九年级数学总复习教案

合集下载

2024年九年级中考数学复习第3课时代数式及整式教案

2024年九年级中考数学复习第3课时代数式及整式教案

九年级数学科目_复习_课型第__章第__课时,总第___课时月日周用数字、字母和符号表示简单的数量关系时注意书写规范,如乘号“×”用“2、把多项式的同类项合并成一项,叫做合并同类项。

即把它们的 相加作为新的系数,而字母和字母的 不变。

考点五:整式的加减运算单项式与单项式,单项式与多项式及多项式与多项式的加减法实质上是 。

三、典例剖析例1:某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4 月 份增加了15%,则5月份的产值是( )A 、(10%)(15%)a a ⨯-+万元B 、(110%)(115%)a ⨯-+万元C 、(10%15%)a -+万元D 、(110%15%)a ⨯-+万元例2:用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1cm 得到新的正方形,则这根铁丝需增加( )A 、4cmB 、8cmC 、(a+4) cmD 、(a+8) cm例3:已知4a+3b=1,则整式8a+6b3的值为( )A 、3B 、2C 、1D 、2例4:如果12a x y +与21b x y -是同类项,那么a b的值是( ) A 、12B 、13C 、1D 、3 例5、下面是一个简单的数值运算程序,当输入x 的值为3时,则输出的数值为 .四、巩固提升1、(1)用代数式表示“a 、b 两数的平方和”,结果为 ;(2)“比a 的2倍大15的数”用代数式表示是 。

2、化简2a+3a 的结果是( )A .aB .aC .5aD .5a3、计算2x 2+3x 2的结果为( )A .5x 2B .5x 2C .x 2D .x 24、下面是一个简单的数值运算程序,当输入x 的值为3时,则输出的数值为 .5、如果整式x n25x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.66、多项式1+2xy3xy2的次数及最高次项的系数分别是()A.3,3 B.2,3 C.5,3 D.2,37、定义运算a⊕b=a(1b),下面给出了这种运算的四个结论:①2⊕(2)=6;②若a+b=0,则(a⊕a)+(b⊕b)=2ab;③a⊕b=b⊕a;④若a⊕b=0,则a=0或b=1.其中结论正确的有()A.①②B.①②③C.②③④D.①②④8、如果x=1时,代数式2ax3+3bx+4的值是5,那么x=1时,代数式2ax3+3bx+4的值是.8、甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样五、学后反思本节课你有哪些收获呢?你还存在哪些疑惑呢?六、课后达标:“剑指中考”1、必作:P30-32面,A组第1、2、9、10、12题;B组第2、3题。

九年级数学《相似三角形判定-复习课》教案

九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。

帮助学生回忆相似三角形的几种判定方法。

以简单的选择、判断题复习相关知识点。

目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

学生熟悉学习目标学生按照学习目标复习知识点。

帮助学生梳理知识要点。

学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。

以相似三角形的基本图形为主线回顾知识点。

从形的角度帮助学生更好地理解知识点。

议探交流尝试练习:学生完成尝试练习1、2两题。

议探交流:组内相互交流,先对议,再互议。

教师适时巡堂,深入小组,进行个别指导。

学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。

)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。

各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。

九年级数学《图形变换-》复习教案

九年级数学《图形变换-》复习教案

课题:图形的变换(初三复习课)关键词教学目标重点难点考点分析教学方法教学过程教学反思教学目标:1、知识与技能复习“平移、旋转、轴对称”的概念、性质以及变换的联系与区别。

会运用轴对称和中心对称的定义判断图形的对称性,能运用图形变换的知识解决实际问题。

2、过程与方法能从变换的角度思考问题,在变换中穿插复习已学知识,找到核心问题所在,并有效解决问题3、情感态度与价值观通过作图及设计培养学生的美感,在进行教学思维训练的同时进行情感教育,体验数学的运用价值,激发学习兴趣,使学生综合发展教学重点、难点重点:掌握图形平移、旋转、轴对称的概念、性质及基本应用难点:提高学生思维的灵活性及对上述知识的综合运用中考考点分析图形的变换是近年中考必考的内容之一,一般以操作探究形式对这部分知识进行考查。

要关注变换(包括平移、旋转、轴对称、位似)性质的理解和应用。

让学生掌握几何变换这一重要的研究手段和方法,提高学生的识图能力和操作解题的综合能力。

教学方法及手段:在教学中穿插使用了:问答对话互动交流法、直观展示法、直观展示法、数形结合法、层次教学法、综合分析探究法等教学方法和手段。

教学教具对称图形的图片,投影仪学生自主学习方案学习目的1,了解“平移、旋转、轴对称”的概念、性质以及变换的联系与区别2,能运用图形变换的知识解决实际问题.预学检测1,同学们,你们在初中阶段学过哪些变换?2,请整理如下知识点:⑴平移、旋转、轴对称的概念⑵平移、旋转、轴对称的性质⑶图形的对称性与对称图形的关系3,请举些生活中常见的轴对称图形与中心对称图形的例子教学过程:(一)预习导学本节课,老师将和同学们一起复习图形的变换。

1、提问:学过哪些变换?答:平移、旋转、轴对称、位似(以后再详细复习)2、展示预学清单中3个考点标题,师生互动共同整理知识点(即划线部分)考点①平移、旋转、轴对称的概念平移:将一图形沿(某一方向)平行移动(一定的距离)的过程。

旋转:将一图形绕(一定点)转动(一定角度)。

九年级数学上册复习教案人教新课标版

九年级数学上册复习教案人教新课标版

九年级数学上册复习教案人教新课标版一、教学目标1. 知识点梳理:整理和巩固九年级数学上册的基本知识点,包括实数、代数、几何、统计与概率等模块的内容。

2. 能力培养:通过复习,提高学生的数学思维能力、分析问题和解题能力。

二、教学内容1. 第一章:实数与代数1.1 实数的概念与性质1.2 代数式的运算1.3 一元一次方程、一元二次方程的解法及应用2. 第二章:几何2.1 平面图形的性质与计算2.2 三角形、四边形的证明与计算2.3 圆的性质与计算3. 第三章:统计与概率3.1 数据的收集、整理与表示3.2 概率的计算与应用4. 第四章:函数及其图像4.1 一次函数、二次函数的图像与性质4.2 反比例函数、比例函数的图像与性质5. 第五章:综合应用题5.1 实数与代数综合题5.2 几何综合题5.3 统计与概率综合题5.4 函数及其图像综合题三、教学方法1. 课堂讲解:结合PPT课件,对每个章节的核心知识点进行详细讲解。

2. 例题解析:挑选典型例题,分析解题思路和方法,引导学生运用所学知识解决问题。

3. 练习巩固:布置适量课后练习题,巩固所学知识,提高解题能力。

4. 小组讨论:组织学生进行小组讨论,分享学习心得,互相解答疑问。

四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生的课后作业完成情况,评估学生的掌握程度。

3. 单元测试:定期进行单元测试,分析学生的成绩,找出存在的问题,及时进行针对性的辅导。

五、教学进度安排1. 第一章:实数与代数,安排2课时进行讲解和练习。

2. 第二章:几何,安排4课时进行讲解和练习。

3. 第三章:统计与概率,安排2课时进行讲解和练习。

4. 第四章:函数及其图像,安排4课时进行讲解和练习。

5. 第五章:综合应用题,安排2课时进行讲解和练习。

注意:根据学生的实际学习情况,可以适当调整教学进度和课时安排。

六、第六章:解方程与应用6.1 解一元一次方程、一元二次方程6.2 分式方程、无理方程的解法6.3 方程的实际应用七、第七章:不等式及其应用7.1 不等式的性质与解法7.2 不等式的实际应用7.3 绝对值不等式、不等式的组合八、第八章:初等函数8.1 一次函数、二次函数的图像与性质8.2 反比例函数、比例函数的图像与性质8.3 函数的实际应用九、第九章:数列9.1 数列的定义与通项公式9.2 等差数列、等比数列的性质与求和公式9.3 数列的实际应用十、第十章:数学综合题10.1 实数与代数、几何综合题10.2 统计与概率、函数及其图像综合题10.3 解方程与不等式、初等函数、数列综合题六、教学方法1. 课堂讲解:结合PPT课件,对每个章节的核心知识点进行详细讲解。

2024年九年级数学集体备课复习教案

2024年九年级数学集体备课复习教案

2024年九年级数学集体备课复习教案一、教学内容本节课选自九年级数学教材第十五章《解析几何》,具体内容为第1节“坐标系”和第2节“直线方程”。

通过本节课的学习,让学生掌握坐标系的基本概念,能够熟练运用直线方程解决实际问题。

二、教学目标1. 理解坐标系的概念,能够准确地绘制坐标系,并在坐标系中表示点、线等几何图形。

2. 掌握直线方程的几种形式,能够根据实际问题选择合适的直线方程,并解决相关问题。

3. 培养学生的空间想象能力和逻辑思维能力,提高解决实际问题的能力。

三、教学难点与重点重点:坐标系的概念,直线方程的几种形式及其应用。

难点:如何将实际问题转化为数学模型,运用直线方程解决问题。

四、教具与学具准备1. 教具:多媒体教学设备,投影仪,直尺,圆规等。

2. 学具:直尺,圆规,练习本,笔等。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示一些生活中的坐标系实例,如地图、平面图等,引导学生观察并思考坐标系在生活中的应用。

2. 知识讲解(15分钟)(1)坐标系的概念及表示方法;(2)直线方程的几种形式:点斜式、斜截式、两点式、截距式;(3)例题讲解:在坐标系中表示直线,求解直线方程。

3. 随堂练习(15分钟)让学生完成教材第十五章第1、2节后的练习题,巩固所学知识。

4. 知识拓展(5分钟)引导学生思考如何将实际问题转化为数学模型,运用直线方程解决。

5. 课堂小结(5分钟)六、板书设计1. 坐标系的概念及表示方法;2. 直线方程的几种形式;3. 例题解答过程;4. 课堂小结。

七、作业设计1. 作业题目:(1)绘制一个坐标系,并在其中表示点、线;(3)根据实际问题,建立坐标系,求解直线方程。

2. 答案:(1)见学生绘制结果;(2)具体解答过程见教材;(3)见学生解答结果。

八、课后反思及拓展延伸1. 反思:本节课学生对坐标系和直线方程的理解程度,以及解决实际问题的能力。

2. 拓展延伸:进一步研究坐标系和直线方程在几何、物理等领域的应用,提高学生的综合运用能力。

中考数学总复习的教案5篇

中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。

第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。

九年级数学《二次函数》总复习教案

九年级数学《二次函数》总复习教案

教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。

2.掌握二次函数的基本性质和图像的特点。

3.熟练运用二次函数解决实际问题。

4.理解抛物线的性质及其与二次函数的关系。

一、概念复习1.二次函数:通过变量的平方项表达的函数。

2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。

3.对称轴:二次函数图像的对称轴,表示为x=a。

4.开口方向:二次函数图像的开口方向,由二次项的系数决定。

二、性质复习1.零点:二次函数与x轴交点的横坐标。

2.判别式:用来判断二次函数的零点个数的式子。

当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。

当Δ=b^2-4ac=0时,二次函数有两个相等的零点。

当Δ=b^2-4ac<0时,二次函数没有实数零点。

3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。

当二次函数开口向下时,最大值是顶点的纵坐标。

三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。

当a<0时,二次函数开口向下。

2.对称轴:对称轴与顶点的横坐标相等。

3.零点:零点是二次函数与x轴交点的横坐标。

零点的个数由判别式Δ决定。

四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。

(2)设出二次函数的表达式。

(3)求出二次函数的最值或零点。

(4)用解出的最值或零点回答问题。

2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。

求该商场的最大营业额,并在什么时间实现。

解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。

(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。

五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。

若a>0,抛物线开口向上;若a<0,抛物线开口向下。

九上数学复习教案

九上数学复习教案

九年级上册数学复习教案一、教学目标1. 巩固和掌握九年级上册数学的基本知识和技能。

2. 提高学生的数学思维能力和解决问题的能力。

3. 培养学生的数学兴趣和复习习惯。

二、教学内容1. 第一章:实数与代数式1.1 有理数1.2 代数式1.3 方程与不等式2. 第二章:几何基础2.1 点、线、面2.2 角与三角形2.3 四边形与圆3. 第三章:函数与方程3.1 一次函数3.2 二次函数3.3 方程的解法4. 第四章:概率与统计4.1 概率的基本概念4.2 事件的判断与计算4.3 统计方法5. 第五章:综合应用5.1 数学阅读与理解5.2 数学问题解决5.3 数学探究活动三、教学方法1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生理解和掌握数学知识。

2. 利用多媒体教学资源,增加学生的学习兴趣和参与度。

3. 组织小组合作学习,培养学生的团队合作能力和沟通能力。

四、教学评估1. 定期进行课堂测验和考试,检查学生的学习进度和掌握情况。

2. 鼓励学生进行自我评价和同伴评价,提高学生的自我反思和评价能力。

3. 观察学生的课堂表现和作业完成情况,及时了解学生的学习困难和问题,并进行针对性的指导和支持。

五、教学计划1. 第一章:实数与代数式1.1-1.3:2课时2. 第二章:几何基础2.1-2.3:3课时3. 第三章:函数与方程3.1-3.3:4课时4. 第四章:概率与统计4.1-4.3:3课时5. 第五章:综合应用5.1-5.3:4课时六、教学内容6. 第六章:解二次方程与应用6.1 二次方程的解法6.2 二次方程的应用6.3 配方法与完全平方公式7. 第七章:相似三角形7.1 相似三角形的性质7.2 相似三角形的判定7.3 相似三角形的应用8. 第八章:平行四边形与菱形8.1 平行四边形的性质8.2 菱形的性质8.3 平行四边形与菱形的应用9. 第九章:概率的进一步探究9.1 条件概率9.2 独立事件的概率9.3 概率的应用10. 第十章:数学阅读与探究10.1 数学阅读材料的选择与分析10.2 数学探究活动的设计与实践10.3 数学阅读与探究的总结与反思七、教学方法1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生理解和掌握数学知识。

九年级数学《相似-复习课》教案

九年级数学《相似-复习课》教案

《第27章相似》复习课教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似的全章复习。

2.知识背景分析本章隶属于“空间与图形”领域,本章共有三节内容第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。

本节课是在学习前三节的基础上进行的,通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。

3.学情背景分析教学对象是九年级学生,学生的逻辑思维能力得到了一定的发展。

本章正处于学生对于掌握的推理论证方法的进一步巩固和提高阶段,要求学生能熟练运用综合法证明命题,熟悉探索法德推理过程,因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。

要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。

通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。

4.学习目标4.1知识与技能目标(1)通过复习,梳理本章知识,构建知识网络.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边的比的平方。

(3)了解两个三角形相似的概念,探索两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过典型实例观察和认识现实生活中物体的相似,使学生综合运用图形的相似解决一些实际问题。

(5)在同一直角坐标系中,感受图形变换后点的坐标的变化特点。

4.2过程与方法目标经历小结的过程,使学生学会建立本章的知识结构图。

最新初中数学中考总复习教案

最新初中数学中考总复习教案

最新初中数学中考总复习教案2021最新初中数学中考总复习教案1本学期是初中学习的关键时期,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面特制定以下教学复习计划。

一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。

通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。

虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。

其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想坚持贯彻党的十八大教育方针,继续深入开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。

如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。

数学九年级复习教案七篇

数学九年级复习教案七篇

数学九年级复习教案七篇数学九年级复习教案精选篇1教学目标1.通过具体的活动,认识方向与距离对确定位置的作用。

2.能根据任意方向和距离确定物体的位置。

3.发展学生的空间观念。

教学重点用方向和距离描述物体的位置。

教学难点对任意角度具体方向的准确描述。

教学过程一、创设情境生成问题春季是运动的最好时节,我们同学们都很爱好运动,不久我校就会举行一次越野比赛,现在老师将越野图展现给大家。

二、探索交流解决问题1.出示越野图的起点和终点位置。

2.如果你是一名运动员,你将从起点向什么方向行进?(方向标)加方向标有什么好处?为什么方向标画在起点的位置?(以起点为观测点)3.自主探究,小组讨论,合作交流例1的学习是让学生明确可以根据方向和距离两个条件确定物体的位置。

教学时,可以与主题图的教学结合进行,通过情境使学生明确需要方向和距离两个条件才能确定物体的位置。

活动中确定方向的具体方法可以让学生小组合作进行探索。

知道在出发点的东北方向就可以出发吗?如果这样会发生什么情况?这样确定方向准确吗?怎么样走会更加的准确?准确的可以说是东偏北30°,那可以用北偏东60°这样表示吗?在说具体位置时,一般先说与物体所在方向离得较近(夹角较小)的方向。

——靠近哪个方向就把那个方向放在前面。

(距离 1千米)如果没有距离又会怎样?1号点在起点的东偏北30°的方向上,距离是 1千米。

你学会表示了吗?三、巩固练习内化提高做一做呈现了小明家附近几处建筑物的位置示意图,通过方向与距离的确定,使学生进一步明确确定方向的具体方法。

练习三第1、2题是相应的在地图上确定方向的练习。

四、回顾整理反思提升我们可以根据题目提供的方向和距离这两个条件来确定物体的位置。

首先要确定方向标。

数学九年级复习教案精选篇2一、教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

九上数学复习教案

九上数学复习教案

九年级上册数学复习教案一、教学目标1. 知识与技能:巩固和掌握九年级上册数学的基本知识点,包括实数、代数、几何、概率等方面的内容。

2. 过程与方法:通过复习,使学生能够灵活运用所学知识解决问题,提高数学思维能力和创新能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养积极的学习态度,树立自信心。

二、教学内容1. 第一章:实数1.1 实数的定义及分类1.2 实数的运算1.3 实数与几何图形的关系2. 第二章:代数式2.1 代数式的定义及分类2.2 代数式的运算2.3 代数式与几何图形的关系3. 第三章:方程(一)3.1 方程的定义及分类3.2 线性方程的解法3.3 方程的应用4. 第四章:几何图形的性质4.1 平面图形的性质4.2 空间图形的性质4.3 几何图形的变换5. 第五章:概率初步5.1 概率的定义及计算5.2 概率的性质与应用5.3 概率与几何图形的关系三、教学重点与难点1. 教学重点:各个章节的基本知识点和运算方法。

2. 教学难点:方程的解法、几何图形的性质和概率的计算。

四、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生主动参与学习过程。

2. 利用多媒体课件、图形计算器等教学辅助工具,提高教学效果。

3. 注重个体差异,给予学生个性化的指导和建议。

五、教学评价1. 课堂练习:每章安排一次课堂练习,检验学生对知识点的掌握情况。

2. 单元测试:每个章节结束后进行一次单元测试,评估学生的学习效果。

3. 期末考试:进行全面复习,进行期末考试,综合评价学生的学业成绩。

九年级上册数学复习教案六、教学内容6. 第一章:函数及其图像6.1 函数的定义及性质6.2 一次函数、二次函数的图像6.3 函数图像的应用7. 第二章:平面直角坐标系7.1 坐标系的定义及性质7.2 坐标系中的图形变换7.3 坐标系与函数图像的关系8. 第三章:几何图形的变换8.1 相似图形的性质8.2 坐标系中的几何变换8.3 几何变换在实际问题中的应用9. 第四章:三角函数9.1 三角函数的定义及性质9.2 三角函数图像的应用9.3 三角函数在实际问题中的应用10. 第五章:投影与视图10.1 投影的定义及性质10.2 三视图的绘制及应用10.3 投影与几何图形的关系七、教学重点与难点1. 教学重点:各个章节的基本知识点和运算方法。

北师大版数学九年级上册第二章《一元二次方程》复习教案

北师大版数学九年级上册第二章《一元二次方程》复习教案
北师大版数学九年级上册第二章《一元二次方程》复习教案
一、教学内容
北师大:
1.一元二次方程的定义与一般形式;
2.一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法;
3.一元二次方程根的判别式及其应用;
4.一元二次方程的根与系数的关系;
5.实际问题中的一元二次方程及其应用。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量物体的高度,通过一元二次方程来计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数关系的问题?”(如面积和边长关系等)这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾一元二次方程的奥秘。
此外,小组讨论环节中,学生们能够积极参与,相互交流,分享自己的观点。但在讨论过程中,我也观察到有些学生过于依赖他人,缺乏独立思考。为了培养学生的独立思考能力,我将在今后的教学中,多设置一些开放性问题,引导学生自主探究,提高他们的问题解决能力。
在实践活动方面,学生们对实验操作表现出浓厚兴趣,能够积极参与。但在操作过程中,部分学生还显得有些手忙脚乱,对实验原理的理解不够深入。针对这一问题,我将在后续的教学中,加强对实验原理的讲解,让学生们在操作前能够充分理解实验的目的和步骤。
(二)新课讲授(用时10分钟)

2020年九年级数学中考复习: 四边形专题复习教案

2020年九年级数学中考复习: 四边形专题复习教案

2020年九年级数学中考复习:四边形专题复习教案一、教学目标通过本教案的学习,学生将能够:1.了解四边形的定义和性质;2.掌握四边形的分类和特征;3.理解四边形的面积和周长的计算方法;4.能够解决与四边形相关的问题。

二、知识概述四边形是指由四条线段组成的封闭图形。

常见的四边形包括矩形、正方形、平行四边形和菱形等。

在九年级数学中,掌握四边形的定义、分类和性质是非常重要的,同时还需要熟练掌握四边形的面积和周长的计算方法。

2.1 四边形的定义和性质四边形是由四条线段构成的封闭图形,它有以下性质:•四边形的内角和等于360°;•对角线互相垂直的四边形是矩形;•有一对对边相等且互相平行的四边形是平行四边形;•有4个边长相等的四边形是正方形;•有一对对边相等且对角线互相垂直的四边形是菱形。

2.2 四边形的分类和特征根据边长和角度的特征,四边形可以分为以下几类:•矩形:具有四个内角都是直角的四边形;•正方形:具有四个边长相等且四个内角都是直角的四边形;•平行四边形:具有相对的两边平行的四边形;•菱形:具有四个边长相等且对角线互相垂直的四边形。

2.3 四边形的面积和周长的计算方法•矩形的面积等于长乘以宽;•正方形的面积等于边长的平方;•平行四边形的面积等于底边乘以高;•菱形的面积等于对角线的乘积的一半。

四边形的周长等于各边长的和。

三、教学重点与难点3.1 教学重点•四边形的定义和性质;•四边形的分类和特征;•四边形的面积和周长的计算方法。

3.2 教学难点•理解和应用四边形的性质;•熟练计算不同类型四边形的面积和周长。

4.1 导入与导入教师通过原生实例或者图片,引入四边形的概念,让学生了解四边形的定义。

4.2 教学内容4.2.1 四边形的定义和性质1.讲解四边形的定义和性质,介绍四边形的内角和等于360°的性质;2.分类介绍矩形、正方形、平行四边形和菱形的特征和性质。

4.2.2 四边形的面积和周长的计算方法1.讲解不同类型四边形的面积计算方法:矩形、正方形、平行四边形和菱形;2.讲解四边形的周长计算方法。

九年级数学集体备课复习教案

九年级数学集体备课复习教案

九年级数学集体备课复习教案一、教学内容本节课为九年级数学复习课,教材为人教版《数学》九年级下册,复习内容主要包括第23章《锐角三角函数》、第24章《相似三角形》和第25章《解直角三角形》。

复习目的是帮助学生巩固基础知识,提高解题能力。

二、教学目标1. 掌握锐角三角函数的定义及求法;2. 掌握相似三角形的判定与性质;3. 掌握解直角三角形的方法及应用。

三、教学难点与重点1. 教学难点:相似三角形的判定与性质;2. 教学重点:锐角三角函数的定义及求法,解直角三角形的方法及应用。

四、教具与学具准备1. 教具:黑板、粉笔、三角板、直尺;2. 学具:学生用书、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:以实际问题引发学生对锐角三角函数、相似三角形和解直角三角形的思考;2. 知识回顾:引导学生回顾教材相关章节内容,巩固基础知识;3. 例题讲解:分析典型例题,讲解解题思路和方法;4. 随堂练习:学生独立完成练习题,教师及时批改和讲解;6. 课后作业:布置针对性的作业,巩固所学知识。

六、板书设计板书内容主要包括:1. 锐角三角函数的定义及求法;2. 相似三角形的判定与性质;3. 解直角三角形的方法及应用。

七、作业设计1. 作业题目:(1)求一个锐角的正弦、余弦和正切值;(2)判断两个三角形是否相似,并说明理由;(3)解一道直角三角形的问题。

2. 答案:(1)锐角的正弦、余弦和正切值分别为sinα、cosα和tanα;(2)判断两个三角形相似的方法:AA相似定理、SAS相似定理、SSS相似定理;(3)解直角三角形的方法:勾股定理、锐角三角函数。

八、课后反思及拓展延伸1. 课后反思:本节课的教学效果如何,学生对知识的掌握程度如何,有哪些不足之处需要改进;2. 拓展延伸:引导学生深入研究三角函数的性质,探索相似三角形的更多应用,提高解题能力。

重点和难点解析一、教学内容细节重点关注本节课的教学内容主要包括锐角三角函数的定义及求法、相似三角形的判定与性质、解直角三角形的方法及应用。

九年级数学总复习教案(优秀6篇)

九年级数学总复习教案(优秀6篇)

九年级数学总复习教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!九年级数学总复习教案(优秀6篇)好的数学教学教案很有意义的。

数学复习中考教案七篇

数学复习中考教案七篇

数学复习中考教案七篇数学复习中考教案七篇数学复习中考教案如何写?数学科学家们不断争论计算机辅助认证的严谨性。

当大量计算难以验证时,很难说证明是有效的和严谨的。

下面是小编为大家带来的数学复习中考教案七篇,希望大家能够喜欢!数学复习中考教案篇1一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。

首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。

②合并同类项法则③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。

这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

九年级数学旋转复习教案

九年级数学旋转复习教案

九年级数学旋转复习教案一、教学目标:1. 知识与技能:使学生掌握旋转的定义、性质及应用,能够运用旋转解决一些实际问题。

2. 过程与方法:通过复习,提高学生的逻辑思维能力、空间想象能力和数学运用能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

二、教学内容:1. 旋转的定义及性质2. 旋转在实际问题中的应用3. 旋转变换与坐标轴的交点4. 旋转变换与图形的大小、形状5. 旋转变换与图形的位置关系三、教学重点与难点:1. 教学重点:旋转变换的性质,旋转变换在实际问题中的应用。

2. 教学难点:旋转变换与坐标轴的交点,旋转变换与图形的大小、形状,旋转变换与图形的位置关系。

四、教学过程:1. 复习导入:回顾旋转的定义及性质,引导学生思考旋转在实际问题中的应用。

2. 自主学习:学生自主探究旋转变换与坐标轴的交点,旋转变换与图形的大小、形状,旋转变换与图形的位置关系。

3. 合作交流:学生分组讨论,分享各自的探究成果,解决存在的疑问。

4. 课堂讲解:教师针对学生的探究成果进行讲解,梳理知识点,解答学生的疑问。

5. 练习巩固:布置相关的练习题,让学生运用所学知识解决问题。

五、课后作业:1. 完成练习册上的相关习题。

2. 选择一道与旋转相关的实际问题,进行解答。

3. 总结旋转变换的性质及其在实际问题中的应用,准备课堂交流。

六、教学评估:1. 课堂讲解评估:观察学生在课堂讲解中的参与程度、理解程度和表达能力。

2. 练习巩固评估:检查学生在练习中的正确率,分析其错误原因,及时进行针对性讲解。

3. 课后作业评估:审阅学生的课后作业,了解学生对课堂知识的掌握情况,对存在的问题进行反馈。

七、教学策略:1. 针对不同学生的学习基础,采取分层教学,使每个学生都能在复习过程中得到提高。

2. 利用多媒体课件,直观展示旋转变换的过程,帮助学生更好地理解旋转变换的性质。

3. 鼓励学生积极参与课堂讨论,培养学生的团队合作精神和口头表达能力。

人教版九年级上册数学 第22章 二次函数 全章复习 教案

人教版九年级上册数学 第22章 二次函数 全章复习 教案

第22章二次函数全章复习教案【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标(轴)(0,0)(轴)(0,)(,0)(,)当时开口向上当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)20()y ax bx c a =++≠,,a b c (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题2yax bx c =++利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式例题1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式.【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即,也就是,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则,解得.∴ 抛物线的解析式为,即. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0). 把(0,0)代入关系式,得0=a(0-3)2-2,解得,∴ 抛物线的解析式为, 即.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),2(3)2y a x =--2692y ax ax a =-+-2692y ax ax a =-+-12||6x x -==29a =22(3)29y x =--22493y x x =-2(3)2y a x =--29a =22(3)29y x =--22493y x x =-把(3,-2)代入得,解得.∴ 抛物线的解析式为,即.举一反三【变式】已知抛物线(m 是常数). (1)求抛物线的顶点坐标; (2)若,且抛物线与轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得,∴,∴抛物线的顶点坐标为.(2)∵抛物线与轴交于整数点,∴的根是整数.∴.∵,∴是完全平方数.∵, ∴,∴取1,4,9,.当时,;当时,;当时,. ∴的值为2或或.∴抛物线的解析式为或或.类型二、根据二次函数图象及性质判断代数式的符号例题2. 如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣其中正确的结论个数有( )3(36)2a ⨯⨯-=-29a =2(6)9y x x =-22493y x x =-2442y mx mx m =-+-155m <<x 0≠m 2242=--=-=mm a b x m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m )2,2(-x 02442=-+-m mx mx 2x ==±0m >2x =2m155m <<22105m <<2m2x ==±21m =2=m 24m =21=m 29m =29m =m 21296822+-=x x y x x y 2212-=22810999y x x =--A .1个B .2个C .3个D .4个【思路点拨】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x=3时,y <0,可判断②;由OA=OC ,且OA <1,可判断③;把﹣代入方程整理可得ac 2﹣bc +c=0,结合③可判断④;从而可得出答案.【答案】C ;【解析】解:由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x=2,所以﹣>0,所以b >0,∴abc >0,故①正确;由图象可知当x=3时,y >0,∴9a +3b +c >,故②错误;由图象可知OA <1,∵OA=OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac ﹣b +1=0,两边同时乘c 可得ac 2﹣bc +c=0,即方程有一个根为x=﹣c ,由②可知﹣c=OA ,而当x=OA 是方程的根,∴x=﹣c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C .类型三、数形结合例题3. 已知平面直角坐标系xOy(如图所示),一次函数的图象与y 轴交于点A ,点M 在正比例函数的图象上,且MO =MA ,二次函数的图象经过点A 、M.334y x =+32y x =2y x bx c =++(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数的图象上,且四边形ABCD 是菱形,求点C 的坐标.【答案与解析】(1)一次函数,当x =0时,y =3,所以点A 的坐标为(0,3),又∵ MO =MA ,∴ M 在OA 的中垂线上,即M的纵坐标为,又M 在上,当时,x =1,∴ 点M 的坐标为.如图所示,.(2)将点A(0,3),代入中,得 ∴即这个二次函数的解析式为:.(3)如图所示,设B(0,m)(m <3),,.334y x =+334y x =+3232y x =32y =31,2⎛⎫⎪⎝⎭AM ==31,2M ⎛⎫ ⎪⎝⎭2y x bx c =++3,31.2c b c =⎧⎪⎨++=⎪⎩5,23.b c ⎧=-⎪⎨⎪=⎩2532y x x =-+25(,3)2C n n n -+3,34D n n ⎛⎫+ ⎪⎝⎭则|AB|=3-m ,,.因为四边形ABCD 是菱形,所以.所以 解得(舍去)将n =2代入,得,所以点C 的坐标为(2,2).类型四、函数与方程例题4.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≧60)元,销售量为y 套.(1)求出y 与x 的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 【答案与解析】解:(1)销售单价为x 元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x ≥60);(2)根据题意可得,x (﹣4x+480)=14000,解得x 1=70,x 2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元; (3)设一个月内获得的利润为w 元,根据题意得:w=(x ﹣40)(﹣4x+480)=﹣4x2+640x ﹣19200 =﹣4(x ﹣80)2+6400.当x=80时,w 的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.213||4D C DC y y n n =-=-5||4AD n =||||||AB DC AD ==2133,453.4m n n m n ⎧-=-⎪⎪⎨⎪-=⎪⎩113,0;m n =⎧⎨=⎩221,22.m n ⎧=⎪⎨⎪=⎩2532y x x =-+2C y =【答案】由题意得 把②代入①得. ∵抛物线与直线只有一个公共点, ∴方程必有两个相等的实数根, ∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根; (2)写出不等式的解集; (3)写出y随x的增大而减小的自变量x的取值范围; (4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1) (2). (3). (4)方法1:方程的解, 即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出, 当时,直线与抛物线有两个交点,∴. 方法2:∵二次函数的图象过(1,0),(3,0),(2,2)三点, ∴ ∴ ∴ ,即, ∴. ∵ 方程有两个不相等的实数根,∴,∴.类型五、分类讨论例题5.若函数,则当函数值y =8时,自变量x 的值是( ).A .B .4C .或4D .4或【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论.【答案】D ;【解析】由题意知,当时,,∴ .(舍去).当2x =8时,x =4.综合上知,选D .类型六、与二次函数有关的动点问题例题6.在平面直角坐标系xOy 中,二次函数y=mx 2-(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当-3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.22(2)2(2)x x y x x ⎧+≤=⎨>⎩228x +=x =2>x =x =【思路点拨】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,即可得出m的取值范围.【答案与解析】(3)由(2)得二次函数的解析式为:y=mx2-(m+1)x+1∵M(p,q)为二次函数图象上的一个动点,∴q=mp2-(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,-q).∴M′点在二次函数y=-m2+(m+1)x-1上.∵当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,≤m<0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学总复习教案
九年级数学总复习教案
课题:
相似形(1)
教学目标:
使学生掌握相似三角形的判定与性质
教学重点:
相似三角形的判定与性质
教学过程:
一知识要点:
1、相似形、成比例线段、黄金分割
相似形:形状相同、大小不一定相同的图形。

特例:全等形。

相似形的识别:对应边成比例,对应角相等。

成比例线段(简称比例线段):对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。

黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618...。

这种分割称为黄金分割,点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。

例1:(1)放大镜下的.图形和原来的图形相似吗?
(2)哈哈镜中的形象与你本人相似吗?
(3)你能举出生活中的一些相似形的例子吗/
例2:判断下列各组长度的线段是否成比例:
(1)2厘米,3厘米,4厘米,1厘米
(2)1·5厘米,2·5厘米,4·5厘米,6·5厘米
(3)1·1厘米,2·2厘米,3·3厘米,4·4厘米
(4)1厘米,2厘米,2厘米,4厘米。

例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋?
例4:等腰三角形都相似吗?
矩形都相似吗?
正方形都相似吗?
2、相似形三角形的判断:
a两角对应相等
b两边对应成比例且夹角相等
c三边对应成比例
3、相似形三角形的性质:
a对应角相等
b对应边成比例
c对应线段之比等于相似比
d周长之比等于相似比。

相关文档
最新文档