挤压铸造原理及缺陷分析实用版
压铸件缺陷分析
产生原因
防止方法
名称
沿开模具方向
1. 型腔表面有损伤。
1. 修理模具表面损伤处, 修正
铸件表面呈线条
2. 出模方向斜度太小或倒斜。
斜度,提高光洁度。
状的拉伤痕迹, 有 3. 顶出时偏斜。
2. 调整顶杆,使顶出力平衡。
一定深度, 严重时 4. 浇注温度过高或过低、模温
3. 更换脱模剂。
压铸机性能,所提供的能量能否满足所需要的压射条件:压射力、压射速度、锁模力是 否足够。压铸工艺参数选择及调控是否合适,包括压力、速度、时间、冲头行程等。 2) 压铸模引起
模具设计:模具结构、浇注系统尺寸及位置、顶杆及布局、冷却系统。 模具加工;模具表面粗糙度、加工精度、硬度。
模具使用:温度控制、表面清理、保养。 3) 压铸件设计引起
压铸件缺陷分析
一、 缺陷分类及影响因素 1.缺陷分类 1) 几何缺陷:压铸件形状、尺寸与技术要求有偏离;尺寸超差、挠曲、变形等。 2) 表面缺陷:压铸件外观不良,出现花纹、流痕、冷隔、斑点、缺肉、毛刺、飞边、缩痕、 拉伤等。 3) 内部缺陷:气孔、缩孔、缩松、裂纹、夹杂等,内部组织、机械性能不符合要求。 2.影响因素 1) 压铸机引起
1. 降低浇注温度,减少收缩量。
查,孔洞形状不 规则、不光滑、
收缩而得不到金属液补偿而 造成孔穴。
2. 提高压射比压及增压压力, 提高致密性。
表面呈灰色;大
2. 浇注温度过高,模温梯度分
3. 修改内浇口,使压力更好传
而集中为缩孔、
布不合理。
缩孔 小 而 分 散 为 缩 3. 压射比压低, 增压压力过低。
高熔点合金。
加而不断扩大和
4. 浇注温度过高。
2.压铸产品铸造缺陷产生原因及处理办法
压铸产品铸造缺陷产生原因及处理办法1、表面铸造缺陷1.2、气泡(1)特征:铸件表面有米粒大小隆起的表皮下形成的空洞。
(2)产生原因①合金液在压室充满度过低,易产生卷气,压射速度过高;②模具排气不良;③熔液未除气,熔炼温度过高;④模温过高,金属凝固时间不够,强度不够,而过早开模顶出铸件,受压气体膨胀起来;⑤脱模剂太多;⑥内浇道开设不良,充填方向交接。
(3)处理方法①改小压室直径,提高金属液充满度;②延长压射时间,降低第一阶段压射速度,改变低速与高速压射切换点;③降低模温,保持热平衡;④增设排气槽、溢流槽,充分排气,及时清除排气槽上的油污、废料;⑤调整熔炼工艺,进行除气处理;⑥留模时间适当延长;⑦减少脱模剂用量,尽量少用油脂脱模剂。
1.3、裂纹(1)特征①铸件表面有呈直线状或波浪形的纹路,狭小而长,在外力作用下有发展趋势;②冷裂纹开裂处金属没被氧化;③热裂纹开裂处金属已被氧化。
(2)产生原因①合金中有害杂质的含量过高,降低了合金的塑性;②模具,特别是模腔整体温度太低;③铸件壁厚、薄存有剧烈变化之处,收缩受阻,尖角部位形成应力;④留模时间过长,应力大;⑤顶出时受力不均匀。
(3)处理方法:①正确控制合金成分,②改变铸件结构,加大圆角,改变出模斜度,减少壁厚差;③变更或增加顶出位置,使顶出受力均匀;④缩短开模及抽芯时间;⑤提高模温,保持模具热平衡。
1.6、冷隔(1)特征:压铸件表面有明显的、不规则的、下陷线性纹路(有穿透与不穿透2种)形状细小而狭长,有的交接边缘光滑,在外力作用下有发展的可能。
(2)产生原因①两股金属流相互对接,但未完全熔合而又无夹杂存在其间,两股金属结合力很薄弱;②浇注温度或压铸模温度偏低;③选择合金不当,流动性差;④浇道位置不对或流路过长;⑤充填速度低,压射比压低。
(3)处理方法①适当提高浇注温度和模具温度;②提高压射比压,缩短充填时间;③提高压射速度,同时加大内浇道截面积;④改善排气、填充条件;⑤正确选用合金,提高合金流动性。
挤压铸造原理及缺陷分析
挤压铸造原理及缺陷分析上海大学 唐多光3 张金龙昆山易通汽配厂 徐张翼沈友良 程黔国摘 要 论述了以低速、大流量、平稳充填铸型并在瞬间及时增压是挤压铸造的基本原理。
分析了实际铸造比压偏小以及不能瞬间及时增压是造成摩托车车轮挤压铸件表面起泡和冷隔的主要原因。
为防止挤压铸造铸件缩裂、缩孔产生和提高铸造比压,推荐一种合理料缸(压室)设计。
关键词:挤压铸造 增压 表面气泡 冷隔 缩裂纹中图分类号:TG249.2 文献标识码:A 文章编号:1001-2449(2003)01-0043-031 前言随着轿车工业飞速发展,轿车轻量化是轿车制造厂商首选目标之一。
全世界轿车铝合金用量到2005年可望达到112kg/辆水平。
而决定这一指标的关键是铝合金零件品质。
铝合金压铸件占轿车铝合金零件60%以上[1,2]。
然而常规铝合金压铸由于射速太快(30~60m/s),铝合金压铸件内含有许多气泡,铸件不能承受热处理,力学性能不能提高,铸件也不能深度加工(加工量限1mm内),压铸件承受压力和气密性要求也十分困难。
因此常规压铸要承担制造高品质、高强度、高气密性轿车零件任务遇到极大困难。
近年来发展一种以低速、大流量平稳充型、瞬时增压的挤压铸造技术,弥补了压铸缺陷并迅速被推广应用。
但由于缺乏正确理论引导,许多厂家一哄而上,在遇到困难后又纷纷下马。
摩托车车轮行业,1992年后挤压铸造车轮一度占有市场40%以上,现在已萎缩到不足10%,而且都是低档产品。
笔者根据挤压铸造基本原理,分析了缺陷产生原因并提出了对策。
2 挤压铸造原理挤压铸造是将合金以较低速度和较大流量平稳地挤入铸型后,瞬时增压,使合金精确复制铸型并在高压下凝固的一种铸造技术[3]。
2.1 挤压铸造基本特点(1)挤压铸造设备必须能够提供低速(0.5~3m/s),大流量(1~5kg/s)填充铸型能力,以便使金属液较平稳地填充铸型和将型内气体驱出铸型,而且要求在铸型被充满后瞬间(50~150ms内)将铸型内铸造比压提升到60~100MPa,使合金在高压下成型和凝固。
铝合金挤压制品缺陷分析及预防措施
1 挤压裂纹 • 形成机理:由于摩擦力的原因,金属变形不均匀,使表层金属受 附加拉应力的作用,当拉应力积累到超过金属破断强度时就产生裂纹。 挤压裂纹多发生铝制品棱角、尖角锐边或厚度较大的台阶附近产生的 锯齿状开裂。因铝合金不纯,杂质超标,热塑性差;坯料加热温度偏 高,晶粒粗化,从而使金属破断抗力降低;控温仪表失灵,挤压温度 偏高,挤压速度失控,突然加快,增大了挤压热塑性变形应力,接近 模壁外层的金属因承受过大拉应力被撕裂为锯齿状或皮下裂纹;挤压 热塑性变形不均,表层金属承受较大的摩擦力和附加拉应力:当瞬时 应力超过金属抗拉强度时产生挤压裂纹,在外力作用下裂纹由表面向 内扩展至断裂。
10 擦伤 铝制品轻微擦伤不仅表面不美观且急剧降低机械力学性能和耐用度, 严重擦伤铝制品不能使用,成为废品,造成经济损失。 • 因挤压模型面粗糙度大,有较深冷加工刀痕、磨痕和碰伤沟痕,擦 伤铝制品表面,产生凹凸印迹;模具红硬性、耐磨性不足,模面与约 450℃-500℃铝金属坯料接触,且焖模时间长,过度回火导致型面硬 度降低而软化。由于铝制品挤压时激烈的金属塑性流动与模腔发生强 烈摩擦,将加深模面沟槽,使铝制品表面更加粗糙,失去商品表面; 挤压工模具装配不合理且间隙过大,导致热塑铝金属从模孔流出过程 中表面与工模具及设备接触不良,从而造成严重擦伤;压型导管和导 路装配不当,或挤压筒内有铝金属氧化物硬壳、夹渣、尘砂等异物进 入模孔,擦伤模具工作带,造成铝制品擦伤。 •
7 组织线、模线及毛刺
•
该缺陷与铸造工艺、挤压工艺和模具有关,严重影响铝制品商品美 观和质量。因铝铸锭宏观或微观组织不均匀和铝铸锭均匀化处理不充 分以及铝铸锭合金成分与结晶方式不同。易形成不同结晶粒度与不同 结晶方向,导致出现与挤压方向一致的带状组织线;铝铸锭若有折迭 和夹渣时,往往会因不适当地从边缘 间隙进料,使铝金属强烈热塑性 流动;挤压力偏心造 成坯料氧化皮及其它异物挤进工作带和模孔;铝 坯料与挤压筒之间间隙过大,或坯料夹渣、过热及工作带 长度突然变 化等均会导致组织线、模线产生。毛刺是在制品表面出现的不规则的 蝌蚪状、点状的划伤缺陷,由挤压筒和金属温度过高挤压速度太快或 不均匀,模具工作带硬度不够软硬不均、工作带太长、工作带粘铝等 原因造成。
挤压铸造原理及缺陷分析
挤压铸造原理及缺陷分析挤压铸造是一种将熔融金属挤压入模具中制造零件的方法。
其原理是通过一个称为挤压器的设备,在高温下应用高压将熔融金属挤压入永久性金属模具中,形成所需形状的零件。
这种工艺是高效率、高精度和高可靠性的制造方法之一。
挤压铸造的过程是将熔化的金属通过压力挤压入设计好的金属模具中。
在挤压过程中,金属将受到高度的压缩力,以使其具有所需的形状和结构。
这种挤压过程需要高度的技巧和专业知识,以确保零件的质量可靠。
挤压铸造的优点包括高精度、高品质、高效率、低成本、短周期、较少的加工量和高重复性。
另外,挤压铸造可用于制造一些常规铸造方法无法制造的零件。
挤压铸造过程中存在的缺陷包括:1. 内部气孔:在挤压过程中,熔化的金属流动性良好,但可能会导致在制造过程中产生气泡。
这些气泡会影响零件的质量和强度,甚至可能导致零件崩溃。
2. 金属受力不均:在挤压过程中,金属受到的压力和力量可能不均匀分布,这可能导致零件的某些区域强度低下。
3. 熔化的金属会受到冷却:在挤压过程中,金属会受到自然冷却。
这可能会降低材料的可加工性,并影响零件的准确度和质量。
4. 模具磨损:在整个挤压过程中,模具接触熔化的金属多次,并经受高压挤压力作用。
这可能导致模具表面磨损、裂纹或其它缺陷,进而影响零件质量。
5. 长时间的实验和制造周期:挤压铸造通常需要花费较长的时间来制造。
这可能导致生产周期较长,并且对公司的成本和效率产生不利影响。
总之,虽然挤压铸造具有创新性、可靠性和高效性等优点,但同时也存在一些缺陷,需要在制造过程中得到控制和解决。
铝合金挤压缺陷分析及质量控制方法
铝合金挤压缺陷分析及质量控制方法铝合金挤压是一种常见的金属加工方法,可以制造出各种形状复杂、尺寸准确的铝合金材料。
在挤压过程中,可能会出现一些缺陷,如裂纹、畸变、气泡等。
这些缺陷对最终产品的性能和质量产生重要影响。
因此,对铝合金挤压缺陷进行分析和质量控制非常重要。
首先,我们来分析一些铝合金挤压可能出现的缺陷:1.裂纹:裂纹是挤压过程中最常见的缺陷之一,可能是由于材料的拉伸、压缩或应力过大引起的。
裂纹通常位于材料的边缘或内部,严重影响材料的强度和耐久性。
2.畸变:挤压过程中,材料受到强烈的变形力,可能导致其形状发生畸变。
这可能是由于模具设计不当、材料不均匀或挤压温度过高等原因引起的。
畸变会影响产品的精度和外观质量。
3.气泡:在挤压过程中,可能会产生气泡,这通常与气体溶解度、挤压温度、模具设计等因素有关。
气泡会降低材料的强度和断裂韧性。
为了控制和避免上述铝合金挤压缺陷,可以采取以下质量控制方法:1.优化模具设计:合理的模具设计可以减少挤压过程中的应力集中和变形,降低裂纹和畸变的风险。
通过对挤压参数和材料性能的充分了解,可以设计出适合的模具几何形状和尺寸。
2.选择合适的挤压温度:挤压温度对铝合金挤压过程中的材料流动性和冷却速率具有重要影响。
选择适宜的挤压温度可以避免材料的过度损伤和缺陷的产生。
3.控制挤压速度:挤压速度对挤压过程中的应力分布和微观组织形成有影响。
过高的挤压速度可能引起过度的应力和快速冷却,增加裂纹和畸变的风险。
因此,需要控制挤压速度,使之适应材料的性质和模具的要求。
4.严格控制材料质量:合格的原材料是制造高质量铝合金挤压材料的基础。
需要严格遵守材料规格和标准,进行材料化学成分和物理性能的检测,确保材料的可靠性和稳定性。
5.加强挤压过程监控:挤压过程中需要不断监控挤压力、温度、速度等参数,及时反馈调整,并进行质量检验。
通过合理的挤压工艺和检测控制方法,可以最大限度地避免缺陷的出现。
以上是针对铝合金挤压缺陷的分析及质量控制方法的简要介绍。
挤压铸造原理及缺陷分析
挤压铸造原理及缺陷分析挤压铸造技术与传统金属型重力铸造相比区别较大,对于某些铸件的生产有独特优势,然而实际生产中出现的一些铸造缺陷,成因也不同于传统铸造,本文试图从原理和生产实际出发,分析挤压铸造的原理和流程参数,及其铸造常见缺陷,利用技术上的经验和实践提出改进方法,已达到推进该项铸造技术的推广,减少损失。
挤压铸造原理及特点1.1.基本原理挤压铸造又可称为液态模锻,是将金属或合金升温至熔融态,不加处理注入到敞口模具中,立即闭合模具,让液态金属充分流动以充填模具,初步到达制件外部形状,随后施以高压,使温度下降已凝固的外部金属产生塑性变形,而内部的未凝固金属承受等静压,同步发生高压凝固,最后获得制件或毛坯的方法。
由于高压凝固和塑性变形同时存在,制件无缩孔、缩松等缺陷,组织细密,力学性能高于铸造方法,接近或相当锻造方法;无需冒口补缩和最后清理,因而液态金属或合金利用率高,工序简化,为一具有潜在应用前景的新型金属加工工艺。
1.2.挤压铸造的特点挤压铸造的工艺对铸造设备有特殊的要求,并且目前只对部分铸件有较好的效果。
首先,挤压铸造设备,需要提供低速但流量较大的液态金属填充能力,速度约为0.5~3m/s,流量可达1~5kg/s,这样熔融态金属才能平稳地将铸型内气体排出,并填充铸型,随后铸型填满的瞬间(50ms~150ms),应能将铸型内铸造比压提升到60~100MPa,这样合金便能在高压下凝固成型。
由于前述的低速大流量,且挤压铸造内浇道有冒口补缩的作用,内浇道口径较大,且位于铸件最肥厚的部位。
由于上述特点,挤压铸造适合厚壁铸件(10~50mm),但铸件尺寸不宜太大(小于200mm)。
与压铸相同,挤压铸造只可使用脱模剂,不适用保温涂料,故而金属凝固速度极快,达到300~400摄氏度/s,与金属型重力铸造冷却速度相比,达到了其3~5倍,伸长率高于其他铸造方法约2~3倍。
挤压铸造的生产工艺流程以直径190系列的铝活塞为例,介绍挤压铸造的工艺流程,挤压铸造借鉴于压力铸造和模锻工艺,其大体工艺流程为把液态金属直接浇入金属模内。
铸造缺陷总结汇报稿件模板
铸造缺陷总结汇报稿件模板铸造缺陷总结汇报稿件模板一、引言铸造是制造业中常用的一种生产工艺,然而由于铸造过程中涉及到多个工序和因素,常常会出现一些铸造缺陷。
本汇报将对铸造缺陷进行总结和分析,以期为相关行业提供经验和参考。
二、常见的铸造缺陷1.砂眼在铸造过程中,砂芯或砂模上形成的未被填充的孔洞称为砂眼。
砂眼通常是由于砂芯太大、挤压不足或砂芯回缩等原因导致的。
砂眼会降低铸件的密封性和强度。
2.气孔气孔是指在铸件内部形成的气体聚集的孔洞。
气孔通常是由于砂芯组织不合理、熔融金属中气体含量过高或浇注速度过快等原因导致的。
气孔会降低铸件的强度和牢固性。
3.砂洞砂洞是在铸件表面形成的凹陷或孔洞。
砂洞通常是由于砂芯或砂模颗粒细度不均匀、填充不充分或振动力度不够等原因导致的。
砂洞会影响铸件的外观质量。
4.缩松缩松是铸件内部形成的缺陷,表现为局部的收缩或挤压。
缩松通常是由于金属液体和砂芯组织之间的界面张力不平衡导致的。
缩松会降低铸件的强度和韧性。
5.冷隔冷隔是指铸件内部形成的冷却速度不均匀导致的缺陷。
冷隔通常是由于浇注温度过低、铸型材料导热性差或浇注速度过快等原因导致的。
冷隔会影响铸件的尺寸精度和内部组织均匀性。
三、分析铸造缺陷的原因1.工艺问题铸造过程中,如果工艺操作不当、温度控制不稳定或流变性能不合理等,都会导致铸造缺陷的产生。
因此,严格的工艺控制和操作规范是避免铸造缺陷的关键。
2.材料问题铸造材料的质量对于铸造缺陷的产生有着重要影响。
选择合适的材料、控制材料的成分和性能,并进行必要的熔炼和净化处理,可以有效地减少铸造缺陷的发生。
3.设备问题设备的性能和状态也会对铸造缺陷的产生产生影响。
维护设备的正常运行、检查设备的精度和稳定性,并及时修复或更换老化的设备,可以提高铸造质量。
四、预防铸造缺陷的方法1.优化设计在铸造件的设计阶段,应注意避免设计不合理的部位,如过于复杂的结构、太薄或太厚的壁厚等。
合理的设计可以减少铸造缺陷的发生。
压铸件常见的缺陷分析及其改善措施
粘模
金属粘附压铸模表 面
(1)金属液温度太高;(2)压铸模温度过高或过 低;(3)(铝合金)中含铁量过低;(4)脱模剂使用不 当;(5)压铸模中有热节;(6)压铸模或金属液温度 太高;(7)铸件或浇道未凝.
(1)保持正确浇注温度;(2)保持正确压铸模温度;(3)增加含铁量到 1.0%;(4)正确使用脱模剂;(5)冷却水是否畅通或增加冷却速 度;(6)保证正确的模温和金属液温度;(7)增加压铸冷却速度.
纯净.
ቤተ መጻሕፍቲ ባይዱ
冷隔、 花纹、 浇不足
金属冷接,搭接;铸 (1)金属温度太低;(2)冲头速度过慢;(3)储气瓶
件表面有不规则的 氮压过低;(4)压铸模温度过低;(5)排气不良;(6)
光滑条纹;铸件形 涂料堆聚过多;(7)冲头或压室磨损;(8)浇口不合
状不完整.
理发生喷溅式分股入型腔;(9)压射比压不足.
(1)保证正确金属液温度,检查控温装置;(2)确定正确压射速度并 使之恒定;(3)查看储气瓶压力表及供油指示器必要时补加氮 气;(4)保证正确模温;(5)增加或修改通气孔和溢流槽;(6)涂料用 量及浓度合适;(7)必要时更换;(8)改进浇口设计;(9)提高压射比 压.
气泡
(1)金属夹裹气体过多;(2)金属液温度过高;(3) (1)增加缺陷部位的溢流槽和排气孔,减少冲头速度;(2)保证正确
压铸模温度不高;(4)压铸涂料多;(5)浇注系统不 温度;(3)控制压铸模温度;(4)涂料少,且无均匀;(5)修改浇注系
合理排气不畅;(6)开模过早.
统;(6)延长持压时间和留模时间.
压铸件常见的缺陷分析及其改善措施
种类
特征
形成原因
改善措施
气孔
(1)金属浇入温度太高;(2)熔炼工艺不当或金属
挤压缺陷及其消除方法
1.提高设计和制造水平 2.安装合适的导路,牵引挤压 3.对流速慢的部位进行润滑或修模
1.不要随便停车或突然改变挤压速度 2.不要用手突然搬动型材,可用工具慢 慢导正
2.挤压筒和挤压垫片太脏,沾有油污、水分 、石墨等
3.更换合金时,筒内未清理干净
气泡或起皮 4.铸锭表面铲槽太多,过深;或铸锭表面有 气孔、砂眼、组织疏松、有油污等
5.挤压筒温度和铸锭温度太高
6.铸锭尺寸超过允许负偏差
7.填充太快,铸锭温度不均,引起非鼓形充 填,因而筒内排气不完全
8.切压余时空气进入
表面腐蚀
3.挤压机工作台面不平 挤压时工作台漏水,制品表面的水未及时清 除 1.模具设计不合理
焊缝不合格பைடு நூலகம்
2.挤压系数太小 3.挤压温度太低 4.挤压速度太快 焊缝不合格 5.挤压垫片有油 6.压余太短,以至于产生缩尾 7.铸锭表面太脏 8.合金不合适
消除方法
1.严格执行各项加热和挤压规范 2.修改模具设计、精心加工
4.尺寸检查错误或漏检
尺寸不合格 5.挤压时铸锭温度升得太高,挤压速度变化 太快
6.对定尺产品,因铸锭长度计算错误或毛料 切得太短,或因制品尺寸正偏差而引起不够 定尺长度
扭拧 弯曲 波浪
1.模孔设计不合理 2.导路不合适或为安装导路 3.模具润滑不适当 4.挤压速度不合适
1.挤压速度突变或中间停车
硬弓 2.挤压过程中,操作人员用手突然搬动型材
及时修理漏水位置,制品上有水要及 时擦干净或干燥处理 1.合理设计模具
2.适当增大挤压系数 3.适当提高挤压温度 4.适当降低挤压速度 5.垫片不涂油或少涂油 6.适当增加压余长度 7.采用表面清洁的铸锭挤压 8.选用适当的合金
铝挤压过程缺陷分析与质量控制
3、节流阀失控;
4、加热炉仪表失灵;
5、多孔挤压时,模孔排列太靠中心,使中心金属供给量不足,以致中心与边部流速差很大;
6、模具设计、制造不佳;
7、铸锭均匀化退火不好
1、严格执行各项加热和挤压规范;
2、经常巡回检测仪表和设备,以保证正常运行;
3、修改模具设计、精心加工,特别是模桥、焊合室和棱角半径等处的设计要合理;
粗晶环:有些铝合金制品在淬火处理后经低倍检查,在端面上晶粒大小不一,周边晶粒特别粗大,形成环状组织的缺陷,越近尾端粗晶环深度越大
1、压变形不均匀,金属受到挤压筒壁的磨擦,物理变形程度大,晶粒严重破碎,热处理加热时表面层晶粒显著长大变粗;
2、淬火温度过高或保温时间过长;
3、与合金成分有关及铸锭组织有关
1、挤压筒内壁光洁,形成完整的铝套,减少挤压时的磨擦力。
2、变形尽可能均匀(控制温度、速度等);
3、避免淬火温度过高;
4、用多孔模挤压;
5、用反挤压法和静挤压法挤压;
6、用淬火-拉拔-时效法生产;
7、调整合金成分,增加再结晶抑制元素;
8、采用较高的温度挤压;
9、某些合金不均匀化处理,在挤压时粗晶环较浅
5、挤压温度均匀不要过高,挤压速度要均匀;
6、模孔出口带和导路表面光洁;
7、型材出模口后要平直,不要与石墨、油污接触、冷却均匀
表面缺陷:主要指小黑点、黑斑、小亮条、白带、小白点、雪花斑、小针孔、麻点等表面缺陷
1、熔铸过程中产生的原因:化学成分不均,有金属夹杂,气孔、疏松、非金属夹杂、氧化膜等非金属夹杂,晶粒不均匀(组织不均匀);
2、挤压方面的原因:挤压速度过快,温度不均匀,变形不均匀,冷却不均匀,与石墨、油污接触处产生组织不均匀;
挤压过程中常见的缺陷和对策
挤压过程中常见的缺陷和对策挤压过程常见的缺陷有:挤压缩孔、“死区”剪烈和折叠、纵向裂纹、横向裂纹、挤压件弯曲、由拉缩引起的截面尺寸不符、残余应力大、以及粗晶环等。
挤压缩孔是挤压矮坯料时常易产生的缺陷,这时由于B区金属的轴向压应力小,故当A 区金属往凹模孔流动时便拉着B区金属一道流动,使其上端面离开冲头并呈凹形,再加上径向压应力的作用便形成这样的缩孔。
防止的对策是正确控制压余的高度,必要时可增加反向推力。
挤压时,如果摩擦系数大和模具温度较低时,常在凹模底部形成一个难变形区,通常称为“死区”。
由于该区金属不变形,而与其相邻的上部金属有变形和流动,于是便在交界处发生强烈的剪切变形,严重时将引起金属剪裂,即“死区”裂纹,有时可能由于上部金属的大量流动带着“死区”金属流动而形成折叠。
应当指出,在与“死区”交界处产生的强烈剪切变形对挤压件的组织和性能有重要影响,有关这方面的内容我们在《锻件组织和性能控制》一书中作了介绍,这里不再重复。
防止“死区”剪裂和折叠的对策是改善润滑条件和正确控制模具和坯料的温度,还可以采用带锥角的凹模,锥角的作用在于使作用力在平行于锥面的方向有一个分力,该分力与摩擦力的方向相反,从而有利于金属的变形和流动。
根据不同的条件可以通过计算确定一个合适的锥角,以抵消摩擦的影响。
在挤压筒内尽管可能产生挤压缩孔和“死区”剪裂等缺陷,但变形金属处于三向受压的应力状态,能使金属内部的微小裂纹得以焊合,使杂质的危害程度大大减小,尤其当挤压比较大时,这样的应力状态对提高金属的塑性是极为有利的。
但是在挤压制品中常常产生各种裂纹(图4-53)以及挤压件的弯曲、拉缩和残余应力等。
这些缺陷的产生与筒内的不均匀变形(主要是“死区”引起的)有很大关系,但更重要的是凹模孔口部分的影响。
挤压时,变形金属在经过孔口部分时,由于摩擦的影响,表层金属流动慢,轴心部分流动快,使筒内已经形成的不均匀变形进一步加剧,内外层金属流动速度有差异,但两者又是一个整体,因此必然要有相互平衡的内力(即附加应力),外层受拉应力,内层受压应力,图4-53a所示的裂纹就是附加拉应力作用的结果。
挤压变形的主要缺陷
挤压变形的主要缺陷1、模具的影响在挤压生产中,模具是在高温高压的状态下工作的,受压力和温度的影响,模具产生弹性变形。
模具工作带由开始平行于挤压方向,受到压力后,工作带变形成为喇叭状,只有工作带的刃口部分接触型材形成的粘铝,类似于车刀的刀屑瘤。
在粘铝的形成过程中,不断有颗粒被型材带出,粘附在型材表面上,造成了吸附颗粒。
随着粘铝的不断增大,模具产生瞬间回弹,就会形成咬痕缺陷。
若粘铝堆积较多,不能被型材拉出,模具瞬间回弹时粘铝不脱落,就会形成型材的表面粗糙、亮条、型材撕裂、堵模等问题。
我们现在使用的挤压模具基本是平面模,在铸棒不剥皮的情况下,铸棒表面及内在的杂质堆积在模具内金属流动的死区,随着挤压铸棒的推进及挤压根数的增多,死区的杂质也在不断的变化,有一部分被正常流动的金属带出,堆积在工作带变形后的空间内。
有的被型材拉脱,形成了吸附颗粒。
因此,模具是造成吸附颗粒的关键因素。
2、挤压工艺的影响挤压工艺参数的选择正确与否也是影响吸附颗粒的重要因素。
经过现场观察,挤压温度、挤压速度过高,吸附颗粒就越多,原因是由于温度高、速度快,型材流动速度增加,模具变形的程度增加,金属的流动加快,金属的变形抗力相对减弱,更易形成粘铝现象;对大的挤压系数来说,金属的变形抗力相对增加了,死区相对增大,提高了形成粘铝的条件,形成吸附颗粒的概率增加;铸棒加热温度与模具温度之差过大,也易造成粘铝问题,甚至堵模;工模具表面的粗糙度、工作带表面的硬度等,也是造成粘铝,形成吸附颗粒的原因之一。
3、铸棒质量的影响铸棒质量是影响铝型材表面及挤压成型的重要因素。
吸附颗粒的成因与铸棒质量有很大关系。
铸棒的组织缺陷常见的有夹渣、疏松、晶粒粗大、偏析、光亮晶粒等。
夹渣是混入铸棒的熔渣、氧化皮或其他杂质,也叫夹杂。
低倍试片上一般呈现形状不规则的黑洞,凹陷于基体,是一些不同颜色的、无定形的松软组织,破坏了铸棒的连续性。
在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口端,形成粘铝,并不断被流动的金属拉出,形成吸附颗粒;疏松是在晶界及枝晶网络出现的宏观和微观的分散性缩孔。
压铸件的缺陷及产生的原因
压铸件的缺陷及产生的原因压铸生产中遇到的质量问题很多,其原因也是多方面。
生产中必须对产生的质量问题作出正确的判断。
找出真正的原因,才能提出相应切实可行的有效的改进措施,以便不断提高铸件质量。
压铸件生产所出现的质量问题中,有关缺陷方面的特征、产生的原因(包括改进措施)分别叙述于后。
一、欠铸压铸件成形过程中,某些部位填充不完整,称为欠铸。
当欠铸的部位严重时,可以作为铸件的形状不符合图纸要求来看待。
通常对于欠铸是不允许存在的。
造成欠铸的原因有:1)填充条件不良,欠铸部位呈不规则的冷凝金属Ø当压力不足、不够、流动前沿的金属凝固过早,造成转角、深凹、薄壁(甚至薄于平均壁厚)、柱形孔壁等部位产生欠铸。
Ø模具温度过低Ø合金浇入温度过低Ø内浇口位置不好,形成大的流动阻力2)气体阻碍,欠铸部位表面光滑,但形状不规则Ø难以开设排溢系统的部位,气体积聚Ø熔融金属的流动时,湍流剧烈,包卷气体3)模具型腔有残留物Ø涂料的用量或喷涂方法不当,造成局部的涂料沉积Ø成型零件的镶拼缝隙过大,或滑动配合间隙过大,填充时窜入金属,铸件脱出后,并未能被完全带出而呈现片状夹在缝隙上。
当之种片状的金属(金属片,其厚度即为缝隙的大小)又凸于周围型面较多,便在合模的情况下将凸出的高度变成适为铸件的壁厚,使以后的铸件在该处产生穿透(对壁厚来说)的沟槽。
这种穿透的沟槽即成为欠铸的一种特殊形式。
这种欠铸现象多在由镶拼组成的深腔的情况下出现。
Ø浇料不足(包括余料节过薄)。
Ø立式压铸机上,压射时,下冲头下移让开喷嘴孔口不够,造成一系列的填充条件不良。
二、裂纹铸件的基体被破坏或断开,形成细长的缝隙,呈现不规则线形,在外力作用下有发展的趋势,这种缺陷称为裂纹。
在压铸件上,裂纹是不允许存在的。
造成裂纹的原因有:1.铸件结构和形状Ø铸件上的厚壁与薄壁的相接处转变避剧烈Ø铸件上的转折圆角不够Ø铸件上能安置推杆的部位不够,造成推杆分布不均衡Ø铸件设计上考虑不周,收缩时产生应力而撕裂。
铝挤压过程缺陷分析与质量控制
铝挤压过程缺陷分析与质量控制铝挤压是一种常见的金属成形工艺,适用于生产各种各样的铝合金型材。
然而,在铝挤压过程中,可能会出现各种缺陷,这些缺陷对产品的质量和性能有很大影响。
因此,对铝挤压过程中的缺陷进行分析和质量控制非常重要。
1.热裂纹:铝合金在高温下容易发生热裂纹,这是由于材料内部的应力超过了其本身的强度或受到外部影响造成的。
为了避免热裂纹的产生,可以采取以下措施:降低挤压温度、提高挤压速度、添加合适的合金元素、采用合适的模具设计等。
2.挤压线:挤压线是指铝型材表面上呈现出的横向凹槽,通常是由于挤压过程中模头或模具中的污染物、气泡等引起的。
为了避免挤压线的产生,应加强模具的清洁和维护,并确保挤压过程中的材料干净。
3.冷裂纹:冷裂纹是指在挤压过程中铝型材表面的纵向或横向发现细小的裂纹。
这通常是由于铝合金在冷却阶段中由于收缩而引起的。
为了避免冷裂纹的产生,应控制挤压温度和冷却速度,避免快速冷却。
4.噪音:挤压过程中可能会产生噪音,通常是由于模具和模头接触不良造成的。
为了减少噪音,应加强模具和模头的维护,确保其质量和精度。
为了控制上述缺陷,需要采取以下质量控制措施:1.合理设计模具:模具的设计应考虑到产品形状、尺寸和挤压参数,并确保模具材料的质量和精度。
2.控制挤压温度和速度:合理的挤压温度和速度能够有效降低裂纹和缺陷的产生。
3.加强材料控制:使用干净的铝材,避免污染物和气泡的存在,以减少缺陷的产生。
4.加强模具维护:定期对模具进行检查和维护,确保其良好的工作状态。
5.进行挤压过程监控:对挤压过程进行实时监控,及时调整挤压参数,以保证产品的质量。
总之,铝挤压过程缺陷的分析和质量控制对于提高产品的质量和性能非常重要。
通过合理的设计和工艺控制,可以有效地减少各种缺陷的产生,提高产品的质量和竞争力。
挤压铸造原理及缺陷分析
挤压铸造原理及缺陷分析集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-挤压铸造原理及缺陷分析挤压铸造技术与传统金属型重力铸造相比区别较大,对于某些铸件的生产有独特优势,然而实际生产中出现的一些铸造缺陷,成因也不同于传统铸造,本文试图从原理和生产实际出发,分析挤压铸造的原理和流程参数,及其铸造常见缺陷,利用技术上的经验和实践提出改进方法,已达到推进该项铸造技术的推广,减少损失。
挤压铸造原理及特点1.1.基本原理挤压铸造又可称为液态模锻,是将金属或合金升温至熔融态,不加处理注入到敞口模具中,立即闭合模具,让液态金属充分流动以充填模具,初步到达制件外部形状,随后施以高压,使温度下降已凝固的外部金属产生塑性变形,而内部的未凝固金属承受等静压,同步发生高压凝固,最后获得制件或毛坯的方法。
由于高压凝固和塑性变形同时存在,制件无缩孔、缩松等缺陷,组织细密,力学性能高于铸造方法,接近或相当锻造方法;无需冒口补缩和最后清理,因而液态金属或合金利用率高,工序简化,为一具有潜在应用前景的新型金属加工工艺。
1.2.挤压铸造的特点挤压铸造的工艺对铸造设备有特殊的要求,并且目前只对部分铸件有较好的效果。
首先,挤压铸造设备,需要提供低速但流量较大的液态金属填充能力,速度约为0.5~3m/s,流量可达1~5kg/s,这样熔融态金属才能平稳地将铸型内气体排出,并填充铸型,随后铸型填满的瞬间(50ms~150ms),应能将铸型内铸造比压提升到60~100MPa,这样合金便能在高压下凝固成型。
由于前述的低速大流量,且挤压铸造内浇道有冒口补缩的作用,内浇道口径较大,且位于铸件最肥厚的部位。
由于上述特点,挤压铸造适合厚壁铸件(10~50mm),但铸件尺寸不宜太大(小于200mm)。
与压铸相同,挤压铸造只可使用脱模剂,不适用保温涂料,故而金属凝固速度极快,达到300~400摄氏度/s,与金属型重力铸造冷却速度相比,达到了其3~5倍,伸长率高于其他铸造方法约2~3倍。
压铸件的缺陷及产生的原因
压铸件的缺陷及产生的原因压铸件是指通过将金属液体注入金属型腔中,经过固化后制成的零件。
但是,在压铸过程中,常常会出现一些缺陷,影响零件的质量和性能。
下面将介绍压铸件的一些常见缺陷及其产生的原因。
1.翘曲缺陷:也称为翘边、翘曲、变形等。
翘曲缺陷是指零件的表面或边缘呈现出翘曲,失去了平整的状态。
主要原因有:a)模具设计不合理或施工差,导致模具收缩不均匀。
b)注射压力过大或注射时间过长,导致零件超出模具限度。
c)压铸过程中的温度控制不当,导致局部过热和不均匀。
2.气孔缺陷:是指零件表面或内部存在气体囊泡。
主要原因有:a)金属液体中含有过多的气体,例如铁水中的氢气或氧气。
b)浇注速度过快,金属液体在注射过程中未能顺利排出气体。
c)压铸设备不符合要求,导致金属液体中气体无法排除。
3.砂眼缺陷:是指零件表面或内部存在砂眼。
主要原因有:a)压铸过程中模具受到振动或冲击,导致砂芯松动或破裂。
b)铸造材料中含有过多的细小颗粒,容易形成砂眼。
c)压铸设备的压力控制不当,导致铸件内部砂芯松动。
4.缩松缺陷:是指零件表面或内部存在空洞或空隙。
主要原因有:a)金属液流动速度不均匀,导致金属液中气体无法排出,形成缩松。
b)金属液温度过低或过高,凝固速度过快或过慢,容易形成缩松。
c)压铸设备的注射压力和速度不匹配,导致金属液无法充分填充模腔。
5.热裂缺陷:是指零件在冷却过程中出现裂纹。
主要原因有:a)压铸件的凝固收缩不均匀,产生内部应力,导致零件热裂。
b)零件的壁厚不均匀,导致凝固速度不同,产生应力集中。
c)零件冷却速度过快,导致表面和内部温度差异大,产生应力热裂。
除了以上列举的缺陷外,还有一些其他常见的缺陷,如砂眼、金属氧化、皮肤等。
这些缺陷的产生原因也是多种多样的,包括模具的设计、注射过程的控制、金属材料的选择等等。
因此,为了减少和避免压铸件的缺陷,需要从以下几个方面进行改进和控制:1)模具设计和制造的精准度和稳定性。
2)铸件的金属液配方和处理技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
YF-ED-J9713
可按资料类型定义编号
挤压铸造原理及缺陷分析
实用版
In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment.
(示范文稿)
二零XX年XX月XX日
挤压铸造原理及缺陷分析实用版
提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。
下载后可以对文件进行定制修改,请根据实际需要调整使用。
挤压铸造技术与传统金属型重力铸造相比区别较大,对于某些铸件的生产有独特优势,然而实际生产中出现的一些铸造缺陷,成因也不同于传统铸造,本文试图从原理和生产实际出发,分析挤压铸造的原理和流程参数,及其铸造常见缺陷,利用技术上的经验和实践提出改进方法,已达到推进该项铸造技术的推广,减少损失。
挤压铸造原理及特点
1.1.基本原理
挤压铸造又可称为液态模锻,是将金属或
合金升温至熔融态,不加处理注入到敞口模具中,立即闭合模具,让液态金属充分流动以充填模具,初步到达制件外部形状,随后施以高压,使温度下降已凝固的外部金属产生塑性变形,而内部的未凝固金属承受等静压,同步发生高压凝固,最后获得制件或毛坯的方法。
由于高压凝固和塑性变形同时存在,制件无缩孔、缩松等缺陷,组织细密,力学性能高于铸造方法,接近或相当锻造方法;无需冒口补缩和最后清理,因而液态金属或合金利用率高,工序简化,为一具有潜在应用前景的新型金属加工工艺。
1.2.挤压铸造的特点
挤压铸造的工艺对铸造设备有特殊的要求,并且目前只对部分铸件有较好的效果。
首
先,挤压铸造设备,需要提供低速但流量较大的液态金属填充能力,速度约为0.5~3m/s,流量可达1~5kg/s,这样熔融态金属才能平稳地将铸型内气体排出,并填充铸型,随后铸型填满的瞬间(50ms~150ms),应能将铸型内铸造比压提升到60~100MPa,这样合金便能在高压下凝固成型。
由于前述的低速大流量,且挤压铸造内浇道有冒口补缩的作用,内浇道口径较大,且位于铸件最肥厚的部位。
由于上述特点,挤压铸造适合厚壁铸件(10~50mm),但铸件尺寸不宜太大(小于
200mm)。
与压铸相同,挤压铸造只可使用脱模剂,不适用保温涂料,故而金属凝固速度极快,达到300~400摄氏度/s,与金属型重力铸造冷却速度相比,达到了其3~5倍,伸长率高
于其他铸造方法约2~3倍。
挤压铸造的生产工艺流程
以直径190系列的铝活塞为例,介绍挤压铸造的工艺流程,挤压铸造借鉴于压力铸造和模锻工艺,其大体工艺流程为把液态金属直接浇入金属模内。
然后在一定时间内以一定的压力作用于熔融的金属液体使之成形。
并在此压力下结晶和塑性流动。
从而获得铸件。
在315t 的液压机上生产铝活塞的具体流程是:首先将铝加热到700~720摄氏度,形成铝液,倒入凹模中,进行扒渣得到相对纯净的铝液,液压机上缸下行,上压头对铝液加压,主缸的峰值加压压力达到280t,上压力加压至最大表压力
22MPa起,到上压头起模止,维持保压时间在350秒,保压结束后开模,用底缸将铸件顶出即
可。
整体上可分为四个步骤,模具准备,浇注,合模加压,开模出件。
具体的铸造过程,注意的参数如下:
顶缸上升速度和金属流速;对铸造机而言,顶缸上升速度应该是丰富可调的,而金属流速须由铸件壁厚和尺寸决定,以不产生湍流,平稳填充铸型为原则,铸件的壁厚越大,尺寸越小,则流速较小,壁厚越小,尺寸越大,则流速较大。
挤压机顶缸上升顶力和瞬间及时增压速度;当前我国普遍装备的油顶机顶缸顶力足够满足挤压铸造的需求。
瞬间及时增压速度是较为重要的参数,在合金液刚刚充满铸型之初,铸造比压极小,在50ms~150ms内,下顶缸顶力上升到额定顶力,以保证高比压下合金液凝固
成型。
挤压铸造缺陷分析
以铝活塞为例,介绍常见的挤压铸造的缺陷分析和解决措施。
3.1.气孔
气孔的出现一般是由于最初的铝液中气体含量较高,或者浇注过程中侵入了气体,因此气孔可分为析出性气孔和侵入性气孔。
具体的应对措施由其形成原因入手。
析出性气孔的减少,主要需要对铝液的精炼处理进行强化,得到含气量低的铝液。
侵入性气孔则涉及更多的流程,首先熔融态合金注入模具的速度要平稳,不超过0.08m/s,避免产生涡流卷入气体,并且充分排出铸模中的气体,速度太低也可能造成金属凝固而没有充满铸模,这需要由上压
头加压速度来控制,一般厚壁铸件需控制住0.03~0.06m/s,而壁薄的铸件则速度稍高,控制在0.05~0.08m/s。
3.2.缩松和缩孔
缩松和缩孔会伴随着气孔产生,通常会出现在活塞最后凝固的区域,上压头下行至型腔封闭时,铝液存在向上的反向流动,而挤压铸造不能设置冒口补缩,故只能将未凝固的铝液挤入活塞销座和头部热节处,实现补缩,这有赖于上压头的压力对铸件进行压缩,而压力不足会导致补缩效果不明显,活塞稍座和头部可能出现缩孔和缩松。
对于该问题,首先是对上压头的压力进行合理选取,依据合金类型和铸件外形因素设置压力。
上压头的最低压力值需在80MPa以上,
而最高不宜超过120MPa,在该范围内逐步提高压力值以减少缩松和缩孔,其次,一定的保压时间也是消除缩松和缩孔所需条件,持续的保压中,确保金属能够全部冷却凝固,不发生卸压后仍有液态金属继续凝固产生缩孔缩松,同时,过长的保压时间会导致模具温度升高,且脱模困难,不利于模具的寿命,经过验证,保压时间在150s~350s内,铸件质量较好,该时间由铸件最大壁厚来大致估计。
3.3.氧化夹杂
挤压铸造中,不设置浇冒口,也很少设置集渣包,排渣系统不足,但铝液在熔炼和浇注中,不断产生氧化夹杂,在形成铸件后,氧化夹杂融入其中,导致外圆氧化夹杂的缺陷。
对于氧化夹杂问题,首先铝合金的融化过
程,温度精确控制在700~720摄氏度,使渣浮起,除尽铝液内氧化渣,并且坩埚和浇勺也清理干净,浇注之时,避免直接通过漏斗直浇道,可使用孔眼直径在1mm左右的过滤网以便滤去氧化渣和溶剂渣。
加压之前,进行一个快速的扒渣,由模壁向中心,从中心剔除残渣,而在压制之前,不得有冷隔金属参与挤压铸造过程。
挤压铸造是一项优质高效的生产工艺,如果各工艺环节控制得当,可以产生质量较好的铸件,然而在实际生产中,却因为种种原因产生缺陷,给厂家和使用者带来损失,本文对缺陷原因从技术上进行了分析,从生产流程上提出了应对措施,结合实际情况,使挤压铸造技术更好地用于生产。