热电厂热力系统计算分析
发电厂的热力系统
N600-17.75/540/540型机组发电厂原则性热力系统
引进的超临界K-500-240-4型机组发电厂原则性热力系统
引进的N600-25.4/541/569超临界机组发电厂原则性热力系统
超超临界325MW两次中间再热凝汽机组的发电厂原则性热力系统
国产CC200–12.75/535/535型双抽汽凝汽式机组热电厂原则性热力系统
3
利用外部热源可以节约燃料,如发电机冷却水热源;
4
实际工质回收和废热利用系统,应考虑投资、运行费用和热经济性,通过技术经济性比较来确定
结论:
主汽门和调节汽门的阀杆漏汽
01
再热式机组中压联合汽门的阀杆漏汽
02
高、中、低压缸的前后轴封漏汽和轴封用汽 轴封利用系统中各级轴封蒸汽,工质基本可全部回收
扩容器压力下饱和蒸汽比焓
1
2
3
4
锅炉连续排污利用系统的热经济性分析:
01
无排污利用系统时,排污水热损失:
02
有排污利用系统时,排污水热损失为:
03
可利用的排污热量:
04
凝汽器增加的附加冷源损失:
05
发电厂净获得的热量:
06
1
回收热量大于附加冷源损失,回收废热节约燃料;
2
尽量选取最佳扩容器压力;
汽轮机在通过铭牌出力所保证的进汽量、额定主蒸汽和再热蒸汽工况下,在正常的排汽压力(4.9kpa)下,补水率为0%时,机组能保证达到的出力
汽轮发电机组保证最大连续出力(TMCR)
其他: 汽轮发电机组在调节汽门全开和所有给水加热器全部投运之下,超压5%连续运行的能力,以适应调峰的需要
汽轮机调节汽门全开时通过计算最大进汽量和额定的主蒸汽、再热蒸汽参数工况下,并在正常排汽压力(4.9kpa)和补水率0%条件下计算所能达到的出力
热力发电厂课程设计的---660MW凝汽式机组全厂原则性热力系统计算
660MW凝汽式机组全厂原如此性热力系统计算〔设计计算〕一、计算任务书(一)计算题目国产660MW凝汽式机组全厂原如此性热力系统计算〔设计计算〕(二)计算任务1.根据给定热力系统数据,计算气态膨胀线上各计算点的参数,并在h-s图上绘出蒸汽的气态膨胀线;2.计算额定功率下的气轮机进汽量Do,热力系统各汽水流量D j、G j;3.计算机组的和全厂的热经济性指标;4.绘出全厂原如此性热力系统图,并将所计算的全部汽水参数详细标在图中〔要求计算机绘图〕。
(三)计算类型定功率计算(四)热力系统简介某火力发电场二期工程准备上两套660MW燃煤汽轮发电机组,采用一炉一机的单元制配置。
其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;气轮机为GE公司的亚临界压力、一次中间再热660MW凝汽式气轮机。
全厂的原如此性热力系统如图5-1所示。
该系统共有八级不调节抽汽。
其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。
℃、0℃℃℃。
℃,进入锅炉。
三台高压加热器的疏水逐级自流至除氧器,第五、六、七级低压加热器的疏水逐级自流至第八级低压加热器;第八级低加的疏水用疏水泵送回本级的主凝结水出口。
凝汽器为双压式凝汽器,气轮机排气压力 4.4/5.38kPa。
给水泵气轮机〔以下简称小汽机〕的汽源为中压缸排汽〔第四级抽汽〕,无回热加热其排汽亦进入凝汽器,设计排汽压力为6.34kPa。
锅炉的排污水经一级连续排污利用系统加以回收。
扩容器工作压力1.55Mpa,扩容器的疏水引入排污水冷却器,加热补充水后排入地沟。
锅炉过热器的减温水〔③〕取自给水泵出口,设计喷水量为66240kg/h。
热力系统的汽水损失计有:全厂汽水损失〔○14〕33000kg/h\厂用汽〔○11〕23000kg/h(不回收)、锅炉暖风器用气量为65400kg/h,暖风器汽源〔○12〕取自第4级抽汽,其疏水仍返回除氧器回收,疏水比焓697kJ/kg。
火电厂热力系统计算分析
对于有工质的热量进、出系 统,必须象计算 △ H 一样, 分为纯热量和带工质的热量 处理。
其中,纯热量部分引起的再 热蒸汽份额变化,运用抽汽 再热系数概念容易计算;而 带工质部分,是 1kg 顶替 1kg ,并直达再热器。若蒸 汽携带热量进、出系统, 则 进系统使再热蒸汽份额增加
35
等效热降之间的关系
(一)疏水放流式加热器与其后相邻加热器之间的等效 热降关系
其后相邻加热器是疏水放流式
36
j 一 1 为疏水放流式加热器,
37
j-1为汇集式
38
由此得出,疏水放流式加热器与其后相邻加 热器(不论其型式如何)之间的等效热降关 系的通式为
39
它的物理意义是,排挤 j 段抽汽 1kg ,从
61
62
63
新汽再热系数的计算
1kg 新蒸汽在高压缸做功后到达到再热器的 份额称为新蒸汽再热系数
新蒸汽毛再热系数:只考虑主循环系统 新蒸汽净再热系数:考虑有关辅助成份的影响
64
再热 系数
锅炉为汇集式加热器:
65
局部变动引起的再热蒸汽份额变化 △αzr 的计算
再热机组,某些局部变动将引起其再热蒸汽 份额发生变化。对于纯热量q进、出系统, 运用抽汽再热系数概念,可很容易求 △αzr ,即
58
五、关于再热
59
抽汽再热系数:j 段 1kg 排挤抽汽通过再 热器的份额
当再热冷段#c 排 挤1kg 抽汽时, 再热器通过的份 额显然增加 1kg , 即该排挤抽汽全 部经过再热器
60
当#c+1 排挤 1kg 抽汽时,因有γc/qc抽 汽分配到 c 加热器中,故该排挤抽汽经过 再热器只有(1-γc/qc )kg ,因而c + 1 段抽汽再热系数:
火电厂热经济指标及分析
发电煤耗率=
0 .123
电厂效率
(kg/kwh)
27
三级指标(锅炉效率)
锅炉正平衡效率:指锅炉产出热量与计算期皮 带秤称重的锅炉耗用煤量的热值的比例。:
锅炉正平 计 衡 算 效 期 率 锅 锅 = 炉 炉 入 产 耗 炉 出 用 燃 热 煤 料 量 量 1 低 0位 0 热
锅炉反平衡效率=100-(排烟损失(%)+化学未完全燃烧 损(%)+机械未完全燃烧损失(%)+散热损失(%)+灰渣物理 热损失(%))
厂用电量 计算期发电量
×100(%)
21
影响厂用电率的主要指标
磨煤机单耗 、磨煤机耗电率 排粉机单耗 、排粉机耗电率 给水泵单耗 、给水泵耗电率 送风机单耗 、送风机耗电率 吸风机单耗 、吸风机耗电率 循环水泵耗电率 输煤(燃油)系统耗电率 除灰系统耗电率
22
磨煤机单耗:是指磨煤机每磨制一吨煤
发电煤耗率表示发电厂热力设备、热力系统的
运行经济性。单元发电机组的发电煤耗率与锅炉效
率、汽机效率、管道效率有关。全厂发电煤耗率水
平除与单元发电机组的发电煤耗率水平有关外,还
与单元机组发电量权数有关。
正平衡计算方法:发电煤耗率=
发电用标准煤量 计算期发电量
(g/kWh)
锅炉产出热量
反平衡计算方法:发电煤耗率= 29271.计2算锅器炉发反电平量衡效率(kg/kwh)
供热方面 5
凝汽式机组的热经济指标 汽耗量、热耗量 汽耗率、热耗率 机组热效率
6
凝汽式机组热经济指标之间的变化关系
总效率与分效率之间的变化关系 煤耗率与热效率之间的变化关系 热效率与热耗率之间的变化关系 煤耗率与热耗率之间的变化关系
火力发电厂热力系统节能分析论文
火力发电厂热力系统节能分析摘要:本文简要分析了当前节能形势,归纳了主要的热力系统计算分析方法,指出了电厂热力分析仍然存在的问题,并对电站节能改造给出了建议和节能策略分析。
关键词:热力系统 ; 经济指标 ; 计算方法;节能技术abstract: this paper analyzes the current energy situation, summed up the main system calculation analysis methods, and pointed out that there are still problems of power plant thermal analysis, and provided strategy analysis for power plant energy-saving advice and energy saving.keywords: thermodynamic system; economic indicators; calculation method; energy-saving technologies中图分类号: tk284.1文献标识码:a文章编号:引言众所周知,能源问题已经成为世界各国共同关注的问题,在我国这一现象更加凸显。
由于我国粗放型经济增长方式,又处在消费结构升级加快的历史阶段,能源消耗过大,因此节能降耗将是一项长远而艰巨的任务。
根据美国及我国电力行业调查统计表明,我国平均供电煤耗率要比发达国家高出30~60g/kwh,这是一个很大的差距,说明我国的电厂节能有很大的节能潜力可以挖掘。
因此,电站热力系统节能是关系到节能全局以及可持续性发展的大事。
因此,在热力系的环境下,揭示各种节能理论内在的联系,深入地研究和发展节能要的理论和现实意义,对电厂的节能降耗工作具有很强的指导性。
一、热力系统经济指标我国火力发电厂常用的热经济型指标主要有效率和能耗率两种。
热力公司集中供热系统节能方式分析与应用
热力公司集中供热系统节能方式分析与应用摘要:随着社会的不断发展,当下人们在生活和工作中对于周围的环境标准要求也越来越高,由此引发的节能意识也是随着得到长足的体现和发展,在当下的热力公司集中供热系统中,如何高效供热并实现节能则是热力公司为社会提供热力资源的一项重点工作任务。
为更好的维持热力公司运营,有必要对供热系统中各个系统环节给与细致分析,在管理方面给与重视,从而能够很好的提高各个环节中的热力资源利用效率,所以提高热力公司供热系统中的热力管理,开展集中供热系统中的节能降耗措施,将有利于当下热力公司和社会的稳定发展。
关键词:集中供热;节能减排;热力资源;热力公司1 前言对于热电集中供热系统汇总,主要是借助背压式或者抽凝式供热机来进行热力资源的传输,通过上述装置可以将内部含有的热力资源传输给热网。
对于分布其中的输热管道,可以将其分为管沟式和直埋式、架空式[1]。
在上述装置中,对于能量消耗的方式主要是通过热泄漏和热损失两种方式。
对于管网系统中,其末端的用热设备大部分都是分布在室内,由此产生的能量损失则是由管网布设情况以及外部环境温度,以及房屋的保温结构等造成的。
2 供热系统分析2.1 负荷预测系统。
对于供热系统中的负荷预测系统,主要包含有气候模型系统。
该系统主要依据就是气象预报及历史经验数据,同时通过分析计算,能够借此得到具有最优功能系统的网源负荷分析模型[2]。
在该系统中,主要基础数据则是室外温度、供热面积、室内热负荷需求和历史数据等,通过上述数据实现对系统所需热量的准确预测和供给。
2.2 全网平衡控制系统。
在该系统中,开展全网控制,其理念则是通过热力站二级网供回水,从而实现对平均温度的控制,并以此作为调控目标。
在上述基础下,通过自动调整不同站点的一网分布式变频,则可以实现将热源生产的热量给与平衡分配,使得所有的换热站得到满足需求的热量,从而让全部用户能够得到足够的热量,实现按需分配热量的目的[3]。
热电厂热力系统计算
热电厂热力系统计算————————————————————————————————作者: ————————————————————————————————日期:热力发电厂课程设计1.1设计目的1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法3.提高计算机绘图、制表、数据处理的能力1.2原始资料西安某地区新建热电工程的热负荷包括:1)工业生产用汽负荷;2)冬季厂房采暖用汽负荷。
西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。
通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示:热负荷汇总表项目单位采暖期非采暖期最大平均最小最大平均最小用户热负荷工业t/h 175 142 108 126 92 75采暖t/h 177 72 430 0 01.3计算原始资料(1)锅炉效率根据锅炉类别可取下述数值:锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.700.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下:汽轮机额定功率750~6000 12000~25000 5000汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99发电机效率0.93~0.96 0.96~0.97 0.98~0.985(3)热电厂内管道效率,取为0.96。
(4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。
(5)热交换器端温差,取3~7℃。
(6)锅炉排污率,一般不超过下列数值:以化学除盐水或蒸馏水为补给水的供热式电厂2%以化学软化水为补给水的供热式电厂5%(7)厂内汽水损失,取锅炉蒸发量的3%。
电厂效率计算方法
一、热电厂能耗计算公式符号说明单位供电标煤耗单位发电标煤耗单位供热标煤耗bg=bd/[1-(ed/100)]bd=(Bd/E)*102Bd=B(1-α)br=(Br/Qr)*103Br=Bαg/kwhg/kwhTKg/GJT4 R热电比R=(Qr/36Eg)*1025η0热效率η0=[(Qr+36Eg)/29.3B]*102(%)二、能耗热值单位换算千焦(KJ)大卡(kcal)1千瓦时(kwh)= 3600kj备注1、吉焦、千卡、千瓦时(GJ、kcal、kwh)1kcal=4.1868KJ=4.1868×10-3MJ=4.1868×10-6GJ1kwh=3600KJ=3.6MJ=3.6×10-3GJ2、标准煤、原煤与低位热值:1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。
Qy=5000kcal/kg=20934KJ/kg1kg标准煤热值Qy=7000kcal/kg=29.3×103KJ=0.0293GJ/kg当原煤热值为5000大卡时,1T原煤=0.714吨标煤,则1T标煤=1.4T原煤3、每GJ蒸汽需要多少标煤:br=B/Q=1/Qyη=1/0.0293η=34.12/η其中:η=ηW×ηg=锅炉效率×管道效率当ηW=0.89,ηg=0.958时,供热蒸汽标煤耗率br=34.12/0.89×0.958=40kg/GJ当ηW=0.80,ηg=0.994时,供热蒸汽标煤耗率br=34.12/0.80×0.994=42.9kg/GJ二、热电厂热电比和总热效率计算一、热电比(R):1、根据DB33《热电联产能效能耗限额及计算方法》2.2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。
R=供热量/供电量×100%2、根据热、能单位换算表:1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦)3、统一计量单位后的热电比计算公式为:R=(Qr/Eg×36)×100%式中: Qr——供热量GJ Eg——供电量万kwh4、示例:某热电厂当月供电量634万kwh,供热量16万GJ,其热电比为:R=(16×104/634×36)×100%=701%二、综合热效率(η0)1、根据浙江省地方标准DB33定义,综合热效率为“统计期内供热量与供电量所表征的热量之和与总标准煤耗量的热量之比”η0=(供热量+供电量)/(供热标煤量+供电标煤量)2、根据热、能单位换算表1万kwh=36GJ1kcal=4.1868KJ1kg标煤热值=7000kcal1kg标煤热值=7×103×4.1868=29.3×103KJ=0.0293GJ3、统一计量单位后的综合热效率计算公式为η0=[(Qr+36Eg)/(B×29.3)]×100%式中:Qr——供热量GJEg——供电量万kwhB——总标煤耗量t4、示例:某热电厂当月供电量634万kwh,供热量16万GJ,供热耗标煤6442吨,供电耗标煤2596吨,该厂总热效率为:η0=[(16×104+36×634)/(6442+2596)×29.3]×100%=69%1. 凝汽器压力下的饱和温度与凝汽器冷却水出口温度之差称为端差.2.处于高度真空状态下的凝汽器,无论采用何种方法,总有一些不凝结的气体存在。
发电厂原则性热力系统
1650t/h; 23.54MPa; 540℃ 3.56MPa, 540℃
B
HPC 12
65 43
3
IPC 4 56
7 8 C
2LPC 7 8 C
M
3.98MPa; 293℃
H1
5.72MPa; 340℃
1.79MPa; 464℃
pc1
pc2
H2
1.14MPa; 385℃ BH2
C
Pe=505MW
图7-2为引进美国技术 国产的N600-16.7/537/ 537型机组,配HG2008/186M强制循环汽 包炉的发电厂原则性热 力系统图。与图7-1对 比,仅指出其不同之处: 汽轮机组为单轴四缸四 排汽反动式汽轮机,额 定工况时机组热耗率为 8024.03 kJ/(kWh)。
图7-2 N600-16.7/537/537型机组的发电厂原则性热力系统
第七章 发电厂原则性热力系统
本章先介绍拟定发电厂原则性热力系统的基本方法,并列举国 内外大容量发电机组中具有代表性的火电、核电、燃气-蒸汽 联合循环发电的原则性热力系统,并兼顾了凝汽式、供热式两 类机组的发电厂原则性热力系统。同时介绍了发电厂原则性热 力系统的计算方法,并以常规热量法的额定工况计算为例进行 介绍。本章最后附有亚临界600MW机组、超临界800MW机组 和双抽汽式供热机组的火力发电厂原则性热力计算实例。
(二)选择汽轮机 凝汽式发电厂选用凝汽式机组,其单位容量应根据系统规划容量、负荷增长速度 和电网结构等因素进行选择。各汽轮机制造厂生产的汽轮机型式、单机容量及其 蒸汽参数,是通过综合的技术经济比较或优化确定的。
(三)绘发电厂原则性热力系统图 汽轮机型式和单机容量确定后,即可根据汽轮机制造厂提供的该机组本体汽水系 统,和选定的锅炉型式来绘制原则性热力系统图。
热电厂热力系统计算分析
热力发电厂课程设计1.1设计目的1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法3.提高计算机绘图、制表、数据处理的能力1.2原始资料西安某地区新建热电工程的热负荷包括:1)工业生产用汽负荷;2)冬季厂房采暖用汽负荷。
西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。
通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示:热负荷汇总表1.3计算原始资料(1)锅炉效率根据锅炉类别可取下述数值:锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.850.85~0.900.65~0.700.850.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下:汽轮机额定功率750~600012000~250005000汽轮机相对内效率0.7~0.80.75~0.850.85~0.87汽轮机机械效率0.95~0.980.97~0.99~0.99发电机效率0.93~0.960.96~0.970.98~0.985(3)热电厂内管道效率,取为0.96。
(4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。
(5)热交换器端温差,取3~7℃。
(6)锅炉排污率,一般不超过下列数值:以化学除盐水或蒸馏水为补给水的供热式电厂2%以化学软化水为补给水的供热式电厂5%(7)厂内汽水损失,取锅炉蒸发量的3%。
(8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。
(9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。
(10)生水水温,一般取5~20℃。
(11)进入凝汽器的蒸汽干度,取0.88~0.95。
(12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。
2、原则性热力系统2.1设计热负荷和年持续热负荷曲线根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。
(完整word版)热力发电厂课程设计---660MW凝汽式机组全厂原则性热力系统计算(word文档良心出品)
660MW凝汽式机组全厂原则性热力系统计算(设计计算)一、计算任务书(一)计算题目国产660MW凝汽式机组全厂原则性热力系统计算(设计计算)(二)计算任务1.根据给定热力系统数据,计算气态膨胀线上各计算点的参数,并在h-s图上绘出蒸汽的气态膨胀线;2.计算额定功率下的气轮机进汽量Do,热力系统各汽水流量D j、G j;3.计算机组的和全厂的热经济性指标;4.绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细标在图中(要求计算机绘图)。
(三)计算类型定功率计算(四)热力系统简介某火力发电场二期工程准备上两套660MW燃煤汽轮发电机组,采用一炉一机的单元制配置。
其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;气轮机为GE公司的亚临界压力、一次中间再热660MW凝汽式气轮机。
全厂的原则性热力系统如图5-1所示。
该系统共有八级不调节抽汽。
其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。
第一、二、三级高压加热器均安装了内置式蒸汽冷却器,上端差分别为-1.7℃、0℃、-1.7℃。
第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5℃。
气轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。
然后由气动给水泵升压,经三级高压加热器加热,最终给水温度达到274.8℃,进入锅炉。
三台高压加热器的疏水逐级自流至除氧器,第五、六、七级低压加热器的疏水逐级自流至第八级低压加热器;第八级低加的疏水用疏水泵送回本级的主凝结水出口。
凝汽器为双压式凝汽器,气轮机排气压力 4.4/5.38kPa。
给水泵气轮机(以下简称小汽机)的汽源为中压缸排汽(第四级抽汽),无回热加热其排汽亦进入凝汽器,设计排汽压力为6.34kPa。
锅炉的排污水经一级连续排污利用系统加以回收。
扩容器工作压力1.55Mpa,扩容器的疏水引入排污水冷却器,加热补充水后排入地沟。
热电厂热力系统计算..
热力发电厂课程设计1.1设计目的1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法3.提高计算机绘图、制表、数据处理的能力1.2原始资料西安某地区新建热电工程的热负荷包括:1)工业生产用汽负荷;2)冬季厂房采暖用汽负荷。
西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。
通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示:热负荷汇总表1.3计算原始资料(1)锅炉效率根据锅炉类别可取下述数值:锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下:汽轮机额定功率750~6000 12000~25000 5000汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。
(4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。
(5)热交换器端温差,取3~7℃。
(6)锅炉排污率,一般不超过下列数值:以化学除盐水或蒸馏水为补给水的供热式电厂2%以化学软化水为补给水的供热式电厂5%(7)厂内汽水损失,取锅炉蒸发量的3%。
(8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。
(9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。
(10)生水水温,一般取5~20℃。
(11)进入凝汽器的蒸汽干度,取0.88~0.95。
(12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。
2、原则性热力系统2.1设计热负荷和年持续热负荷曲线根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。
热电厂用能系统分析与优化
热电厂用能系统分析与优化热电厂是一种在发电的同时还能提供热力的能源利用设施,其用能系统分析与优化对于提高能源利用效率和降低生产成本具有重要意义。
本文将从热电厂用能系统的组成、运行特点及存在的问题入手,针对当前存在的问题,提出相应的优化措施,以期达到能效提升和节能减排的目的。
一、热电厂用能系统的组成热电厂用能系统主要由锅炉系统、汽轮发电机组、蒸汽调节系统、余热利用系统等组成,其中锅炉系统负责将燃料燃烧产生的热量转化为蒸汽,蒸汽则驱动汽轮发电机组转动发电,同时通过余热利用系统回收废气中的余热用于供热或其他领域。
热电厂还需要辅助设备来保障系统的运行,如给水泵、鼓风机、除尘设备等。
1. 高效节能:热电厂用能系统在能源转换和利用过程中能够实现高效节能,其能效通常可达到60%以上,较为高效。
2. 复杂性强:热电厂用能系统包含多个互相协作的主要部件,其中任何一个部件的运行状态都会影响整个系统的运行效率,因此需要高度配合和协同。
3. 空气污染物排放控制:热电厂燃烧燃料产生的废气排放中含有大量的二氧化硫、氮氧化物、颗粒物等大气污染物,需要进行有效的控制。
1. 能源利用效率不高:目前热电厂用能系统中存在一定程度的能源浪费和能量损失,尤其是在余热利用方面仍有提升空间。
2. 空气污染物排放量大:燃烧过程中产生的废气排放中所含的大气污染物排放量较大,环保压力较大。
3. 运行成本高:热电厂用能系统的日常运行成本相对较高,尤其是燃料成本和运行维护成本。
1. 提高燃料燃烧效率:采用先进的燃烧技术和设备,优化燃料燃烧过程,提高能源利用效率。
2. 加强余热利用:通过余热发电、余热供热、余热冷却等方式,充分利用废气中的余热,减少能量损失。
3. 深度治理废气排放:采用烟气脱硫、脱硝、除尘等技术手段,控制废气排放中的大气污染物含量,达到环保排放标准。
4. 优化运行管理:建立科学的运行管理制度,加强设备的运行维护,降低运行成本。
通过上述优化措施的实施,热电厂用能系统可以实现能源利用效率的提升、降低运行成本、减少大气污染物排放等效果,具体表现在:1. 能源利用效率提升:优化后的热电厂用能系统能够更充分地利用燃料热值和余热资源,从而达到更高的能源利用效率。
热电厂热力过程及效率分析
热电厂热力过程及效率分析第一部分:热力学基础热电厂是以蒸汽为工质的一个热力系统,因此,对热电厂的分析必须建立在热力学定律及理想热力循环的基础上。
一、热力学的基本概念:1.热力系:在分析热力过程或现象时,常从若干物体中取出需要研究的对象,这被取出的研究对象称为热力系。
热力系可以是元件或设备,也可以是系统或空间。
在同一个大的热力系统中,因研究问题的不同所选择的热力系也不同。
以热电厂为例,可以把锅炉、汽轮机或单独一部分蒸汽管道作为一个热力系研究锅炉运行、汽轮机运行或管道损失问题,也可以把锅炉、管道及汽轮机共同作为一个热力系研究发电供汽过程存在的问题。
外界:热力系以外的物质世界统称为外界或环境;边界:热力系与外界的分界面称为边界;因此热力系即为由界面包围的作为研究对象的物体的总和。
按热力系与外界进行物质、能量交换的情况不同,热力系主要有:闭口系:热力系与外界无物质交换;开口系:热力系与外界之间有物资交换,或者说有物质穿过边界。
按热力系绝热系:热力系与外界无热量交换;孤立系:热力系与外界既无能量交换又无物质交换;2.热力过程与热力循环:2.1概念:热力系状态连续变化的过程称为热力过程。
热力系统从一个初态出发经历一系列状态变化后又回到初始状态封闭的热力过程,称为热力循环。
2.2工程中常见的两类热力循环:P热能动力和制冷装置热机的经济性用热效率衡量,等于净功与向循环输入的热量比,η=W/Q0热力循环二、热力学第一定律:1.第一定律的实质:热力学第一定律是能量守恒与能量转换定律在热力学中的具体体现。
热力学第一定律:在任何发生能量传递和转换的热力过程中,传递和转换的能量的总量保持恒定不变。
“永动机是不可能制造成功的”。
2.热力过程的两种能量传递方式:热力系与外界传递能量的方式有两种:作功和传热。
2.1功:力学中功的定义为物体所受的力与沿力的方向所产生的位移之积。
δW=F.dx在热力学中功的定义为:功是物系间相互作用而传递的能量,当系统完成作功时,其对外界的作用可用在外界举起重物的单一效果来代替。
火力发电厂性能计算与能损分析的研究与实现
收稿日期:2001-03-24 作者简介:杨宝勇(1975-),男,山东省胶州市人,清华大学热能系硕士研究生,从事电厂热经济性能计算与能损分析的研究。
火力发电厂性能计算与能损分析的研究与实现杨宝勇,江 宁,刘炳刚,裴胜利,李 政(清华大学热能工程系,北京100084)摘要:对火力发电厂能损分析中的一些重要问题进行了探讨,包括能损分析比较原则、应达值及基准工况的选取、求解湿蒸汽焓值的改进方法以及母管制机组中的义务分配等。
提出的以实际运行工况为基准的偏差分析方法,避免了对变工况模型的依赖以及由于模型不完善可能导致的误差,具有真实反映机组性能的优点。
最后介绍了一种简便易行的能损分析系统的实现方案,并展示了某100MW 机组的能损分析计算结果。
关键词:能损;偏差分析;火电厂分类号:T M621 文献标识码:A 文章编号:1001-5884(2001)04-0222-04Research and Realization of Performance Evaluation System of Thermal P ower PlantY ANG Bao 2y ong ,J I ANG Ning ,LI U Bing 2gang ,PEI Sheng 2li ,LI Zheng(Department of Thermal Engineering ,Tsinghua University ,Beijing 100084China )Abstract :S ome im portant issues in the development of per formance evaluation of thermal power plants are discussed ,including the criteria for per formance com paris on ,the selection of ideal load case and corresponding per formance values ,the im proved method for the determination of wet steam enthalpy in the last stages of steam turbine and s o on.A new difference analysis method is put forward.I ts idea is to use the real operation case as com paris on standard rather than using a conceived ideal case and av oids the dependence on suspicious off -design m odel.Finally ,the paper introduced a practical engineering scenario for the im plementation of per formance evaluation system in thermal power plant and the analysis results of a 100MW unit were shown.K ey w ords :energy loss;difference analysis;therm al pow er plant0 前 言多年来,由于计划经济体制及技术的原因,许多电厂都比较重视安全生产和发电量,往往忽视提高经济性。
《热力发电厂》热力发电厂全面性热力系统
(6) 前置泵与主给水泵的连接 两种:同轴串联连接;不同轴连接。
加联胺
M M M
M
TP
TP
FP
M
至再热器减温水
M
至高压加热器
FP
M
M
M
至高压加热器
M
M
M
M
M
M
M M
M
M
M
M
M
M
M
M
M
M
M
M
再热器减温
给水操作台
(7) 给水泵的驱动方式确定
➢ 比较的原则:
– 两种驱动方式下的主汽轮机初参 数、再热蒸汽参数及终参数相同;
锅炉再热器出口联箱到汽轮机中压联合汽阀的管 道和分支管道称为再热热段蒸汽系统。
3 单元制主蒸汽-再热蒸汽系统的种类
双管式
单管—双管式
双管—单管—双管式
M
M D
D M M
(a)
双管式主蒸汽系统
主蒸汽和热(段b再) 热汽为单 管-双管系统、冷段再热汽 为双管-单管D -双管系统
4.3 中间再热机组的旁路系统 1 旁路系统概念
4.3 中间再热机组的旁路系统
2 旁路系统的类型
高压旁路(Ⅰ级旁路) 将新蒸汽绕过汽轮机高压缸经过减温减压装置进
入再热冷段管道 低压旁路(Ⅱ级旁路)
将再热后的蒸汽绕过汽轮机中、低压缸经过减温 减压装置进入凝汽器 大旁路 ( Ⅲ级旁路)
将新蒸汽绕过整个汽轮机,直接排入凝汽器
4.3 中间再热机组的旁路系统
✓ 对中间再热机组,给水泵入口的总流量,还应加上供再热 蒸汽调温用的从泵的中间级抽出的流量,以及漏出和注入 给水泵轴封的流量差。前置给水泵出口的总流量,应为给 水泵入口的总流量及从前置泵与给水泵之间的抽出流量之 和。
热电厂供热热力系统计算及工况图
。
流量 调 节 计 算 方
。
力参 数 有 五 个
可 由其 导 出
。
:
w G t
、
、
t,
、
t。
、
t
卜 ,
其 余参 数 均
:
法 及程 序 法 及 程序
、
两 台加热 器 串联 质 调 节 计 算方
”
我 们 计 算 的 任 务是 求 出相 应 的
G
、
当 w t 变 化
t*
、
等等
本文不 介绍
为某 一 值 时
19
。
,
.
1 1 8 t.
’
2
)
一
2 6
(立 式 加 热 器 )
一 艺 艺
K 一
(1 8 )
凡 凡 A 一
A
K
(t P
d
一 t‘
。
)
,
+
B K
}
(4 ) 水 蒸 汽 在 水 平 管束 上 膜 状 凝 结
放热
2
系数
K
(t P
二 一二 ‘ 。 )
、
一 t‘
。
)
‘+ ”K
4
a
,
_
19
Lm
二
(4 3 2 0
t
g
(5)
=
我 们 以 换 热 器 的 换 热管 内 表 面 作 为 发电
,
(
x
+ y)
/2
、
t
h
“
(
x 一
y
)/
2
(6) (7)
工 程 和 供 热 工 程分 界 面 换热 器热 平衡原 理 汽 参数
电厂效率计算方法
一、热电厂能耗计算公式符号说明单位供电标煤耗单位发电标煤耗单位供热标煤耗bg=bd/[1-(ed/100)]bd=(Bd/E)*102Bd=B(1-α)br=(Br/Qr)*103Br=Bαg/kwhg/kwhTKg/GJT4 R热电比R=(Qr/36Eg)*1025η0热效率η0=[(Qr+36Eg)/29.3B]*102(%)二、能耗热值单位换算千焦(KJ)大卡(kcal)1千瓦时(kwh)= 3600kj备注1、吉焦、千卡、千瓦时(GJ、kcal、kwh)1kcal=4.1868KJ=4.1868×10-3MJ=4.1868×10-6GJ1kwh=3600KJ=3.6MJ=3.6×10-3GJ2、标准煤、原煤与低位热值:1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。
Qy=5000kcal/kg=20934KJ/kg1kg标准煤热值Qy=7000kcal/kg=29.3×103KJ=0.0293GJ/kg当原煤热值为5000大卡时,1T原煤=0.714吨标煤,则1T标煤=1.4T原煤3、每GJ蒸汽需要多少标煤:br=B/Q=1/Qyη=1/0.0293η=34.12/η其中:η=ηW×ηg=锅炉效率×管道效率当ηW=0.89,ηg=0.958时,供热蒸汽标煤耗率br=34.12/0.89×0.958=40kg/GJ当ηW=0.80,ηg=0.994时,供热蒸汽标煤耗率br=34.12/0.80×0.994=42.9kg/GJ二、热电厂热电比和总热效率计算一、热电比(R):1、根据DB33《热电联产能效能耗限额及计算方法》2.2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。
R=供热量/供电量×100%2、根据热、能单位换算表:1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦)3、统一计量单位后的热电比计算公式为:R=(Qr/Eg×36)×100%式中: Qr——供热量GJ Eg——供电量万kwh4、示例:某热电厂当月供电量634万kwh,供热量16万GJ,其热电比为:R=(16×104/634×36)×100%=701%二、综合热效率(η0)1、根据浙江省地方标准DB33定义,综合热效率为“统计期内供热量与供电量所表征的热量之和与总标准煤耗量的热量之比”η0=(供热量+供电量)/(供热标煤量+供电标煤量)2、根据热、能单位换算表1万kwh=36GJ1kcal=4.1868KJ1kg标煤热值=7000kcal1kg标煤热值=7×103×4.1868=29.3×103KJ=0.0293GJ3、统一计量单位后的综合热效率计算公式为η0=[(Qr+36Eg)/(B×29.3)]×100%式中:Qr——供热量GJEg——供电量万kwhB——总标煤耗量t4、示例:某热电厂当月供电量634万kwh,供热量16万GJ,供热耗标煤6442吨,供电耗标煤2596吨,该厂总热效率为:η0=[(16×104+36×634)/(6442+2596)×29.3]×100%=69%1. 凝汽器压力下的饱和温度与凝汽器冷却水出口温度之差称为端差.2.3. 2.处于高度真空状态下的凝汽器,无论采用何种方法,总有一些不凝结的气体存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力发电厂课程设计1.1设计目的1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法3.提高计算机绘图、制表、数据处理的能力1.2原始资料西安某地区新建热电工程的热负荷包括:1)工业生产用汽负荷;2)冬季厂房采暖用汽负荷。
西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。
通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示:热负荷汇总表1.3计算原始资料(1)锅炉效率根据锅炉类别可取下述数值:锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下:汽轮机额定功率750~6000 12000~25000 5000汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。
(4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。
(5)热交换器端温差,取3~7℃。
(6)锅炉排污率,一般不超过下列数值:以化学除盐水或蒸馏水为补给水的供热式电厂2%以化学软化水为补给水的供热式电厂5%(7)厂内汽水损失,取锅炉蒸发量的3%。
(8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。
(9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。
(10)生水水温,一般取5~20℃。
(11)进入凝汽器的蒸汽干度,取0.88~0.95。
(12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。
2、原则性热力系统2.1设计热负荷和年持续热负荷曲线根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。
用户处工业用汽符合总量:采暖期最大为175 t/h,折算汇总到电厂出口处为166.65 t/h。
表2-1 热负荷汇总表折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。
根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。
表2-2 热电厂设计热负荷图2-1 采暖热负荷持续曲线图图2-2 年热负荷持续曲线图2.2装机方案的拟定根据热电厂设计热负荷和建厂条件,热电厂最终规模是50MW以下,由于采暖热负荷占整个热负荷比重一般,所以不建热水网。
采暖用汽和工业用汽同管输送,因此拟定以下装机方案:(见图2-3)2×CC12-4.9/0.98/0.17型双抽汽供热式次高压汽轮机发电机组;1×B12-4.9/0.98型背压供热式次高压汽轮机发电机组;3×75 t/h次高压循环流化床锅炉。
本方案设有三台锅炉,三台汽轮机,主蒸汽系统采用母管制。
背压机组(B12机组)的排汽,一部分作为1号高加的加热用汽,另一部分作为供热汽源。
抽汽机组CC12有3级非调整抽汽和2级调整抽汽,其中第1级调整抽汽和第1级非调整抽汽共用一个抽汽口,第2级调整抽汽和第2级非调整抽汽共用一个抽汽口,第1级调整抽汽做为供热抽汽,第2级调整抽汽做为补充水加热蒸汽。
除氧器加热用汽量是第2级非调整抽汽,除氧器定压运行。
该系统配置减温减压器,保留或新建调峰锅炉,机组供热不足部分先由锅炉的新蒸汽减温减压后提供,再由尖峰锅炉提供。
减温减压器所用的减温水来自给水泵出口。
系统设连排扩容器,扩容蒸汽进入除氧器。
功热蒸汽的凝结水不回收,补充水(生水)由CC12机组的第2级调整抽汽加热后,去化水车间,再去除氧器。
5.4p 450t 3312.9hD b =390189.69D oj =17.80.0D b l =7.83.79图2-3 B12-4.9/0.98 + 2×CC12-4.9/0.98/0.17 + 3×75 t/h 全厂原则性热力系统图 2.3汽轮机热力特性资料与原则性热力系统拟定及其计算(一)机组热力特性资料我国常见供热机组的热力特性参见《中小型热电联产工程设计手册》。
本方案CC12额定进气量92 t/h,最大进气量104.4 t/h,第一级调整抽汽量30 ~ 50 t/h,第二级调整抽汽量30 t/h。
本方案的计算原则是,让B12尽量多供热负荷,CC12汽机第二级调整抽汽作热电厂补水加热用汽。
(二)原则性热力系统本方案原则性热力系统见图2-3。
(三)原则性热力系统计算1. 参数级符号说明见表2-3表2-3 参数及符号2. 计算条件计算工况:采暖期最大热负荷工况,此时对应汽轮机最大进气量和最大调整供热抽汽量;设锅炉排污量:D bl = 0.02 D b ;汽水损失量:D 1 = 0.03 D b ;ηh = η'h=0.98。
各效率取值见表2-4。
表2-4 主要效率取值3. 锅炉减温减压供热系统热力计算公式 物质平衡方程 DD Tjwj=+D 0 (a )能量平衡方程03282.85D 518.842907jwTjD D+= (b ) 把(a )式带入(b )式得03282.85D 518.842907jwTjD D+=解得 01.168Tjj DD =(3-62)001.168TjTjjj D D DD =-= (3-63)4. 方案一的计算(1)锅炉汽水流量计算公式 1)锅炉蒸发量)(030928.1)03.01/()(000000D D D D D DD j B j B Cb ++=-++=(3-64) 2)锅炉排污量)(020619.002.00001D D D D D j B b b ++== (3-65) 3)锅炉给水量)(051546.10001D D D D D Dj B b b fw++=+= (3-66)4) 锅炉扩容排污系统计算 物质平衡方程 DD psfb +=D 1(a )能量平衡方程111790.98D2693467.08b f ps D D =+⨯ (b )把(a )式带入(b )式得0000.0063757()DfB j D D D =++ (3-67)10000.0142428()D psb f B j D D D D D =-=++ (3-68)5)补充水量计算,若不考虑回水D D D D D Dps L Tj TB TC ma++++=)()(030928.103.0)(000D D D D D Dj B C Tj TB TC++⨯+++=0000.0142428()CB j DD D +++ (3-69)000()0.0451707()TCTB Tj C B j DD D D D D =+++++(2)B12-4.9/0.98热力系统计算公式1)B12机高加用汽量计算高加用汽量可分为两部分,一部分由B12汽轮机排气提供,为DB1,另一部分由CC12第一级抽汽提供,为DC1。
假定B12抽汽加热对应的给水量是DoB和CC12一级抽汽加热剩余的给水量,则高加能量平衡方程:100.98(2907711.76) 1.051546(719.67518.84)BB DD ⨯-=⨯-解得高加用汽100.0981632BB DD = (3-70) 2)B12机外供汽量 0100.901837TBB B B DD D D =-= (3-71)3)B12机发电功率(),003282.8529070.857/3.679.868e BB B PD D ⎡⎤=-⨯=⎣⎦ (3-72)(3)CC12-4.9/0.98//0.17热力系统计算公式 1)CC12高加用汽量计算 高加能量平衡方程()()()1000.982907711.76719.67518.84 1.051546C CjD D D ⨯-=-⨯+解得高加用汽量()1000.098163CCjDD D =+ (3-73)2)生水预热器用汽量计算生水预热器的热平衡:计算时考虑20%的化学水处理水量损失。
()()20.982744.69476.54 1.2167.4762.8s maD D ⨯-=⨯-()()20000.0565070.002553sTCTBTjCBjDD D D D D D =+++++ (3-74)3)低压加热器用汽量计算公式低压热平衡: ()()()3=3c 0.982693433.07407.68128.65D D D --⨯+ 低加用汽量: D 3=0.144149D c(3-75) 4)除氧器用汽量计算公式 除氧器热平衡()()2bs 2s 113c f fw w 0.982744.69146.5476.54711.76407.682693.11=518.84C B D D D D D D D D ⨯+++++++(D +D )把式(3-69),(3-73),(3-70),(3-67),(3-74),(3-75)带入上式,并整理得()()2=000j 0j j c0.1675630.032406 0.0644760.173413C B TC TB T D D D D D D D D D +++-++- (3-76)5)CC12汽量平衡把式(3-73),式(3-74),式(3-75)带入上式,并整理得0000.7537800.1752440.309750 1.021937 0.008209()C B j TCTB Tj Dc D D D D D D =---++(3-77)6)CC12发电量计算公式()()()()(),12230.829[3282.852*******.852744.69 +3282.852693.94(3282.852308.47)]/3.6e C C TC s C P D D D D D D =⨯-++-+-+-(3-78)整理上式得(),00085.82585229.57784375.64124421.081845 0.987569225.867097e C TC C j B TB Tj cP D D D D D D D =+++-++(3-79)或0000.004427,0.1309520.0933370.379984 0.3348930.004372()C B TCj TB Tj Dc Pe C D D D D D D =----++(3-80)代入式(3-77),并整理得0C ,00D =0.0050040.0925780.028419 0.7255900.004337()e C B j TC TB Tj P D D D D D +-+-+(3-81)(4)方案一各部分实际用汽量计算0C 1C TC 22s 3c D =D +D +D +D +D +D上面推导出来汽机进汽量(D0)、凝汽量(D c)与发电功率(P e)和供汽量(D T)之间的关系,现将有关数据代入,可计算出方案一在采暖期最大负荷下汽机、锅炉等各部分实际用汽量。