⨯=⨯CD CD AC h , 解得h =4.易得点B 到x 轴的距离为4, 故AB 平分∠CAO . (3)存在.易得抛物线的对称轴为直线25=x , 设点M 的坐标为(m ,25).由勾股定理,得AB 2=[5-(-3)]2+(-4-0)2=80,AM 2=[25-(-3)]2+(m -0)2=4121+m 2,BM 2=(25-5)2+[m -(-4)]2=m 2+8m +489. 当AM 为该直角三角形的斜边时, 有AM 2=AB 2+BM 2,即4121+m 2=80+m 2+8m +489,解得m =-9, 故此时点M 的坐标为(25,-9). 当BM 为该直角三角形的斜边时, 有BM 2=AB 2+AM 2,即m 2+8m +489=80+4121+m 2, 解得m =11,故此时点M 的坐标为(25,11). 综上所述,点M 的坐标为(25,-9)或(25,11).。