人教版九年级数学下册教案(全册)
人教版九年级数学教案(全一册)

人教版九年级数学教案(全一册)第一单元有理数的认识与运算课时一:有理数的概述与绝对值- 教学目标:通过本节课的研究,学生能够了解有理数的概念及其特点,并掌握有理数的绝对值的计算方法。
- 主要内容:有理数的概述,有理数的绝对值的计算方法。
- 教学步骤:- 导入新课:通过引入实际生活中的例子,激发学生对有理数的兴趣。
- 知识点讲解:介绍有理数的定义、性质和表示方法,并具体介绍绝对值的概念和计算方法。
- 例题演示:通过一些例题的演示,引导学生掌握有理数绝对值的计算方法。
- 练巩固:设计一些练题目,让学生独立进行练,加深对所学知识的理解和掌握。
- 小结与展望:对本节课的重点知识进行小结,并展望下节课的内容。
- 教学重点:有理数的绝对值的计算方法。
- 教学难点:对有理数的绝对值进行理解和应用。
- 教学资源:教科书、黑板、多媒体设备等。
课时二:有理数的加减运算- 教学目标:通过本节课的研究,学生能够掌握有理数的加减运算方法,并能运用到实际问题中去。
- 主要内容:有理数的加法与减法运算方法,实例应用。
- 教学步骤:- 导入新课:复上节课的内容,引入有理数的加法与减法问题。
- 知识点讲解:介绍有理数的加法与减法运算规则和方法,并结合实际问题进行讲解。
- 例题演示:通过一些例题的演示,引导学生掌握有理数的加减运算方法。
- 练巩固:设计一些练题目,让学生独立进行练,加深对所学知识的理解和掌握。
- 小结与展望:对本节课的重点知识进行小结,并展望下节课的内容。
- 教学重点:有理数的加法与减法运算方法。
- 教学难点:对实际问题进行有理数的加减运算。
- 教学资源:教科书、黑板、多媒体设备等。
(以下课时内容省略,可以根据需要自行完善)。
人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)人教版九年级下册数学教案大全篇1一、教材研读。
1、教材编排。
(1)逻辑分析:方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。
并且已经采取逐步渗透的方法来培养代数思维。
例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。
(2)语言信息及价值分析:本课教材中的三幅情境图,由浅入深,由具体到抽象,循序渐进。
第一个场景让学生借助天平理解方程;第二个场景完成从数量关系到平等关系的转变;第三个场景引起学生的思考,让他们从不同的角度找到多种等价关系,列出方程。
2、教学目标。
(1)结合具体情境,建立方程的概念。
(2)寻找简单情况下的等价关系,会用方程表示。
(3)体验从生活场景到方程模型的过程,进一步感受数学与生活的密切关系。
3、教学重难点:(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。
抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。
(2)难点:数量关系向等量关系的转化。
二、学情分析:学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。
由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。
列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。
三、流程设计:为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:(一)引“典”激趣,诱发思考。
引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。
人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案

(2)实际问题中的数学建模:学生在解决实际问题时,往往不知道如何构建数学模型,将实际问题转化为数学问题。
突破方法:教师可以引导学生通过分析实际问题,找出其中的关键信息,然后运用正弦、余弦、正切函数构建数学模型。同时,通过举例讲解,让学生了解这一过程。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正弦、余弦、正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
一、教学内容
本节课选自人教版初中九年级数学下册,章节为《正弦、余弦、正切函数的简单应用》。教学内容主要包括以下两个方面:
1.掌握正弦、余弦、正切函数的定义及其在直角三角形中的应用。
-正弦函数:在直角三角形中,正弦值等于对边与斜边的比值。
-余弦函数:在直角三角形中,余弦值等于邻边与斜边的比值。
五、教学反思
在本次教学中,我尝试了多种方法来帮助学生理解正弦、余弦、正切函数的简单应用。从导入新课到实践活动,再到小组讨论,我发现学生们在这些环节中的表现各有亮点,也有一些需要改进的地方。
首先,在导入新课环节,通过提出与日常生活密切相关的问题,成功引起了学生的兴趣。他们积极参与,提出了很多有关测量物体高度和距离的想法。这说明实际情景的引入有助于激发学生的学习热情,使他们更愿意投入到新知识的学习中。
人教版九年级数学下册全册教案

26.1.1反比例函数的意义教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学方法:类比启发教学辅助:多媒体投影片教学过程:一、创设情景探究问题随着速度的变化,全程所用时间发生怎样的变化?情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:2(3)速度v是时间t的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.全册每单元每课时 3[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.二、例题教学练习:1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=x15;(2)y=2x-1;(3)y=-3x;通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.练习:2:在函数y=2x-1,y=2x+1,y=x-1,y=12x中,y是x的反比例函数的有个.全册每单元每课时 4[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=2x-1通分为y=2-xx,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=2x可说成(y+1)与x成反比例.练习3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为.[说明]这个练习引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.例题:第5页例1三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.全册每单元每课时 52、已知函数y=(m+1)x22 m是反比例函数,则m的值为.[备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)板书设计:概念:例1解:练习练习全册每单元每课时 6教学反思:本节课学生对有关概念都很好的落实,亮点在于练习设计有梯度,学生认识清楚。
人教版九年级数学下册教案全册(精华版)

例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B随堂练习1.已知反比例函数xk y -=3,分别根据下列条件求出字母k 的取值范围(1)函数图象位于第一、三象限 (2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xa y -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为年级九年级课题26.2.1实际问题与反比例函数课型新授教学媒体多媒体教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点用反比例函数解决实际问题.构建反比例函数的数学模型.教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课一位司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6•小时到达目的地.(1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系?(2)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少?(二)合作交流,解读探究探究(1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=480t的反比例函数关系式.(2)若要在4小时内回到甲地(原路),则速度显然不能低于4804=120(千米/时).归纳常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.(三)应用迁移,巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100 x.(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之留白:(供教师个性化设计)间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.附:板书设计教后反思:年级九年级课题26.2.2实际问题与反比例函数课型新授教学媒体多媒体教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力.3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点重点:用反比例函数解决实际问题.难点:构建反比例函数的数学模型教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1. 5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?【分析】(1)由杠杆定律有FL=1200×0.5,即F=600l,当L=1.5时,F=6001.5=400.(2)由(1)及题意,当F=12×400=200时,L=600200=3(m),∴要加长3-1.5=1.5(m).思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2,也可写为P=2uR.(三)应用迁移,巩固提高例1在某一电路中,电源电压U保持不变,电流I (A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A 时,电路中电阻R•的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.留白:(供教师个性化设计)解:(1)设,根据题目条件知,当I=6时,R=6,所以,所以K=36,所以I与R的关系式为:I=36 R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(•千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,•气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,•所以所求的解析式为P=96 V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.备选例题1.(中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=UR.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏.2.(中考·扬州)已知力F对一个物体作的功是15焦,则力F•与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是()【答案】1.(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2.B(四)总结反思,拓展升华1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.附:板书设计教后反思:年级九年级课题27.1 图形的相似课型新授教学媒体多媒体教学目标知识技能1.使学生理解并掌握两个图形相似的概念,理解相似形的特征,掌握相似形的识别方法;2.掌握相似多边形的特征,会根据相似多边形的特征识别两个多变形是否相似,并能运用相似多边形的性质进行相关计算.过程方法观察生活中的形状形同的图形,学生初步认识理解相似形的概念,在此基础上理解相似形的特征,进一步掌握相似形的识别方法,发展学生的归纳,类比、反思、交流、的能力,提高数学思维水平.情感态度培养学生的观察能力,激发学生的探究的兴趣和欲望,并进行美育渗透.教学重点理解并掌握两个图形相似的概念及特征.教学难点理解相似形的特征,掌握识别相似图形的方法,能运用相似多边形的特征进行相关的计算.教学过程设计教学程序及教学内容师生行为设计意图情境引入欣赏下面4组图片,说说你的想法引出本章,及本节课题二、自主探究(一)相似图形1.类比上面几幅图片,再举一些其它例子.2.这些图片有什么共同特征?3.从平面镜和哈哈镜里看到的不同镜像,它们相似吗?4.已学习过的几何图形中有没有相似的?自己设计一些相似图形,在与同学交流一下.5.完成课本25页练习.(二)相似多边形1.观察正△ABC和正△'''CBA中,它们的对应角有什么关系?对应边呢?2.能否说任意两个正三角形都相似?3.阅读课本26页中的方框旁注,比例线段的特点是什么?教师展示图片并提出问题,学生观察,思考.教师引导点拨:它们的形状相同,大小不等,学生总结归纳,初步感知相似图形的基本特征.学生根据生活经验举例,进一步理解相似,教师组织学生以小组形式进行讨论,探究这些图片的共同特征学生完成练习,之后订正,师生达成共识教师设计问题,学生思考分析,理解相似多边形概念激起学生的好奇心,探索欲望,初步感受相似,引入本节课.让学生亲自进行观察,分析,探究,得到结论,举出生活中的实例,培养学生的观察能力,体验数学与生活的密切关系.学生通过思考回答教师提出的问题,初步感知相似多边形及其的特征,为后续学习做铺垫21年级 九年级 课题 28.1 锐角三角函数(1)课型 新授教学媒体 多媒体教 学 目 标知识 技能 1.初步了解锐角三角函数的意义,理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦,当锐角固定时,它的正弦值是定值;2.能根据已知直角三角形的边长求一个锐角的正弦值.过程 方法 经历探究锐角三角函数的定义的过程,逐步发现一个锐角的对边与斜边的比值不变的规律,从中思考这种规律所揭示的数学内涵.情感 态度使学生体验数学活动中的探索与发现,培养学生由特殊到一般的演绎推理能力,学会用数学的思维方式思考,发现,总结,验证.教学重点 正确理解正弦(sinA )概念,会根据直角三角形的边长求一个锐角的正弦值 教学难点理解在直角三角形中,对于任意一个锐角,它的对边与斜边的比值是固定值.教 学 过 程 设 计教学程序及教学内容师生行为设计意图 一、复习引入 1.回忆直角三角形有哪些特殊性质? 2.在Rt △ABC 中,∠C=90°,∠A=30°,若BC=10m ,•求AB ; 3.在Rt △ABC 中,∠C=90°,∠A=30°,若BC=20m ,•求 AB. 二、自主探究 问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管? 思考:1.如果使出水口的高度为50m ,那么需要准备多长的水管? 2.如果使出水口的高度为a m ,那么需要准备多长的水管? 结论:直角三角形中,30°角的对边与斜边的比值等于12思考:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值是 22.探究:从上面两个问题的结论中可知,•在Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值. 这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值? 任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,教师引导学生回顾直角三角形性质,学生完成两个铺垫练习. 教师提出问题,引导学生思考,逐步从特殊到一般的理解锐角的正弦概念.在特殊角的基础上提出一般性问题,教师再次引导学生利用相似三角形知识,得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A的对边与斜边的比都是一个固定值.复习直角三角形的性质,在此基础上探究新问题.让学生初步体验一个锐角确定以后,它的对边与斜边的比值也随之不变的事实,为锐角的正弦的引出提供背景.培养学生从特殊到一般的演绎推理能力.39斜边c 对边a bC B A•∠A 的对边与斜边的比都是一个固定值. 正弦函数概念:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A的正弦,记作sinA , 即sinA =A a A c∠=∠的对边的斜边例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= .例1 如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.三、课堂训练课本第64页练习.补充:1.如图,在直角△ABC 中,∠C =90o,若AB =5,AC =4,则sinA =( )A .35B .45C .34D .432. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 53.如图,已知点P 的坐标是(a ,b ),则sin α等于( )A .a bB .b aC .2222.a b D a b a b ++ 四、课堂小结 1.锐角的正弦概念; 2.会求一个锐角的正弦值。
人教版九年级数学下册精品教案1 传播问题与一元二次方程

21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.第3课时几何图形与一元二次方程1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.继续探究实际问题中的数量关系,列出一元二次方程解应用题.3.通过探究体会列方程的实质,提高灵活处理问题的能力.一、情境导入如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?二、合作探究探究点:用一元二次方程解决图形面积问题【类型一】利用面积构造一元二次方程模型用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=6解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.解:设小正方形的边长为x cm,则可得这个长方体盒子的底面的长是(80-2x)cm,宽是(60-2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x)(60-2x)=1500,整理得x2-70x+825=0,解得x1=55,x2=15.又60-2x>0,∴x=55(舍).∴小正方形的边长为15cm.方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可.【类型二】整体法构造一元二次方程模型如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x米,根据题意可列出的方程为______________.解析:解法一:把两条道路平移到靠近矩形的一边上,用含x的代数式表示草坪的长为(22-x )米,宽为(17-x )米,根据草坪的面积为300平方米可列出方程(22-x )(17-x )=300.解法二:根据面积的和差可列方程:22×17-22x -17x +x 2=300.方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解.【类型三】利用一元二次方程解决动点问题如图所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC 与CQ 的长,根据面积公式建立方程求解.解:(1)设x s 后,可使△PCQ 的面积为8cm 2,所以AP =x cm ,PC =(6-x )cm ,CQ =2x cm.则根据题意,得12·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半.则根据题意,得12(6-x )·2x =12×12×6×8.整理,得x 2-6x +12=0.由于此方程没有实数根,所以不存在使△PCQ 的面积等于△ABC 面积一半的时刻.三、板书设计与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。
人教版九年级下册数学教案5篇

人教版九年级下册数学教案5篇人教版九年级下册数学教案1教学目标1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重难点教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学工具课件教学过程一、复习导入1、我们已经认识了比例,谁能说一下什么叫比例?2、应用比例的意义判断下面的比能否组成比例。
2.4:1.6和60:403、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例) 板书:比例的基本性质二、探究新知1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。
学生回答的同时,板书:组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2. 4 : 1.6 = 60 : 40 外项内项学生认一认,说一说比例中的外项和内项。
2、教学比例的基本性质。
出示例1、 (1)教师:比例有什么性质呢?现在我们就来研究。
(板书:比例的基本性质) 学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:两个外项的积是2.4_40=96 两个内项的积是1.6_60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢? 学生分组计算前面判断过的比例。
(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。
人教版数学九年级下册教案

感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。
一起看看人教版数学九年级下册教案!欢迎查阅!人教版数学九年级下册教案1一、教学目标1. 通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。
2.经历利用三角函数知识解决实际问题的过程,促进观察、分析、归纳、交流等能力的发展。
3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。
二、教材分析在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。
在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。
本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。
三、学校及学生状况分析九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。
另外,计算器的使用可以极大减轻学生的负担。
因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。
学生自小学起就开始使用计算器,对计算器的操作比较熟悉。
同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。
四、教学设计(一)复习提问1.梯子靠在墙上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?学生活动:根据题意,求出数值。
2.在生活中,梯子与地面的夹角总是60°吗?不是,可以出现各种角度,60°只是一种特殊现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章 二次函数[本章知识要点]1. 探索具体问题中的数量关系和变化规律.2. 结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念. 3. 会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质. 4. 会运用配方法确定二次函数图象的顶点、开口方向和对称轴. 5. 会利用二次函数的图象求一元二次方程(组)的近似解.6. 会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义. [MM 及创新思维](1)正方形边长为a (cm ),它的面积s (cm 2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x 厘米,则面积增加y 平方厘米,试写出y 与x 的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义. [实践与探索]例1. m 取哪些值时,函数)1()(22+++-=m mx x m m y 是以x 为自变量的二次函数? 分析 若函数)1()(22+++-=m mx x m m y 是二次函数,须满足的条件是:02≠-m m .解 若函数)1()(22+++-=m mx x m m y 是二次函数,则 02≠-m m . 解得 0≠m ,且1≠m .因此,当0≠m ,且1≠m 时,函数)1()(22+++-=m mx x m m y 是二次函数. 回顾与反思 形如c bx ax y ++=2的函数只有在0≠a 的条件下才是二次函数. 探索 若函数)1()(22+++-=m mx x m m y 是以x 为自变量的一次函数,则m取哪些值?例2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系; (2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y (元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系. 解 (1)由题意,得 )0(62>=a a S ,其中S 是a 的二次函数;(2)由题意,得 )0(42>=x x y π,其中y 是x 的二次函数; (3)由题意,得 10000%98.110000⋅+=x y (x ≥0且是正整数),其中y 是x 的一次函数; (4)由题意,得 )260(1321)26(212<<+-=-=x x x x x S ,其中S 是x 的二次函数. 例3.正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 解 (1))2150(4225415222<<-=-=x x x S ; (2)当x=3cm 时,189342252=⨯-=S (cm 2). [当堂课内练习]1.下列函数中,哪些是二次函数? (1)02=-x y (2)2)1()2)(2(---+=x x x y(3)xx y 12+= (4)322-+=x x y 2.当k 为何值时,函数1)1(2+-=+kkx k y 为二次函数?3.已知正方形的面积为)(2cm y ,周长为x (cm ). (1)请写出y 与x 的函数关系式; (2)判断y 是否为x 的二次函数. [本课课外作业]A 组1. 已知函数72)3(--=mx m y 是二次函数,求m 的值.2. 已知二次函数2ax y =,当x=3时,y= -5,当x= -5时,求y 的值.3. 已知一个圆柱的高为27,底面半径为x ,求圆柱的体积y 与x 的函数关系式.若圆柱的底面半径x 为3,求此时的y .4. 用一根长为40 cm 的铁丝围成一个半径为r 的扇形,求扇形的面积y 与它的半径x 之间的函数关系式.这个函数是二次函数吗?请写出半径r 的取值范围.B 组5.对于任意实数m ,下列函数一定是二次函数的是 ( ) A .22)1(x m y -= B .22)1(x m y += C .22)1(x m y += D .22)1(x m y -= 6.下列函数关系中,可以看作二次函数c bx ax y ++=2(0≠a )模型的是 ( ) A . 在一定的距离内汽车的行驶速度与行驶时间的关系B . 我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C . 竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D . 圆的周长与圆的半径之间的关系 [本课学习体会]§26.2 用函数观点看一元二次方程(第一课时)教学目标(一)知识与技能1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h 是实数)交点的横坐标. (二)过程与方法1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x 轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论.培养大家的合作交流意识. (三)情感态度与价值观1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造.感受数学的严谨性以及数学结论的确定性,2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学过程Ⅰ.创设问题情境,引入新课1.我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数)y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?2.选教材提出的问题,直接引入新课Ⅱ.合作交流解读探究1.二次函数与一元二次方程之间的关系探究:教材问题师生同步完成.观察:教材22页,学生小组交流.归纳:先由学生完成,然后师生评价,最后教师归纳.Ⅲ.应用迁移巩固提高1 .根据二次函数图像看一元二次方程的根同期声2 .抛物线与x轴的交点情况求待定系数的范围.3 .根据一元二次方程根的情况来判断抛物线与x轴的交点情况Ⅳ.总结反思拓展升华本节课学了如下内容:1.经历了探索二次函数与一元:二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根,两个相等的实根和没有实根.3.数学方法:分类讨论和数形结合.反思:在判断抛物线与x轴的交点情况时,和抛物线中的二次项系数的正负有无关系?拓展:教案Ⅴ.课后作业P231.3.526.2 二次函数的图象与性质(1)[本课知识要点]会用描点法画出二次函数2ax y =的图象,概括出图象的特点及函数的性质. [MM 及创新思维]我们已经知道,一次函数12+=x y ,反比例函数xy 3=的图象分别是 、 ,那么二次函数2x y =的图象是什么呢?(1)描点法画函数2x y =的图象前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时,y 的值如何?(2)观察函数2x y =的图象,你能得出什么结论?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22x y = (2)22x y -=解 列表x… -3 -2 -1 0 1 2 3 … 22x y =…18 8 2 0 2 8 18 … 22x y -= …-18-8-2-2-8-18…分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.共同点:都以y 轴为对称轴,顶点都在坐标原点.不同点:22x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.例2.已知42)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.解 (1)由题意,得⎩⎨⎧>+=-+02242k k k , 解得k=2.(2)二次函数为24x y =,则顶点坐标为(0,0),对称轴为y 轴.例3.已知正方形周长为Ccm ,面积为S cm 2. (1)求S 和C 之间的函数关系式,并画出图象; (2)根据图象,求出S=1 cm 2时,正方形的周长; (3)根据图象,求出C 取何值时,S ≥4 cm 2. 分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C 的取值应在取值范围内. 解 (1)由题意,得)0(1612>=C C S . 列表:C24 68 (2)161C S =41 149 4…描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm 2时,正方形的周长是4cm . (3)根据图象得,当C ≥8cm 时,S ≥4 cm 2. 回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C 、S ,不要习惯地写成x 、y . (3)在自变量取值范围内,图象为抛物线的一部分. [当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.(1)23x y = (2)23x y -= (3)231x y = 2.(1)函数232x y =的开口 ,对称轴是 ,顶点坐标是 ; (2)函数241x y -=的开口 ,对称轴是 ,顶点坐标是 .3.已知等边三角形的边长为2x ,请将此三角形的面积S 表示成x 的函数,并画出图象的草图.[本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象. (1)24x y -= (2)241x y = 2.填空:(1)抛物线25x y -=,当x= 时,y 有最 值,是 . (2)当m= 时,抛物线mm x m y --=2)1(开口向下.(3)已知函数1222)(--+=k k x k k y 是二次函数,它的图象开口 ,当x 时,y随x 的增大而增大. 3.已知抛物线102-+=k k kxy 中,当0>x 时,y 随x 的增大而增大.(1)求k 的值; (2)作出函数的图象(草图).4.已知抛物线2ax y =经过点(1,3),求当y=9时,x 的值.B 组5.底面是边长为x 的正方形,高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm 3时底面边长x 的值;(4)根据图象,求出x 取何值时,y ≥4.5 cm 3.6.二次函数2ax y =与直线32-=x y 交于点P (1,b ).(1)求a 、b 的值;(2)写出二次函数的关系式,并指出x 取何值时,该函数的y 随x 的增大而减小. 7. 一个函数的图象是以原点为顶点,y 轴为对称轴的抛物线,且过M (-2,2). (1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标,并求出⊿MON 的面积. [本课学习体会]26.2 二次函数的图象与性质(2)[本课知识要点]会画出k ax y +=2这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]同学们还记得一次函数x y 2=与12+=x y 的图象的关系吗?,你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗?,那么2x y =与22-=x y 的图象之间又有何关系? . [实践与探索]例1.在同一直角坐标系中,画出函数22x y =与222+=x y 的图象. 解 列表.描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思 当自变量x 取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索 观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数22x y =与222-=x y 的图象之间的关系吗?例2.在同一直角坐标系中,画出函数12+-=x y 与12--=x y 的图象,并说明,通过怎样的平移,可以由抛物线12+-=x y 得到抛物线12--=x y . 解 列表.x… -3 -2 -1 0 1 2 3 … 22x y = … 18 8 2 0 2 8 18 … 222+=x y…20104241020…x…-3-2-1123…描点、连线,画出这两个函数的图象,如图26.2.4所示.可以看出,抛物线12--=x y 是由抛物线12+-=x y 向下平移两个单位得到的. 回顾与反思 抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向上、向下平移一个单位得到的.探索 如果要得到抛物线42+-=x y ,应将抛物线12--=x y 作怎样的平移?例3.一条抛物线的开口方向、对称轴与221x y =相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.解 由题意可得,所求函数开口向上,对称轴是y 轴,顶点坐标为(0,-2), 因此所求函数关系式可看作)0(22>-=a ax y , 又抛物线经过点(1,1), 所以,2112-⋅=a , 解得3=a . 故所求函数关系式为232-=x y .回顾与反思 k ax y +=2(a 、k 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:k ax y +=2开口方向对称轴顶点坐标 0>a0<a12+-=x y … -8 -3 0 1 0 -3 -8 … 12--=x y…-10-5-2-1-2-5-10…[当堂课内练习]1. 在同一直角坐标系中,画出下列二次函数的图象:221x y =, 2212+=x y , 2212-=x y . 观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线k x y +=221的开口方向及对称轴、顶点的位置吗? 2.抛物线9412-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线241x y =向 平移 个单位得到的.3.函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= . [本课课外作业]A 组1.已知函数231x y =, 3312+=x y , 2312-=x y . (1)分别画出它们的图象;(2)说出各个图象的开口方向、对称轴、顶点坐标;(3)试说出函数5312+=x y 的图象的开口方向、对称轴、顶点坐标. 2. 不画图象,说出函数3412+-=x y 的开口方向、对称轴和顶点坐标,并说明它是由函数241x y -=通过怎样的平移得到的.3.若二次函数22+=ax y 的图象经过点(-2,10),求a 的值.这个函数有最大还是最小值?是多少?B 组4.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 的图象的大致位置是( )5.已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式. [本课学习体会]26.2 二次函数的图象与性质(3)[本课知识要点]会画出2)(h x a y -=这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象上下平移所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢?画图试一试,你能从中发现什么规律吗?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)2(21+=x y ,2)2(21-=x y ,并指出它们的开口方向、对称轴和顶点坐标.解 列表.描点、连线,画出这三个函数的图象,如图26.2.5所示.x… -3 -2 -1 0123…221x y =…29 2 21 0 212 29… 2)2(21+=x y … 21 021 2 225 8 225 … 2)2(21-=x y (2)25 8 29 2210 21…它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是 (0,0),(-2,0),(2,0). 回顾与反思 对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= .探索 抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移?例2.不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗?解 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0).因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的. 回顾与反思 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐[当堂课内练习]1.画图填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的. 2.在同一直角坐标系中,画出下列函数的图象.22x y -=,2)3(2--=x y ,2)3(2+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A 组1.已知函数221x y -=,2)1(21+-=x y , 2)1(21--=x y . (1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y ? 3.函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .4.不画出图象,请你说明抛物线25x y =与2)4(5-=x y 之间的关系.B 组5.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点 (1,3),求a 的值.[本课学习体会]26.2 二次函数的图象与性质(4)[本课知识要点]1.掌握把抛物线2ax y =平移至2)(h x a y -=+k 的规律;2.会画出2)(h x a y -=+k 这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]由前面的知识,我们知道,函数22x y =的图象,向上平移2个单位,可以得到函数222+=x y 的图象;函数22x y =的图象,向右平移3个单位,可以得到函数2)3(2-=x y 的图象,那么函数22x y =的图象,如何平移,才能得到函数2)3(22+-=x y 的图象呢?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)1(21-=x y ,2)1(212--=x y ,并指出它们的开口方向、对称轴和顶点坐标. 解 列表.描点、连线,画出这三个函数的图象,如图26.2.6所示.它们的开口方向都向 ,对称轴分别为 、 、 ,顶点坐标分别为 、 、 .请同学们完成填空,并观察三个图象之间的关系. 回顾与反思 二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关. 探索 你能说出函数2)(h x a y -=+k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.2)(h x a y -=+k开口方向对称轴顶点坐标 0>a0<ax… -3-2 -10 12 3…221x y = (2)9 221 021 229… 2)1(21-=x y … 8 29 2 21 0 21 2 … 2)1(212--=x y …625 023- -223- 0…例2.把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.分析 抛物线2x y =的顶点为(0,0),只要求出抛物线c bx x y ++=2的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b 、c 的值.解 c bx x y ++=2c b b bx x +-++=442224)2(22b c b x -++=. 向上平移2个单位,得到24)2(22+-++=b c b x y , 再向左平移4个单位,得到24)42(22+-+++=b c b x y , 其顶点坐标是)24,42(2+---b c b ,而抛物线2x y =的顶点为(0,0),则 ⎪⎪⎩⎪⎪⎨⎧=+-=--0240422b c b解得 ⎩⎨⎧=-=148c b探索 把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,也就意味着把抛物线2x y =向下平移2个单位,再向右平移4个单位,得到抛物线c bx x y ++=2.那么,本题还可以用更简洁的方法来解,请你试一试. [当堂课内练习]1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y = ( )A .向左平移4个单位,再向上平移1个单位B .向左平移4个单位,再向下平移1个单位C .向右平移4个单位,再向上平移1个单位D .向右平移4个单位,再向下平移1个单位 2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 . 3.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平移 个单位而得到.[本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象.23x y -=,2)2(3+-=x y ,1)2(32-+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.2.将抛物线522++-=x x y 先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式. 3.将抛物线23212++-=x x y 如何平移,可得到抛物线32212++-=x x y ? B 组4.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,得到抛物线532+-=x x y ,则有 ( )A .b =3,c=7B .b= -9,c= -15C .b=3,c=3D .b= -9,c=215.抛物线c bx x y ++-=23是由抛物线132+--=bx x y 向上平移3个单位,再向左平移2个单位得到的,求b 、c 的值.6.将抛物线)0(2≠=a ax y 向左平移h 个单位,再向上平移k 个单位,其中h >0,k <0,求所得的抛物线的函数关系式. [本课学习体会]26.2 二次函数的图象与性质(5)[本课知识要点]1.能通过配方把二次函数c bx ax y ++=2化成2)(h x a y -=+k 的形式,从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象.[MM 及创新思维]我们已经发现,二次函数1)3(22+-=x y 的图象,可以由函数22x y =的图象先向平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数1)3(22+-=x y 的开口 ,对称轴是 ,顶点坐标是 .那么,对于任意一个二次函数,如232-+-=x x y ,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗? [实践与探索]例1.通过配方,确定抛物线6422++-=x x y 的开口方向、对称轴和顶点坐标,再描点画图.解 6422++-=x x y[]8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=x x x x x x因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8). 由对称性列表:x…-2-1 01 2 34…6422++-=x x y … -10 06860 -10 …描点、连线,如图26.2.7所示.回顾与反思 (1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,. (2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索 对于二次函数c bx ax y ++=2,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴 ,顶点坐标 . 例2.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,求a 的值.分析 顶点在坐标轴上有两种可能:(1)顶点在x 轴上,则顶点的纵坐标等于0;(2)顶点在y 轴上,则顶点的横坐标等于0.解 9)2(2++-=x a x y 4)2(9)22(22+-++-=a a x , 则抛物线的顶点坐标是⎥⎦⎤⎢⎣⎡+-+4)2(9,222a a .当顶点在x 轴上时,有 022=+-a , 解得 2-=a .当顶点在y 轴上时,有 04)2(92=+-a , 解得 4=a 或8-=a .所以,当抛物线9)2(2++-=x a x y 的顶点在坐标轴上时,a 有三个值,分别是 –2,4,8.[当堂课内练习]1.(1)二次函数x x y 22--=的对称轴是 .(2)二次函数1222--=x x y 的图象的顶点是 ,当x 时,y 随x 的增大而减小.(3)抛物线642--=x ax y 的顶点横坐标是-2,则a = . 2.抛物线c x ax y ++=22的顶点是)1,31(-,则a 、c 的值是多少? [本课课外作业]A 组1.已知抛物线253212+-=x x y ,求出它的对称轴和顶点坐标,并画出函数的图象. 2.利用配方法,把下列函数写成2)(h x a y -=+k 的形式,并写出它们的图象的开口方向、对称轴和顶点坐标. (1)162++-=x x y(2)4322+-=x x y(3)nx x y +-=2 (4)q px x y ++=23.已知622)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求开口方向、顶点坐标和对称轴.B 组4.当0<a 时,求抛物线22212a ax x y +++=的顶点所在的象限.5. 已知抛物线h x x y +-=42的顶点A 在直线14--=x y 上,求抛物线的顶点坐标. [本课学习体会]26.2 二次函数的图象与性质(6)[本课知识要点]1.会通过配方求出二次函数)0(2≠++=a c bx ax y 的最大或最小值;2.在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值. [MM 及创新思维]在实际生活中,我们常常会碰到一些带有“最”字的问题,如 问题:某商店将每件进价为80元的某种商品按每件100元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,设每件商品降价x 元,该商品每天的利润为y 元,则可得函数关系式为二次函数2000100102++-=x x y .那么,此问题可归结为:自变量x 为何值时函数y 取得最大值?你能解决吗? [实践与探索]例1.求下列函数的最大值或最小值.(1)5322--=x x y ; (2)432+--=x x y .分析 由于函数5322--=x x y 和432+--=x x y 的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值. 解 (1)二次函数5322--=x x y 中的二次项系数2>0, 因此抛物线5322--=x x y 有最低点,即函数有最小值.因为5322--=x x y =849)43(22--x , 所以当43=x 时,函数5322--=x x y 有最小值是849-.(2)二次函数432+--=x x y 中的二次项系数-1<0, 因此抛物线432+--=x x y 有最高点,即函数有最大值.因为432+--=x x y =425)23(2++-x , 所以当23-=x 时,函数432+--=x x y 有最大值是425. 回顾与反思 最大值或最小值的求法,第一步确定a 的符号,a >0有最小值,a <0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.探索 试一试,当2.5≤x ≤3.5时,求二次函数322--=x x y 的最大值或最小值. 例2.某产品每件成本是120元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间关系如下表:x (元) 130150165y (件)70 50 35若日销售量y 是销售价x 的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?分析 日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量. 解 由表可知x+y=200,因此,所求的一次函数的关系式为200+-=x y . 设每日销售利润为s 元,则有1600)160()120(2+--=-=x x y s .因为0120,0200≥-≥+-x x ,所以200120≤≤x .所以,当每件产品的销售价定为160元时,销售利润最大,最大销售利润为1600元. 回顾与反思 解决实际问题时,应先分析问题中的数量关系,列出函数关系式,再研究所得的函数,得出结果.例3.如图26.2.8,在Rt ⊿ABC 中,∠C=90°,BC=4,AC=8,点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE=x ,DF=y . (1)用含y 的代数式表示AE ;(2)求y 与x 之间的函数关系式,并求出x 的取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数关系,并求出S 的最大值.解 (1)由题意可知,四边形DECF 为矩形,因此y DF AC AE -=-=8.(2)由DE ∥BC ,得AC AE BC DE =,即884y x -=, 所以,x y 28-=,x 的取值范围是40<<x .(3)8)2(282)28(22+--=+-=-==x x x x x xy S ,所以,当x=2时,S 有最大值8.[当堂课内练习]1.对于二次函数m x x y +-=22,当x= 时,y 有最小值.2.已知二次函数b x a y +-=2)1(有最小值 –1,则a 与b 之间的大小关系是 ( )A .a <bB .a=bC .a >bD .不能确定3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?[本课课外作业]A 组1.求下列函数的最大值或最小值.(1)x x y 22--=; (2)1222+-=x x y .2.已知二次函数m x x y +-=62的最小值为1,求m 的值.,3.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系:)300(436.21.02≤≤++-=x x x y .y 值越大,表示接受能力越强.(1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分时,学生的接受能力是多少?(3)第几分时,学生的接受能力最强?B 组4.不论自变量x 取什么数,二次函数m x x y +-=622的函数值总是正值,求m 的取值范围.5.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式;。