角度计算中的动态问题

合集下载

七年级动点问题三角形

七年级动点问题三角形

七年级动点问题三角形摘要:一、动点问题的引入二、七年级动点问题的三角形类型三、解决动点问题的方法与技巧四、动点问题在实际生活中的应用五、总结与反思正文:一、动点问题的引入动点问题,顾名思义,是指问题中涉及到一个动态的点。

在数学中,动点问题常常以图形中的一个点或线段在不断地运动为背景,要求我们求解某个与运动相关的量。

动点问题以其生动的形象和较高的思维难度,一直以来都是数学教学中的热点和难点。

二、七年级动点问题的三角形类型在七年级的数学学习中,动点问题的三角形类型主要包括以下几种:1.求解三角形的周长和面积,给定三角形的三个顶点和一个动点,要求我们求解在一定条件下,三角形的周长或面积的最大值或最小值。

2.求解三角形的角度,给定三角形的三个顶点和一个动点,要求我们求解在一定条件下,某个角度的最大值或最小值。

3.求解三角形的边长,给定三角形的三个顶点和一个动点,要求我们求解在一定条件下,某个边长的最大值或最小值。

三、解决动点问题的方法与技巧解决动点问题的方法与技巧主要包括以下几点:1.观察和分析:首先要对问题进行仔细的观察和分析,找出问题的特点和关键信息。

2.抽象和建模:将问题抽象成数学模型,建立适当的数学关系式。

3.分类和讨论:根据问题的不同情况,进行分类讨论,以便找到问题的解。

4.计算和验证:对求解的结果进行计算和验证,确保结果的正确性。

四、动点问题在实际生活中的应用动点问题在实际生活中有着广泛的应用,例如在建筑设计中,要考虑建筑物的采光问题,就需要求解在一定条件下,窗户的最大尺寸或最小尺寸;在物流运输中,要考虑货物的运输路线,就需要求解在一定条件下,运输路线的最短距离或最短时间。

五、总结与反思动点问题以其生动的形象和较高的思维难度,一直以来都是数学教学中的热点和难点。

物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧动态平衡问题解题技巧一、总论1、动态平衡问题的产生——当三个平衡力中一个力已知恒定,另外两个力的大小或方向不断变化,但物体仍然平衡时,就会产生动态平衡问题。

典型关键词包括缓慢转动、缓慢移动等。

2、动态平衡问题的解法——解析法和图解法。

解析法:画好受力分析图后,进行正交分解或斜交分解,列出平衡方程,将待求力写成三角函数形式,然后通过角度变化分析判断力的变化规律。

图解法:画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。

3、动态平衡问题的分类——包括动态三角形、相似三角形、圆与三角形(2类)、等腰三角形等。

二、例析1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形。

例1】如图,一小球放置在木板与竖直墙面之间。

设墙面对球的压力大小为FN1,球对木板的压力大小为FN2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。

不计摩擦,在此过程中,FN1和FN2的变化规律是?解法一:解析法——画受力分析图,正交分解列方程,解出FN1和FN2随夹角变化的函数,然后通过函数讨论。

解析】小球受力如图,由平衡条件,有FN2sinθ-mg=0,FN1cosθ=FN2sinθ,联立可解得FN2=mg/θ,FN1=sinθ/tanθ。

木板在顺时针放平过程中,θ角一直在增大,可知FN1和FN2都一直在减小,因此选B。

解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住不变,讨论变化”,不变的是小球重力和FN1的方向,然后按FN2方向变化规律转动FN2,即可看出结果。

解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形,其中重力mg保持不变,FN1的方向始终水平向右,而FN2的方向逐渐变得竖直。

几何旋转角度变化问题

几何旋转角度变化问题

几何旋转角度变化问题几何旋转角度变化问题1. 引言几何旋转是数学中一个常见的概念,广泛应用于不同领域,如物理、工程、计算机图形学等。

在几何中,我们经常需要计算物体在旋转过程中的角度变化,以便更好地理解和描述旋转的特性。

本文将探讨几何旋转角度变化问题,并从不同角度对其进行全面评估。

2. 几何旋转的基本概念在几何中,旋转是指将一个物体绕一个中心点按照一定规律旋转的过程。

旋转可以沿不同轴进行,如二维平面的旋转可以沿x轴、y轴或z 轴进行,三维空间的旋转还可以包括绕任意轴旋转。

在旋转过程中,我们关注的一个重要指标是旋转的角度变化。

3. 旋转角度的计算方法为了计算旋转角度的变化,我们需要了解旋转过程中的基本知识和数学公式。

在二维平面中,例如绕z轴旋转的角度变化可以通过两点的坐标差异来计算,根据三角函数的关系,我们可以得到旋转角度的计算公式。

类似地,在三维空间中,我们可以使用向量和矩阵运算来计算旋转角度的变化。

这些计算方法可以帮助我们更好地理解旋转过程,并准确地计算旋转角度的变化。

4. 几何旋转角度变化问题的应用几何旋转角度变化问题在许多领域都有广泛的应用。

在物理中,旋转角度的变化与物体的动力学性质直接相关。

在工程中,旋转角度的变化可以帮助我们设计各种机械装置、车辆操控系统等。

在计算机图形学中,旋转角度的变化是实现三维模型的动画效果的关键。

通过探索和理解几何旋转角度变化问题,我们可以更好地应用到各个领域,推动科学和技术的发展。

5. 个人观点与理解几何旋转角度变化问题是一个富有挑战性和迷人的研究课题。

在我的个人观点中,几何旋转角度的变化不仅仅是一个数学问题,更涉及到物理、空间感知和计算问题。

在解决几何旋转角度变化问题时,我认为从简到繁、由浅入深的方法是非常有效的。

我们可以通过简单的二维旋转问题来理解基本的概念和计算方法,然后逐步扩展到更复杂的三维旋转问题。

通过这种渐进的方式,我们可以更好地理解旋转的本质和规律。

部编数学七年级上册培优专题12角中的动点问题解析版含答案

部编数学七年级上册培优专题12角中的动点问题解析版含答案

培优专题12 角中的动态问题类型一:运动的三角尺问题1.(2022·江苏盐城·七年级期末)【阅读理解】如图1,一套三角板如图拼在一起,我们将三角板COD绕点O以每秒15°的速度顺时针旋转180°.【解决问题】(1)在旋转过程中,∠AOB、∠AOC、∠BOC之间有怎样的数量关系?(2)当运动时间为9秒时,图中有角平分线吗?找出并说明理由.(3)运动过程中,如图2,形成的三个角:∠AOB、∠AOC、∠BOC,当其中一个角的度数是另一个角的两倍时,则称射线OC是∠AOB的“优线”.①第(2)问中旋转后的射线OC是“优线”吗?为什么?②在整个旋转过程中,若旋转时间记为t秒,当射线OC是“优线”时,请直接写出所有满足条件的t值.【答案】(1)∠AOC+∠BOC=∠AOB或者∠AOC-∠BOC=∠AOB;(2)有,理由见解析;(3)①是,理由见解析;②t=2,3,4,9,12【分析】(1)根据题意画出图形可得结论;(2)分别计算出角的度数可得结论;(3)①根据“优线”的定义可判断;②根据题意全面考虑所有可能并分类讨论可得t的值.【详解】(1)如图,当OC在∠AOB内部时,∠AOC+∠BOC=∠AOB,(2)有,理由如下:射线OD平分∠AOB,射线OB平分∠COD.当运动时间为9秒时,∠AOC=15°×9=135°∴15t =180,解得t =12.综上,t =2,3,4,9,12.【点睛】本题主要考查了三角尺中角度的计算,几何图形中角的计算,根据题意全面考虑所有可能以分类讨论是解题的关键.2.(2022·河南·郑州中学七年级期末)(1)探究:在①15°,②25°,③35°,④45°,⑤65°中,乐乐同学利用一副三角板能画出来的角是______;(填序号)(2)在探究过程中,爱动脑筋的乐乐想起了图形的运动方式有多种.如图1,她先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45°角(∠AOB )的顶点,与60°角(∠COD )的顶点互相重合,且边OA ,OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向每秒旋转5°(如图2),当边OB 第一次落在射线OF 上时停止,是否存在一个时间t (秒)使∠BOC =3∠AOD ?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由.【答案】(1)①④(2)存在当22.5t =或24.75t =时,=3BOC AOD ∠∠,理由见解析【分析】(1)根据三角板的特点求解即可;(2)分两种情况当OA 在∠DOE 内时,当OA 在∠DOE 外部时,利用角之间的关系求解即可.(1)解:∵一副三角板有的度数为30°,45°,60°,90°,∴用一副三角板可以画出的角的度数为15°,30°,45°,75°,90°,105°,135°等等,不能画出25°,35°,65°,故答案为:①④;(2)解:存在当22.5t =或24.75t =时,=3BOC AOD ∠∠,理由如下:由题意得:=5AOE t °∠,=45AOB а,60COD Ð=°,∴=180=1355BOC AOE AOB t °--°-°∠∠∠,=180=120DOE COD °-°∠∠,分两种情况:当OA 在∠DOE 内时,如图2-1所示,∴1205AOD DOE AOE t Ð=Ð-Ð=°-°,∵=3BOC AOD ∠∠,∴()135531205t t °-°=°-°,解得22.5t =,∵22.55120´°<°,∴22.5t =符合题意;当OA 在∠DOE 外部时,如图2-2所示∴5120AOD DOE AOE t Ð=Ð-Ð=°-°,∵=3BOC AOD ∠∠,∴()135535120t t °-°=°-°,解得24.75t =,∵24.755120´°>°,∴24.75t =符合题意;∴当22.5t =或24.75t =时,=3BOC AOD ∠∠.【点睛】本题主要考查了三角板和几何中角度的计算,利用分类讨论的思想求解是解题的关键.3.(2022·福建福州·七年级期末)一副三角尺(分别含∠B =∠AOB =45°,∠A =90°和∠D =30°,∠COD =60°,∠C =90°)按如图所示摆放使得B 、O 、D 三点共线.将三角尺ABO 绕点O 以每秒4°的速度顺时针旋转,当边AO 与OD 重合时停止运动,设三角尺ABO 的运动时间为t 秒.(1)当t=10时,∠AOD=°.(2)求出当t为何值时,边AO平分∠COD.(3)若在三角尺ABO开始旋转的同时,三角尺OCD也绕点O以每秒1°的速度逆时针旋转,当三角尺ABO停止旋转时,三角尺OCD也停止旋转.在旋转过程中,是否存在某一时刻使∠AOD=2∠BOC,若存在,请直接写出t的值;若不存在,请说明理由.(3)存在,理由是:在旋转过程中,当OB在OC右侧时,∠BOC+∠AOD=60°-45°=15°∴∠AOD=23×15°=10°,综上:t的值为21秒或27【点睛】本题是几何变换综合题,主要考查了旋转的变化,角平分线的定义,角的计算,利用三角板的特殊角,分清运动的情形是解题的关键..(福建三明七年级期末)一副三角尺按照如图所示摆放在量角器上,边器0刻度线重合,边AP与量角器180°刻度线重合,将三角尺ABP绕量角器中心点P以每秒4°的速度顺时针旋转,当边PB与0°刻度线重合时停止运动.设三角尺ABP的运动时间为t (秒)(1)当5t=秒时,边PB经过的量角器刻度线对应的度数为_ ;(2)t=秒时,边PB平分CPDÐ;(3)若在三角尺ABP开始旋转的同时,三角尺PCD也绕点P以每秒1o的速度逆时针旋转,当三角尺ABP停止旋转时,三角尺PCD也停止旋转,①当t为何值时,边PB平分CPDÐ;②在旋转过程中,是否存在某一时刻,使得:3:2BPD APC ÐÐ=.若存在,请求出t 的值;若不存在,请说明理由.综上所述:18t =秒或25.2秒时,:3:2BPD APC ÐÐ=.【点睛】本题主要考查一元一次方程与角的和差倍分关系的综合,根据等量关系,列出一元一次方程,是解题的关键.类型二:角的动线问题5.(2020·河南平顶山·七年级期末)如图①,直线PQ 上依次有A 、O 、B 三点,若射线OA 绕点O 沿顺时针方向以每秒2°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒4°的速度旋转,如图②,设旋转时间为t 秒(045££t ).(1)POA Ð=__________度,QOB Ð=__________度.(用含t 的代数式表示)(2)在运动过程中,当AOB Ð等于60°时,求t 的值.(3)在旋转过程中是否存在这样的t ,使得射线OB 平分AOQ Ð或AOP Ð (AOQ Ð,AOP Ð均为小于180°的角)?如果存在,直接写出t 的值;如果不存在,请说明理由.【答案】(1)2POA t Ð=度,4QOB t Ð=度;(2)当AOB Ð等于60°时,t=20或40;(3)射线OB 平分AOQ Ð或AOP Ð时,t=18或36.【分析】(1)∠POA 的度数等于OA 旋转速度乘以旋转时间,∠QOB 的度数等于OB 旋转速度乘以旋转时间;(2)分OA 与OB 相遇前,∠AOB=60°,和OA 与OB 相遇后,∠AOB=60°,两种情况,列出关于t 的等式,解出即可;(3)分OB 平分∠AOQ 和OB 平分∠AOP 两种情况,列出关于t 的等式,解出即可.【详解】(1)22POA t t Ð=´=度,44QOB t t Ð=´=度;(2)①OA 与OB 相遇前,∠AOB=60°,2604180t t ++=6120t =20t =;②OA 与OB 相遇后,∠AOB=60°,2460180t t +-=6240t =40t=,综上,当AOBÐ等于60°时,t=20或40;(3)①OB平分∠AOQ时,∠AOQ=2∠BOQ,-=´t t180224-=-t10180t=;18②OB平分∠AOP时,∠AOP=2∠BOP,()=´-t t221804t t=-23608t=10360t=,36综上,射线OB平分AOQÐ时,t=18或36.Ð或AOP【点睛】本题是对角度动态问题的考查,熟练掌握角的计算和角平分线性质的运用,准确根据题意列出方程是解决本题的关键,难度相对较大.6.(2017·福建泉州·七年级阶段练习)如图,点A,B在以点O为圆心的圆上,且∠AOB=30°,如果甲机器人从点A出发沿着圆周按顺时针方向以每秒5°的速度行驶;乙机器人同时从点B出发沿着圆周按逆时针方向行驶,速度是甲机器人的两倍,经过一段时间后,甲、乙分别运动到点C,D,当以机器人到达点B时,甲乙同时停止运动,设运动时间为t,(1)当t=2秒时,则∠COD的度数是________;并请你直接写出用含t的代数式表示∠BOC,则∠BOC=________(2)探究:当时间为多少秒时,点C与点D相遇?(3)在机器人运动的整个过程中,若∠COD是∠AOB的3倍,求甲运动的时间.【答案】(1)60° ;30+5t(2)22秒(3)4秒,16秒,28秒【分析】(1)根据角的和差定义计算即可;(2)根据∠AOC+∠BOD+∠AOB=360°,构建方程即可解决问题;(3)分三种情形讨论,分别构建方程即可解决问题;(1)当t=2秒时,∠AOC=20°,∠BOD=10°,∴∠COD=∠AOC+∠AOB+∠BOD=60°,∠BOC=(30+5t)°,故答案为60°,(30+5t)°;(2)甲机器人的运动速度每秒为5°,乙机器人的运动速度为每秒10°,∴∠AOC=5t,则∠BOD=10t,∵∠AOC+∠BOD+∠AOB=360°∴5t+10t+30=360,解得:t=22.所以,当时间为22秒时,点C与点D相遇.(3)分三种情况讨论:①当OC,OD运动到如图1所示的位置时,设甲的运动时间为t秒,则∠AOC=5t°,∠BOD=10t°,∵∠COD=90°,∠AOB=30°,∴5t+30+10t=90,解得:t=4;②当OC,OD运动到如图2所示的位置时,设甲的运动时间为t秒,则∠AOC=5t°,∠BOD=10t°,∵∠COD=90°,∠AOB=30°,∴5t+30+10t+90=360,解得:t=16;③当OC,OD运动到如图3所示的位置时,设甲的运动时间为t秒,则∠AOC=5t°,∠BOD=10t°,∵∠COD=90°,∠AOB=30°,∴5t+30+10t﹣90=360,解得:t=28;综上,甲运动的时间分别为4秒,16秒,28秒符合题意.【点睛】本题考查一元一次方程的应用、角的和差定义等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,学会用分类讨论的思想思考问题.7.(2022·湖北武汉·七年级期末)【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=1∠BOC,则我们称射线OC是射线OA的2伴随线.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC=12∠AOD,称射线OD是射∠BOC,称射线OC是射线OA的伴随线;同时,由于∠BOD=12线OB的伴随线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的伴随线,则∠AOM= °,若∠AOB的度数是α,射线ON是射线OB的伴随线,射线OC是∠AOB的平分线,则∠NOC 的度数是 .(用含α的代数式表示)(2)如图3,如∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒3°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒5°的速度顺时针旋转,当射线OD与射线OA 重合时,运动停止.①是否存在某个时刻t (秒),使得∠COD 的度数是20°,若存在,求出t 的值,若不存在,请说明理由.②当t 为多少秒时,射线OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.Q 同理,若∠AOB 的度数是11BON AOB a \Ð=Ð=故答案为:40,6a°OC是OA的伴随线时,则OC是OD的伴随线时,OD是OC的伴随线时,OD 是OA 的伴随线时,则的上方.MON 为直角三角板,O 为直角顶点,30M Ð=°,ON 在射线OC 上.将三角板MON 绕点O 以每秒6°的速度沿逆时针方向旋转,与此同时,射线OC 绕点O 以每秒11°的速度沿逆时针方向旋转,当射线OC 与射线OA 重合时,所有运动都停止.设运动的时间为t 秒,(1)旋转开始前,∠MOC =°,∠BOM = °;(2)运动t 秒时,OM 转动了°,t 为 秒时,OC 与OM 重合;(3)t 为何值时,∠MOC =35°?请说明理由.【答案】(1)90°,60°;(2)108°,18;(3)11秒或25秒.【分析】(1)根据30AOC Ð=°,MON 为直角三角板,ON 在射线OC 上,即可得出答案;(2)根据MON 为直角三角板,得90MON Ð=°,构建方程求出t 即可解决问题;(3)分两种情况分别构建方程解决问题即可.【详解】(1)旋转前,MON 为直角三角板,ON 在射线OC 上\90MOC MON Ð=Ð=°Q 30AOC Ð=°\30AON Ð=°,\18060BOM MON AON Ð=°-Ð-Ð=°;故答案为:90°;60°.(2)Q 90MON Ð=°由题意得:90611t t °+=,18t =,故OM 转动:186108´°=°;故答案为:108°;18.(3)35MOC Ð=°Q ,由题意:()1206301135t t °+-°+=°或()3011120635t t °+-°+=°,解得:11t =或25,\11t s =或25s 时,35MOC Ð=°.【点睛】本题考查旋转变换,角的和差定义,一元一次方程等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.。

高中物理动态问题分类解析

高中物理动态问题分类解析
做加速度减小的变加速运动,当 时速度到达最大,因此 到达 时应有: ------〔4〕 解得
总结:〔1〕电磁感应中的动态分析,是处理电磁感应问题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。〔2〕在分析运动导体的受力时,常画出平面示意图和物体受力图。
6、理想变压器中的动态问题
理想变压器中各物理量的制约关系为:
电压制约:当变压器原、副线圈的匝数比 一定时,输出电压 由输入电压 决定,即 ,可简述为“原制约副〞。
电流制约:当变压器原、副线圈的匝数比 一定时,且输入电压 确定时,原线圈中的电流 由副线圈中的输出电流 决定,即 ,可简述为“副制约原〞。
负载制约: 变压器副线圈中的功率 由用户负载决定, 变压器副线圈中的电流 由用户负载及电压 决定,即 ; 总功率
恒定功率的加速。由公式 和 知〔其中 为阻力〕,由于 恒定,随着 的增大, 必将减小, 也必将减小,汽车做加速度不断减小的加速运动,直到 ,这时 到达最大值 。可见恒定功率的加速一定不是匀加速。因为 为变力,这种加速过程发电机做的功只能用 计算,不能用 计算。
恒定牵引力的加速。由公式 和 知,由于 恒定,所以 恒定,汽车做匀加速运动,而随着 的增大, 也将不断增大,直到P到达额定功率 ,功率不能再增大了。这时匀加速运动完毕,其最大速度为 ,此后汽车要想继续加速就只能做恒定功率的变加速运动了。可见恒定牵引力的加速时功率一定不恒定。因为功率P是变化的,这种加速过程发电机做的功只能 用计算,不能 用计算。
动态问题分析的思路程序可表示为:
例6.图9为一理想变压器,S为单刀双掷开关,P为滑动变阻器的滑动触头, 为加在原线圈两端的电压, 为原线圈中的电流强度,那么保持 及P的位置不变,S由a合到b时, 将增大。保持 及P的位置不变,S由b合到a时,R消耗的功率减小。保持 不变,S合在a处,使P上滑, 将增大。保持P的位置不变,S合在a处,假设 增大, 将增大。

角的动态问题练习题(答案)

角的动态问题练习题(答案)

①∠AOB=120°,射线OC从OA开始以4°/秒的速度绕O点顺时针旋转;同时射线OD从OB开始以1°/秒的速度绕O点逆时针旋转。

设旋转的时间是t秒,则t= 秒时,OC与OD第一次重合。

OC第一次与OB重合时,∠AOD=°。

答案:24 ,90解析:相遇问题,120÷(4+1)=24(秒)OC第一次与OB重合用的时间是120÷4=30秒,OD旋转的角度:30×1°=30°所以∠AOD=120°-30°=90°②直线AC上,∠AOB=30°,∠AON=15°。

射线ON绕着点O,以5°/秒的速度顺时针旋转,多少秒后ON恰好平分∠BOC。

答案:18解析:根据条件可以先求出ON要走的路程。

易知ON是∠AOB的角平分线,由于∠AOB与∠BOC的角平分线夹角是∠AOC的一半即90°,所以90÷5=18(秒)③求2点25分时,分针与时针的夹角。

答案:77.5°解析:2点时,分针与时针的夹角是60°25分钟,分针走的角度:25×6°=150°25分钟,时针走的角度:25×0.5°=12.5°夹角为150°-60°-12.5°=77.5°④直线AC上,∠AOB=30°,ON始终是∠AOB的角平分线。

射线OB绕着点O,以5°/秒的速度顺时针旋转10秒后,求此时∠NOC的度数。

答案:140°解析:10秒后∠AON的度数是(30°+10×5°)÷2=40°所以∠NOC=180°-40°=140°⑤现在时刻是3点05分,那么多少分钟后分针与时针第一次成直角。

七年级上册数学第四单元动点问题如何计算

七年级上册数学第四单元动点问题如何计算

七年级上册数学第四单元动点问题如何计算所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.方法从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P 立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A 运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n 处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

《角和角的度量》 学历案

《角和角的度量》 学历案

《角和角的度量》学历案一、学习目标1、理解角的概念,掌握角的表示方法。

2、认识角的度量单位,掌握度、分、秒之间的换算。

3、会用量角器测量角的度数,能进行简单的角度计算。

二、学习重难点1、重点(1)角的概念及表示方法。

(2)角的度量单位及换算。

2、难点(1)理解角的动态定义。

(2)角度的计算。

三、学习过程(一)引入观察生活中的图片,如钟表的指针、打开的扇子、墙角等,思考这些物体中都存在什么样的几何图形?(二)角的概念1、静态定义有公共端点的两条射线组成的图形叫做角。

这个公共端点是角的顶点,这两条射线是角的两条边。

2、动态定义一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。

(三)角的表示方法1、用三个大写字母表示,顶点字母写在中间,如∠AOB。

2、用一个大写字母表示,顶点处只有一个角时才能用这种方法,如∠O。

3、用一个数字表示,在靠近顶点处画上弧线,写上数字,如∠1。

4、用希腊字母表示,在靠近顶点处画上弧线,写上希腊字母,如∠α。

(四)角的度量单位1、度将圆平均分成 360 份,每一份所对的圆心角的大小叫做 1 度,记作1°。

2、分1 度的 1/60 为 1 分,记作1′。

3、秒1 分的 1/60 为 1 秒,记作1″。

(五)度、分、秒的换算1°=60′ 1′ =60″ 1° =3600″(六)量角器的使用1、认识量角器量角器是把半圆平均分成 180 等份,每一份所对的角的大小是 1 度。

2、测量角的步骤(1)把量角器的中心与角的顶点重合。

(2)零刻度线与角的一边重合。

(3)角的另一边所对的量角器上的刻度,就是这个角的度数。

(七)角度的计算例 1:计算48°39′ +67°41′解:48°+ 67°= 115°39′ +41′ =80′ =1°20′所以48°39′ +67°41′ =116°20′例 2:计算180° 79°19′解:180°=179°60′179° 79°= 100°60′ 19′ =41′所以180° 79°19′ =100°41′(八)课堂练习1、下列四个图形中,能用∠1,∠AOB,∠O 三种方法表示同一个角的图形是()A B C D2、计算:(1)56°18′ +72°48′(2)90° 35°27′3、如图,已知∠AOB = 70°,∠BOC = 20°,OD 平分∠AOC,求∠COD 的度数。

立体几何中的动态问题

立体几何中的动态问题

立体几何中的动态问题立体几何中的动态问题可以分为平移和旋转两类。

所求变量可以分为相关线、面、体的测度、角度和距离三类。

解决这类问题需要较高的空间想象能力和化归处理能力。

在高考选择题与填空题中,也时常会出现这类问题。

如果能够探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜。

解决立体几何中的动态问题,需要从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序。

这是解决动态问题的关键。

例如,在解决某个问题时,可以从图形中分化出几个点,然后找到其中的关系,进而得出答案。

在这个过程中,需要注意极端位置,通过穷尽极端特殊的方法,往往能够直接得出答案。

另外,使用法向量定平面也是解决立体几何中动态问题的一种有效方法。

通过寻找垂直,可以找到两个平面的夹角,从而解决问题。

综上所述,解决立体几何中的动态问题需要一定的数学基础和空间想象能力。

通过分化图形、寻找极端位置和使用法向量定平面等方法,可以有效地解决这类问题。

在解决立体几何中的“动态”问题时,可以利用角度计算和法向量定平面来转化线面角或面面角为线线角。

例如,在长方体ABCD-A1B1C1D1中,已知二面角A1-BD-A的大小为π/6,一条直线l与直线CC1所成的角为π/12.如果空间有π/6,则直线l与平面A1BD所成角的取值范围是π/4.解析如下图所示:过点A作AE⊥BD于点E,连接A1E,则∠A1EA=π/6.过点A作AH⊥A1E于点H,则AH为平面A1BD的法向量,且∠A1AH=π/2.因为l与直线CC1所成角的大小为π/12,即l与直线A1A所成角的大小为π/6,那么l与直线AH所成角的取值范围为π/4 ~ π/3.又因为l与直线AH所成的角和l与平面A1BD所成的角互余,所以直线l与平面A1BD所成角的取值范围是π/4 ~ π/3.在解决立体几何中的“动态”问题时,可以通过锁定垂面来破解翻折或投影问题,将空间化为平面,从而更容易找到问题的核心。

高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)

高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)

一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一 立体几何中动态问题中的角度问题例1. 已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .14192⎡⎢⎣⎦C .24193⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟) 【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得3BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',立体几何的动态问题所以QTQ '∠为二面角Q BC D --的平面角. 设2QD a =(1233a ≤≤),则QQ a '=,3DQ a '=,33BQ a '=-,()113322Q T BQ a ''==-,所以2222211(33)76322QT QQ Q T a a a a ⎡⎤''=+=+-=-+⎢⎥⎣⎦, 所以22222sin 136176373142QQ aQTQ QT a a a aa ''∠====⎛⎫-+-+-+ ⎪⎝⎭. 由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以221419sin ,2191314QTQ a ⎡⎤'∠=∈⎢⎥⎣⎦⎛⎫-+ ⎪⎝⎭,即二面角Q BC D --的正弦的取值范围为1419,219⎡⎤⎢⎥⎣⎦. 故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).A .23⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PAC λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系. 则11,,022O ⎛⎫ ⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=--⎪⎝⎭.在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC , 所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以当12λ=时,sin θ30λ=或1时,sin θ取得最小值23. 所以23sin 3θ∈⎣⎦.故选A . 2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13 B .33 C .12 D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1, 设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0), D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=---,DB (1,=1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=-,1B E //平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤=⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),()()1221AB B E 1cos θAB B Ea 11c 1⋅∴==⋅-++-2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,()()()222211sin θ11a c 2a c 3a 11c 1∴=-=-+-++-++-221123111a c 122ac 33=-=-≥-=++-. ∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A 重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==. 结合图形可得:1323521cos cos ,,cos cos ,7471147n n n n αβ====⨯⨯12cos cos ,711n n γ==⨯∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D . 类型二 立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( ) A 25B .22C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=, MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =, 而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点, 点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B , ()12,2,2C ,()0,1,2BE =, ()10,2,2BC =,∴点P 到点1C 的最短距离:22111||625||1()221()5||||58BE BC d BC BE BC =-=⨯-=⨯.故选:A .【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A .33B .3C .233D .433【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果. 【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为1102333BN n d n⋅++===.故选C. 2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为( )A .14,42⎛⎫ ⎪ ⎪⎝⎭B .141,2⎛⎫⎪ ⎪⎝⎭C .14,62⎛⎫⎪ ⎪⎝⎭D .()3,4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题 【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上, 设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED , 同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED , 由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心. 由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =. 令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<. 因为1cos EF O EPE OEθ==, 所以172OE EF O E PE ⋅=⋅=, 又OE EF <,所以272EF >,即142EF >. 综上可知1442EF <<. 故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面, ∵平面,∴∥平面,故A 正确. 又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确. 对于B ,当为中点时,四棱锥为正四棱锥, 设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则, ∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三 立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( ) A .92B .52C .32D .54【答案】C【解析】建系如图,正方体的边长为3,则(3E ,0,3)2,1(0D ,0,3),设(P x ,y ,0)(0x ,0)y ,则(3PE x =-,y -,3)2,1(PD x =-,y -,3),12θθ=,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,代入数据,得:222233299(3)4x y x y =++-++,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=, 即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯=,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C .【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D 内(含边界)的动点,且满足tan tan 22PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .22,33⎡⎤⎢⎥⎣⎦ C .40,3⎛⎤ ⎥⎝⎦D .24,33⎡⎤⎢⎥⎣⎦ 【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==, 因为tan tan 22PAD PBC ∠+∠=,所以22PD PC +=.因为222PD PC CD +=>=,所以点P 的轨迹是以,C D 为焦点 222a =的椭圆. 如下图所示:2a =1c =,211b =-=,椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:2y =.所以22()P -,32P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 21122()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=. 综上所述:2233P ABCD V -≤≤. 2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14 B .23 C 151-D 51- 【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-=⎪⎝⎭, 则111515tan 1sin cos 3222A BCDE V ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)115tan sin cos 6ααα=⨯ )2115cos sin 6ααα=- )11152cos 21212αα=+- 115112cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,15tan 15ϕ⎛⎫= ⎪ ⎪⎝⎭, ∴四棱锥A BCDE '-体积的最大值为1113124-=. 故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值; ④二面角1P BC D --的大小为定值.其中真命题有( ) A .1个 B .2个 C .3个 D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四 立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APDRt CPB∴∆∆,()()22223511023x y APAD BPBC x y ++∴====-+ ,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹 【举一反三】1.已知正方体1111ABCD A B C D -的棱长为23M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积63PMN S =△P 的轨迹长度为( )A .269π B .263π C .469π D .463π 【答案】B【解析】如图所示:连接11BC B C O =,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C , 又11111,BC D C C BC =⊂平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥, 同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B =,所以1D B ⊥平面1ACB ,根据题意可知:11136,26D B AB AB BC AC =====所以1ACB 为正三角形,所以160∠=︒B AC ,所以11326266322ACB S=⨯⨯⨯=,设B 到平面1ACB 的距离为h , 因为11B ACB B ABC V V --=,所以111133ACB ACBSh S BB ⋅⋅=⋅⋅,所以11ACB ACBSh SBB ⋅=⋅,所以()232323262342h ⨯⨯⨯=⨯,所以1123h D B ==,所以h BN =, 所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMNSMN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 6026322AO AC =︒== 所以内切圆的半径16233r AO ==<,且623AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于263的圆,圆的周46π,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为63π,故选:B. 2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 【答案】DF E P C 1B 1D 1A 1DCBA z yx3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A .①②③ B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角, 可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1, ∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又△DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确; ④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在△D 1A 1A 中,∠D 1A 1A =135°, 利用余弦定理解三角形得111211135222AD cos =+-⨯⨯⨯︒=+<,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值. 【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC. 在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),则2222(1)2(+1)x y x y -+=+整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=, 所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=, 即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为( ) A .1116πB 3πC 11πD 3π【来源】浙江省五校2021届高三下学期5月联考数学试题 【答案】C【解析】正四面体A BCD -2,建立空间直角坐标系如图所示,()()22,,2,2,2,0,0,2,222E C B ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,()22,,2,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,()2,2,PC x y z =---.由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩,即()()2220222220x x y y z z y z ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=⎪⎩,即22222202220x x y y z z y z ⎧-+-+-=⎪⎨⎪+-=⎩, 即2222223442420x y z y z ⎧⎛⎫⎛⎫⎛⎫⎪-+-+-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩, 22222234424x y z ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球. 20y z +-=表示垂直于yAz 平面的一个平面.所以P 的轨迹是上述平面截球面所得圆.球心222,,442⎛⎫ ⎪ ⎪⎝⎭到平面20y z +-=的距离为22222142411d +-==+, 所以截得的圆的半径2231114164r R d =-=-=, 所以截得的圆,也即P 点的轨迹的长度为11112242r πππ=⨯=. 故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.(2020九江高三一模)在长方体中,,,分别是棱6.的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小, ∴三角形面积的最小值为,故选:C .7.(2020·浙江高三期末)在三棱锥P ABC -中,2,3PA PB PC AB AC BC ======,点Q 为ABC ∆ 所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是 A .圆 B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任 一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=- ,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,221cos 21PA PQ x PA PQ x y θ⋅+==⋅++则()()22222cos11x y x θ++=+ ,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+= ,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为( )A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1). ①在Rt △AA C ''中,||tan 2||A C A AC AA '''∠'=='45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为arctan 245≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 245≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y ,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '-+=<'>=='+, 化为2410y y ++=,无正数解,舍去; 同理,当点P 位于棱A D ''上时,也不符合条件; ③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y , 则(0BP =,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '+=<'>=='+, 化为2410y y -+=,01y ,解得23y =-,满足条件,此时点(1,23,0)P -.④同理可求得棱C D ''上一点(532,1,0)P -,棱C C '上一点(1,1,324)P -. 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A .B .C .D .不能确定【答案】C【解析】如图所示:∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA, 过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵PA ⊥平面ABC ,∴PA ⊥BC ,∴BC⊥平面PAE ,∴BC⊥PE,在Rt△AED ,Rt△PAD ,Rt△PED 中:cos ,cos ,cos,∴coscoscos < cos ,又均为锐角, ∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC - 外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥ 设直线PQ 与平面ABC 所成角为θ ,如图所示;则3PAsinPQ PQ ,θ== 由题意且θ的最大值是3π3PQ=,,解得PQ =即PQ 的最小值为∴AQ ,即点A 到BC ,AQ BC ∴⊥,AB BC ∴== 6BC ;∴= 取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M 为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R === ∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为( )A .B .6C . D【来源】江西省赣州市2021届高三二模数学(理)试题 【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD , ∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =11 B M C M +的最小时,1C 、M 、E 三点共线.∴221111111||992735B M C M EM C M EC AC A E +=+≥=+=++=. 故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( ) A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题 【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=>, 所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴a =b ==所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,11333OE OC ===, 故点E 正好为椭圆短轴的一个端点,23CE OC ==,则DE ==, 因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则E ⎛⎫⎪ ⎪⎝⎭,则22222241543333EP x y y y y y y ⎛=+=-++=--+ ⎝⎭,当y ⎡=⎢⎣⎦时,2EP 取最大值,即22max516393939EP ⎛⎛=-⨯---+= ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD . 故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D【来源】北京市朝阳区2021届高三一模数学试题 【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D , 设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =-,()1,1,0AC =,()10,0,1AA =, 所以,0BD AC ⋅=,10BD AA ⋅=,则BD AC ⊥,1BD AA ⊥, 1AC AA A ⋂=,BD ∴⊥平面11AAC C ,此时平面α即为平面11AAC C ,截面面积为12S AA AC =⋅= ②当1t =时,同①可知截面面积为2S =③当01t <<时,()1,1,DP t t =-,()11,1,1AC =-, 1110DP AC t t ⋅=+--=,1A C PD ∴⊥,则1A C α⊂, 设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+=,可得11z t=>,不合乎题意. 设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1AC =-,()11,1,0A N t =-,1112112cos 322AC A N t CA N AC A N t t ⋅-∠==⋅⋅-+,则()()2211221sin 1cos 322t t CA N CA N t t -+∠=-∠=-+,所以,截面面积为()1221111362sin 2122242CA NS S AC A N CA N t t t ⎡⎤⎛⎫==⋅∠=-+=-+=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦△. 综上所述,截面面积的最小值为62. 故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为( )A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22223cos ,62(2)1121AB AP x y x y ⇒<>=⇒+-=⋅++ 所以点P 的轨迹是椭圆. 故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A .2B .233C .62D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ', 记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而()21332346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =, 故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥' C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====, 在直角三角形ADE 中,255AO ==, 因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯= 所以45ON =,35BN OM ==,同理5RC OS ==65NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯=-, 故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯, 同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>, 故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为( )A .三棱锥1P A BD -中,点P 到面1A BD 2B .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -3C .直线1PA 与面1A BD 所成角的正弦值的范围为36⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -3【来源】广东省普宁市2020-2021学年高三上学期期末数学试题 【答案】C【解析】对于A 中,由111142222323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为11226232A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由142333h ⨯=,求得23h =所以A不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C , 此时三角形11B D C 为边长为221226=232⨯B 不正确; 对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 23当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m 2PA =设直线1PA 与平面1A BD 所成角为θ,则36sin ,33θ∈⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB === 所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为3,所以三棱锥1P A BD -的外接球的体积为34(3)433ππ⨯=,所以D 不正确.故选:C.18.如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为( )(参考数据:43sin 53,sin 3755==)A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题 【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,()133,33,33B ,()133,0,33A ,()33,33,0B ,()10,33,33C ,()133,33,33DB =,()10,33,33A B =-,()133,0,33BC =-,110DB A B ⋅=,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=, 即()()23111311363332232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =, 13339B D =⨯=,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB 为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,3326,22B ⎫⎪⎪⎭,13326,22C ⎛⎫ ⎪ ⎪⎝⎭,()1,,3B P x y =-,()136,0,0BC =-, 15213PB PD +=+,22229365213x y x y ++++=+2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-1111113644cos ,,555365B P BC x x B P BC B P BC ⋅-⎡⎤<>===-∈-⎢⎥⨯⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B .212C .36D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题 【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥ 要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,22222131121,(1)22222EB EF ⎛⎫⎛⎫⎛⎫∴=-==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .36⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎢⎣⎦D .330,6⎡⎢⎣⎦【来源】浙江省宁波市慈溪市2020-2021学年高三上学期期末数学试题 【答案】A【解析】取AD 的中点F ,连接EF 、BF ,如下图所示:。

九年级数学中考专题:动态几何综合压轴题

九年级数学中考专题:动态几何综合压轴题

2023年九年级数学中考专题:动态几何综合压轴题1.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转.若B 、P 在直线a 的异侧,BM △直线a 于点M ,CN △直线a 于点N ,连接PM 、PN ; (1)延长MP 交CN 于点E (如图2). △求证:△BPM △△CPE ; △求证:PM =PN ;(2)若直线a 烧点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)2.如图△,在Rt ABC △中,90ABC ∠=︒,AB BC =,延长CA 至点E ,作DE CE ⊥交BA 的延长线于点D ,连接CD ,点F 为CD 的中点,连接EF ,BF .(1)直接写出线段EF 和BF 之间的数量关系为______.(2)将ADE 绕A 顺时针旋转到图△的位置,猜想EF 和BF 之间的数量关系,并加以证明;(3)若AC =:5AD BC =,将ADE 绕点A 顺时针旋转,当A ,E ,B 共线时,请直接写出EF 的长.3.如图,O 是正ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,连接AO ′、OO ′, (1)OO ′= .(2)求△AOB 的度数及四边形AOB O '的面积.(3)直接写出AOC AOB S S +△△的值,AOC AOB S S +△△= .4.如图1,在△ABC 中,△C =90°,△ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA △△BFE ;(2)△CD +DF +FE 的最小值为 ; △当CD +DF +FE 取得最小值时,求证:AD △BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断△MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.5.已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.6.已知,在ABC 中,AB AC =,D 是平面上一点,连接AD ,把AD 绕点A 逆时针旋转至点E ,使DAE BAC ∠=∠.连接DE 并延长,交AB 于点O ,交BC 于点F .连接BD 和CE ,CE 的延长线分别交AB ,BD 于点P ,G .(1)如图1,求证:BGC DAE ∠=∠;(2)如图2,若点F 是BC 的中点,//AD CB ,求证12AE BC =; (3)在(2)的条件下,若G 是BD 的中点,连接,OG FG .当5,3AB AD ==时,请直接写出OFG △的周长.7.【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,△ACB=△DCE=90°,点B,D,E 在同一直线上,连接AD,BD.△请探究AD与BD之间的位置关系?并加以证明.△若AC=BC,DC=CE AD的长.【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,△ACB=△DCE=90°,AC BC,CD CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角△BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.8.如图1和图2,四边形ABCD中,已知AD=DC,△ADC=90°,点E、F分别在边AB、BC上,△EDF=45°.(1)观察猜想:如图1,若△A、△DCB都是直角,把△DAE绕点D逆时针旋转90°至△DCG,使AD与DC重合,易得EF、AE、CF三条线段之间的数量关系,直接写出它们之间的关系式_____;(2)类比探究:如图2,若△A、△C都不是直角,则当△A与△C满足数量关系_____时,EF、AE、CF三条线段仍有(1)中的关系,并说明理由;(3)解决问题:如图3,在△ABC中,△BAC=90°,AB=AC=D、E均在边BC上,且△DAE=45°,若BD=1,求AE的长.9.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察图1,猜想线段AP 与BE 的数量关系是______,位置关系是______; (2)把ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立请证明;若不成立,请写出新的结论并说明理由;(3)把ADE 绕点A 在平面内自由旋转,若6DE =,10BC =,请直接写出线段AP 长的取值范围.10.已知AOB 和△MON 都是等腰直角三角形,△AOB =△MON =90°. (1)如图1:连AM ,BN ,求证:AOM △BON ;(2)若将Rt MON 绕点O 顺时针旋转,当点A ,M ,N 恰好在同一条直线上时,如图2所示,线段OH //BN ,OH 与AM 交点为H ,若OB =4,ON =3,求出线段AM 的长; (3)若将MON 绕点O 顺时针旋转,当点N 恰好落在AB 边上时,如图3所示,MN 与AO 交点为P ,求证:MP 2+PN 2=2PO 2.11.如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 顺时针旋转90°,得到AE ,连接DE .(1)如图1所示,若4BC =,在D 点运动过程中,当8tan 11BDE ∠=时,求线段CD 的长.(2)如图2所示,点F 是线段DE 的中点,连接BF 并延长交CA 延长线于点M ,连接DM ,交AB 于点N ,连接CF ,AF ,当点N 在线段CF 上时,求证:AD BF CF +=.(3)如图3,若AB =ABC 绕点A 顺时针旋转得AB C ''△,连接CC ',P 为线段CC '上一点,且CC ''=,连接BP ,将BP 绕点B 顺时针旋转60°得到BQ ,连接PQ ,K 为PQ 的中点,连接CK ,请直接写出线段CK 的最大值.12.已知:如图1,将一块45︒角的直角三角板DEF 与正方形ABCD 的一角重合,连结AF 、CE ,点M 是CE 的中点,连结DM .(1)请你猜想AF 与DM 的数量关系是___________.(2)如图2,把正方形ABCD 绕着点D 逆时针旋转α角(090α︒<<︒). △AF 与DM 的数量关系是否仍成立,若成立,请证明:若不成立,请说明理由;△若60α=︒,且3FDM MDC ∠=∠,求DEDC的值.13.在等腰直角三角形ABC 中,290AC BC ACB ==∠=︒,,点M 为射线CA 上一个动点.过点M 作ME BM ⊥,交射线BA 于E ,将线段BM 绕点B 逆时针旋转90︒得到线段BN ,过点N 作NF BN ⊥交BC 延长线于点F ,连接EF .(1)如图1,当点M 在边AC 上时,线段,,EM EF NF 的数量关系为_______; (2)如图2,当点M 在射线CA 上时,判断线段,,EM EF NF 的数量关系并说明理由; (3)当点M 在射线CA 上运动时,能否存在BEF △为等腰三角形,若不存在,请说明理由;若存在,请直接写出CM 的长.14.如图,等腰Rt CEF 绕正方形ABCD 的顶点C 顺时针旋转,且AB CE EF ==,90CEF ∠=︒.连接AF 与射线BE 交于点G .(1)如图1,当点B 、C 、F 三点共线时,则ABE ∠ FEM ∠(填“>”、“=”或“<”),则AG FG (填“>”、“=”或“<”);(2)如图2,当点B 、C 、F 三点不共线时,求证:AG GF =;(3)若等腰CEF △从图1的位置绕点C 顺时针旋转α(090α︒<≤︒),当直线AB 与直线EF 相交构成的4个角中最小角为30°时,直接写出α的值.15.在菱形ABCD 中,4AB =,60ABC ∠=︒,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF AE =,连接BE 、EF .(1)如图1,若E 是线段AC 的中点,求EF 的长;(2)如图2,若E 是线段AC 延长线上的任意一点,求证:BE EF =. (3)如图3,若E 是线段AC 延长线上的一点,12CE AC =,将菱形ABCD 绕着点B 顺时针旋转α︒(0360)α≤≤,请直接写出在旋转过程中DE 的最大值.16.如图,等边三角形ABC 中,D 为AB 边上一点(点D 不与点,A B 重合),连接CD ,将CD 平移到BE (其中点B 和C 对应),连接AE .将BCD △绕着点B 逆时针旋转至BAF △,延长AF 交BE 于点G .(1)连接DF ,求证:BDF 是等边三角形; (2)求证:,,D F E 三点共线;(3)当2BG EG =时,求tan AEB ∠的值.17.ABC 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且CE EF =.(1)如图1,若342AB CE ==,,连接BF ,G 为BF 的中点,连接DG ,求线段DG 的长:(2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H为BN 的中点,连接AH HM ,,求证:AH =:(3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN a ==时,请直接用含a 的式子表示PQ 的长.18.在ABC 中,90ACB ∠=︒.将ABC 绕点C 逆时针旋转一定角度(旋转角度不大于180︒),得到DEC (点D ,E 分别与点A ,B 对应),连接AD ,BE .(1)如图1,当点A ,C ,E 在同一条直线上时,直接写出AD 与BE 的位置关系为__________;(2)如图2,当点D 落在AB 上时,(点D 不与点A 重合),请判断AD 与BE 的位置关系,并证明你的结论;(3)如图3,将ABC 绕点C 逆时针旋转60︒时,延长AD 与直线BC ,BE 分别相交于点F ,G ,连接CG ,试探究线段CG 与DE 之间满足的数量关系,并说明理由.19.如图△,在矩形ABCD 中,1AB =,对角线AC ,BD 相交于点O ,60COD ∠=︒,点E 是线段CD 上一点,连接OE ,将线段OE 绕点O 逆时针旋转60︒得到线段OF ,连接DF .(1)求证:DF CE =;(2)连接EF 交OD 于点P ,求DP 的最大值;(3)如图△,点E 在射线CD 上运动,连接AF ,在点E 的运动过程中,若AF AB =,求OF 的长.20.将等边三角形ABC 如图放置在平面直角坐标系中,8AB =,E 为线段AO 的中点,将线段AE 绕点A 逆时针旋转60°得线段AF ,连接EF . (△)如图1,求点E 的坐标;(△)在图1中,EF 与AC 交于点G ,连接EC ,N 为EC 的中点,连接NG ,求线段NG 的长.请你补全图形,并完成计算;(△)如图2,将AEF △绕点A 逆时针旋转,M 为线段EF 的中点,N 为线段CE 的中点,连接MN ,请直接写出在旋转过程中MN 的取值范围.参考答案:1.(2)成立(3)四边形MBCN的是矩形,PM=PN.2.(1)EF BF=;(2)FE FB=,(33.(1)4;(2)150°,(3)64.(2)(3)是,△MPN=30°.5.(1)AE CF=;(2)成立,(36.(3)47.(1)△AD BD⊥;△4;(2)8.(1)EF=AE+CF;(2)△A+△C=180°;(39.(1)12AP BE=,AP BE⊥;(2)12AP BE=,AP BE⊥仍成立;(3AP≤≤.10.(2;11.(1)3219;(3)312.(1)AF=2DM,(2)△AF=2DM仍然成立;13.(1)结论:EM+EF=FN;(2)结论:EF=EM=FN;(3)2或2+14.(1)=;=;(3)15°或75°15.(1)(3)16.tan AEB∠=17.(1;(318.(1)AD BE⊥;(2)AD BE⊥,(3)CG DE=19.(2)DP的最大值为14;(3)1OF=20.(△)(0,E;(△;(△)44MN≤≤答案第1页,共1页。

三角形动态问题

三角形动态问题

三角形动态问题
三角形动态及其相关问题
1. 什么是三角形动态?
•三角形动态是指在一个平面上随着时间变化的三角形的特征、形状或位置的变化过程。

•它可以是由边长、角度或顶点坐标等方面引起的变化。

2. 三角形动态存在哪些问题?
三角形形状变化问题
•三角形的形状可以随时间变化,例如边长的增减、角度的变化等。

•在三角形形状变化的过程中,可能会出现哪些特殊情况?例如:–三边长是否满足三角形不等式定理?
–三个角度之和是否为180度?
–是否存在直角三角形或钝角三角形等特殊情况?
三角形位置变化问题
•三角形可以在平面上移动,其中一个顶点或多个顶点的坐标可能发生变化。

•在三角形位置变化的过程中,可能会遇到哪些问题?例如:
–三角形是否与其他几何图形有交点?如何判断是否相交?
–三角形是否与坐标轴有交点?
–三角形的位置变化是否满足某种规律或方程?
三角形特征变化问题
•三角形的特征可以是三边的长度和角度的大小,它们可能会随时间变化。

•在三角形特征变化的过程中,可能会出现哪些问题?例如:–三边的长度是否满足某种关系或约束条件?
–三个角度的大小是否随时间变化而改变?
–三角形特征变化的规律或方程是什么?
3. 如何解决三角形动态中的问题?
•针对三角形形状变化问题,可以利用三角形的边长和角度的性质进行判断和计算。

•针对三角形位置变化问题,可以运用几何图形的相交性质和坐标变换的方法进行研究和求解。

•针对三角形特征变化问题,可以利用三角函数、平面几何和微积分等数学工具进行分析和推导。

以上是关于三角形动态及其相关问题的简要介绍,希望对您有所帮助!。

动角问题解题思路

动角问题解题思路

动角问题解题思路
动角问题主要是考察角度的变化,通常涉及到两个或多个角度的动态变化,如旋转、平移等。

解决这类问题需要掌握一些基本的几何知识和推理技巧。

解题思路如下:
1. 理解题意:首先,要仔细阅读题目,理解题目的要求和各个角度的变化情况。

2. 确定基准角:选择一个角度作为基准角,通常选择初始角度或易于计算的角度。

3. 分析角度变化:根据题目描述,分析角度的变化情况,如旋转方向、旋转角度等。

4. 应用几何知识:根据角度的基本性质和定理,如角的和差、平行线的性质等,推导出其他角度的大小。

5. 求解问题:根据分析的结果,计算出最终的角度大小或满足题目要求的其他条件。

6. 验证答案:最后,要验证答案是否符合题目的要求,确保解题过程无误。

通过以上步骤,可以逐步解决动角问题。

需要注意的是,动角问题可能涉及到多种几何知识,需要灵活运用所学知识进行推理和计算。

同时,多做练习也是提高解决这类问题能力的有效方法。

正弦定理解决动态平衡问题

正弦定理解决动态平衡问题

正弦定理解决动态平衡问题正弦定理是一种用于解决三角形的几何问题的重要定理,其中之一就是可以用来解决动态平衡问题。

在物理学和工程学中,动态平衡是指物体在受到外力作用时,能够保持在平衡状态下的问题。

动态平衡问题常见于旋转物体,例如风力发电机的叶片、车轮等。

在这些物体中,存在着力和力矩的不平衡,因此需要找到一个合适的角度或力的大小来保持平衡。

这时,正弦定理可以派上用场。

根据正弦定理,对于一个任意三角形,其任意两边的长度与对应的角度之间存在一个关系。

具体而言,可以使用如下的公式:a/sinA = b/sinB = c/sinC其中a、b、c分别代表三角形的三个边的长度,而A、B、C则是对应的角度。

通过这个公式,我们可以解决动态平衡问题,特别是在需要求解某个力或角度时。

将正弦定理应用于动态平衡问题的一个例子是风力发电机的叶片。

当叶片受到风力的作用时,需要找到一个合适的叶片角度,使得叶片能够保持平衡,并将风力转化为电能。

通过使用正弦定理,可以根据叶片长度、叶片之间的夹角以及外部风力的大小,计算出最佳的叶片角度,从而实现动态平衡。

除了风力发电机,正弦定理还可以应用于其他一些动态平衡问题,如旋转机械的轮毂设计、车辆转向系统等。

在这些问题中,正弦定理提供了一种可靠的数学工具,可以解决力和角度之间的平衡关系,帮助我们设计出更加稳定和高效的系统。

综上所述,正弦定理是解决动态平衡问题中的重要工具。

通过应用正弦定理,我们可以计算出合适的力或角度来保持物体的平衡状态。

这种定理的成功应用为物理学和工程学领域的动态平衡问题提供了有力的解决方案。

等腰三角形经典题型

等腰三角形经典题型

等腰三角形经典题型等腰三角形是一种具有特定属性的三角形,其中两边相等,并且两个底角也相等。

以下是一些有关等腰三角形的经典题型。

1.判断类型给出一个三角形,如何判断它是否为等腰三角形?这需要检查三角形是否有两条相等的边。

2.边的比例问题如果一个等腰三角形的底边长为5,腰长为3,那么它的周长是多少?这涉及到计算等腰三角形的周长,可以通过相加三条边长得出。

3.角度的计算如果一个等腰三角形的底角为30°,那么它的顶角是多少度?这涉及到计算等腰三角形的角度,可以通过三角形的内角和性质计算。

4.周长的计算如果一个等腰三角形的两边长分别为6和8,那么它的周长是多少?这涉及到计算等腰三角形的周长,可以通过相加三条边长得出。

5.面积的计算如果一个等腰三角形的底边长为10,高为8,那么它的面积是多少?这涉及到计算三角形的面积,可以通过底乘高再除以2得出。

6.实际应用题在实际生活中,等腰三角形有哪些应用?例如,等腰三角形可以用于桥梁的设计中,通过等腰三角形的稳定性来提高桥梁的安全性。

7.动态问题随着时间的推移,等腰三角形会发生哪些变化?例如,如果一个等腰三角形的底边长不断变长,那么它的角度会如何变化?8.折叠问题如果把一个等腰三角形折叠起来,会发生哪些变化?例如,折叠后两边的角度会相等吗?9.辅助线问题在解决等腰三角形的问题时,常常需要添加辅助线。

如何添加辅助线来解决问题?例如,通过作底边的中垂线来证明两边的相等。

10.三角形不等式在等腰三角形中,有些不等式是成立的。

例如,如果有两条边长分别为a 和b,那么a+b>第三边。

这些不等式可以用于解决一些问题。

11.分类讨论在解决等腰三角形的问题时,常常需要对不同的情况进行分类讨论。

例如,当等腰三角形的顶角大于90°时,它会有哪些特点?12.代数与几何的结合在解决等腰三角形的问题时,常常需要结合代数和几何的知识。

例如,通过代数的计算来证明两边的相等。

二个力的合力与夹角的动态变化

二个力的合力与夹角的动态变化

二个力的合力与夹角的动态变化
在物理学中,我们经常会遇到多个力同时作用在一个物体上的情况。

当两个力同时作用在一个物体上时,它们会产生一个合力,这个合力的大小和方向会影响物体的运动状态。

同时,这两个力之间的夹角也会影响合力的大小和方向,从而影响物体的运动轨迹。

让我们来看一个例子,假设有一个物体,上面同时受到两个力的作用,一个力的方向向右,另一个力的方向向上。

这两个力之间的夹角可以是任意的,当夹角为0度时,两个力的方向重合,此时合力的大小最大;当夹角为90度时,两个力的方向垂直,此时合力的大小最小。

当夹角为其他角度时,合力的大小会介于最大值和最小值之间,并且合力的方向也会随着夹角的变化而变化。

这种动态变化的过程可以用数学公式来描述,例如,如果我们知道两个力的大小和夹角,我们就可以通过数学公式计算出它们的合力的大小和方向。

这种动态变化的过程也可以通过物理实验来验证,通过改变两个力的大小和夹角,我们可以观察到合力的大小和方向的变化,从而验证数学公式的准确性。

在现实生活中,这种动态变化的过程也随处可见。

比如,当我
们开车转弯时,车轮受到两个方向的力的作用,这两个力的合力和夹角会影响车辆的转弯半径;又比如,当我们划船时,桨受到水的阻力和船的推力的作用,这两个力的合力和夹角会影响船的前进方向。

总之,二个力的合力与夹角的动态变化是一个非常重要的物理现象,它影响着物体的运动状态,也影响着我们日常生活中的许多活动。

通过深入理解这一现象,我们可以更好地掌握物体的运动规律,从而更好地应用于实际生活中。

动力学中的角速度和角加速度角速度和角加速度的计算方法和应用是什么

动力学中的角速度和角加速度角速度和角加速度的计算方法和应用是什么

动力学中的角速度和角加速度角速度和角加速度的计算方法和应用是什么动力学中的角速度和角加速度动力学是物理学中研究物体运动和运动的原因的一个分支。

在动力学中,角速度和角加速度是用来描述物体旋转运动的重要概念。

本文将介绍角速度和角加速度的计算方法和应用。

一、角速度的计算方法和应用角速度是描述物体在单位时间内绕固定轴线旋转的快慢程度的物理量。

在动力学中,角速度通常用字母ω表示,单位是弧度/秒。

角速度的计算方法如下:ω = Δθ / Δt其中,Δθ代表物体在时间Δt内绕轴线旋转的角度变化量。

在实际应用中,常常使用角度制来度量角度,因此需要将角度转化为弧度来进行计算。

角速度在物体运动分析中有着广泛的应用。

例如,在机械工程中,角速度可以用来研究旋转机械的运动状态和动力学特性;在天文学中,角速度可以用来计算恒星和行星的自转速度等。

角速度的计算和应用可以帮助人们更好地了解和掌握物体的旋转运动规律。

二、角加速度的计算方法和应用角加速度是描述物体在单位时间内角速度变化快慢程度的物理量。

在动力学中,角加速度通常用字母α表示,单位是弧度/秒²。

角加速度的计算方法如下:α = Δω / Δt其中,Δω代表物体在时间Δt内角速度的变化量。

角加速度在物体旋转运动的研究中起着重要作用。

例如,在车辆工程中,角加速度可以用来研究车辆的转弯性能和稳定性;在航空航天领域中,角加速度可以用来计算飞机的操纵特性和动力学响应。

角加速度的计算和应用可以帮助人们更好地理解和分析物体旋转运动的特性。

三、角速度和角加速度的应用案例1. 运动摄影:角速度和角加速度可以用来计算摄影中的旋转拍摄效果,例如旋转照片或者制作动态旋转视频。

2. 机器人学:角速度和角加速度对于机器人的导航和运动控制非常重要。

通过计算角速度和角加速度可以实现机器人的精确定位和避障控制。

3. 舞蹈与体育:角速度和角加速度可以用来分析舞蹈和体育动作的旋转部分,如跳跃和旋转动作的稳定性和平衡性。

桥架任何角度计算公式集

桥架任何角度计算公式集

桥架任何角度计算公式集在桥梁设计中,桥梁的桥架角度是一个非常重要的参数,它直接影响着桥梁的结构稳定和安全性能。

桥梁的桥架角度通常是指桥梁主梁与水平线的夹角,它的大小取决于桥梁的跨度、荷载、材料等因素。

在桥梁设计中,通常需要根据桥梁的具体情况来确定桥梁的桥架角度,以确保桥梁的结构稳定和安全。

在实际的桥梁设计中,桥梁的桥架角度计算是一个非常复杂的问题,需要考虑多种因素。

一般来说,桥梁的桥架角度计算可以分为静态计算和动态计算两种情况。

静态计算是指在桥梁不受外力作用时,根据桥梁的结构和荷载来确定桥梁的桥架角度;动态计算是指在桥梁受到外力作用时,根据桥梁的挠度、变形等参数来确定桥梁的桥架角度。

在实际的桥梁设计中,通常需要综合考虑静态计算和动态计算的结果,来确定桥梁的最终桥架角度。

在桥梁的静态计算中,通常需要考虑桥梁的跨度、荷载、材料等因素。

桥梁的跨度是指桥梁两个支座之间的距离,它直接影响着桥梁的结构和荷载分布。

在桥梁的跨度较大时,桥梁的桥架角度通常较小;在桥梁的跨度较小时,桥梁的桥架角度通常较大。

此外,桥梁的荷载也是影响桥梁桥架角度的重要因素,不同的荷载会导致不同的桥梁桥架角度。

另外,桥梁的材料也是影响桥梁桥架角度的重要因素,不同的材料会导致不同的桥梁桥架角度。

在桥梁的动态计算中,通常需要考虑桥梁的挠度、变形等参数。

桥梁的挠度是指桥梁在受到外力作用时产生的变形,它直接影响着桥梁的结构和安全性能。

在桥梁的挠度较大时,桥梁的桥架角度通常较小;在桥梁的挠度较小时,桥梁的桥架角度通常较大。

此外,桥梁的变形也是影响桥梁桥架角度的重要因素,不同的变形会导致不同的桥梁桥架角度。

在实际的桥梁设计中,通常需要综合考虑静态计算和动态计算的结果,来确定桥梁的最终桥架角度。

一般来说,桥梁的最终桥架角度应该既能确保桥梁的结构稳定,又能确保桥梁的安全性能。

因此,在桥梁设计中,桥梁的桥架角度计算是一个非常重要的环节,需要设计人员综合考虑多种因素,来确定桥梁的最终桥架角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角度计算中的动态问题1——射线的旋转
【导学提示】1.结合线段中的动点和动线段问题进行思考,类比的方法学习角的动态问题。

2.注意角的内部外部变化所带来的分类讨论问题。

例1. 如图1,∠AOB =120°,射线OP 以1°/秒的速度从OA 出发,射线OQ 以2°秒的速度从OB 出发,两条射线同时开始逆时针转动t 秒.
(1)当t =10秒时,求∠POQ 的度数.
(2)如图2,在射线OQ 、OP 转动过程中,射线OE 始终在∠BOQ 内部,且OF 平分∠AOP ,若∠EOF =120°不变,求EOQ BOE
∠∠的值.
练习1.(本题12分)(1) 已知:在∠AOB 内作射线OD 、OC 、OE ,如图1,∠AOB 是一个直角,任作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE ,求∠DOE 的度数
(2) 已知:在∠AOB 内作射线OD 、OC 、OE 、OF ,如图2,∠AOB =140°,∠COD =16°,OE 平分∠BOD ,OF 平分∠AOC .当∠COD 绕点O 在∠AOB 内旋转时,求∠EOF 的大小
(3) 已知:∠AOB 是一个直角(如图3),作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .当射线OC 在∠AOB 外绕点O 旋转时,请直接写出∠DOE 的大小
图2
图1
Q
P
O
F
E
B
A A B
O P
Q
练习3.(本题12分)已知∠AOB=150°,OC 为∠AOB 内部的一条射线,∠BOC=60°。

(1)如图1,若OE 平分∠AOB,OD 为∠BOC 内部的一条射线,∠COD=
2
1
∠BOD,求∠DOE 的度数; (2)如图2,若射线OE 绕着O 点从OA 开始以15度/秒的速度顺时针旋转至OB 结束、OF 绕着 O 点从OB 开始以5度秒的速度逆时针旋转至OA 结束,运动时间为t 秒,当∠EOC=∠FOC 时, 求t 的值:
(3)若射线OM 绕着O 点从OA 开始以15度秒的速度逆时针旋转至OB 结束,在装转过程中,ON 平分∠AOM,试问2∠BON 一∠BOM 在某时间段内是否为定值,若不是,请说明理由;若是
请补全图形,求出这个定值并写出t 所在的时间段。

(本题中的角均为大于0°且小于180°的角)
角度计算中的动态问题2——角的旋转1(不含确定运动速度)
【方法归纳】
1.结合线段中的动点和动线段问题进行思考,类比的方法学习角的动态问题。

2.注意角的内部外部变化所带来的分类讨论问题。

例1.已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD , OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时
针旋转,使∠BOC =α(0≤α<180°)
(1)若∠AOB =60°,∠COD =40°,
①当α=0° 时,如图1,则∠POQ =____________. ②当α=80° 时,如图2,求∠POQ 的度数.
③当α=130° 时,如图3,请先补全图形,然后求出∠POQ 的度数. (2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ =____________.
练习1. 已知∠AOB=100°,∠COD=40°,OE 平分∠AOC ,OF 平分∠BOD 。

(本题中所有角大于0°,小于180°) (1)如图,当OB ,OC 重合时,求∠EOF 的度数。

(2)当∠COD 从如图所示位置绕O 点顺时针旋转n °(0<n<90)时,∠AOE-∠BOF 的值是否为定值?若是定值,求出∠AOE-∠BOF 的值;若不是,请说明理由。

(3)当∠COD 从如图所示的位置绕点O 顺时针旋转n °(0<n<180)时,满足∠AOD+∠EOF=6∠COD ,则n= 。

图1
图2
练习2. (2017-2018武昌T24)如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM
=1
3
∠AOC,∠BON=
1
3
∠BOD.
(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;
(3)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120),则n=时,∠MON=2∠BOC.
角度计算中的动态问题2——角的旋转2(含确定运动速度)
【方法归纳】
1.结合线段中的动点和动线段问题进行思考,类比的方法学习角的动态问题。

2.注意角的内部外部变化所带来的分类讨论问题。

例1. 如图,已知∠AOC =∠BOD =120°,∠BOC =35
∠AO D .
(1)求∠AOD 的度数;
(2)若射线OB 绕点O 以每秒旋转20°的速度顺时针旋转,同时射线OC 以每秒旋转15°的速度逆时针旋转,设旋转的时间为t 秒(0<t <6),试求当∠BOC =20°时t 的值;
(3)若∠AOB 绕点O 以每秒旋转5°的速度逆时针旋转,同时∠COD 绕点O 以每秒旋转10°的速度逆时针旋转,设旋转的时间为t 秒(0<t <18),OM 平分∠AOC ,ON 平分∠BOD ,在旋转的过程中,∠MON 的度数是否发生改变?若不变,求出其值:若改变,说明理由.
练习1.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD (1) 如图1,当OB 、OC 重合时,求∠AOE -∠BOF 的值
(2) 如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE -∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由 (3) 在(2)的条件下,当∠COF =14°时,t =__________秒
D
C
B
O
A
练习2.如图,直线CD 与EF 相交于点O ,∠COE =60°,将一直角三角尺AOB 的直角顶点与O 重合,OA 平分∠COE (1) 求∠BOD 的度数
(2) 将三角尺AOB 以每秒3°的速度绕点O 顺时针旋转,同时直线EF 也以每秒9°的速度绕点O 顺时针旋转,设运动时间为t 秒(0≤t ≤40)
① 当t 为何值时,直线EF 平分∠AOB ② 若直线EF 平分∠BOD ,直接写出t 的值
练习3. 如图,∠COD =20°,∠AOB =80°,且边OB 、OC 在一条直线上 (1) 求∠AOD
(2) 若将∠COD 绕顶点O 以10°每秒的速度逆时针方向旋转一周(∠AOB 保持不动),则旋转过程中,经过时间t 秒时,射线OB 刚好平分所得的某个角(小于平角的角),则所有满足这种情况的t 的值有_______________________
(3) 若将∠COD 绕顶点O 以a 度每秒的速度逆时针方向旋转的同时,将∠AOB 绕顶点O 以b 度每秒的速度顺时针方向旋转,若a 与b 满足(a -14)2+|b -6|=0
① 直接写出a 与b 的值分别为______________
② 若∠COD 和∠AOB 同时开始旋转t 秒,且4<t <5,射线OP 为∠COD 内部的一条射线,问在旋转过程中POC
AOB AOC
BOP ∠-∠∠-∠是否为定值?若是定值,求出其值;若不是定值,请说明理由。

相关文档
最新文档