高中物理机械振动知识点与题型总结.doc
高中物理【机械振动】知识点、规律总结
一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大
机械振动及机械波知识点(全)
机械波的产生和传播知识点一:波的形成和传播〔一〕介质能够传播振动的媒介物叫做介质。
〔如:绳、弹簧、水、空气、地壳等〕〔二〕机械波机械振动在介质中的传播形成机械波。
〔三〕形成机械波的条件〔1〕要有 ;〔2〕要有能传播振动的 。
注意:有机械波 有机械振动,而有机械振动 能产生机械波。
〔四〕机械波的传播特征〔1〕机械波传播的仅仅是 这种运动形式,介质本身并不随波 。
沿波的传播方向上各质点的振动都受它前一个质点的带动而做 振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是将这种运动形式在介质中依次向外传播的过程。
对简谐波而言各质点振动的振幅和周期都 ,各质点仅在各自的 位置附近振动,并 随波动过程的发生而沿波传播方向发生迁移。
〔2〕波是传递能量的一种运动形式。
波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也是能量由近及远的传播过程。
因此机械波也是传播 的一种形式。
〔五〕波的分类波按照质点 方向和波的 方向的关系,可分为:〔1〕横波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。
凸起的最高处叫 ,凹下的最底处叫 。
〔2〕纵波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。
质点分布最密的地方叫作 ,质点分布最疏的地方叫作 。
知识点二:描述机械波的物理量知识〔一〕波长〔λ〕两个 的、在振动过程中对 位置的位移总是相等的质点间的距离叫波长。
在横波中,两个 的波峰〔或波谷〕间的距离等于波长。
在纵波中,两个 的密部〔或疏部〕间的距离等于波长。
振动在一个 内在介质中传播的距离等于一个波长。
〔二〕频率〔f 〕波的频率由 决定,一列波,介质中各质点振动频率都相同,而且都等于波源的频率。
在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。
〔三〕波速〔v 〕 振动在介质中传播的速度,指单位时间内振动向外传播的距离,即x v t∆=∆。
高考物理7机械振动和机械波知识点总结
七、机械振动和机械波1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g 有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率..5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7.★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.(1)由波的图像可获取的信息①从图像可以直接读出振幅(注意单位).②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)(2)波动图像与振动图像的比较:振动图象波动图象研究对象一个振动质点沿波传播方向所有的质点研究内容一个质点的位移随时间变化规律某时刻所有质点的空间分布规律图象物理意义表示一质点在各时刻的位移 表示某时刻各质点的位移 图象变化 随时间推移图象延续,但已有形状不变 随时间推移,图象沿传播方向平移一个完整曲线占横坐标距离表示一个周期表示一个波长 8.波动问题多解性 波的传播过程中时间上的周期性、空间上的周期性以及传播方向上的双向性是导致“波动问题多解性”的主要原因.若题目假设一定的条件,可使无限系列解转化为有限或惟一解9.波的衍射波在传播过程中偏离直线传播,绕过障碍物的现象.衍射现象总是存在的,只有明显与不明显的差异.波发生明显衍射现象的条件是:障碍物(或小孔)的尺寸比波的波长小或能够与波长差不多.10.波的叠加几列波相遇时,每列波能够保持各自的状态继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和.两列波相遇前、相遇过程中、相遇后,各自的运动状态不发生任何变化,这是波的独立性原理.11.波的干涉:频率相同的两列波叠加,某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象,叫波的干涉.产生干涉现象的条件:两列波的频率相同,振动情况稳定.[注意]①干涉时,振动加强区域或振动减弱区域的空间位置是不变的,加强区域中心质点的振幅等于两列波的振幅之和,减弱区域中心质点的振幅等于两列波的振幅之差.②两列波在空间相遇发生干涉,两列波的波峰相遇点为加强点,波峰和波谷的相遇点是减弱的点,加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小. 如图若S1、S2为振动方向同步的相干波源,当PS 1-PS 2=n λ时,振动加强;当PS 1-PS 2=(2n+1)λ/2时,振动减弱。
机械振动和机械波知识点复习及总结
机械振动和机械波知识点复习一 机械振动知识要点1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a 、物体离开平衡位置后要受到回复力作用。
b 、阻力足够小。
回复力:效果力——在振动方向上的合力 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) 描述振动的物理量位移x (m )——均以平衡位置为起点指向末位置振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动概念:回复力与位移大小成正比且方向相反的振动 受力特征:kx F -= 运动性质为变加速运动 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大✧ v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象)物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化4. 简谐运动的表达式:)2sin(φπ+=t TA x 5. 单摆(理想模型)——在摆角很小时为简谐振动回复力:重力沿切线方向的分力 周期公式:glT π2= (T 与A 、m 、θ无关——等时性) 测定重力加速度g,g=224T Lπ 等效摆长L=L 线+r6. 阻尼振动、受迫振动、共振阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。
2022-2023高中物理--机械振动--第六节:外力作用下的振动
外力作用下的振动一、知识点梳理1.固有频率如果振动系统不受外力作用,此时的振动叫固有振动,其振动频率称为固有频率. 2.阻尼振动(减幅振动(1)定义:振动物体克服摩擦和其他阻力做功,自己的能量逐渐减小,振幅也随着变小,振幅逐渐减小的振动叫阻尼振动.(2)对阻尼振动的理解:①同一简谐运动能量的大小由振幅大小确定.②阻尼振动振幅减小的快慢跟所受阻尼的大小有关,阻尼越大,振幅减小得越快.③物体做阻尼振动时,振幅虽不断减小,但振动的频率仍由自身结构特点所决定,并不会随振幅的减小而变化. 用力敲锣,由于锣受到空气的阻尼作用,振幅越来越小,锣声减弱,但音调不变④阻尼振动若在一段不太长的时间内振幅没有明显的减小,可以把它当做简谐运动来处理.(3)从振幅有无变化来分,振动可分为阻尼振动和无阻尼振动.例1.(多选)下列说法正确的是()A.阻尼振动必定有机械能损失B.物体做阻尼振动时,由于振幅减小,频率也随着减小C.物体做阻尼振动时,振幅虽然减小,但是频率不变D.做阻尼振动的物体,振动频率仍由自身结构特点决定例2.(多选)单摆在空气中振动,振幅逐渐减小,下列说法正确的是()A.机械能逐渐转化为其他形式的能B.后一时刻的动能一定小于前一时刻的动能C.后一时刻的势能一定小于前一时刻的势能D.后一时刻的机械能一定小于前一时刻的机械能3.受迫振动(1)驱动力:加在振动系统上的周期性外力,叫做驱动力(2)受迫振动:系统在驱动力作用下的振动(3)受迫振动的周期和频率物体做受迫振动时,振动稳定后的频率等于驱动力的频率,跟物体的固有频率无关4.自由振动像弹簧振子和单摆那样,物体偏离平衡位置后,它们就在自己的弹力或重力作用下振动起来,而不需要其他外力的推动,这种振动叫做自由振动.5.共振(1)共振:驱动力频率驱f 等于系统的固有频率固f 时,受迫振动的振幅最大,这种现象叫做共振(2)共振的条件: 驱f 固f ,即驱动力的频率与物体的固有频率相等(3)共振曲线如图所示,共振曲线的横坐标为驱动力的频率,纵坐标为受迫振动物体的振幅,共振曲线直观地反映出驱动力的频率对受迫振动物体振幅的影响,由共振曲线可知,当驱动力的频率与物体的固有频率相等时,受迫振动的振幅最大. (4)共振的利用与防止①利用:由共振的条件知,要利用共振,就应尽量使驱动力的频率与物体的固有频率一致,如:共振筛、荡秋千、共振转速计共鸣箱,核磁共振仪等.②防止:由共振曲线可知,在需要防止共振危害时,要尽量使驱动力的频率和固有频率不相等,而且相差越多越好,如:部队过桥应便步走.例3.(多选)如图所示,两个质量分别为M 和m 的小球,悬挂在同一根水平细线上,当M 在垂直于水平细线的平面内摆动时,下列说法正确的是( ) A .两摆的振动周期是相同的B .当两摆的摆长相等时,m 摆的振幅最大C .悬挂M 的竖直细线长度变化时,m 的振幅不变D .m 摆的振幅可能超过M 摆的振幅例4.(多选)如图所示,一根绷紧的水平绳上挂五个摆,其中A 、E 摆长均为l ,先让A 摆振动起来,其他各摆随后也跟着振动起来则( ) A .其他各摆振动周期跟A 摆相同 B .其他各摆振动的振幅大小相等C .其他各摆振动的振幅大小不同,E 摆的振幅最大D .B 、C 、D 三摆振动的振幅大小不同,B 摆的振幅最小二、技巧总结2.对共振现象的两点说明(1)从受力角度来看:振动物体所受驱动力的方向跟它的运动方向相同时,驱动力对它起加速作用,使它的振幅增大,驱动力的频率跟物体的固有频率越接近,使物体振幅增大的力的作用次数就越多,当驱动力的频率等于物体的固有频率时,它的每一次作用都使物体的振幅增加,从而振幅达到最大.(2)从功能关系来看:当驱动力的频率越接近物体的固有频率时,驱动力与物体运动一致的次数越多,驱动力对物体做正功越多振幅就越大.当驱动力的频率等于物体的固有频率时,驱动力始终对物体做正功,使振动能量不断增加,振幅不断增大,直到增加的能量等于克服阻尼作用损耗的能量,振幅才不再增加.3.微波炉原理微波炉的微波频率与水分子振动的固有频率2500MHz非常接近,因此,当微波照射到食物时,微波施加的驱动力使食物中的水分子做受迫振动,并且处于共振状态而剧烈振动,使食物的温度迅速升高,由于这种“加热”方式是从里到外同时发生的,所以比其他煮熟食物的方式更快捷.4.减振原理思路一是给被保护的物体加一层减振的阻尼材料(如泡沫塑料等),使冲击过程的机械能尽可能多地转化为阻尼材料的内能,减轻被保护物体受到的冲击作用. 思路二是在物体与外界冲击作用之间安装一个“质量一弹簧”系统,如果该系统的固有周期比外界冲击力的周期大很多,它不会及时地把该冲击力传递给物体,这种延缓的过程实际上对冲击力起到了平均的作用。
2024高考物理一轮复习第34讲机械振动(讲义)(学生版+解析)
第34讲机械振动目录复习目标网络构建考点一简谐运动的基本规律【夯基·必备基础知识梳理】知识点1 简谐运动的基础知识知识点2 简谐运动的五个特征【提升·必考题型归纳】考向1 简谐运动中各物理量的分析考向2 简谐运动的特征应用考点二简谐运动的公式和图像【夯基·必备基础知识梳理】知识点1 对简谐运动图像的认识知识点2 由简谐运动图像可获取的信息【提升·必考题型归纳】考向1 从振动图像获取信息考向2 根据条件写出振动方程考点三简谐运动的两类模型【夯基·必备基础知识梳理】知识点弹簧振子模型和单摆模型【提升·必考题型归纳】考向1 弹簧振子模型考向2 单摆模型考点四受迫振动和共振【夯基·必备基础知识梳理】知识点1 简谐运动、受迫振动和共振的比较知识点2 对共振的理解【提升·必考题型归纳】考向1 受迫振动和共振规律考向2 实际生活中的受迫振动和共振真题感悟1、理解和掌握简谐运动的基本规律和图像。
2、能够利用简谐运动的基本规律处理有关弹簧振子和单摆模型的有关问题。
3、理解和掌握受迫振动和共振。
考点一 简谐运动的基本规律机械振动动量守恒的条件及应用1.简谐运动的基础知识2.简谐运动的五个特征简谐运动的公式和图像1.对简谐运动图像的认识2.由简谐运动图像可获得的信息简谐运动的两类模型1.弹簧振子模型2.单摆模型受迫振动和共振1.受迫振动和共振2.对共振的理解知识点1 简谐运动的基础知识(1)定义:如果物体的位移与时间的关系遵从 函数的规律,即它的振动图像(xt 图像)是一条正弦曲线,这样的振动是一种简谐运动。
(2)条件:如果物体在运动方向上所受的力与它偏离平衡位置位移的大小成正比,并且总是指向 ,质点的运动就是简谐运动。
(3)平衡位置:物体在振动过程中 为零的位置。
(4)回复力①定义:使物体返回到 的力。
②方向:总是指向 。
③来源:属于 ,可以是某一个力,也可以是几个力的 或某个力的 。
物理中的机械振动知识点解析及解题技巧
物理中的机械振动知识点解析及解题技巧机械振动是物理学中的重要分支,研究物体在平衡位置附近做微小振幅周期性运动的规律。
在本文中,我们将对机械振动的知识点进行解析,并介绍一些解题技巧。
一、简谐振动简谐振动是理想化的机械振动模型,它假设振动系统没有能量损耗,且恢复力与位移成正比。
简谐振动的典型例子包括弹簧振子和摆锤等。
解析公式:1. 位移公式:x(t) = A*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。
2. 速度公式:v(t) = -A*ω*sin(ωt+φ)。
3. 加速度公式:a(t) = -A*ω²*cos(ωt+φ)。
解题技巧:1. 周期与频率的关系:T = 1/f,其中T为周期,f为频率。
2. 角频率与频率的关系:ω = 2πf。
3. 振动的周期和频率与弹簧的劲度系数和质量有关:T = 2π√(m/k),其中m为质量,k为劲度系数。
二、阻尼振动阻尼振动是指振动系统中存在有能量消耗的情况下的振动现象。
根据阻尼的不同,可以分为无阻尼振动、欠阻尼振动和过阻尼振动。
解析公式:1. 无阻尼振动的位移公式:x(t) = A*cos(ωnt + φ),其中A为振幅,ωn为自然角频率,t为时间,φ为初相位。
2. 欠阻尼振动的位移公式:x(t) = A*e^(-βt)*cos(ωdt + φ)。
3. 过阻尼振动的位移公式:x(t) = A1*e^((-β1)t) + A2*e^((-β2)t),其中A1、A2为常数,β1、β2为自然频率。
解题技巧:1. 阻尼比:ζ = β/ωn,其中β为阻尼常数,ωn为自然角频率。
2. 衰减因子:η = e^(-βt)。
三、受迫振动受迫振动是指振动系统在受到外力作用下的振动现象。
当外力频率等于振动系统的固有频率时,会出现共振现象。
解析公式:1. 受迫振动的位移公式:x(t) = X*cos(ωt-δ),其中X为振幅,ω为外力角频率,t为时间,δ为初相位差。
高三物理《机械振动》必备知识学习总结要点
高三物理《机械振动》必备知识点
1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π1/2{l:摆长,g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速0℃:332m/s;20℃:344m/s;30℃:349m/s;
8.波发生明显衍射条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同
0.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是
波峰与波谷相遇处;
波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
干涉与衍射是波特有的;
振动图象与波动图象;
其它相关内容:超声波及其应用。
机械振动知识点总结.
机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。
然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。
2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。
运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。
理解好对称性这一点对解决有关问题很有帮助。
4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。
6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
位移x回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
机械振动概念、知识点总结
机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。
例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。
因为:乒乓球没有在平衡位置附近做往复运动。
(1)平衡位置:①物体所受回复力为零的位置。
②振动方向上,合力为零的位置。
③物体原来静止时的位置。
(2)机械振动的平衡位置不一定是振动范围的中心。
(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。
(4)回复力:沿振动方向,指向平衡位置的合力。
①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。
②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。
曲线振动(如单摆):回复力不一定等于振子的合外力。
③平衡位置,回复力为零。
例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。
答:错误。
正例:弹簧振子的平衡位置是合外力为零的位置。
反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。
(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。
(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。
振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。
正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。
高中物理机械振动知识点总结
高中物理机械振动知识点总结
高中物理机械振动的知识点总结如下:
1. 机械振动的概念和特点:机械振动是物体围绕平衡位置做周期性的来回振动运动,具有周期性、周期、频率、振幅等特点。
2. 动力学模型:机械振动可以用质点振动和弹簧振子来进行模拟,质点振动模型是研究单自由度振动的基本模型,弹簧振子模型是研究多自由度振动的基本模型。
3. 平衡位置和平衡力:平衡位置是物体在没有外力作用时处于的位置,平衡力是指物体在平衡位置附近的力,可以分为恢复力和阻尼力。
4. 振动方程:振动方程描述了物体在振动过程中的运动规律,可以用一阶微分方程或二阶微分方程表示,具体形式根据不同的振动模型而定。
5. 振动的能量:机械振动存在动能和势能的相互转换。
在简谐振动中,能量以振幅的平方的形式表示。
6. 简谐振动:简谐振动是指物体在恢复力作用下,在平衡位置附近做频率恒定、振幅不变、沿直线轨迹的振动。
简谐振动的特点包括周期性、频率、振幅、相位等。
7. 强迫振动和共振:强迫振动是指物体在外部周期性力的驱动下进行的振动,共振是指当外部周期性力与物体的固有频率相等或接近时,物体振幅达到最大的现象。
8. 阻尼振动:阻尼振动是指在受到阻尼力的作用下,物体振幅
逐渐减小并最终停止振动的现象。
阻尼振动可以分为欠阻尼、临界阻尼和过阻尼三种情况。
9. 波动方程:波动方程描述了波在传播过程中的运动规律,可以用一维或二维波动方程表示。
10. 波的传播:波的传播可以分为机械波和电磁波两种类型,机械波需要介质传播,而电磁波可以在真空中传播。
以上是高中物理机械振动的主要知识点总结,希望对你有帮助。
高中物理-【机械波与机械振动】知识点总结
103(4)简谐运动的两种模型 模型弹簧振子单摆示意图简谐 运动 条件①弹簧质量可忽略 ②无摩擦等阻力 ③在弹簧弹性限度内①摆线为不可伸缩的轻细线 ②无空气等的阻力 ②最大摆角小于10° 回复力弹簧的弹力提供F=kx 摆球重力沿切向的分力 F 回=-mg sin θ=-mg lx 平衡 位置弹簧处于原长处最低点周期与振幅无关T =2πL g L 为摆长,表示从悬点到摆球重心的距离。
简谐运动的特点受力 特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动 特征 靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量 特征振幅越大,能量越大。
在运动过程中,系统的动能和势能相互转化,机械能守恒选修3-4 周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T;动能和势能也随时间做周期性变化,其变化周期为T2对称性特征关于平衡位置O对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O用时相等2.简谐运动的公式和图象(1)简谐运动的表达式①动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。
②运动学表达式:x=Asin(ωt+φ),其中A代表振幅,ω=2πf表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相。
(2)简谐运动的图象①从平衡位置开始计时,函数表达式为x=Asinωt,图象如图甲所示。
②从最大位移处开始计时,函数表达式为x=Acosωt,图象如图乙所示。
(3)根据简谐运动图象可获取的信息①振幅A、周期T(或频率f)和初相位φ(如图所示)。
②某时刻振动质点离开平衡位置的位移。
③某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定。
最新整理高中物理总复习机械振动机械波知识点梳理.docx
高中物理总复习机械振动机械波知识点梳理 基本的概念,简谐运动中的力学运动学条件及位移,回复力,振幅,周期,频率及在一次全振动过程中各物理量的变化规律。
单摆:等效摆长、等效的重力加速度 影响重力加速度有:①纬度,离地面高度②在不同星球上不同,与万有引力圆周运动规律(或其它运动规律)结合考查 ③系统的状态(超、失重情况)④所处的物理环境有关,有电磁场时的情况⑤静止于平衡位置时等于摆线张力与球质量的比值注意等效单摆(即是受力环境与单摆的情况相同)T=2πg L ⇒g=22T L 4π 应用:T 1=2πg L O T 2=2πg L -L O ∆ ⇒22212T -T L 4g ∆=π 沿光滑弦cda 下滑时间t 1=t oa =gR 2g R 2= 沿ced 圆弧下滑t 2或弧中点下滑t 3: t 2=t 3=4T =g R 42π=gR 2π 共振的现象、条件、防止和应用机械波:基本概念,形成条件、 特点:传播的是振动形式和能量,介质的各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动,②起振方向与振源的起振方向相同,③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间⑤波源振几个周期波就向外传几个波长波长的说法:①两个相邻的在振动过程中对平衡位置“位移”总相等的质点间的距离②一个周期内波传播的距离③两相邻的波峰(或谷)间的距离④过波上任意一个振动点作横轴平行线,该点与平行线和波的图象的第二个交点之间的距离为一个波长波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别波动与振动的区别:研究的对象:振动是一个点随时间的变化规律,波动是大量点在同一时刻的群体表现,图象特点和意义联系:波的传播方向⇔质点的振动方向(同侧法、带动法、上下波法、平移法)知波速和波形画经过(∆t)后的波形(特殊点画法和去整留零法)波的几种特有现象:叠加、干涉、衍射、多普勒效应,知现象及产生条件。
(完整版)机械振动和机械波知识点总结
机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。
回复力是指振动物体所受的总是指向平衡位置的合外力。
回复力是产生振动的条件,它使物体总是在平衡位置附近振动。
它属于效果力,其效果是使物体再次回到平衡位置。
回复力可以是某一个力,也可以是几个力的合力或某个力的分力。
平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。
简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。
例如弹簧振子、单摆。
注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。
振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。
②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。
高中物理机械振动知识点详解和答案
九、机械振动一、知识网络二、画龙点睛概念1、机械振动(1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。
(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。
(3)振动特点:振动是一种往复运动,具有周期性和重复性2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。
(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。
振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。
②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。
(3)振动过程分析振子的运动A→O O→A′A′→O O→A对O点位移的方向向右向左向左向右(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。
②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。
简谐运动的动力学特征是判断物体是否为简谐运动的依据。
③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。
简谐运动加速度的大小和方向都在变化,是一种变加速运动。
简谐运动的运动学特征也可用来判断物体是否为简谐运动。
例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。
证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。
3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。
②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。
单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。
单摆的周期公式是T=。
由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。
g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。
(五)振动图象。
简谐振动的图象是振子振动的位移随时间变化的函数图象。
所建坐标系中横轴表示时间,纵轴表示位移。
图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。
要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。
(六)阻尼振动、受迫振动、共振。
简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要减小,其振幅也要逐渐减小,直到停下来。
振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。
振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。
物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,受迫振动的振幅最大,叫共振。
【典型例题】[例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是()A. 振子在M、N两点受回复力相同B. 振子在M、N两点对平衡位置的位移相同C. 振子在M、N两点加速度大小相等D. 从M点到N点,振子先做匀加速运动,后做匀减速运动解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的)。
建立起这样的物理模型,这时问题就明朗化了。
因位移、速度、加速度和回复力都是矢量,它们要相同必须大小相等、方向相同。
M、N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反。
由此可知,A、B选项错误。
振子在M、N两点的加速度虽然方向相反,但大小相等,故C选项正确。
振子由M→O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动。
振子由O→N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误,由以上分析可知,该题的正确答案为C。
[例2] 一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s第二次通过M点,则质点振动周期的可能值为多大?解析:将物理过程模型化,画出具体的图景如图1所示。
设质点从平衡位置O向右运动到M点,那么质点从O到M运动时间为0.13 s,再由M经最右端A返回M经历时间为0. 1 s;如图2所示。
另有一种可能就是M点在O点左方,如图3所示,质点由O点经最右方A点后向左经过O点到达M点历时0.13 s,再由M 向左经最左端A,点返回M历时0.1 s。
根据以上分析,质点振动周期共存在两种可能性。
如图2所示,可以看出O→M→A历时0.18 s,根据简谐运动的对称性,可得到T1=4×0.18 s=0.72 s。
另一种可能如图3所示,由O→A→M历时t l=0.13 s,由M→A’历时t2=0.05 s,设M→O历时t,则4(t+t2)=t1+2t2+t,解得t=0. 01 s,则T2=4(t+t2)=0.24 s,所以周期的可能值为0.72 s和0.24 s[例3] 甲、乙两弹簧振子,振动图象如图所示,则可知()A. 两弹簧振子完全相同B. 两弹簧振子所受回复力最大值之比F甲∶F乙=2∶1C. 振子甲速度为零时,振子乙速度最大D. 振子的振动频率之比f甲∶f乙=1∶2解析:从图象中可以看出,两弹簧振子周期之比T甲∶T乙=2∶1,得频率之比f甲∶f乙=1∶2,D正确。
弹簧振子周期与振子质量、弹簧劲度系数k有关,周期不同,说明两弹簧振子不同,A错误。
由于弹簧的劲度系数k不一定相同,所以两振子受回复力(F=kx)的最大值之比F甲∶F乙不一定为2∶1,所以B错误,对简谐运动进行分析可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零,从图象中可以看出,在振子甲到达最大位移处时,振子乙恰到达平衡位置,所以C正确。
答案为C、D。
[例4] 在海平面校准的摆钟,拿到某高山山顶,经过t时间,发现表的示数为t′,若地球半径为R,求山的高度h(不考虑温度对摆长的影响)。
解析:由钟表显示时间的快慢程度可以推知表摆振动周期的变化,而这种变化是由于重力加速度的变化引起的,所以,可以得知由于高度的变化引起的重力加速度的变化,再根据万有引力公式计算出高度的变化,从而得出山的高度。
一般山的高度都不是很高(与地球半径相比较),所以,由于地球自转引起的向心力的变化可以不考虑,而认为物体所受向心力不变且都很小,物体所受万有引力近似等于物体的重力。
(1)设在地面上钟摆摆长l,周期为T0,地面附近重力加速度g,拿到高山上,摆振动周期为T′,重力加速度为g′,应有从而(2)在地面上的物体应有在高山上的物体应有得[例5] 在光滑水平面上,用两根劲度系数分别为k1、k2的轻弹簧系住一个质量为m的小球。
开始时,两弹簧均处于原长,后使小球向左偏离x后放手,可以看到小球将在水平面上作往复振动。
试问小球是否作简谐运动?解析:为了判断小球的运动性质,需要根据小球的受力情况,找出回复力,确定它能否写成F=-kx的形式。
以小球为研究对象,竖直方向处于力平衡状态,水平方向受到两根弹簧的弹力作用。
设小球位于平衡位置O左方某处时,偏离平衡位置的位移为x,则左方弹簧受压,对小球的弹力大小为f1=k1x,方向向右。
右方弹簧被拉伸,对小球的弹力大小为f2=k2x,方向向右。
小球所受的回复力等于两个弹力的合力,其大小为F=f1+f2=(k1+k2)x,方向向右。
令k=k1+k2,上式可写成F=kx。
由于小球所受回复力的方向与位移x的方向相反,考虑方向后,上式可表示为F=-kx。
所以,小球将在两根弹簧的作用下,沿水平面作简谐运动。
点评:由本题可归纳出判断物体是否作简谐运动的一般步骤:确定研究对象(整个物体或某一部分)→分析受力情况→找出回复力→表示成F=-kx的形式(可以先确定F的大小与x的关系,再定性判断方向)。
[例6] 如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置。
现将重球(视为质点)从高于a位置的c位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d。
以下关于重球运动过程的正确说法应是()A. 重球下落压缩弹簧由a至d的过程中,重球做减速运动。
B. 重球下落至b处获得最大速度。
C. 重球下落至d处获得最大加速度。
D. 由a至d过程中重球克服弹簧弹力做的功等于小球由c下落至d处时重力势能减少量。
解析:重球由c至a的运动过程中,只受重力作用,做匀加速运动;由a至b的运动过程中,受重力和弹力作用,但重力大于弹力,做加速度减小的加速运动;由b至d的运动过程中,受重力和弹力作用,但重力小于弹力,做加速度增大的减速运动。
所以重球下落至b处获得最大速度,由a至d过程中重球克服弹簧弹力做的功等于小球由c下落至d处时重力势能减少量,即可判定B、D正确。
C选项很难确定是否正确,但利用弹簧振子的特点就可非常容易解决这一难题。
重球接触弹簧以后,以b 点为平衡位置做简谐运动,在b点下方取一点a',使ab= a′b ,根据简谐运动的对称性,可知,重球在a、 a'的加速度大小相等,方向相反,如图所示。
而在d点的加速度大于在a'点的加速度,所以重球下落至d处获得最大加速度,C选项正确。
答案:BCD[例7] 若单摆的摆长不变,摆角小于5°,摆球质量增加为原来的4倍,摆球经过平衡位置的速度减小为原来的1/2,则单摆的振动()A. 频率不变,振幅不变B. 频率不变,振幅改变C. 频率改变,振幅改变D. 频率改变,振幅不变解析:单摆的周期T=,与摆球质量和振幅无关,只与摆长L和重力加速度g有关。