最短路径问题(经典)精编版
最短路径问题PPT课件
A
·
C′ C
B
·
l
B′
问题1 归纳
B A
l
解决实 际问题
B
A
C
l
B′
抽象为数学问题 用旧知解决新知
B
A
C
l
联想旧知
A
C
l
B
尝试应用:
1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建
一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中
实线表示铺设的管道,则所需要管道最短的是( D )
A
·
l C
B′
问题3 你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′. 在△AB′C′中,
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
B A
l
将A,B 两地抽象为两个点,将河流l 抽象为一条直 线.
·B A·
l
你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河流l边 饮马,然后到B 地;
AM+NB+MN.
问题3:还有其他的方法选两点M,N,使得 AM+MN+NB的和最小吗?试一试。
a
b
A
M
N
B
问题2 归纳
解决实 际问题
(完整版)初中数学[最短路径问题]典型题型及解题技巧
(完整版)初中数学[最短路径问题]典型题型及解题技巧初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利⽤平移和展开图来处理。
这对于我们解决此类问题有事半功倍的作⽤。
理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移” “⽴体图形展开图”。
教材中的例题“饮马问题”,“造桥选址问题” “⽴体展开图”。
考的较多的还是“饮马问题”。
知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有⾓、三⾓形、菱形、矩形、正⽅形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
⼀、两点在⼀条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求⼀点P,使得PA+PB h 最⼩。
解:连接AB,线段AB与直线L的交点P,就是所求。
(根据:两点之间线段最短.)⼆、两点在⼀条直线同侧例:图所⽰,要在街道旁修建⼀个奶站,向居民区A、B提供⽜奶,奶站应建在什么地⽅,才能使从A、B到它的距离之和最短.■解:只有A、C、B在⼀直线上时,才能使AC+BC最⼩.作点A关于直线“街道”的对称点A ',然后连接A ' B,交“街道”于点C,则点C就是所求的点.、⼀点在两相交直线内部例:已知:如图A是锐⾓/ MON内部任意⼀点,在/ MON的两边OM,ON上各取⼀点B,C,组成三⾓形,使三⾓形周长最⼩.解:分别作点A 关于0M , ON 的对称点AAOM , ON 于点B 、点C ,则点B 、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在⼀条直线上时,三⾓形的周长最⼩例:如图,A.B 两地在⼀条河的两岸,现要在河上建⼀座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平⾏的直线,桥要与河垂直)解:1.将点B 沿垂直与河岸的⽅向平移⼀个河宽到 E ,2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得 BN // EM 且 BN=EM, MN=CD, BD // CE, BD=CE,所以 A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在 CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在⼛ACE 中AC+CE >AE,⼆ AC+CE+MN >AE+MN,即 AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。
最短路径经典练习题
最短路径经典练习题一、基础理论题1. 请简述迪杰斯特拉(Dijkstra)算法的基本原理。
2. 什么是贝尔曼福特(BellmanFord)算法?它适用于哪些类型的图?3. 请解释A搜索算法中启发式函数的作用。
4. 如何判断一个图中是否存在负权环?5. 简述弗洛伊德(Floyd)算法的基本步骤。
二、单选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 初始化距离表B. 选择当前距离最小的顶点C. 更新相邻顶点的距离D. 重复步骤B和C,直到所有顶点都被访问A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 启发式函数B. 起始节点C. 目标节点D. 图的规模三、多选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 深度优先搜索算法D. 广度优先搜索算法A. 初始化距离矩阵B. 更新距离矩阵C. 查找负权环D. 输出最短路径A. 图的存储结构B. 顶点的数量C. 边的数量D. 起始顶点四、计算题A (3)>B (2)> D\ | ^ \ | | \(2)\ | (1)/C \|(4)A (1)>B (2)> D\ ^ |\(2)\ | (3)/C \ |(1)A (2)>B (3)> D\ | ^\(3)\ | (1)/C \ |(2)五、应用题1. 假设你是一名地图软件的开发者,请简述如何利用最短路径算法为用户提供导航服务。
2. 在一个网络游戏中,玩家需要从起点到达终点,途中会遇到各种障碍。
请设计一种算法,帮助玩家找到最佳路径。
六、判断题1. 迪杰斯特拉算法只能用于无向图的最短路径问题。
()2. 贝尔曼福特算法可以检测图中是否存在负权环。
()3. 在A搜索算法中,如果启发式函数h(n)始终为0,则算法退化为Dijkstra算法。
()4. 弗洛伊德算法的时间复杂度与图中顶点的数量无关。
()七、填空题1. 迪杰斯特拉算法中,用来存储顶点到源点最短距离的数组称为______。
最短路径问题---原创优秀课件精编版
A
A'
A’
M
a
b
N
B
B
A l
C
B′
轴对称 变换
A C
A
A' M a
b
N
B
平移
l
变换
B
两点之间,线段最短.
变式练习
1.如图,A.B是直线a同侧的两定点,定 长线段PQ在a 上平行移动,问PQ移 动到什么位置时,AP+PQ+QB的长最短?
.B A.
a
..
PQ
分析: PQ是一个定长线段,AP+PQ+QB最
短即AP+QB最短.此题类似课本问题二 的“造桥选址”问题。
问:平移哪条线段?沿哪个方向平移?
.B
A.
A’
a
.
. Q’
PQ
B’
2.某班晚会时桌子摆成如图AO,BO两直排 ,AO桌面上摆满了橘子,OB桌面上摆满了糖 果,坐在C 处的小明先拿橘子再拿糖果,然 后到D处座位上,请你帮助他设计一条行走
路线,使其所走的总路程最短?
最短路径问题
太平一 中
理论依据:
1.两点的所有连线中,线段最短. (两点之间,线段最短)
2.三角形两边之和大于第三边. (证明时用)
常用方法:
1.直接运用两点之间线段最短解决
“求直线异侧的两点与直线上一点所 连线段的和最小”的问题---- 只要连 接这两点,与直线的交点即为所求.
A l
C
B
2.运用轴对称解决距离最短问题
如果涉及两条或更多条线段的和 最短, 则运用轴对称将所求线段转化 到一条线段上。
AA CCB Bl lB′
最短路径问题(经典)
最短路径问题
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】。
最短路径问题
最短路径问题(珍藏版)
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】
全国初中数学资料群群号:0。
13.4-最短路径问题例题与讲解
13.4 课题学习最短路径问题基础知识臺本技能1 .最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线I异侧的两个点,在I上找一个点C,使CA + CB最短,这时点C是直线I与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A, B分别是直线I同侧的两个点,在I上找一个点C,使CA + CB最短,这时先作点B关于直线I的对称点B'贝山点C是直线I与AB '的交点.B r为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接AC',BC',B'C‘,证明AC+ CB V AC’t’B•如下:证明:由作图可知,点B和B'关于直线对称,所以直线I是线段BB'的垂直平分线.因为点C与C'在直线上,所以BC= B'C,BC'=B C.在△ABC '中,AB 'iAC'+C',所以AC+ B 'C<AC ' + C ',所以AC+ BC v AC ' -C B.【例1 ]在图中直线I上找到一点M ,使它到A, B两点的距离和最小.分析:先确定其中一个点关于直线I的对称点,然后连接对称点和另一个点,与直线I的交点M即为所求的点.解:如图所示:(1)作点B关于直线I的对称点B ';(2)连接AB '交直线于点M .(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.基本方法塘本縮力J JI IK M F .4 \ f® F A J P J扌K uV X !■? M E ■ J. J2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2]如图,小河边有两个村庄A, B,要在河边建一自来水厂向A 村与B村供水.E F(1)若要使厂部到A, B村的距离相等,贝S应选择在哪建厂?(2)若要使厂部到A, B两村的水管最短,应建在什么地方?分析:(1)到A, B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF 于P,贝S P到A, B的距离相等.也可分别以A、B为圆心,1以大于2AB为半径画弧,两弧交于两点,过这两点作直线,与EF的交点P即为所求.⑵如图2,画出点A关于河岸EF的对称点A',连接A'B交EF于P,则P到A, B的距离和最短.【例3】如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?思路导引:从A到B要走的路线是A—M —N —B,如图所示,而MN是定值,于是要使路程最短,只要AM + BN最短即可.此时两线段应在同一平行方向上,平移MN到AC,从C到B应是余下的路程,连接BC的线段即为最短的,此时不难说明点N即为建桥位置,MN即为所建的桥.解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽.⑵连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M •则MN为所建的桥的位置.思维拓展無斯应用K:Jl > / —- - *. . ........................................................................ .................. ~…• •--------------- ■ ■ ■ ....... ■■ ■: ■n iin 'ozi11 :i n' i x i x Y I Yf i \ r;4 .生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO + BO = AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八⑵班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO, BO), A0桌面上摆满了橘子, 0B桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?A---------- 0C・irB图a解:如图b.(1)作C点关于OA的对称点C i,作D点关于OB的对称点D i, ⑵连接C iD i,分别交OA, OB于P, Q,那么小明沿C-P-Q-D 的路线行走,所走的总路程最短.5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5]如图所示,A, B两点在直线I的两侧,在I上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线I的对称点A'(或B),Ci作直线A 'B(AB')与直线I交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线I为对称轴,作点A关于直线I的对称点A',AB 的连线交I于点C,则点C即为所求.理由:在直线I上任找一点C(异于点C),连接CA, CA, CA',CB.因为点A, A'关于直线I对称,所以I为线段AA '的垂直平分线,则有CA= CA',所以CA—CB=CA ' -CB= A B.又因为点C'在上,所以C 'A = C 'A '•在8 ' BC '中,C 'A—C B= C A' -C B v A B,所以C 'A ' -C B v CA —CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。
最短路径问题(经典)精编版
最短路径问题(经典)精编版
最短路径问题是图论研究中的经典算法问题之一,其目的是在图中寻找两个节点之间的最短路径。
该问题可以分为以下几种情况:已知起始节点,求最短路径;已知终止节点,求最短路径;已知起始和终止节点,求两个节点之间的最短路径;求图中所有节点之间的最短路径。
这些问题的原型包括将军饮马、造桥选址和费马点。
解决最短路径问题需要涉及到许多数学知识,包括线段最短距离、垂线段最短距离、三角形三边关系、轴对称和平移等。
这些知识可以在角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴和抛物线等几何形状中得到应用。
解决最短路径问题的思路是找到对称点,实现折转直的过程。
近年来,出现了一些变式问题,例如三折线转直等,需要考生掌握解决方法。
最短路径问题有许多基本问题,其中包括确定起始节点和终止节点的最短路径问题,求图中所有节点之间的最短路径问
题等等。
在解决这些问题时,需要运用前述的数学知识和解决思路。
如果你对最短路径问题感兴趣,可以加入全国初中数学资料群,群号为xxxxxxxx0.。
最短路径专题 含答案
最短路径专题含答案1. 某同学的茶杯是圆柱体,如图是茶杯的立体图,左边下方有一只蚂蚁,从A处爬行到对面的中点B处,如果蚂蚁爬行路线最短,请画出这条最短路线图.解:如图1,将圆柱的侧面展开成一个长方形,如图示,则A,B分别位于如图所示的位置,连接AB,即是这条最短路线图.问题:某正方形盒子,如图左边下方A处有一只蚂蚁,从A处爬行到侧棱GF上的中点M点处,如果蚂蚁爬行路线最短,请画出这条最短路线图.2. 如图,一圆柱体的底面周长为24cm,高AB为16cm,BC是上底面的直径.一只昆虫从点A出发,沿着圆柱的侧面爬行到点C,求昆虫爬行的最短路程.3. 如图一只蚂蚁要从正方体的一个顶点A爬一个顶点B,如果正方体棱是2,求最短的路线长.4. 如图,长方体的底面边长分别为2cm和4cm,高为5cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长.5. 如图,有一半径为2cm,高为10cm的圆柱体,在棱AA1的P点上有一只蜘蛛,PA=3cm,在棱BB1的Q点上有一只苍蝇,QB2=2cm.蜘蛛沿圆柱爬到Q点吃苍蝇,请你算出蜘蛛爬行的最短路线长.(π取3.14;结果精确到0.01cm)6. 一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,假设蚊子不动,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?7. 如图,圆柱的高为8cm,底面直径4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,它需要爬行的最短路程是多少厘米?(π≈3)8. 如图1,是一个长方体盒子,长AB=4,宽BC=2,高CG=1.(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,求它所行走的最短路线的长.(2)这个长方体盒子内能容下的最长木棒的长度为多少?9. 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45∘,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=√2,求AD的长.10. 如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60∘,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点Dʹ处,折痕交CD边于点E.(1)求证:四边形BCEDʹ是菱形;(2)若点P时直线l上的一个动点,请计算PDʹ+PB的最小值.11. 已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切;(2)若AC=6,AB=8,BE=3,求线段OE的长.12. 已知抛物线C1的函数解析式为y=ax2−2x−3a,若抛物线C1经过点(0,−3).(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为√(x2−x1)2+(y2−y1)2)(1)求抛物线C1的顶点坐标.(2)已知实数x>0,请证明x+1x ≥2,并说明x为何值时才会有x+1x=2.(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90∘,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.13. 如图,已知:四边形ABCD中,E为AB的中点,连接CE,DE,CD=CE=BE,DE∥BC.(1)求证:四边形ADCE是菱形;(2)若BC=6,CE=5,求四边形ADCE的面积.14. 如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快达到目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.15. 如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.16. 已知圆锥的底面半径为r=20cm,高ℎ=20√15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离.17. 已知,点P是Rt△ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.18. 已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45∘.(1)如图①,判断CD与⊙O的位置关系,并说明理由;(2)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.19. 图①,图②为同一长方体房间的示意图,图③为该长方体的表面展开图.(1)已知蜘蛛在顶点Aʹ处;①苍蝇在顶点B处时,试在图①中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图②中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线AʹGC和往墙面BBʹCʹC爬行的最近路线AʹHC,试通过计算判断哪条路线更近;(2)在图③中,半径为10dm的⊙M与DʹCʹ相切,圆心M到边CCʹ的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线.若PQ与⊙M相切,试求PQ的长度的范围.20. 如图所示,长方体的长为15cm,宽为10cm,高为20cm,点B与点C之间相距5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?21. 如图,平行四边形ABCD中,AB=3,BC=5,∠B=60∘,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F.(1)求证:四边形CEDF是平行四边形;(2)①当AE=时,四边形CEDF是矩形;②当AE=时,四边形CEDF是菱形.22. 葛藤是一种植物,它自己腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一个绝招,就是它绕树盘升的路线,总是沿最短路线螺旋前进的.(1)如果树的周长为3m,绕一圈升高4m,则它爬行路程是多少?(2)如果树的周长为8m,绕一圈爬行10m,则爬行一圈升高多少m?如果爬行10圈到达树顶,则树干多高?23. 实践操作在矩形ABCD中,AB=8,AD=6,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E,F是折痕与矩形的边的交点),再将纸片还原.(1)初步思考若点P落在矩形ABCD的边AB上(如图①).①当点P与点A重合时,∠DEF=∘,当点E与点A重合时,∠DEF=∘;②当点E在AB上,点F在DC上时(如图②),求证:四边形DEPF为菱形,并直接写出当AP=7时菱形EPFD的边长.(2)深入探究若点P落在矩形ABCD的内部(如图③),且点E,F分别在AD,DC边上,请直接写出AP的最小值.(3)拓展延伸若点F与点C重合,点E在AD上,射线BA与射线FP交于点M(如图④).在各种不同的折叠位置中,是否存在某一种情况,使得线段AM与线段DE的长度相等?若存在,请直接写出线段AE的长度;若不存在,请说明理由.24. 如图,已知抛物线y=−x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)连接CD,BC,求∠DBC的余切值;(3)设点M在线段CA的延长线上,如果△EBM和△ABC相似,求点M的坐标.25. 如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x−2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.26. 阅读下面材料:小明遇到这样一个问题:如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45∘,连接EF,则EF=BE+DF,试说明理由.小明是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.他先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.他的方法是将△ABE绕着点A逆时针旋转90∘得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小明同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90∘,点E,F分别在边BC,CD上,∠EAF=45∘.若∠B,∠D都不是直角,则当∠B与∠D满足关系时,仍有EF= BE+DF;(2)如图4,在△ABC中,∠BAC=90∘,AB=AC,点D,E均在边BC上,且∠DAE=45∘,若BD=1,EC=2,求DE的长.27. 如图,在△MNQ中,MN=11,NQ=3√5,cosN=√5.在矩形ABCD中,BC=4,CD=3,5点A与点M重合,AD与MN重合,矩形ABCD沿着MQ方向平移,且平移速度为每秒5个单位,当点A与点Q重合时停止运动.(1)MQ的长度是;(2)运动秒,BC与MN重合;(3)设矩形ABCD与△MNQ重叠部分的面积为S,运动时间为t,求出S与t之间的函数关系式,并直接写出t的取值范围.的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为28. 如图1,对称轴为直线x=12A .(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.29. 如图,矩形ABCD中,AB=2,BC=2√3,将矩形沿对角线AC剪开,请解决以下问题:(1)将△ACD绕点C顺时针旋转90∘得到△AʹCDʹ,请在备用图中画出旋转后的△AʹCDʹ,连接AAʹ,并求线段AAʹ的长度;(2)在(1)的情况下,将△AʹCDʹ沿CB向左平移的长度为t(0<t<2√3),设平移后的图形与△ABC重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.30. 如图甲,在△ABC中,∠ACB=90∘,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/ s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQPʹC,当四边形PQPʹC为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形?31. 如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2−2x−8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.32. 如图,在平面直角坐标系xOy中,抛物线y=x2+1与y轴相交于点A,点B与点O关于点A4对称.(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点Cʹ恰好落在该抛物线的对称轴上,求此时点P的坐标.33. 已知:如图①,在Rt△ACB中,∠C=90∘,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC ?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQPʹC,那么是否存在某一时刻,使四边形PQPʹC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.34. 如图,四边形ABCD,BEFG均为正方形,(1)如图1,连接AG,CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0∘<β<180∘),如图2,连接AG,CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB 的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系:.35. 如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为y=ax2+bx+c.(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0,−3),求该抛物线的解析式.(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使EA ?若存在,直接写出P的坐标,若不存在,说明理由.PM=1236. 如图,在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180∘,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1 中是否存在与AB相等的线段?若存在,请找出并加以证明.若不存在说明理由.(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90∘,AF=m,求BD的长(用含k,m的式子表示).37. 如图,顶点为C(−1,1)的抛物线经过点D(−5,−3),且与x轴交于A,B两点(点B在点A的右侧).(1)求抛物线的解析式;,求出点Q的坐标;(2)若抛物线上存在点Q,使得S△OAQ=32(3)点M在抛物线上,点N在x轴上,且∠MNA=∠OCD,是否存在点M,使得△AMN与△OCD相似?若存在,直接写出点M的坐标;若不存在,说明理由.38. 阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点 A 作 AF ⊥BC ,垂足为 F ,得到 ∠AFB =∠BEA ,从而可证 △ABF ≌△BAE (如图 2),使问题得到解决.(1)根据阅读材料回答:△ABF 与 △BAE 全等的条件是 (填" SSS "、 " SAS " 、" ASA" 、 " AAS “或”HL "中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC 中,AB =AC ,∠BAC =90∘,D 为 BC 的中点,E 为 DC 的中点,点 F 在AC 的延长线上,且 ∠CDF =∠EAC ,若 CF =2,求 AB 的长;(3)如图 4,△ABC 中,AB =AC ,∠BAC =120∘,点 D ,E 分别在 AB ,AC 边上,且 AD =kDB (其中 0<k <√33),∠AED =∠BCD ,求 AE EC 的值(用含 k 的式子表示).39. 如图,已知二次函数 y =−x 2+bx +c (b ,c 为常数)的图象经过点 A (3,1),点 C (0,4),顶点为点 M ,过点 A 作 AB ∥x 轴,交 y 轴于点 D ,交该二次函数图象于点 B ,连接 BC .(1)求该二次函数的解析式及点 M 的坐标;(2)若将该二次函数图象向下平移 m (m >0) 个单位,使平移后得到的二次函数图象的顶点落在 △ABC 的内部(不包括 △ABC 的边界),求 m 的取值范围;(3)点 P 是直线 AC 上的动点,若点 P ,点 C ,点 M 所构成的三角形与 △BCD 相似,请直接写出所有点 P 的坐标(直接写出结果,不必写解答过程).40. 在平面直角坐标系中,O为原点,四边形OABC是矩形,点A,C的坐标分别为(3,0),(0,1).点D是边BC上的动点(与端点B,C不重合),过点D作直线y=−1x+b交边OA2于点E.(1)如图(1),求点D和点E的坐标(用含b的式子表示);(2)如图(2),若矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,试探究矩形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由;(3)矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,请直接写出这个菱形的面积的最小值和最大值.41. 如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60∘得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=√3AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.(温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.)42. 如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为Bʹ.点Bʹ从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点Bʹ停止移动,连接BBʹ.设直线l与AB相交于点E,与CD所在直线相交于点F,点Bʹ的移动距离为x,点F与点C的距离为y.(1)求证:∠BEF=∠ABʹB;(2)求y与x的函数关系式,并直接写出x的取值范围.43. 如图1,△ABC中,∠C=90∘,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图 2 所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围.x2+bx−2与x轴交于A,B两点,与y轴交于C点,且A(−1,0).44. 如图,抛物线y=12(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.45. 定义:我们把三角形被一边中线分成的两个三角形叫做"友好三角形".性质:如果两个三角形是"友好三角形",那么这两个三角形的面积相等.理解:如图1,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.(1)应用:如图2,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(i)求证:△AOB和△AOE是“友好三角形”;(ii)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.(2)探究:在△ABC中,∠A=30∘,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△AʹCD,若△AʹCD与△ABC 重合部分的面积等于△ABC面积的1,请直接写出△ABC的面积.446. 如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90∘,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90∘,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.47. 如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.48. 在四边形ABCD中,对角线AC,BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0∘<θ<90∘),连接AC1,BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1= kBD1.请直接写出k的值和AC12+(kDD1)2的值.49. 如图,四边形ABCD为一个矩形纸片.AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过BC的中点E?(3)求出y与x的函数表达式.50. 如图,以点P(−1,0)为圆心的圆,交x轴于B,C两点(B在C的左侧),交y轴于A,D两点(A在D的下方),AD=2√3,将△ABC绕点P旋转180∘,得到△MCB.(1)求B,C两点的坐标;(2)请在图中画出线段MB,MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ,QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.51. 定义:当点P在射线OA上时,把OPOA的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA上的射影值均为OPOA =13.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形;其中真命题有.A.①②B.②③C.①③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以O为圆心,OA长为半径画圆,点B是⊙O上任意一点.①如图2,若点B在射线OA上的射影值为12,求证:直线BC是⊙O的切线.②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式.x2交于A,B两点,其中点A的横坐标是−2.52. 如图,已知一条直线过点(0,4),且与抛物线y=14(1)求这条直线的函数关系式及点B的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?53. 已知:如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C,D不重合),AB=20,cos∠AOC=4.设OP=x,△CPF的面积为y.5(1)求证:AP=OQ;(2)求y关于x的函数关系式,并写出它的自变量x的取值范围;(3)当△OPE是直角三角形时,求线段OP的长.x2+bx+c与x轴分别相交于点A(−2,0),B(4,0),与y轴交于点C,顶54. 如图,抛物线y=−12点为点P.(1)求抛物线的解析式;(2)动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.(i)当四边形OMHN为矩形时,求点H的坐标;(ii)是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.55. 如图,在Rt△ABC中,∠ACB=90∘,AC=5cm,∠BAC=60∘,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒√3cm 的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.56. 爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,AM,BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.(1)【特例探究】如图1,当tan∠PAB=1,c=4√2时,a=,b=;如图2,当∠PAB=30∘,c=2时,a=,b=;(2)【归纳证明】请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.(3)【拓展证明】如图4,平行四边形ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC= 3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3√5,AB=3,求AF的长.57. 在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O,B,C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r 的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60∘方向上,同时军舰C测得A位于南偏东30∘方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20√2海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15∘的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?58. 如图,在坐标系xOy中,已知D(−5,4),B(−3,0),过D点分别作DA,DC垂直于x轴、y轴,垂足分别为A,C两点.动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴59. 如图,抛物线y=−12交x轴于点D,已知A(−1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.60. 如图1,在Rt△ABC中,∠ACB=90∘,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?61. 如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.(1)CD的长等于;(2)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).62. 如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(−1,0),B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P,C,Q为顶点的三角形与△ABC相似,求点P的坐标.63. 如图,在平面直角坐标系中,直线y=−2x+10与x轴,y轴相交于A,B两点.点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.64. 将矩形纸片OABC放在平面直角坐标系中,O为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图①,当点Q恰好落在OB上时,求点P的坐标.。
最短路径问题说课稿精编版
五、教学设计
创设情境,导入新课 合作探究,探索新知 逻辑证明,检验发现 学以致用,巩固新知 课堂小结,布置作业
五、教学设计 创设情境,导入新课
情境1:牧马人从图中的A 地出发,到一条笔直的河 边l 饮马,然后到B 地.到河边什么地方饮马可使他所走 的路线全程最短?
B A
l
五、教学设计 合作探究,探索新知
一、教材分析 (二)教材的重难点
重点 难点
利用轴对称将最短路径问题转 化为“两点之间,线段最短”问 题.
如何利用轴对称将最短路径问题 转化为线段和最小问题.
突破难点的方法:利用轴对称性质,作任意已知点的 对称点,连接对称点和已知点,得到一条线段,利用两 点之间线段最短来解决.
二、学情分析
知识储备:轴对称 两点之间,线段最短 垂线短最短
A
·
C′ C
B
·
l
B′
五、教学设计
逻辑证明,检验发现
追问2 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A
·
C′ C
B
·
l
B′
五、教学设计
学以致用,巩固新知
练习 如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径.
作法: (1)作点B 关于直线l 的对称
点B′; (2)连接AB′,与直线l 相交
于点C. 则点C 即为所求.
B
·
A
·
l C
B′
五、教学设计
逻辑证明,检验发现
问题3 你能用所学的知识证明AC +BC最短吗?
B
·
A
(完整版)最短路径习题
13.4课题学习最短路径问题1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B 处,则它爬行的最短路径是。
BA②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。
DCA B2.①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
李庄张村②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。
请在图中找出点P的位置,并计算PA+PB的最小值。
BAL③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。
3.如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是 。
4.现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。
5.如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。
6.正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。
7.在菱形ABCD 中,AB=2,∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。
张村李庄ABCDABAB图(2)8.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值为____ ___。
勾股定理--与最短路径问题
17.1(11)勾股定理--与最短路径问题一.【知识要点】1.两点之间线段最短:⑴将军饮马型;⑵几何体上两点最短型2.垂线段最短型3.造桥选址型二.【经典例题】1.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .2.如图一个圆柱,底圆周长10cm ,高4cm ,点B 距离上边缘1cm,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .3.如图,圆柱形容器中,高为0.4m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,与蚊子相对..的点A 处,求壁虎捕捉蚊子的最短距离(容器厚度忽略不计).4.编制一个底面半径为6cm 、高为16cm 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的111AC B ,222,A CB ,则每一根这样的竹条的长度最少是__________.5.如图,圆柱底面半径为cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B在同一高上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为______.6.一只蚂蚁从长为4cm,宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。
7.已知 A (1,1)、B (4,2).P 为 x 轴上一动点,求 PA+PB 的最小值.8.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.2A B三.【题库】【A 】1.如图,一个长方体盒子,一只蚂蚁由A 出发,在盒子的表面上爬到点C 1,已知AB=7cm ,BC=CC 1=5 cm ,则这只蚂蚁爬行的最短路程是________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是________.3.如图,∠ABC =30°,点D 、E 分别在射线BC 、BA 上,且BD =2,BE =4,点M 、N 分别是射线BA 、BC 上的动点,当DM +MN +NE 最小时,(DM +MN +NE )2的值为( )A 、20B 、26C 、32D 、36【B 】1.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为( ) A.23 B. 26 C.3 D.6A 1B 1C 1D 1 A B C D2.如图,一个无盖的长方体长、宽、高分别为8cm 、8cm 、12cm ,一只蚂蚁从A 爬到C 1,怎样爬路线最短,最短路径是多少?3.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .14.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .4dmB .2dmC .2dmD .4dm8cm 8cm12cm【C 】 1.(8分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A. 李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?2.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,PA+PD 长为( )A .8 B.4+15 C .152 D .1723.如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD 交于点 E 、F ,则△CEF 的周长的最小值为( )A.2B.23C.2+3D. 44.如图,在矩形ABCD 中,AB =5,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,则△AEF 的周长最小时值为( )A .17B .21C .13+41 D. 13+345.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。
最短路径问题方法总结
最短路径问题方法总结嘿,咱今儿就来说说这最短路径问题!你说这生活中啊,可不就到处都是找最短路径的事儿嘛。
就好比你要去一个地方,肯定想走最快最省力的路呀,这其实就是个最短路径问题呢。
先来说说在地图上找路吧,你得会看那些弯弯绕绕的线条,这就像在一个大迷宫里找出口。
有时候你看着好像这条路最近,结果走过去发现有个大堵车,或者路不通,这不就傻眼啦!所以啊,不能光看表面,得综合考虑各种因素。
再打个比方,就像你要去拿个东西,摆在面前有好几条路可以走。
你得想想,哪条路上不会有太多阻碍,哪条路能让你最快拿到。
这可不是随随便便就能决定的哦。
解决最短路径问题,有一种常见的方法叫迪杰斯特拉算法。
这名字听着挺拗口吧,但其实不难理解。
它就像是个聪明的导航,能帮你算出从一个点到其他所有点的最短路径。
想象一下,你站在一个路口,这个算法就像个小精灵在你耳边告诉你该往哪边走。
还有一种叫弗洛伊德算法,它能处理更复杂的情况。
就好像你要在一个超级大的网络里找路,这个算法就能帮你找到那些隐藏的最短路径。
咱平常生活里也经常会碰到类似的问题呀。
比如说你每天上班,怎么走路或者坐车能最快到公司,这就是你的最短路径问题。
你得考虑路上的交通情况、换乘次数等等。
再比如你去超市买东西,怎么在货架之间穿梭能最快拿到你要买的东西,这也是个小小的最短路径问题呢。
那怎么才能更好地解决这些最短路径问题呢?首先你得有耐心,不能着急,得仔细分析各种情况。
然后呢,要多积累经验,就像你知道哪条路经常堵车,下次就避开它。
而且啊,有时候最短路径不一定是最好的路径哦。
就像有时候走一条稍微远点但是风景好的路,心情也会变得超好,这不是也很值嘛!总之呢,最短路径问题可大可小,遍布在我们生活的方方面面。
我们要学会用各种方法去找到最合适我们的那条路。
不管是在地图上找路,还是在生活中做选择,都要好好思考,找到属于自己的最短路径。
别总是盲目地走,要学会动脑子呀!大家说是不是这个理儿呢?。
(最新整理)初中数学最短路径问题典型题型复习
初中数学最短路径问题典型题型复习初中数学最短路径问题典型题型复习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学最短路径问题典型题型复习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学最短路径问题典型题型复习的全部内容。
初中数学最短路径问题典型题型复习初中数学《最短路径问题》典型题型知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直",近两年出现“三折线”转“直”等变式问题考查.一、两点在一条直线异侧例:已知:如图,A,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。
解:连接AB,线段AB 与直线L 的交点P ,就是所求。
(根据:两点之间线段最短.)二、 两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.解:只有A 、C 、B 在一直线上时,才能使AC +BC 最小.作点A关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点.三、一点在两相交直线内部例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B,C ,组成三角形,使三角形周长最小。
解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON于点B 、点C,则点B 、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小D例:如图,A 。
最短路径问题【范本模板】
最短路径问题 姓名 类型一、一条直线外两个定点到直线上一动点距离之和最小的问题:1. 一条直线异侧两个定点到直线上一动点距离之和最小,确定动点的位置。
作法:连接两个定点,交直线于一点,交点即为所求。
例1、如图,在直线l 上求一点P ,使PA +PB 值最小.作法:连接AB ,交直线l 于点P ,点P 即为所求。
说明:∵连接A 、B 两点的线中,线段最短。
∴连接AB ,交直线l 于点P ,此时PA+PB 最小=AB2. 一条直线同侧两个定点到直线上一动点距离之和最小,确定动点的位置。
方法:利用轴对称变换将直线同侧两个定点转化为直线异侧两个定点,然后根据“两点之间线段最短”,用例1的方法确定动点的位置。
例2、 如图,在直线l 上求一点P ,使PA +PB 值最小. 作法:①作点A 关于直线l 的对称点A ’;②连接A ’B,交直线l 于点P,点P 即为所求。
说明:连接AP 、AA ’,∵点A 和点A ’关于直线l 对称, ∴直线l 是AA ’的垂直平分线,∴PA=PA ’,∵两点之间,线段最短。
∴此时PA+PB 最小=PA ’+PB=AB 。
类型二、一条直线外两个定点到直线上一动点距离之差最大的问题: 1.一条直线同侧两个定点到直线上一动点距离之差最大,确定动点的位置。
例3、在直线l 上求一点P ,使PB PA -的值最大.作法:连接AB,并延长交直线l 于点P ,点P 即为所求.证明:在直线l 上另取一点P ’,连接P'A 和P ’B , ∵三角形的两边之差大于第三边, ∴AB B P A P <''-; 而连接AB ,并延长交直线l 于点P,此时AB PB PA =-,AB PB PA =-∴最大此时 2.一条直线异侧两个定点到直线上一动点距离之差最大,确定动点的位置。
方法:利用轴对称变换将直线异侧两个定点转化为直线同侧两个定点,然后根据“三角形的两边之差大于第三边”,用例3的方法确定动点的位置。
最短路径问题(珍藏版纯word版)-1(1)
第 11 讲:轴对称【问题概述】初中数学最值问题是每年年中考必出题,更更是图论研究中的⼀一个经典算法问题,旨在寻找图(由结点和路路径组成的)中两结点之间的最短路路径。
【问题原型】“将军饮⼀马”,“造桥选址”,“费⼀马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三⻆角形三边关系”,“轴对称”,“平移”.【出题背景】⻆角、三⻆角形、菱形、矩形、正⼀方形、梯形、圆、坐标轴、抛物线等.【解题思路路】找对称点实现“折”转“直”,近两年年出现“三折线”转“直”等变式问题考查.⼀一.【⼗十⼗二个基本问题】在直线l上求⼀一点P,使PA+PB 值最⼀小。
在直线l上求⼀一点P,使PA+PB 值最⼀小.与在直线l1 、l2 上分别求点M、N,使△PMN 的周⼀长最⼀小.【问题4】作图在直线l1 、l2 上分别求点M 、N ,使四边形PQMN 的周⼀长最⼀小。
P的'与两直.【问题5】“造桥选址”作图直线 m∥ n ,在m 、 n , 上分别求点 M 、N ,使 MN ⊥ m ,且 AM+MN+BN 的值最⼀小。
将点 A 向下平移 MN 的⼀长度单位得 A ',连 A 'B ,交 n 于点 N ,过 N 作 NM ⊥ m 于M .两点之间线段最短. AM +MN +BN 的最⼀小值为 A 'B +MN .【问题 6】 作法 作图原理理在直线 l 上求两点 M 、N (M 在左),使 MN a ,并使 AM +MN +NB 的值最⼀小 . 将点 A 向右平移 a 个⼀长度单位得A ',作 A '关于 l的对称点 A ',连 A 'B ,交直线 l 于点 N ,将 N 点向左平移 a 个单位得M .两点之间线段最短. AM +MN +BN 的最⼀小值为 A ' B +MN . 【问题 7】 作法 作图原理理在 l 1 上求点 A ,在 l 2 上求点 B ,使 PA +AB 值最⼀小.作点 P 关于 l 1 的对称点 P ',作P 'B ⊥ l 2 于B ,交l 1 于 A .点到直线,垂线段最短 PA +AB 的值最⼀小为 P 'B【问题 8】 作法 作图原理理A 为 l 1 上⼀一定点,B 为l 2 上;A 为 l 1 上⼀一定点, B 为 l 2 上⼀一定点,在 l 2 上求点M 在l 1 上求点N , 使 AM+MN+NB 的值最 ⼀小.作点 A 关于 l 2 的对称点A ',作点 B 关于 l 1 的对称点 B ',连 A 'B 交l 2 于M ,交 l 1 于 N .'两点之间线段最短AM+MN+NB 的 最 ⼀小值为线段 A 'B '的⼀长.【问题 9】 作法 作图原理理在直线 l 上求⼀一点 P ,使 的值最⼀小 .连 AB , 作 AB 的中垂线与直线 l的交点即为 P .垂直平分上的点到线段两端点的距离相等.=0 .【问题 10】作法作图原理理在直线 l 上求⼀一点 P ,使 的值最⼀大 .作直线 AB ,与直线l 的交点即为 P .三⻆角形任意两边之差⼀小于第三边≤AB . 【问题 11】作法作图原理理在直线 l 上求⼀一点 P ,使 的值最⼀大 .作 B 关于 l 的对称点 B '作直线 A B ',与 l 交点即为 P .三⻆角形任意两边之差⼀小于第三边≤A B ' .【问题 12】“费⼗马点”作法 作图 原理理△ABC 中每⼀一内⻆角都⼀小于 120°,在△ABC 内求⼀一点 P ,使 PA +PB +PC 值最 ⼀小. 所求点为“ 费⼀马点”,即满⼀足∠ APB =∠ B PC =∠ APC =120°.以 AB 、AC 为边向外作等边 △ABD 、△ACE ,连 CD 、BE 相交于 P , 点 P 即为所求.两点之间线段最短. PA +PB +PC 最⼀小值 = CD .⼀二.“⼀一次对称”常⼀见模型:【精品练习】1.如图所示,正⼀方形 ABCD 的⼀面积为 12,△ABE 是等边三⻆角形,点 E 在正⼀方形 ABCD 内,在对⻆角线AC 上有⼀一点P,使PD+PE 的和最⼀小,则这个最⼀小值为()A.2B.C.3D. 2.如图,在边⼀长为2 的菱形ABCD 中,∠A BC=60°,若将△ACD 绕点A 旋转,当AC′、AD′分别与BC、CD 交于点E、F,则△CEF 的周⼀长的最⼀小值为()A.2 C.2+ D. 43.四边形ABCD 中,∠B=∠D=90°,∠C=70°,在BC、CD 上分别找⼀一点M、N,使△AMN 的周⼀长最⼀小时,∠A MN+∠A NM 的度数为()A.120° B.130° C.110°D.140°4.如图,在锐⻆角△ABC 中,AB=4 ,∠B AC=45°,∠B AC=45°,∠B AC 的平分线交BC 于点D,M、N 分别是AD 和AB 上的动点,则BM+MN 的最⼀小值是。
最短路径(将军饮马)问题精编版
最短路径(将军饮马)问题与拓展相关定理或公理:①线段公理:两点之间,线段最短。
由此可以推出两边之和大于第三边;②垂线段性质:垂线段最短。
问题提出:唐朝诗人李欣的诗《古从军行》开头两句:“白日登山望烽火,黄昏饮马傍交河。
”诗中隐隐含着一个有趣的数学问题。
如图,将军在观望烽火后从山脚下的A 点出发,走到河边饮马后再走到B 点的营地。
怎样走才能使总的路程最短?模型【1】一定直线,异侧两定点已知:直线l 和它异侧两点A 、B ,在直线l 上求作一点P ,使PA +PB 最小模型【2】一定直线,同侧两定点已知:直线l 和它同侧两点A 、B ,在直线l 上求作一点P ,使PA +PB 最小模型【3】两定直线,两定点已知:∠MON 内部有两点P 、Q ,在OM 、ON 上分别作点A 、B ,使四边形PQBA 周长最小模型【4】两定直线,一定点已知:∠MON 内部有一点P 在OM 、ON 上分别作点A 、B ,使△PAB 周长最小A l AO NON模型【5】两定直线,一定点已知:∠MON内部有一点P在OM、ON上分别作点A、B,使AB+PB最小注意:模型4与模型5的联系与区别变式:线段之差最大问题模型【6】一定直线,同侧两定点已知:直线l和它同侧两点A、B,在直线l上求作一点P,使︱PA-PB︱最大模型【7】一定直线,异侧两定点已知:直线l和它同侧两点A、B,在直线l上求作一点P,使︱PA-PB︱最大造桥选址问题利用平移变换进行造桥选址,是平移变换的一个重要应用。
原题再现如图1,A和B两地在一条河的两岸,现要在河上造一座桥MN。
桥造在何处才能使从A到B的路径AMNB 最短?(假定河的两岸是平行的直线,桥与河垂直)。
(人教版八年级上册第86页)O NllAB变式拓展模型【8】一定直线及直线上一长度不变的线段,同侧两定点已知:直线l 和它同侧两点A 、B ,在直线求作一条线段CD (长度不变),使AC +CD +DB 最小巩固练习1、如图,在四边形ABCD 中,∠B =∠D =90°,∠BAD =110°,在BC 上存在一点M ,在CD 上存在点N ,使△AMN 的周长最短,则∠MAN 的度数为 ;2、如图,Rt △ABC 中,BC =3,AC =4,AB =5, BD 平分∠BAC ,点E 、F 分别为BD 、BC 上的动点, 连接CE 、EF ,则C E +EF 的最小值是______3、如图,若AP =4,∠CAB =30°,在AB 上有一动点M ,AC 上有一动点N ,则 PMN 周长的最小值是____________4、如图,△ABC 在平面直角坐标系中,且A (1,3)、B (-4,1)、若M (a-1,0)、N (a ,0),当BM +MN +NA 最小时,直接写出a 的值是_________.几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等. l B 第1题图 D CB A A CB例1、如图,△ABC 是等边三角形,边长为6,AD ⊥BC ,垂足是点D ,点E 为直线AD 上一点,以CE 为边作等边三角形CEF ,则DF 的最小值是________练习:1、如图,△ABC 是等边三角形,边长为6, 点D 为BC 中点,,点E 为直线BC 上一点,以AE 为边作等边三角形AEF ,则DF 的最小值是________2、平面直角坐标系中,C (0,4),K (2,0),A 为x 轴上一动点,连接AC ,将AC 绕A 点顺时针旋转90°得到AB ,当点A 在x 轴上运动,BK 取最小值时,点ABC B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短路径问题(珍藏版)
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】
全国初中数学资料群群号:101216960。