【人教版】九年级下册数学教案 (全册)教学设计

合集下载

人教版数学九年级下册教案【7篇】

人教版数学九年级下册教案【7篇】

人教版数学九年级下册教案【7篇】人教版数学九年级下册教案篇1一元二次方程1、定义:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。

①是整式方程;②未知数的次数是二次;③只含有一个未知数;④二次项系数不为零。

2、化为一元二次方程的一般形式:按降幂排列,二次项系数通常为正,右端为零。

3、一元二次方程的根:代入使方程成立。

4、一元二次方程的解法:①配方法:移项→二次项系数化为一→两边同时加上一次项系数的一半→配方→开方→写出方程的解。

②公式法:x=(-b±√b2-4ac)/2a,③因式分解法:右端为零,左端分解为两个因式的乘积。

5、一元二次方程的根的判别式①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根。

注意:应用的前提条件是:a≠0.6、一元二次方程根与系数的关系:x1+x2=-b/a,x1_x2=c/a.注意:应用的前提条件是:a≠0,△≥0.7、列方程解应用题:审题设元→列代数式、列方程→整理成一般形式→解方程→检验作答。

人教版数学九年级下册教案篇2一、锐角三角函数1.正弦:在rt△abc中,锐角∠a的对边a与斜边的比叫做∠a的正弦,记作sina,即sina=∠a的对边/斜边=a/c;2.余弦:在rt△abc中,锐角∠a的邻边b与斜边的比叫做∠a的余弦,记作cosa,即cosa=∠a的邻边/斜边=b/c;3.正切:在rt△abc中,锐角∠a的对边与邻边的比叫做∠a 的正切,记作tana,即tana=∠a的对边/∠a的邻边=a/b。

①tana是一个完整的符号,它表示∠a的正切,记号里习惯省去角的符号“∠”;②tana没有单位,它表示一个比值,即直角三角形中∠a的对边与邻边的比;③tana不表示“tan”乘以“a”;④tana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。

4.余切:定义:在rt△abc中,锐角∠a的邻边与对边的比叫做∠a的余切,记作cota,即cota=∠a的邻边/∠a的对边=b/a;5.一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)人教版九年级下册数学教案大全篇1一、教材研读。

1、教材编排。

(1)逻辑分析:方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。

并且已经采取逐步渗透的方法来培养代数思维。

例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。

(2)语言信息及价值分析:本课教材中的三幅情境图,由浅入深,由具体到抽象,循序渐进。

第一个场景让学生借助天平理解方程;第二个场景完成从数量关系到平等关系的转变;第三个场景引起学生的思考,让他们从不同的角度找到多种等价关系,列出方程。

2、教学目标。

(1)结合具体情境,建立方程的概念。

(2)寻找简单情况下的等价关系,会用方程表示。

(3)体验从生活场景到方程模型的过程,进一步感受数学与生活的密切关系。

3、教学重难点:(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。

抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。

(2)难点:数量关系向等量关系的转化。

二、学情分析:学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。

由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。

列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。

三、流程设计:为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:(一)引“典”激趣,诱发思考。

引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。

初三下册数学人教版教案4篇

初三下册数学人教版教案4篇

初三下册数学人教版教案4篇初三下册数学人教版教案11、教材分析(1)知识结构(2)重点、难点分析重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.2、教学建议本节内容需要一个课时.(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.教学目标:1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;3、激发学生动手、动脑主动参与课堂教学活动.教学重点:三角形内切圆的作法和三角形的内心与性质.教学难点:三角形内切圆的作法和三角形的内心与性质.教学活动设计(一)提出问题1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?2、分析、研究问题:让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.3、解决问题:例1 作圆,使它和已知三角形的各边都相切.引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.提出以下几个问题进行讨论:①作圆的关键是什么?②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?③这样的点I应在什么位置?④圆心I确定后半径如何找.A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.(二)类比联想,学习新知识.1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2、类比:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部.内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.4、概念理解:引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.(三)应用与反思例2 如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心.求∠BOC的度数分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数.因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA 的平分线,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数.解:(引导学生分析,写出解题过程)例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D 求证:DE=DB分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.证明:连结BE.E是△ABC的内心又∵∠1=∠2∠1=∠2∴∠1+∠3=∠4+∠5∴∠BED=∠EBD∴DE=DB练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内.(四)小结1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?2.学生回答的基础上,归纳总结:(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.(五)作业教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.探究活动问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);(2)计算出的圆形纸片的半径(要求精确值).提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合.则点O为所求圆的圆心,OE为半径.(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.初三下册数学人教版教案2函数一、教学目的1.使学生理解自变量的取值范围和函数值的意义。

人教版九年级数学下册全册教案

人教版九年级数学下册全册教案

26.1.1反比例函数的意义教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。

教学方法:类比启发教学辅助:多媒体投影片教学过程:一、创设情景探究问题随着速度的变化,全程所用时间发生怎样的变化?情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。

这一情境为后面学习反比例函数概念作铺垫。

情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:2(3)速度v是时间t的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.全册每单元每课时 3[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.二、例题教学练习:1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=x15;(2)y=2x-1;(3)y=-3x;通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.练习:2:在函数y=2x-1,y=2x+1,y=x-1,y=12x中,y是x的反比例函数的有个.全册每单元每课时 4[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=2x-1通分为y=2-xx,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=2x可说成(y+1)与x成反比例.练习3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为.[说明]这个练习引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.例题:第5页例1三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.全册每单元每课时 52、已知函数y=(m+1)x22 m是反比例函数,则m的值为.[备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)板书设计:概念:例1解:练习练习全册每单元每课时 6教学反思:本节课学生对有关概念都很好的落实,亮点在于练习设计有梯度,学生认识清楚。

人教版九年级下册数学教案5篇

人教版九年级下册数学教案5篇

人教版九年级下册数学教案5篇人教版九年级下册数学教案5篇教案是以系统方法为指导。

教案把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。

下面小编给大家带来关于人教版九年级下册数学教案,方便大家学习人教版九年级下册数学教案1教学目标1了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2通过观察猜测举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3引导学生自主参与知识探究过程,培养学生初步的观察分析比较判断概括的能力,发展学生的思维。

教学重难点教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

教学工具ppt课件教学过程一复习导入1我们已经认识了比例,谁能说一下什么叫比例?2应用比例的意义判断下面的比能否组成比例。

2.4:1.6和60:403今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例) 板书:比例的基本性质二探究新知1教学比例各部分的名称. 同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项外项和内项。

(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。

学生回答的同时,板书:组成比例的四个数,叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2. 4 : 1.6 = 60 : 40 外项内项学生认一认,说一说比例中的外项和内项。

2教学比例的基本性质。

出示例1 (1)教师:比例有什么性质呢?现在我们就来研究。

(板书:比例的基本性质) 学生分别计算出这个比例中两个内项的积和两个外项的积。

教师板书:两个外项的积是2.4×40=96 两个内项的积是1.6×60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢? 学生分组计算前面判断过的比例。

人教版九年级数学下册全册教案设计

人教版九年级数学下册全册教案设计

义务教育课程标准人教版数学教案九年级下册26.1 二次函数(1)教学目标:知识和能力:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围过程和方法:注重学生参与,联系实际,丰富学生的感性认识情感态度价值观:培养学生的良好的学习习惯能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围教学重点:教学难点:教学过程:、试■试1•设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2. x的值是否可以任意取?有限定范围吗?3 •我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm , BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。

形成共识,x的值不可以任意取,有限定范围,其范围是0v x v 10。

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20 —2x)(0 v x v10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件•该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。

将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1 •商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价—进价)x销售量]2 •如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10 —8=2(元),(10—8)x 100=200(元)]3 •若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?[(10 —8—x); (100 + 100x)]4 • x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0< x< 2]5 •若设该商品每天的利润为y元,求y与x的函数关系式。

新人教版九年级数学下册全册教案

新人教版九年级数学下册全册教案

义务教育课程标准人教版数学教案九年级下册第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。

(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。

那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)x y 2-= (3)xy =21 (4)25+=x y (5)31+=xy 例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。

人教版九年级数学下册教学设计(全册教案)

人教版九年级数学下册教学设计(全册教案)

人教版九年级数学下册(全册)教案九年级数学下册教学计划一、基本情况分析1.学生情况通过一个学期的努力多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于一些学生数学基础太差,学生数学成绩两极分化的现象没有显著改观,给教学带来很大难度。

设法关注每一个学生,重视学生的全面协调发展是教学的首要地位。

2.学习内容分析本期教学进程主要分为新课教学和总复习教学两大阶段。

新课教学共分四章。

第一章《反比例函数》、《相似》、《锐角三角函数》、《投影与视图》。

总复习是本期教学的一个重点。

通过系统的总复习使学生全面熟悉初中数学教学内容,在牢固掌握基础知识的前提下,能娴熟的运用所学知识分析和解决问题。

本学期就将开始进入专题总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。

如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。

因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。

学生解题过程中存在的主要问题:(1)审题不清,不能正确理解题意;(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;(3)对所学知识综合应用能力不够;(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。

(5)阅读理解能力偏差,见到字数比较多的解答题先产生畏惧心理。

(6)不能对知识灵活应用。

二、学习目标师生共同努力,使绝大多数学生达到或基本达到《课标》的要求,注重基础训练,顾及多数人的水平和接受能力,促进全体学生的全面协调发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.第二十六章 二次函数[本章知识要点]1. 探索具体问题中的数量关系和变化规律.2. 结合具体情境体会二次函数作为一种数学模型的意义, 并了解二次函数的有关概念. 3. 会用描点法画出二次函数的图象, 能通过图象和关系式认识二次函数的性质. 4. 会运用配方法确定二次函数图象的顶点、开口方向和对称轴. 5. 会利用二次函数的图象求一元二次方程(组)的近似解.6. 会通过对现实情境的分析, 确定二次函数的表达式, 并能运用二次函数及其性质解决简单的实际问题.26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念, 在解决问题的过程中体会二次函数的意义. [MM 及创新思维](1)正方形边长为a (cm ), 它的面积s (cm 2)是多少?(2)矩形的长是4厘米, 宽是3厘米, 如果将其长与宽都增加x 厘米, 则面积增加y 平方厘米, 试写出y 与x 的关系式.请观察上面列出的两个式子, 它们是不是函数?为什么?如果是函数, 请你结合学习一次函数概念的经验, 给它下个定义. [实践与探索]例1. m 取哪些值时, 函数)1()(22+++-=m mx x m m y 是以x 为自变量的二次函数? 分析 若函数)1()(22+++-=m mx x m m y 是二次函数, 须满足的条件是:02≠-m m .解 若函数)1()(22+++-=m mx x m m y 是二次函数, 则 02≠-m m . 解得 0≠m , 且1≠m .因此, 当0≠m , 且1≠m 时, 函数)1()(22+++-=m mx x m m y 是二次函数. 回顾与反思 形如c bx ax y ++=2的函数只有在0≠a 的条件下才是二次函数. 探索 若函数)1()(22+++-=m mx x m m y 是以x 为自变量的一次函数, 则m取哪些值?例2.写出下列各函数关系, 并判断它们是什么类型的函数.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系; (2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;(3)某种储蓄的年利率是1.98%, 存入10000元本金, 若不计利息, 求本息和y (元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm, 求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系. 解 (1)由题意, 得 )0(62>=a a S , 其中S 是a 的二次函数;(2)由题意, 得 )0(42>=x x y π, 其中y 是x 的二次函数; (3)由题意, 得 10000%98.110000⋅+=x y (x ≥0且是正整数),其中y 是x 的一次函数; (4)由题意, 得 )260(1321)26(212<<+-=-=x x x x x S , 其中S 是x 的二次函数.例3.正方形铁片边长为15cm, 在四个角上各剪去一个边长为x (cm )的小正方形, 用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时, 求盒子的表面积. 解 (1))2150(4225415222<<-=-=x x x S ; (2)当x=3cm 时, 189342252=⨯-=S (cm 2). [当堂课内练习]1.下列函数中, 哪些是二次函数? (1)02=-x y (2)2)1()2)(2(---+=x x x y(3)xx y 12+= (4)322-+=x x y 2.当k 为何值时, 函数1)1(2+-=+kkx k y 为二次函数?3.已知正方形的面积为)(2cm y , 周长为x (cm ). (1)请写出y 与x 的函数关系式; (2)判断y 是否为x 的二次函数. [本课课外作业]A 组1. 已知函数72)3(--=m xm y 是二次函数, 求m 的值.2. 已知二次函数2ax y =, 当x=3时, y= -5, 当x= -5时, 求y 的值.3. 已知一个圆柱的高为27, 底面半径为x, 求圆柱的体积y 与x 的函数关系式.若圆柱的底面半径x 为3, 求此时的y .4. 用一根长为40 cm 的铁丝围成一个半径为r 的扇形, 求扇形的面积y 与它的半径x 之间的函数关系式.这个函数是二次函数吗?请写出半径r 的取值范围.B 组5.对于任意实数m, 下列函数一定是二次函数的是 ( ) A .22)1(x m y -= B .22)1(x m y += C .22)1(x m y += D .22)1(x m y -= 6.下列函数关系中, 可以看作二次函数c bx ax y ++=2(0≠a )模型的是 ( ) A . 在一定的距离内汽车的行驶速度与行驶时间的关系B . 我国人口年自然增长率为1%, 这样我国人口总数随年份的变化关系C . 竖直向上发射的信号弹, 从发射到落回地面, 信号弹的高度与时间的关系(不计空气阻力)D . 圆的周长与圆的半径之间的关系 [本课学习体会]§26.2 用函数观点看一元二次方程(第一课时)教学目标(一)知识与技能1.经历探索二次函数与一元二次方程的关系的过程, 体会方程与函数之间的联系. 2.理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系, 理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h 是实数)交点的横坐标. (二)过程与方法1.经历探索二次函数与一元二次方程的关系的过程, 培养学生的探索能力和创新精神.2.通过观察二次函数图象与x 轴的交点个数, 讨论一元二次方程的根的情况, 进一步培养学生的数形结合思想.3.通过学生共同观察和讨论.培养大家的合作交流意识. (三)情感态度与价值观1.经历探索二次函数与一元二次方程的关系的过程, 体验数学活动充满着探索与创造.感受数学的严谨性以及数学结论的确定性,2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根, 两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学过程Ⅰ.创设问题情境, 引入新课1.我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后, 讨论了它们之间的关系.当一次函数中的函数值y=0时, 一次函数y=kx+b就转化成了一元一次方程kx+b=0, 且一次函数)y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0), 它们之间是否也存在一定的关系呢?2.选教材提出的问题, 直接引入新课Ⅱ.合作交流解读探究1.二次函数与一元二次方程之间的关系探究:教材问题师生同步完成.观察:教材22页, 学生小组交流.归纳:先由学生完成, 然后师生评价, 最后教师归纳.Ⅲ.应用迁移巩固提高1 .根据二次函数图像看一元二次方程的根同期声2 .抛物线与x轴的交点情况求待定系数的范围.3 .根据一元二次方程根的情况来判断抛物线与x轴的交点情况Ⅳ.总结反思拓展升华本节课学了如下内容:1.经历了探索二次函数与一元:二次方程的关系的过程, 体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系, 理解了何时方程有两个不等的实根,两个相等的实根和没有实根.3.数学方法:分类讨论和数形结合.反思:在判断抛物线与x轴的交点情况时, 和抛物线中的二次项系数的正负有无关系?拓展:教案Ⅴ.课后作业P231.3.526.2 二次函数的图象与性质(1)[本课知识要点]会用描点法画出二次函数2ax y =的图象, 概括出图象的特点及函数的性质. [MM 及创新思维]我们已经知道, 一次函数12+=x y , 反比例函数xy 3=的图象分别是 、 , 那么二次函数2x y =的图象是什么呢?(1)描点法画函数2x y =的图象前, 想一想, 列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时, y 的值如何?(2)观察函数2x y =的图象, 你能得出什么结论?[实践与探索]例1.在同一直角坐标系中, 画出下列函数的图象, 并指出它们有何共同点?有何不同点?(1)22x y = (2)22x y -=解 列表x… -3 -2 -1 0 1 2 3 … 22x y =…18 8 2 0 2 8 18 … 22x y -= …-18-8-2-2-8-18…分别描点、连线, 画出这两个函数的图象, 这两个函数的图象都是抛物线, 如图26.2.1.共同点:都以y 轴为对称轴, 顶点都在坐标原点.不同点:22x y =的图象开口向上, 顶点是抛物线的最低点, 在对称轴的左边, 曲线自左向右下降;在对称轴的右边, 曲线自左向右上升.22x y -=的图象开口向下, 顶点是抛物线的最高点, 在对称轴的左边, 曲线自左向右上升;在对称轴的右边, 曲线自左向右下降.回顾与反思 在列表、描点时, 要注意合理灵活地取值以及图形的对称性, 因为图象是抛物线, 因此, 要用平滑曲线按自变量从小到大或从大到小的顺序连接.例2.已知42)2(-++=k kx k y 是二次函数, 且当0>x 时, y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.解 (1)由题意, 得⎩⎨⎧>+=-+02242k k k , 解得k=2.(2)二次函数为24x y =, 则顶点坐标为(0, 0), 对称轴为y 轴.例3.已知正方形周长为Ccm, 面积为S cm 2. (1)求S 和C 之间的函数关系式, 并画出图象; (2)根据图象, 求出S=1 cm 2时, 正方形的周长; (3)根据图象, 求出C 取何值时, S ≥4 cm 2.分析 此题是二次函数实际应用问题, 解这类问题时要注意自变量的取值范围;画图象时, 自变量C 的取值应在取值范围内. 解 (1)由题意, 得)0(1612>=C C S . 列表:C24 68 (2)161C S =41 149 4…描点、连线, 图象如图26.2.2.(2)根据图象得S=1 cm 2时, 正方形的周长是4cm . (3)根据图象得, 当C ≥8cm 时, S ≥4 cm 2. 回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C 、S, 不要习惯地写成x 、y . (3)在自变量取值范围内, 图象为抛物线的一部分. [当堂课内练习]1.在同一直角坐标系中, 画出下列函数的图象, 并分别写出它们的开口方向、对称轴和顶点坐标.(1)23x y = (2)23x y -= (3)231x y = 2.(1)函数232x y =的开口 , 对称轴是 , 顶点坐标是 ; (2)函数241x y -=的开口 , 对称轴是 , 顶点坐标是 .3.已知等边三角形的边长为2x, 请将此三角形的面积S 表示成x 的函数, 并画出图象的草图.[本课课外作业]A 组1.在同一直角坐标系中, 画出下列函数的图象. (1)24x y -= (2)241x y = 2.填空:(1)抛物线25x y -=, 当x= 时, y 有最 值, 是 . (2)当m= 时, 抛物线mm x m y --=2)1(开口向下.(3)已知函数1222)(--+=k k x k k y 是二次函数, 它的图象开口 , 当x 时, y 随x 的增大而增大. 3.已知抛物线102-+=k kkx y 中, 当0>x 时, y 随x 的增大而增大.(1)求k 的值; (2)作出函数的图象(草图). 4.已知抛物线2ax y =经过点(1, 3), 求当y=9时, x 的值.B 组5.底面是边长为x 的正方形, 高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象, 求出y=8 cm 3时底面边长x 的值;(4)根据图象, 求出x 取何值时, y ≥4.5 cm 3.6.二次函数2ax y =与直线32-=x y 交于点P (1, b ).(1)求a 、b 的值;(2)写出二次函数的关系式, 并指出x 取何值时, 该函数的y 随x 的增大而减小. 7. 一个函数的图象是以原点为顶点, y 轴为对称轴的抛物线, 且过M (-2, 2). (1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标, 并求出⊿MON 的面积. [本课学习体会]26.2 二次函数的图象与性质(2)[本课知识要点]会画出k ax y +=2这类函数的图象, 通过比较, 了解这类函数的性质. [MM 及创新思维]同学们还记得一次函数x y 2=与12+=x y 的图象的关系吗?, 你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗?, 那么2x y =与22-=x y 的图象之间又有何关系? . [实践与探索]例1.在同一直角坐标系中, 画出函数22x y =与222+=x y 的图象. 解 列表.描点、连线, 画出这两个函数的图象, 如图26.2.3所示.回顾与反思 当自变量x 取同一数值时, 这两个函数的函数值之间有什么关系?反映在图象上, 相应的两个点之间的位置又有什么关系?探索 观察这两个函数, 它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数22x y =与222-=x y 的图象之间的关系吗?例2.在同一直角坐标系中, 画出函数12+-=x y 与12--=x y 的图象, 并说明, 通过怎样的平移, 可以由抛物线12+-=x y 得到抛物线12--=x y . 解 列表.x… -3 -2 -1 0 1 2 3 … 22x y = … 18 8 2 0 2 8 18 … 222+=x y…20104241020…x…-3-2-1123…描点、连线, 画出这两个函数的图象, 如图26.2.4所示.可以看出, 抛物线12--=x y 是由抛物线12+-=x y 向下平移两个单位得到的. 回顾与反思 抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向上、向下平移一个单位得到的.探索 如果要得到抛物线42+-=x y , 应将抛物线12--=x y 作怎样的平移?例3.一条抛物线的开口方向、对称轴与221x y =相同, 顶点纵坐标是-2, 且抛物线经过点(1, 1), 求这条抛物线的函数关系式.解 由题意可得, 所求函数开口向上, 对称轴是y 轴, 顶点坐标为(0, -2), 因此所求函数关系式可看作)0(22>-=a ax y , 又抛物线经过点(1, 1), 所以, 2112-⋅=a , 解得3=a . 故所求函数关系式为232-=x y .回顾与反思 k ax y +=2(a 、k 是常数, a ≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:k ax y +=2开口方向对称轴顶点坐标0>a0<a12+-=x y … -8 -3 0 1 0 -3 -8 … 12--=x y…-10-5-2-1-2-5-10…[当堂课内练习]1. 在同一直角坐标系中, 画出下列二次函数的图象:221x y =, 2212+=x y , 2212-=x y . 观察三条抛物线的相互关系, 并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线k x y +=221的开口方向及对称轴、顶点的位置吗? 2.抛物线9412-=x y 的开口 , 对称轴是 , 顶点坐标是 , 它可以看作是由抛物线241x y =向 平移 个单位得到的.3.函数332+-=x y , 当x 时, 函数值y 随x 的增大而减小.当x 时, 函数取得最 值, 最 值y= . [本课课外作业]A 组1.已知函数231x y =, 3312+=x y , 2312-=x y . (1)分别画出它们的图象;(2)说出各个图象的开口方向、对称轴、顶点坐标;(3)试说出函数5312+=x y 的图象的开口方向、对称轴、顶点坐标. 2. 不画图象, 说出函数3412+-=x y 的开口方向、对称轴和顶点坐标, 并说明它是由函数241x y -=通过怎样的平移得到的.3.若二次函数22+=ax y 的图象经过点(-2, 10), 求a 的值.这个函数有最大还是最小值?是多少?B 组4.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 的图象的大致位置是( )5.已知二次函数7)1(82-+--=k x k x y , 当k 为何值时, 此二次函数以y 轴为对称轴?写出其函数关系式. [本课学习体会]26.2 二次函数的图象与性质(3)[本课知识要点]会画出2)(h x a y -=这类函数的图象, 通过比较, 了解这类函数的性质. [MM 及创新思维]我们已经了解到, 函数k ax y +=2的图象, 可以由函数2ax y =的图象上下平移所得, 那么函数2)2(21-=x y 的图象, 是否也可以由函数221x y =平移而得呢?画图试一试, 你能从中发现什么规律吗?[实践与探索]例1.在同一直角坐标系中, 画出下列函数的图象.221x y =, 2)2(21+=x y , 2)2(21-=x y , 并指出它们的开口方向、对称轴和顶点坐标.描点、连线, 画出这三个函数的图象, 如图26.2.5所示. 它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是 (0, 0), (-2, 0), (2, 0). 回顾与反思 对于抛物线2)2(21+=x y , 当x 时, 函数值y 随x 的增大而减小;当x 时, 函数值y 随x 的增大而增大;当x 时, 函数取得最 值, 最 值y= .探索 抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=x y , 应将抛物线221x y =作怎样的平移?例2.不画出图象, 你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗?解 抛物线23x y -=的顶点坐标为(0, 0);抛物线2)2(3+-=x y 的顶点坐标为(-2, 0). 因此, 抛物线23x y -=与2)2(3+-=x y 形状相同, 开口方向都向下, 对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的.回顾与反思 2)(h x a y -=(a 、h 是常数, a ≠0)的图象的开口方向、对称轴、顶点坐标[当堂课内练习]1.画图填空:抛物线2)1(-=x y 的开口 , 对称轴是 , 顶点坐标是 , 它可以看作是由抛物线2x y =向 平移 个单位得到的. 2.在同一直角坐标系中, 画出下列函数的图象.22x y -=, 2)3(2--=x y , 2)3(2+-=x y , 并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A 组1.已知函数221x y -=, 2)1(21+-=x y , 2)1(21--=x y . (1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果, 试说明:分别通过怎样的平移, 可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y ?3.函数2)1(3+-=x y , 当x 时, 函数值y 随x 的增大而减小.当x 时, 函数取得最 值, 最 值y= .4.不画出图象, 请你说明抛物线25x y =与2)4(5-=x y 之间的关系.B 组5.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2, 且新抛物线经过点 (1, 3), 求a 的值. [本课学习体会]26.2 二次函数的图象与性质(4)[本课知识要点]1.掌握把抛物线2ax y =平移至2)(h x a y -=+k 的规律;2.会画出2)(h x a y -=+k 这类函数的图象, 通过比较, 了解这类函数的性质. [MM 及创新思维]由前面的知识, 我们知道, 函数22x y =的图象, 向上平移2个单位, 可以得到函数222+=x y 的图象;函数22x y =的图象, 向右平移3个单位, 可以得到函数2)3(2-=x y 的图象, 那么函数22x y =的图象, 如何平移, 才能得到函数2)3(22+-=x y 的图象呢?[实践与探索]例1.在同一直角坐标系中, 画出下列函数的图象.221x y =, 2)1(21-=x y , 2)1(212--=x y , 并指出它们的开口方向、对称轴和顶点坐标.解 列表.描点、连线, 画出这三个函数的图象, 如图26.2.6所示.x… -3-2 -10 12 3…221x y = (2)9 221 021 229… 2)1(21-=x y … 8 29 2 21 0 21 2 … 2)1(212--=x y …625 023- -223- 0…它们的开口方向都向 , 对称轴分别为 、 、 , 顶点坐标分别为 、 、 .请同学们完成填空, 并观察三个图象之间的关系.回顾与反思 二次函数的图象的上下平移, 只影响二次函数2)(h x a y -=+k 中k 的值;左右平移, 只影响h 的值, 抛物线的形状不变, 所以平移时, 可根据顶点坐标的改变, 确定平移前、后的函数关系式及平移的路径.此外, 图象的平移与平移的顺序无关. 探索 你能说出函数2)(h x a y -=+k (a 、h 、k 是常数, a ≠0)的图象的开口方向、对称例2.把抛物线c bx x y ++=2向上平移2个单位, 再向左平移4个单位, 得到抛物线2x y =, 求b 、c 的值.分析 抛物线2x y =的顶点为(0, 0), 只要求出抛物线c bx x y ++=2的顶点, 根据顶点坐标的改变, 确定平移后的函数关系式, 从而求出b 、c 的值.解 c bx x y ++=2c b b bx x +-++=442224)2(22b c b x -++=. 向上平移2个单位, 得到24)2(22+-++=b c b x y , 再向左平移4个单位, 得到24)42(22+-+++=b c b x y , 其顶点坐标是)24,42(2+---b c b , 而抛物线2x y =的顶点为(0, 0), 则 ⎪⎪⎩⎪⎪⎨⎧=+-=--0240422b c b解得 ⎩⎨⎧=-=148c b探索 把抛物线c bx x y ++=2向上平移2个单位, 再向左平移4个单位, 得到抛物线2x y =, 也就意味着把抛物线2x y =向下平移2个单位, 再向右平移4个单位, 得到抛物线c bx x y ++=2.那么, 本题还可以用更简洁的方法来解, 请你试一试. [当堂课内练习]1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y = ( )A .向左平移4个单位, 再向上平移1个单位B .向左平移4个单位, 再向下平移1个单位C .向右平移4个单位, 再向上平移1个单位D .向右平移4个单位, 再向下平移1个单位 2.把抛物线223x y -=向左平移3个单位, 再向下平移4个单位, 所得的抛物线的函数关系式为 . 3.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位, 再向 平移 个单位而得到.[本课课外作业]A 组1.在同一直角坐标系中, 画出下列函数的图象.23x y -=, 2)2(3+-=x y , 1)2(32-+-=x y , 并指出它们的开口方向、对称轴和顶点坐标.2.将抛物线522++-=x x y 先向下平移1个单位, 再向左平移4个单位, 求平移后的抛物线的函数关系式. 3.将抛物线23212++-=x x y 如何平移, 可得到抛物线32212++-=x x y ? B 组4.把抛物线c bx x y ++=2向右平移3个单位, 再向下平移2个单位, 得到抛物线532+-=x x y , 则有 ( )A .b =3, c=7B .b= -9, c= -15C .b=3, c=3D .b= -9, c=215.抛物线c bx x y ++-=23是由抛物线132+--=bx x y 向上平移3个单位, 再向左平移2个单位得到的, 求b 、c 的值.6.将抛物线)0(2≠=a ax y 向左平移h 个单位, 再向上平移k 个单位, 其中h >0, k <0, 求所得的抛物线的函数关系式. [本课学习体会]26.2 二次函数的图象与性质(5)[本课知识要点]1.能通过配方把二次函数c bx ax y ++=2化成2)(h x a y -=+k 的形式, 从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象. [MM 及创新思维]我们已经发现, 二次函数1)3(22+-=x y 的图象, 可以由函数22x y =的图象先向平移 个单位, 再向 平移 个单位得到, 因此, 可以直接得出:函数1)3(22+-=x y 的开口 , 对称轴是 , 顶点坐标是 .那么, 对于任意一个二次函数, 如232-+-=x x y , 你能很容易地说出它的开口方向、对称轴和顶点坐标, 并画出图象吗?[实践与探索]例1.通过配方, 确定抛物线6422++-=x x y 的开口方向、对称轴和顶点坐标, 再描点画图.解 6422++-=x x y[]8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=x x x x x x因此, 抛物线开口向下, 对称轴是直线x=1, 顶点坐标为(1, 8). 由对称性列表:x…-2-1 01234…描点、连线, 如图26.2.7所示.回顾与反思 (1)列表时选值, 应以对称轴x=1为中心, 函数值可由对称性得到, . (2)描点画图时, 要根据已知抛物线的特点, 一般先找出顶点, 并用虚线画对称轴, 然后再对称描点, 最后用平滑曲线顺次连结各点.探索 对于二次函数c bx ax y ++=2, 你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴 , 顶点坐标 . 例2.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上, 求a 的值.分析 顶点在坐标轴上有两种可能:(1)顶点在x 轴上, 则顶点的纵坐标等于0;(2)顶点在y 轴上, 则顶点的横坐标等于0.解 9)2(2++-=x a x y 4)2(9)22(22+-++-=a a x , 则抛物线的顶点坐标是⎥⎦⎤⎢⎣⎡+-+4)2(9,222a a .当顶点在x 轴上时, 有 022=+-a , 解得 2-=a .当顶点在y 轴上时, 有 04)2(92=+-a , 解得 4=a 或8-=a .所以, 当抛物线9)2(2++-=x a x y 的顶点在坐标轴上时, a 有三个值, 分别是 –2, 4,8.[当堂课内练习]1.(1)二次函数x x y 22--=的对称轴是 .(2)二次函数1222--=x x y 的图象的顶点是 , 当x 时, y 随x 的增大而减小.(3)抛物线642--=x ax y 的顶点横坐标是-2, 则a = .2.抛物线c x ax y ++=22的顶点是)1,31(-, 则a 、c 的值是多少? [本课课外作业]A 组1.已知抛物线253212+-=x x y , 求出它的对称轴和顶点坐标, 并画出函数的图象. 2.利用配方法, 把下列函数写成2)(h x a y -=+k 的形式, 并写出它们的图象的开口方向、对称轴和顶点坐标. (1)162++-=x x y(2)4322+-=x x y(3)nx x y +-=2 (4)q px x y ++=23.已知622)2(-++=k kx k y 是二次函数, 且当0>x 时, y 随x 的增大而增大.(1)求k 的值;(2)求开口方向、顶点坐标和对称轴.B 组4.当0<a 时, 求抛物线22212a ax x y +++=的顶点所在的象限.5. 已知抛物线h x x y +-=42的顶点A 在直线14--=x y 上, 求抛物线的顶点坐标. [本课学习体会]26.2 二次函数的图象与性质(6)[本课知识要点]1.会通过配方求出二次函数)0(2≠++=a c bx ax y 的最大或最小值;2.在实际应用中体会二次函数作为一种数学模型的作用, 会利用二次函数的性质求实际问题中的最大或最小值. [MM 及创新思维]在实际生活中, 我们常常会碰到一些带有“最”字的问题, 如问题:某商店将每件进价为80元的某种商品按每件100元出售, 一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查, 发现这种商品单价每降低1元, 其销售量可增加约10件.将这种商品的售价降低多少时, 能使销售利润最大? 在这个问题中, 设每件商品降价x 元, 该商品每天的利润为y 元, 则可得函数关系式为二次函数2000100102++-=x x y .那么, 此问题可归结为:自变量x 为何值时函数y 取得最大值?你能解决吗?[实践与探索]例1.求下列函数的最大值或最小值.(1)5322--=x x y ; (2)432+--=x x y .分析 由于函数5322--=x x y 和432+--=x x y 的自变量x 的取值范围是全体实数, 所以只要确定它们的图象有最高点或最低点, 就可以确定函数有最大值或最小值. 解 (1)二次函数5322--=x x y 中的二次项系数2>0, 因此抛物线5322--=x x y 有最低点, 即函数有最小值.因为5322--=x x y =849)43(22--x , 所以当43=x 时, 函数5322--=x x y 有最小值是849-. (2)二次函数432+--=x x y 中的二次项系数-1<0, 因此抛物线432+--=x x y 有最高点, 即函数有最大值.因为432+--=x x y =425)23(2++-x , 所以当23-=x 时, 函数432+--=x x y 有最大值是425. 回顾与反思 最大值或最小值的求法, 第一步确定a 的符号, a >0有最小值, a <0有最大值;第二步配方求顶点, 顶点的纵坐标即为对应的最大值或最小值.探索 试一试, 当2.5≤x ≤3.5时, 求二次函数322--=x x y 的最大值或最小值. 例2.某产品每件成本是120元, 试销阶段每件产品的销售价x (元)与产品的日销售量y若日销售量y 是销售价x 的一次函数, 要获得最大销售利润, 每件产品的销售价定为多少元?此时每日销售利润是多少?分析 日销售利润=日销售量×每件产品的利润, 因此主要是正确表示出这两个量. 解 由表可知x+y=200,因此, 所求的一次函数的关系式为200+-=x y . 设每日销售利润为s 元, 则有1600)160()120(2+--=-=x x y s .因为0120,0200≥-≥+-x x , 所以200120≤≤x .所以, 当每件产品的销售价定为160元时, 销售利润最大, 最大销售利润为1600元. 回顾与反思 解决实际问题时, 应先分析问题中的数量关系, 列出函数关系式, 再研究所得的函数, 得出结果.例3.如图26.2.8, 在Rt ⊿ABC 中, ∠C=90°, BC=4, AC=8, 点D 在斜边AB 上, 分别作DE ⊥AC, DF ⊥BC, 垂足分别为E 、F, 得四边形DECF, 设DE=x, DF=y .(1)用含y 的代数式表示AE ;(2)求y 与x 之间的函数关系式, 并求出x 的取值范围;(3)设四边形DECF 的面积为S, 求S 与x 之间的函数关系, 并求出S 的最大值.解 (1)由题意可知, 四边形DECF 为矩形, 因此y DF AC AE -=-=8.(2)由DE ∥BC , 得AC AE BC DE =, 即884y x -=, 所以, x y 28-=, x 的取值范围是40<<x .(3)8)2(282)28(22+--=+-=-==x x x x x xy S ,所以, 当x=2时, S 有最大值8.[当堂课内练习]1.对于二次函数m x x y +-=22, 当x= 时, y 有最小值.2.已知二次函数b x a y +-=2)1(有最小值 –1, 则a 与b 之间的大小关系是 ( )A .a <bB .a=bC .a >bD .不能确定3.某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40件, 为了扩大销售, 增加盈利, 尽快减少库存, 商场决定采取适当的降价措施, 经过市场调查发现, 如果每件衬衫每降价1元, 商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元, 每件衬衫应降价多少元?(2)每件衬衫降价多少元时, 商场平均每天盈利最多?[本课课外作业]A 组1.求下列函数的最大值或最小值.(1)x x y 22--=; (2)1222+-=x x y .2.已知二次函数m x x y +-=62的最小值为1, 求m 的值.,。

相关文档
最新文档